HeteroScore: Evaluating and Mitigating Cloud
Security Threats Brought by Heterogeneity

Chongzhou Fang*, Najmeh Nazari*, Behnam Omidif, Han Wangi, Aditya Puri®, Manish Arora¥,
Setareh Rafatirad*, Houman Homayoun®*, and Khaled N. Khasawneh!
* University of California, Davis, {czfang,nnazari,srafatirad,hhomayoun} @ucdavis.edu
f George Mason University, bomidi,kkhasawn@gmu.edu
1 Temple University, han.wang.hw @temple.edu
§ Foothill High School, ap1016@pleasantonusd.net
il LearnDesk, Inc., manish@learndesk.us

Abstract—Cloud computing has emerged as a critical part of
commercial computing infrastructure due to its computing power,
data storage capabilities, scalability, software/API integration,
and convenient billing features. At the early stage of cloud
computing, the majority of clouds are homogeneous, i.e., most ma-
chines are identical. It has been proven that heterogeneity in the
cloud, where a variety of machine configurations exist, provides
higher performance and power efficiency for applications. This is
because heterogeneity enables applications to run in more suitable
hardware/software environments. In recent years, the adoption
of heterogeneous cloud has increased with the integration of a
variety of hardware into cloud systems to serve the requirements
of increasingly diversified user applications.

At the same time, the emergence of security threats, such
as micro-architectural attacks, is becoming a more critical prob-
lem for cloud users and providers. It has been demonstrated
(e.g., Repttack and Cloak & Co-locate) that the prerequisite of
micro-architectural attacks, the co-location of attack and victim
instances, is easier to achieve in the heterogeneous cloud. This
also means that the ease of attack is not just related to the
heterogeneity of the cloud but increases with the degree of
heterogeneity. However, there is a lack of numerical metrics to
define, quantify or compare the heterogeneity of one cloud envi-
ronment with another. In this paper, we propose a novel metric
called Heterogeneity Score (HeteroScore), which quantitatively
evaluates the heterogeneity of a cluster. We demonstrate that
HeteroScore is closely connected to security against co-location
attacks. Furthermore, we propose mitigation techniques to trade-
off heterogeneity offered with security. We believe this is the first
quantitative study that evaluates cloud heterogeneity and links
heterogeneity to infrastructure security.

I. INTRODUCTION

The last decade has seen a tremendous rise in cloud
computing deployment, usage, and interest from both industry
and academia. Powered by the availability of nearly unlimited
compute, massive storage capacity, software and, API inte-
gration, scalability, and attractive billing models, there are
an increasing number of workloads being offloaded to the
cloud. Public cloud providers like Amazon AWS [1], Microsoft

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA

ISBN 1-891562-83-5

https://dx.doi.org/10.14722/ndss.2023.24996
www.ndss-symposium.org

Azure [5] and Google Cloud [3]] provide infrastructure as
a service (IaaS) where resources are provisioned and made
available in a pay-as-you-go manner. These services have
gained tremendous popularity as they increase the speed of
deployment and eliminate the need for users to purchase
and configure their own infrastructure, thus reducing upfront
capital expenditure and increasing the speed of deployments.

As more compute applications migrate to the cloud, there
is a rise in the diversity of user applications running within the
cloud infrastructure, leading to an increase in the diversity of
hardware resources to satisfy application needs [17]. Instead
of having similar machines in the cloud infrastructure, public
clouds now offer customized hardware/software environments
to meet user requirements, boost performance, and reduce
costs. This heterogeneity in hardware and execution environ-
ments is also exposed to the user where they can make specific
demands on the allocated hardware. For example, Google
Cloud [3] allows users to specify a variety of parameters
related to the hardware/execution environment when submit-
ting their instances, including CPU type, number of cores,
memory, availability of local SSDs and GPU resources, etc.
This has also led to the development of various heterogeneity-
aware scheduling algorithms to map application demands to
hardware [18]], [19].

At the same time, the emergence of security threats is
becoming a critical problem for cloud users and providers.
Specifically, malicious users can deploy micro-architectural
attacks since applications from different users share resources
when assigned to the same node. Micro-architectural attacks
are a class of attacks that exploit hardware vulnerabilities in
shared resources, e.g., side-channel attacks [52f, [S3], [42],
rowhammer attacks [47]], and transient execution attacks [34],
[37], [14], [34]. Previous research has shown the potential for
these attacks in a cloud environment [28]].

The threat of micro-architectural attacks becomes more sig-
nificant in heterogeneous cloud environments. The prerequisite
of successful micro-architectural attacks is the co-location of
attack instances with the targeted victim instance. It is easier
to satisfy this prerequisite in heterogeneous clouds compared
to homogeneous clouds as each node type may have fewer
machines in a heterogeneous cloud environment. Considering
heterogeneity during the scheduling processes narrows down
the search space of nodes that application instances can be

possibly assigned to and renders scheduling decisions more
predictable. This makes it easier for attackers to force the
scheduler to co-locate their attack applications with victim
applications [22]].

