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Abstract—This  paper proposes a technique for
incorporating machine learning into a wearable medical patch
by combining two key technologies: weightless neural networks
(WNNs), known for their efficiency and low hardware overhead,
and Flexible Integrated Circuits (FlexICs) - ultra low-cost
circuits on flexible substrates. We develop a special WNN model
called “arrWNN” for detecting arrhythmia events from ECG
signals that has an average prediction accuracy of 89% over the
MIT BIH Arrhythmia datasets. We, then, design and implement
the arrWNN model in hardware, and fabricate it using
Pragmatic’s FlexIC technology. The arrWNN FlexIC contains
5,706 NAND2-equivalent gates with a core area of 24 mm?
consuming less than 10 mW at 3V. Our wafer-level test and
measurement results show the full functionality of the
fabricated arrWNN FlexICs validated against the simulation.

Keywords—machine learning, arrhythmia, FlexIC, weightless
neural networks and ECG patch

1. INTRODUCTION

Over the course of the last two decades, flexible
electronics has evolved into a mature platform, delivering
low-cost, slim, flexible, and conformable devices. The
emergence of ultra-cost FlexIC technology [15][16] from
Pragmatic has opened doors to a plethora of potential
applications within the medical field, impacting various
aspects of healthcare delivery and individual well-being. This

paper investigates the application of FlexIC technology in
arrhythmia detection in cardiology demonstrating the
potential of implementing area-efficient neural networks
(NNs) as flexible chips for real-time detection of irregular
heart rhythm conditions.

Deep neural networks (DNNs) are compute and memory
intensive algorithms difficult to be implemented in hardware
for resource-constrained applications such as smart-packaging
and healthcare patches. Weightless neural networks (WNNs)
[11[2][31[4][5] offer a key advantage in terms of their
hardware efficiency because they require fewer computational
resources and no memory for weight storage. Thus, this makes
WNNS s an excellent candidate for the FlexIC technology that
currently has some technology constraints such as larger
device geometries, lack of large on-chip memories and the
limited scale of integration. However, it has certain qualities
that cannot be matched by the silicon chips such as low-cost
materials, low-capex and low-carbon footprint fabrication,
thinness and physical flexibility. In particular, the physical
flexibility is a desirable feature for wearable devices such as
ECG patches.

In this paper, we propose a WNN specifically designed to
detect arrhythmia from ECG data (arrWNN). arrWNN is then
implemented as an application specific integrated circuit and
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fabricated as a FlexIC, which makes it the first arrhythmia
detection NN hardware fabricated as a FlexIC.

II. BACKGROUND AND RELATED WORK

Cardiovascular diseases, with a significant proportion
attributed to arrhythmias, continue to pose a substantial global
health burden. According to the World Health Organization
(WHO), cardiovascular diseases are the leading cause of death
worldwide, accounting for 32% of all global deaths in 2019.
Arrhythmias, characterized by abnormal heart rhythms,
contribute significantly to this alarming statistic. Timely
identification of arrhythmias allows for the implementation of
appropriate interventions, reducing the risk of morbidity,
hospitalization, and mortality. Continuous monitoring over an
extended period allows for the identification of intermittent or
asymptomatic arrhythmias that may go undetected during
short-term assessments.

There have been prior works in detecting arrhythmia using
NNs, however, these NNs are computationally intensive and
demand large on-chip memory. Some were implemented on
FPGAs [6][7][8] and some as ASICs [9][10]. However, these
NN models are too complex to fabricate in the FlexIC
technology. Recent advances in edge inferencing using WNN
[2][3][4][5] yield an area-efficient methodology to create
lightweight neural networks that can be fabricated as FlexIC.
There has been a prior work by Ozer et al [17] that developed
a very small binary NN as a FlexIC targeting an odour
recognition application rather than arrhythmia detection. Ozer
et al [19] also develop a FlexIC detecting atrial fibrillation
(i.e., a type of arrhythmia) events but the atrial fibrillation
detecting FlexIC was not based on a machine learning model.