Previous works [22], [39] have shown the susceptibility
of profiling-based schedulers [9], [[18], [19] and policy-based
schedulers [4], [7] to such attacks. For profiling-based sched-
ulers where the scheduler samples the execution of target
program and go through a learning process to achieve a
near-optimal placement arrangement [19]], by simply mim-
icking victim application traces [39], attackers can force
schedulers to generate the same node-assignment decision,
achieve co-location with victim applications and issue micro-
architectural attacks. Similarly, for policy-based schedulers
where heterogeneity-aware scheduling decisions are made
based on user submitted information, replicating scheduling
constraints [22]] suffices to greatly increase the success rate an
attacker might achieve.

Unfortunately, with system integration, continuous devel-
opment of new architectural features, and increased costs
of testing hardware designs, new micro-architectural attacks
continue to be discovered. Since these attacks target design
flaws of hardware, protecting against them is a difficult process
requiring expensive and time-consuming hardware changes. In
addition, adding security solutions for each micro-architecture
attack may decrease the performance of running workloads
in the cloud [38]]. Therefore, from a cost, performance, and
security perspective, there is a need to defend against micro-
architectural attacks using a variety of techniques. One easy
way to do so is to simply reduce the chances of co-location.

Since co-location of attack with target applications is the
prerequisite step of all micro-architectural attacks, reducing the
probability of co-location improves security. This is orthogonal
to other defenses and they can be deployed immediately as
hardware changes or patches are developed for each new
hardware vulnerability. Lastly, reducing the probability of co-
location can defend against unknown future micro-architectural
attacks that are yet to be discovered.

The mitigation strategy of reducing co-location is crucial to
heterogeneous clouds, where co-location is easier to achieve.
As heterogeneous cloud deployments continue to rise, it is
important to understand how heterogeneity impacts co-location
and the infrastructure’s security against micro-architectural
attacks. However, there is a lack of numerical metrics to define,
quantify or compare the heterogeneity of cloud environments.
In this paper, we propose a novel metric called Heterogene-
ity Score (HeteroScore). HeteroScore provides a numerical
measure of the heterogeneity of cloud infrastructure and helps
cloud managers guide the deployment of mitigation strategies.
We derive mitigation techniques based on HeteroScore to
help prevent co-location forced by attackers. We evaluate our
strategies in a real cloud to show the co-location success rate
an attacker can achieve and do not make assumptions regarding
the underlying virtualization methods. Moreover, we focus on
scheduler-level attacks [22], [39].

The following are the contributions of this paper:

1) We propose a novel metric called HeteroScore to
quantitatively measure the heterogeneity of cloud

infrastructure. Detailed algorithms to calculate Het-
eroScore are defined and presented.

2) Inspired by HeteroScore, we propose mitigation tech-
niques that trade-off heterogeneity and security, a
trade-off not considered earlier.

3) We evaluate HeteroScore, and the proposed miti-
gation techniques on a real cluster to establish the
relationship between HeteroScore and security and
show how these mitigation techniques enhance secu-
rity. Empirically, under the settings in this paper, by
keeping a HeteroScore to below 0.9, the co-location
rate can be reduced to a safe level.

The remainder of the paper is organized as follows. We
present related background knowledge and assumptions of
the study in Section [[I| and Section [III} respectively. We pro-
pose HeteroScore in Section |[V|and provide related mitigation
techniques in Section [V, Section [VI|evaluates the HeteroScore
metric as well as the proposed mitigation technologies. We
provide additional discussion about our theory and findings
in Section Finally, we review related literature in Sec-
tion [VIII and conclude in Section

II. BACKGROUND
A. Heterogeneous Cloud Infrastructure

Recently, heterogeneous clouds have gained adoption in
cloud computing environments. This is because heterogeneity
enables high performance as users can run their workloads on
suitable hardware/software configurations. Also, homogenous
cloud environments can become heterogeneous with the de-
ployment of new hardware within existing environments [17],
[13], [56]. Compared to homogeneous clouds, where all ma-
chines in the clusters are the same, heterogeneous clouds are
more diverse and flexible in terms of available hardware and
software environment configurations. Therefore, running the
same application with different configurations on a heteroge-
neous cloud can result in varying performances and costs [51].

The fundamental function of a cloud scheduler is to
orchestrate the cloud system and make appropriate instance
placement decisions, i.e., assign user instances to suitable
machines [46]. There have been designs of schedulers and
resource provisioning systems that consider heterogeneity [31]],
[9], (501, [19]], [18] and enable service providers to offer suit-
able resource types based on user application characteristics.
Users can also specify requirements and preferences of nodes
to run their applications by specifying “Affinity”, a widely
existing feature in the cloud and cluster schedulers [23], [40],
[4], 171, [6]. In our work, we will consider affinity scheduling
algorithms and show how different levels of heterogeneity can
affect the scheduling results. However, our work is generally
applicable to all schedulers and resource provisioning systems
that consider heterogeneity.

B. Co-location Attacks

Within the cloud, applications from different users can be
running simultaneously on the same node. To enhance security
and avoid interference between different user applications,
specific isolation techniques, e.g., virtual machine (VM) iso-
lation [7]] and container isolation [4]] are utilized. Applications

from the same user are typically packaged in a VM or a
container and deployed on a node assigned by cloud scheduler.

However, even with VM or container isolation, there
are threats that exist for cloud applications. Prior research
works [45], [57] have shown that cross-VM side-channel
attacks can be used to extract information from a target VM
on the same machine. Emerging micro-architectural attacks im-
pose severe security risks for cloud users. Micro-architectural
side-channel attacks, such as FLUSH+RELOAD [53] use the
structure of shared caches to allow the initiation of attacks
across VMs. In recent years, there have been various forms
of other micro-architectural attacks targeting hardware design
flaws. Rowhammer attacks [33|], [47] utilize circuit features in
DRAM chips, like electromagnetic coupling effects, to issue
attacks and stealthily cause bit-flips in DRAMs. Transient
execution attacks [37]], [34] manage to execute instructions
that should not be executed by exploiting out-of-order ex-
ecution patterns or branch predictors in micro-architecture.
Fault attacks [41], [48] exploit frequency/voltage adjustment
features in modern computer systems and maliciously insert
faults during the execution of a program. As new hardware
micro-architectural vulnerabilities continue to be discovered,
there is a need for solutions to protect against known as well
and yet-to-be-discovered.

An important prerequisite to initiating a micro-architectural
attack is achieving co-location, i.e., managing to run on the
same nodes as the victims. It has been shown that cloud sched-
ulers can be exploited by attackers to achieve co-location [39],
[22]]. Both policy-based schedulers [22] and machine learning-
based schedulers [39] can be exploited to achieve relatively
high co-location rates in the heterogeneous cloud. These attack
methods exploit the fact that schedulers in heterogeneous
clouds tend to place application instances on the most suitable
machines. Furthermore, because heterogeneity is considered
during the scheduling process, there is a higher chance that
schedulers can be tricked and place attack instances on the
same node as the victim.

III. THREAT MODEL

In this work, we quantitatively evaluate the security level of
a heterogeneous cloud against co-location attacks. The threat
model is similar to [22]. In this scenario, the attackers’ goal is
to achieve co-location with victim applications to issue micro-
architectural attacks.

We consider a neutral cloud setting, where service
providers are non-malicious and trusted. We do not consider
the situation in which service providers cooperate with ma-
licious users to attack other users. After all, offering help to
malicious users is against the profit goal of cloud or cluster
service providers. Victim applications, malicious applications,
and other unrelated applications on the cluster are considered
equivalent by the cluster service provider and the scheduling
algorithm. All scheduling decisions are determined by cluster
resource states and user requests. We assume that cloud sched-
ulers do not apply mitigation strategies against co-location
attacks [S8]] in the scheduling step as the idea of forcing co-
location is relatively novel [22], [39]] and possible mitigation
strategies are not yet integrated into schedulers to the best of
our knowledge.

Regarding users of the system, we assume attackers do not
have any privileges over other users. Permissions available to
attackers are limited to: (1) requesting computing resources
in the cluster by submitting configuration scripts, and (2)
running their programs on assigned nodes and resources.
Attackers do not have access to resources that other users
cannot access, nor do they have access to special features of the
service infrastructure software system that other users cannot
access. In this study, all users can only access and operate
on nodes assigned to their applications and corresponding
assigned resources. Since our threat model does not assume
any privileges of the attackers on the system, the analysis
has wider applicability than a model that assumes privileges.
We assume without argument, justification, or experiment
that the attacker knows the execution specifics required to
target the victim. This is a reasonable assumption since these
specifications are usually provided to optimize the placement,
for example, forcing the scheduler to schedule an instance to
a node with higher I/O capacity or a specific platform. We
can safely assume that attackers know the execution features
of victims and victims always want to optimize performance
by selecting more suitable execution environments; hence the
assumption that attackers can infer the victim’s specifications
is reasonable.

Conforming to the general settings of cloud and cluster
service infrastructures [4], [6], [[7], [54]], [1], scheduling de-
cisions are made based on the user-submitted metadata. This
metadata contains resource requirements, e.g., number of CPU
cores required, amount of memory needed, etc. This metadata
also contains requirements and preferences that fine-tunes
scheduling processes e.g. requirements and preferences about
whether or not to schedule on a node with certain features.
Previous work [22] shows that by exploiting this scheduler
feature and replicating the second type of information, it
becomes easier for an attacker to co-locate with victims on a
heterogeneous cluster. In this study, we assume attackers use
a similar method to achieve co-location.