WNNSs rely on value lookups implemented using RAMs
or look up tables (LUTs) instead of Multiply-Accumulate
operations [1][11], and have shown success for edge
inferencing [2][3][4][5]. LUTs can capture a variety of non-
linear functions, and NNs built with them can learn patterns
with few parameters. WiSARD [1], an early WNN, has been
shown in [12] to have a large VC dimension best suited to
classifier tasks, where inputs are partitioned into different
categories. It uses a sub-model called discriminator for each
class created for each output category, and these
discriminators are composed of small RAM nodes [1][3].
During inference, the outputs of the RAM nodes in each
discriminator are summed, and the index of the discriminator
with the strongest response is the predicted output. Recent
research [3][5][13] have demonstrated that WNNs and their
variations are effective for energy-efficient edge applications.

III. ARRWNN DESIGN

A. Model Development

We use the MIT-BIH Arrhythmia Database [18] for
developing the arrWNN model and evaluating the
performance of its hardware implementation fabricated as a
FlexIC. The database comprises 48 half-hourly excerpts
extracted from 2-channel ECG recordings obtained from 47
subjects from 23 recordings representing routine clinical
scenarios alongside 25 recordings featuring arrhythmias. The
data are sampled at a rate of 360 Hz per channel with an 11-
bit resolution in a 10-mV range. The database labels each
heartbeat as either normal or one of 18 arrhythmia types, but
we reduce the number of classes into two: Normal versus
Arrhythmia (all types of arrhythmia considered as a single

class) to simplify the arrWNN model and its hardware
implementation.

The arrhythmia detection pipeline is shown in Fig. 1a. The
ECG signal is pre-processed by an analog frontend and then
converted into a digital signal using an analog-to-digital
converter. Next, a bandpass filter similar to the one used in the
Pan-Tompkins QRS detection algorithm [14] to filter the
noise. Filtered digital data is then encoded into a unary
(thermometer) format and mapped into 8-bit addresses to
access the WNN model where arrhythmia is predicted.

In developing the arrWNN model, we build upon the
methodologies presented in LogicWiSARD [2] and COIN [4].
These architectures convert LUTs to equivalent function
minterms, so no memory storage for weights is required.
To reduce the number of pins used in the arrWNN FlexIC, we
feed inputs to the FlexIC in a serial manner. Hence, inside the
FlexIC, we convert the serial input bit stream into an 8-bit
parallel format. Then, the logic function
minterms corresponding to the model using the COIN training
methodology are implemented. The model uses 741
minterms. During inference, corresponding minterm groups
are selected using a multiplexer for each input tuple, and up-
down counters are employed to adjust the score of each class.
The argMax determines the predicted class with the highest
score.

We conduct 50 iterations of Monte Carlo cross-validation
to test the robustness of our WNN model. We select the best
model whose AUC (Area Under the Curve) is closest to the
mean AUC of all iterations. Also, we adopt a "leave-some-
patients-out" strategy and stratify cross-validation to mitigate
biases arising from patient data overlap and unfair
partitioning. Despite the inherent imbalance in the dataset, we
maintain a representative distribution of classes. The Monte
Carlo cross-validation results show a mean accuracy of 0.8604

Input Bitstream

Parallel Ckt

n

ECG Signal

Frontend

[ Analog-to-Digital ]

Logic Function
Minterms

Multiplexers

K

UpDown
Counters (k)

Converter

Pan-Tompkins
Bandpass Filter

Thermometer
Mapping

arrWNN
(implemented

{Normal, Arrythmia} Predicted Class

(a) (b)
Fig. 1 (a) Arrhythmia detection pipeline showing the arrWNN
implemented as an FlexIC (b) Microarchitecture of arrWNN

with a variance of 0.0038, and a mean AUC of 0.8429. Thus,
the arrWNN model has an overall accuracy of 0.8827 with a
sensitivity of 0.6862 and a specificity of 0.9983 achieving
AUC 0f 0.8422.

B. Hardware Design and Implementation

arrWNN leverages Pragmatic’s FlexIC technology of
0.6um n-type metal-oxide thin-film transistor technology that
uses indium-gallium-zinc-oxide (IGZO) and resistors to
fabricate flexible chips on a 200 mm polyimide wafer.
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Fig. 2 (a) Die photograph of the arrWNN FlexIC of a 9x6mm pad layout with 60 pins, (b) Flexible wafer containing arrWNN FlexICs tested on a wafer
probe station, (c) Waveform of the tested arrWNN FlexIC, displaying the synchronization of input and output signals during a test sequence showing the
final stages of the input data stream (sink_valid and addr) and the inference outputs (source_valid and predicted_class).