This study targets the co-location attack vulnerability
of heterogeneous clouds and is not a study of micro-
architectural hardware vulnerabilities. How specific types of
micro-architectural attacks are deployed and related low-level
mitigation techniques are beyond the scope of this paper.
We first evaluate the relationship between heterogeneity and
co-location attack vulnerability and then add and evaluate
mitigation techniques later in this paper.

IV. HETEROSCORE

In this section, we introduce a metric called HeteroScore
to quantitatively measure heterogeneity of a cloud computing
cluster. We first provide the intuition behind this metric, and
then we define related variables and details of the algorithm
to calculate HeteroScore. A mitigation technique based on
HeteroScore is provided in Section [V.

A. Definition and Explanation of HeteroScore

To quantitatively measure heterogeneity, we will (1) define
a formal representation of the target cloud computing cluster,
and (2) define a mathematical metric and a calculation proce-
dure of the metric based on the representation.

1) Cluster Representation: In this part, we introduce how a
single node of a cloud computing cluster can be represented.
Nodes in a cluster have metadata information in the format
of “label-value” pairs that record specific features of nodes.
This is consistent with cloud computing clusters that utilize
management frameworks such as OpenStack [7/] and Kuber-
netes [4]. In this approach, “label” refers to a feature of the
node and “value” refers to a specific value that corresponds
to that feature. An example “label-value” description can be
“CPUType - Intel Xeon”, which indicates the model of
the CPU. The label-value pairs can be used to specify various
resources like memory, GPU, network bandwidth, disk space,
etc. There can be multiple labels attached to a node and
usually depict physical hardware properties. The “label-value”
description information is used by the cluster schedulers to
assign suitable machines to the user.

In our model, each node consists of multiple “label-value”
description items. We consider each label as one dimension. By
assigning each value in the “label-value” pairs a numerical in-
teger value, we craft a vector for node N® in a d-dimensional
space: o _ _

N@ = (a:gz),xg),...,x?,...,x&l))T, [€))

where d is the total number of labels that have appeared in the

cluster and x,(j) corresponds to the assigned label value in the
k-th dimension.

By acquiring and gathering the representation for each node
in the cluster, the cluster can be represented as a set of IV points
) (1 <4< n) on a d-dimensional space:

C:{N(l)vN(Q)v7N<1)77N(n)}7 (2)

where n is the number of nodes in the cluster.

After mapping the cluster into a geometric space, we are
able to process cluster information according to the geometric
attributes of the representation. Our further processing will
be based on this representation. It is worth noting that the
actual meanings of certain labels/values are ignored in our
calculation process, i.e., we focus on a higher representation
level and ignore lower-level details in real-world configurations
after finishing the mapping.

2) Proposed Metric: Our goal is to use a quantitative metric
to depict the heterogeneity of a cluster. The ‘“label-value”
pairs typically depict physical attributes of the node. It is
intuitive from the representation of the nodes that in the d-
dimensional space, longer distances between points correspond
to larger hardware differences between nodes. In a relatively
homogeneous cluster, nodes will be densely clustered in the
d-dimensional space as each node has similar hardware config-
urations, whereas in a relatively heterogeneous cluster, nodes
tend to sparsely scatter in the space.

To depict how sparse C is in the d-dimensional space, we
define the HeteroScore metric denoted H..:

Sy X Hp(NO NG <}

He=1— 5 . 3)

n
Here p(N(i),N(j) refers to the Euclidean distance between
node N9 and node NU) in the d-dimensional space:

d

S @ — 2y @

k=1

p(NO NGOy =

Y

:
8 9 s
:]

Dimension 2

8

»
>

Dimension 1

Fig. 1: Cluster mapped to a d-dimensional space (d = 2)
and demonstration of . calculations. Nodes are assigned
coordinates in this space, which combine to represent cluster
information. To compute H,., for every node N(*) we count
how many other nodes lie within distance ¢;, and perform the
mentioned operations.

and t, is a predefined threshold value. We define I{x} in
Eq. (3) as an indicator:

1, Given condition * is satisfied,
I{x} = (5)

0, Otherwise.

The calculation process in Eq. (3) works as a two-step pro-
cess. First, it iterates through every node N (1 < i <n) and
counts how many nodes (including itself) lie within a predeter-
mined distance ¢, (calculated by Y7 I{p(N),NW)) < 1,})
of the current node. Second, all counts are aggregated and
normalized to a value between 0 and 1. The normalized value
is subtracted from 1 to ensure that the higher heterogeneity
of a cluster produces a higher HeteroScore value. A similarity
threshold is applied to quantize the vector differences to be
either 1 or 0. The calculation process is depicted in Figure
for a 2-dimensional space.

There are a few notable features of HeteroScore (H..).

Range. Due to the definition of I{} and the process of
summation, it is obvious that

0<ZZI{pN(>N<J>)<th} Xn:ilzn? ©)

i=1j=1 i=1j=1

Hence:
0< He < 1.)

Generalizability. With the normalization step in Eq. (3)),
we are able to derive the proportion of nodes similar to each
other of the exact number of nodes. Also, in the calculation
process, we do not consider specific hardware label-value pairs
or features. Therefore, the values of H. can be compared
across clusters of different sizes and settings.

Determining factor. Since during the computation pro-
cess, we only consider cluster settings and ignore user-side
information and run-time states, the only factor that influences
H. is how cluster managers configure and expose information
about their clusters to users. H. is hence a suitable metric
to quantitatively measure the heterogeneity of a cluster as
exposed to an application by the cluster manager.

B. Algorithm

Although the calculation in Eq. is relatively straightfor-
ward, there are more practical considerations in its algorithmic
implementation in the real world. This subsection provides
details as to how HeteroScore can be calculated for a real-
world cloud computing cluster.

Please note that in this subsection, the use of notation N(*)
refers to the assigned coordinate vector of the corresponding
node in the d-dimensional space, as shown in Eq. (1).

1) Assigning Coordinates to Nodes: In a real-world cluster
setting, certain information in the metadata may be missing,
i.e., the values of some labels may be missing. Our previ-
ous discussion assumes that all label-value pairs are always
available. However, that is not always the case and this
scenario needs to be carefully handled to generate suitable
representations that are consistent with theory. A portion of
our algorithm will be dedicated to policies that properly define
and assign missing values to these nodes.

In our implementation, we:

1) gather and number labels that appeared in the meta-
data of the cluster nodes, define the values of all
labels that have appeared, and generate axes for the
d-dimensional space that represents the cluster;

2) generate corresponding coordinates according to the
description of each node.

The first step is done by iterating through the metadata
of all nodes and recording description labels and correspond-
ing values that have appeared. Once this is completed, the
dimension d is determined. The mapping between label values
and numbers is then defined. In this paper, we only assign
integer numbers to each value. We assume the corresponding
value-number mapping of the cluster is stored in V and can
be accessed by V(k,v), where k is the assigned dimension
number of a label, and v is the label value, i.e., V(k,v) returns
a number corresponding to the value for the k-th label. In the
process of constructing this mapping we let V(k,v) > 0 if k
is a valid label.

In the second step, we process coordinates according to
node metadata information. In the first step we parse every
node’s metadata and stored related “label-value” pairs in K(*)
(1<i<n)as:

IC(Z) = {UY)vUéi)v"'71)](;)7"'71]5;)}' (8)

Here, v; is the value matching the k-th label. vy can be
assigned a special value ¢ if the value of the label is missing in
the description of a node. We define V(k, ¢) = 0. Coordinates
NG will be generated based on K.

There are two cases:

e Fully defined nodes: all d labels have a label;

e Partially defined nodes: values of 1 or more label fields
are missing.

For fully defined nodes, a simple assignment policy is enough
to generate coordinates based on /C(¥). We call this policy as
Trivial Assignment. For partially defined nodes, we consider

Fig. 2: The diagram of constructed data structure. The rep-
resentation of a cluster can be parsed to multiple tree-like
data structures in the diagram. In this figure, N(@ » N,
N®) N(C), and N(© is a leaf node.

relations with other nodes to assign coordinates. This policy
is called as Relation-based Assignment.

Trivial assignment. We apply a mechanical assignment
policy shown in Algorithm [I] to all nodes. After executing

Algorithm 1 Trivial assignment of N,

Require: C, K9 (for 1 < i < n), V.
function TRIVIALASSIGNMENT(IC<7’), V)
for k(il)’l 1..d do

z,” = V(k,vg)
end for)) .
return (xgl),xg), ...,a:g), ...,E;Z))T

end function
for N(O in C do

N() = TRIVIALASSIGNMENT(K(?), V)
end for

TRIVIALASSIGNMENT for every node, (1) coordinates of fully
defined nodes will be non-zero values and the assignment
process is finalized; (2) partially defined nodes will contain
Os in their coordinates.

Relation-based assignment. To generate coordinates that
do not contain Os, we will apply a predefined assignment
policy. Firstly, we define relations between nodes notated: =,
#, > and <:

For indexes 7,5 (1 <i,j < n), let 6 = {k | z{” # 21},
Definition 1: If § is empty, we say N(?) = N0,
Definition 2: If Yk we have x,(f) = 0 and x,(cj) % 0, we say
Definition 3: If none of the following relations hold:
N@ = N, NO » NG or NO < NO | we say N £ NU)

In our definition of this type of relations, if N() » NG,
node N is described with more details and hence contains
more label-value pairs in the description metadata. With this
definition, we are able to construct multiple tree-like data
structures from the coordinates obtained from step 1, as shown
in Figure [2] We define some features of such data structure:

1) If N js the child of N®), then N(¢) < N(®);
2) Overlapping of trees is allowed, and a node can
appear in multiple different trees.