The pre-trained arrtWNN model is converted to Verilog.
Fig. 1b illustrates the major blocks in the microarchitecture of
arrWNN such as serial to parallel converter, function min-
terms, up-down counters and the argMax to determine the
counter with the highest count (i.e., the predicted class). Logic
synthesis converts the design in Verilog into a gate-level
netlist, and optimizations are applied to reduce die area while
ensuring logical correctness. Pragmatic’s 0.6um FlexIC PDK
and the standard cell library are used for developing the
arrWNN FlexIC. Complex logic cells such as OR-AND-
Invert and AND-OR-Invert help reduce area and timing
critical paths. The design is synthesised and timed for a clock
frequency of 100 kHz. Timing analysis tools are used to
ensure that the gate-level netlist meets these constraints.
Formal verification and simulation are employed to detect and
correct design errors. The logic synthesis is followed by Place
and Route, when the physical placement of logic gates and the
routing of interconnections is determined. Effective
floorplanning, assigning logic gates to predefined locations on
the chip, is followed by optimization algorithms to determine
the optimal positions for these gates, ensuring that wires are
as short as possible to meet timing constraints and minimize
signal delay. A well-designed clock tree is used to minimize
clock skew and optimize clock signal delivery.

A well-designed power grid reduces voltage drop and
supports low-power operation. During Route, ensuring a
reliable and efficient power grid is crucial. In the initial stages
of Place and Route, meticulous power planning is undertaken
to define the layout of the power grid. This process
encompasses the strategic positioning of decap cells, which
are miniature capacitors strategically placed to alleviate
voltage fluctuations and guarantee a stable power supply. Cell
routing density determines the signal routing congestion and
final area. A balanced and calculated approach is applied to
avoid timing violations. Design Rule Checking (DRC) and
Layout-versus-Schematic (LVS) are performed to verify that
the physical layout matches the original design. Then, the
physical layout is converted to GDSII format for tape-out and
fabrication. The physical implementation results show that the
arrWNN FlexIC has a maximum clock frequency of 100 kHz,
a NAND2-equivalent gatecount of 5,706 with a core area
(excluding the chip-level power grid, pads and I0s) of 24 mm?
and consume 9.4 mW power at 3V.

C. FlexIC Fabrication and Test

Fig. 2a shows the die photo of the arrWNN FlexIC
fabricated on a 200 mm polyimide wafer. Two flexible wafers
are fabricated and all arrWNN FlexICs in the wafers undergo
rigorous testing to ensure functionality. A probe card is used

to test the arrWNN FlexICs on the flexible wafer as shown in
Fig. 2b. Due to high capacitive loading in the test equipment,
the maximum clock frequency generated by the test harness is
6.25 kHz, so the arWNN FlexICs are operated at a clock
frequency of 6.25 kHz.

The tests involve 306 inference test vectors created from
the ECG datasets in the MIT-BIH Arrhythmia Database. The
test results exactly match the simulation results indicating the
full functionality. Fig. 2c¢ visualizes these results
demonstrating accurate synchronization between input and
output signals throughout the test sequence. This includes the
final stages of the input data stream (sink_valid and addr) and
their ~ corresponding outputs (source_valid  and
predicted class). The slow rise time observed on the
predicted_class signal is attributed to the combined effect of
capacitive loading from the test equipment cable and the
limited drive strength of the output buffers on the chip.

IV. CONCLUSION

In this paper, we have presented “arrWNN” - an
innovative machine learning network designed for arrhythmia
detection, harnessing the computational efficiency of
weightless neural networks and the ultra-cost and physical
flexibility of the FlexIC technology. We have developed the
arrWNN model, designed and implemented its hardware,
fabricated it as a FlexIC. The mean accuracy of the arrWNN
model has been around 89%. When physically implemented
as a FlexIC, arrWNN has a core area of 24 mm?, which is
equivalent to a NAND2 gatecount of 5,706 consuming less
than 10 mW at 3V. Our test and measurement results have
shown the full functionality of arrtWNN operating at a clock
frequency of 6.25 kHz. arrWNN will enable a disruptive class
of arrhythmia detection hardware for emerging low-cost
wearable ECG patches.
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