We can prove the following Lemma:

Lemma 1: Fully defined nodes can only be leaf nodes.

Proof: Assume there is a fully defined node N(*) which
is not a leaf node, i.e., IN®) st N@ » N® 1In this case,
according to Definition [2| 3k s.t. x,(:) = 0, which contradicts

our assumption that N(%J is fully defined.]

Once constructed such data structures, for every partially
defined node N(®) we can recursively search for leaf nodes
in the same tree and store them in a set £(*). We define the
following policy:

Policy 1: We do the following to assign coordinates to
N,

1) For all partially defined nodes N) in £, for every

_ _ n)
index k s.t. 2/ =0, let 2 = nZl=1(ng)k :
o 2 Hay # 03
2) For every index k stz = 0, let 2zl =

ZNmeg(i) 95;(3)
|£(i)

Policy [I| does two things. (1) It first processes coordinates
of partially defined leaf nodes in £(*). For every dimension, it
iterates through the coordinates of all nodes in C and calculates
the average of non-zero entries for this dimension. Then it
uses these values to update zero entries in the coordinates
of leaf nodes. (2) Secondly, it uses the processed leaf node
coordinates to update N9 It calculates average coordinates
in £ and uses the results to update zero entries in N(*),
The reason for using this policy is that during the scheduling
process if a user does not provide a specification for a certain
feature domain, all nodes that satisfy other requirements, either
with/without a description in that feature domain, will be
considered candidates. Policy (1| places all partially defined
nodes in balanced positions to consider this scheduling effect.

The algorithm to construct such data structures and assign
coordinates is shown in Algorithm @ Here, we first use a
matrix R that is similar to an adjacency matrix to record all
relations between nodes and hence finish the construction of
the proposed data structure. Then we apply Policy [I] and finish
assigning coordinates to every node in C.

Algorithm 2 Constructing relation data structures and assign-
ing coordinates.

Require: C after executing TRIVIALASSIGNMENT on every node.
R = {’f’ij}an = {#}nx*n
for i in 1..n do
for j in 7..n do
r45,7j; = Relation between N and N (=,%,>,=<)
end for
end for
for all partially defined N(*) do
Perform depth-first search for leaves in R and store them in £®
Apply Policy m to N(®
end for
return C

After this step, the representations of all nodes will be
completed. For any N() (1 <4 < n) there is no 0 component.

2) Calculating HeteroScore: Algorithm [3] calculates .
based on the acquired coordinates and the computation shown

in Eq. (3).

Algorithm 3 Calculation of H..

Require: Cluster representation C with coordinates fully assigned, number

of nodes in cluster n.
s=0
for ¢ in 1..n do

for 5 in 1..n do

s =5+ I{p(N®,NO) <}

end for

end for s

return H., =1 — —
n

Final Coordinates

(X}, Xy X5 000y X))

Label-Value Metadata Initial Coordinates
(X} Xpy X3y 100 X))

CEI:] ooe D (May inciude 0s)

1 m |
()5 Xy X35 ey X,)

(X} Xp Xy ey

" (Do not include 0s)
xn) %

HeteroScore

(May include 0s) (Do not include 0s)

Initial Coordinates Final Coordinates

Fig. 3: 3 stages of H, calculation.

After executing Algorithm [3] HeteroScore .. of a cluster
viewed from users is determined.

In summary, Algorithm [I] initializes all coordinates for
every node. Algorithm [2] processes the case that label-value
pairs are missing in some nodes and assigns proper coordinates
according to a set of predefined rules. Finally, with Algorithm]3]
the computation in Eq. (3 is performed and %, is determined.
The summary diagram is shown in Figure

3) Elaboration: In this paper, the metric HeteroScore ..
is an indicator of the heterogeneity of a cluster viewed from
a user. Cluster managers can make design choices based on
HeteroScore and control the level of heterogeneity information
exposed to users and take measures to defend against co-
location attacks.

Selection of ¢;, in the calculation process of HeteroScore
H.. The value of t;, can be considered the threshold of sim-
ilarity. A smaller ¢, value indicates more strict requirements
for nodes to be considered similar during scheduling, i.e., the
geometric representation of two nodes in the representation
space should be closer for them to be considered similar.
Choices of t;, affect the calculation results of HeteroScore H.;
hence designers should make the trade-off in the selection of
th.

Dealing with Real-World Label-Value Pairs. In our
calculation process, we assign an integer value to each value
in the label-value pairs and generate coordinates accordingly.
However, in practice, since these values are usually categorical
and are not continuous, it may not be suitable to process node
information using this method. We suggest cluster managers
use one-hot encoding to split one such dimension into several
dimensions and continue using the proposed algorithm to
calculate HeteroScore.

V. MITIGATING CO-LOCATION ATTACKS

Based on the computation results of HeteroScore ., we
are able to derive mitigation strategies toward co-location steps
at the scheduler level.

A mitigation strategy is discussed in [22]]. In the authors’
strategy, during the scheduling process, some nodes are listed
as candidates without fully examining whether their features
can match users’ specifications. Therefore, the search space
is enlarged, resulting in increased difficulty in achieving co-
location. To relate this approach to HeteroScore, we consider
the calculating process of H.. This approach is equivalent to
randomly selecting some nodes and manually setting the rep-
resentation of these nodes to the same position in the mapped
space that satisfies users’ requirements during the scheduling
process. With this step, part of the cluster’s heterogeneous
nodes are replaced by a set of homogeneous nodes; hence
HeteroScore #H. drops. Therefore, the discussed strategy in
[22] can be seen as a coarse-grained approach (node-level) to
reduce HeteroScore.

Inspired by the calculation process of HeteroScore, we
can have a more fine-grained mitigation strategy to reduce
the cost of mismatching users’ requirements. We propose a
strategy called Hiding-Label-defense (HLD). We assume that
cluster managers can dynamically change the parameters of the
scheduler. While maintaining a cluster, cluster managers can
randomly select a set of labels to hide from users for a period
of time, i.e., configure the scheduler to ignore information
related to these labels during scheduling. This label-hiding
process will be integrated to the scheduler by default; however,
performance-sensitive users still have the chance to specify
hard requirements to run on servers with certain features.
Users will not have knowledge regarding which labels are
hidden and non-performance-sensitive users will operate as if
the defense is not deployed. By doing this, from the users’
view, the cluster is described in fewer details; hence the
search space for the attacker to achieve co-location will be
larger. To relate this defense strategy with HeteroScore, we
observe that after applying this strategy, several of the d
dimensions are reduced, and the calculation of H,. is performed
in a lower-dimensional space. Qualitatively viewing Eq. (3),
reducing dimensions leads to an increased number of pairs
(i,7) satisfying p(N) N0U)) < ¢;, hence H,. will decrease. In
this way, HLD reduces HeteroScore and hide heterogeneity to
users.

To get a more balanced reduction instead of mechan-
ically hiding the same label, we propose another strategy
called Randomly-Hiding-Label-defense (R-HLD). R-HLD
randomly ignores label-values pairs in the scheduling con-
straints submitted by users with a specified probability ppide-
Compared to HLD, which selects labels and hides the same
labels in each node, R-HLD hides different labels in nodes and
can achieve a more balanced sacrifice in performance. Same
as HLD, users still have the chance to select whether or not
and to what extent to involve in the defense by choosing the
parameter ppiqe- To relate R-HLD with the calculation of .,
we observe that R-HLD is equivalent to randomly selecting
and setting coordinate components of N (1 < i < n) to 0,
which adds more homogeneous points to the point set hence
making the d-dimensional space less sparse.

Compared to the coarse-grained approach [22], HLD and
R-HLD are more controllable regarding the sacrifice of mis-
matching users’ requirements. Also, the cluster managers can
have better control regarding the outcome of the scheduling
algorithm. Though the cost seems relatively high, we allow

users to flexibly select whether or not to involve in the defense
process and choose the level of protection. Also, in practice,
R-HLD and HLD do not necessarily need to be applied to
all labels — cloud managers can select relatively unimportant
features to perform these defense operations.

VI. EVALUATION
A. Calculation Results in Simulated Cluster

In this part of the evaluation, results are obtained via
behavioural simulation. Our goal in this part is conceptually
validating our theory with a focus on how HeteroScore is re-
lated to cluster heterogeneity as well as providing visualization
results of the previously proposed method.

1) Experiment Setup: Our simulator randomly constructs
information about a cluster based on user-provided number of
total nodes in the cluster, total number of labels in the cluster,
etc. In our experiment, we limit the number of nodes to 100. In
every experiment, we randomly re-generate a cluster according
to rules specified as follows. We repeat a node generation
process 100 times to generate label-value description metadata
of 100 nodes. Within each node, we randomly generate a list
of integers of length n; to represent the label values of the
corresponding n; labels. We define n. as the number of choice
values in each label-value pair. Every element in the integer
list has a value between 0 and n. (including 0 and n.), where
0 means the corresponding label value is missing.

2) HeteroScore Results and Visualization: We provide the
calculation results of a simulated cluster in this part. To
simplify the visualization, we limit the number of labels to 3
(i.e., n; = 3). According to our algorithm, we can derive that
d = 3 and the whole cluster will be mapped to a 3-dimensional
space.

We provide visualization results of our cluster represen-
tation in Figure] In this experiment, we vary n., which is
the number of candidate values for each label-value pair and
provide the visualization results of the cluster and calculate
the corresponding HeteroScore of the generated cluster. The
probability that a label-value pair is missing in a node’s
description metadata is 20%. Figure {4] shows that:

1) As the number of candidate values for each label-
value pair n. increases, the possible number of label-
value pairs increases as well, resulting in a more
heterogeneous cluster. This change in heterogeneity
(diversity) in a cluster is reflected in the sparsity
of the corresponding visualization results. As n.
increases, the point set constructed by the represen-
tations of nodes becomes more and more sparse in
the 3-dimensional space.

2) This change in the sparsity of the point set of node
representations is captured and reflected in the calcu-
lation results of HeteroScore .. As n. increases, the
constructed cluster becomes more and more heteroge-
neous, and the quantitative metric H. hence increases
from 0 (homogeneous cluster) to approximately 1
(very heterogeneous cluster).

Results shown in Figure] prove that our proposed method
of calculating HeteroScore is able to capture the sparsity in
the geometric representation of the cluster, hence reflecting

the heterogeneity of a cluster. Also, as a byproduct, our repre-
sentation of a cluster can be easily visualized and presented,
which can work as a visualization step for cluster designers to
better understand the setting of a cluster.

@ne=1,Hc=0.(0) nec = 2, He = (¢) nc = 3, He =
0.6976. 0.8826.

dn. =4 He =@ ne =5, He =) ne. = 6, He =
0.9456. 0.9678. 0.9704.

Fig. 4: Visualization results of a cluster representations and
calculation results of HeteroScore H. under different n. set-
tings. As n. increases, the point set representation of the cluster
becomes more and more sparse, and HeteroScore 7, increases.
To clearly show the representations of a cluster, for each node,
we randomly add small perturbations to its coordinates to avoid
multiple points with the same coordinates crowding at the same
position when plotting these points.

In a real-world scenario, some settings may change: the
number of labels in the cluster n; will change and possibly
have a value larger than 3, the number of possible values can
vary, etc. However, since our calculation process relies on none
of these parameters, our metric can still be applied to measure
the heterogeneity of a cluster.

3) Parameter Choices: To evaluate how the design param-
eters may affect HeteroScore calculation, we change the value
of threshold ¢, in Eq. and compare the calculation results
of one-hot-encoding coordinate assignment and continuous
coordinate assignment, as discussed at the end of Section
The results are shown in Figure [3

From Figure E], we can see that: (1) Different selection
of t5 result in different 7. values. While under t;, = 1
both categorical and continuous coordinate assignments show
similar results, higher ¢}, values cause H. to be different. Also,
under a relatively high value (¢, = 3), one-hot-encoding as-
signment does not perform well in capturing the heterogeneity
of the cluster anymore. (2) Though under ¢, = 1 the two
methods have similar results, the counter-intuitive continuous
coordinate assignment policy is more robust when ¢, changes.

Based on the results, we conclude that continuous value
assignment is better: under lower ¢j, settings, it achieves similar
results as categorical value assignment and is more robust
under higher t; values. In this paper, we will select t, = 1
to make H. more sensitive to heterogeneity changes and

show that even this trivial selection is sufficient to capture
heterogeneity in a cluster, though, as shown in Figure [5 higher
tp, values like ¢, = 2 can be better choices in reality.

4) The Effects of Mitigation Strategy on HeteroScore:
This part showcases how our mitigation strategies affect Het-
eroScore. First, we construct random clusters using our previ-
ously mentioned simulator, then apply our proposed mitigation
strategies to see how HeteroScore H. is affected. We follow
the settings of the previous experiment, where there are 3 labels
for nodes, and each label has 6 possible values. Corresponding
HeteroScore results, as well as visualization results, are shown
in Figure [6]

To compare the results of R-HLD and HLD, we control
the total number of labels hidden to be equal in these two
scenarios. In Figure [6] we set the hiding probability phige of
R-HLD to 0.33 and 0.67, respectively to compare with hiding
1 and 2 labels in HLD. In Figure [6b] and Figure [6c| Figure [6d]
and Figure the numbers of labels hidden in R-HLD and
HLD are approximately the same (e.g., the number of labels
hidden by (1) applying HLD to hide 1 of the 3 dimensions, as
shown in Figure [6c|equals to (2) applying R-HLD to randomly
hide labels with a probability of 0.33, as shown in Figure
etc.). From the . results in Figure @ we can see that:

1) With approximately the same number of labels hid-
den, both R-HLD and HLD achieves the same effect
of HeteroScore reduction, i.e., H. is reduced to
approximately the same level.

2) In HLD, deterministically hiding labels results in
dimension reduction of the space of a cluster.

3) Applying R-HLD results in a denser point set in the
d-dimensional space.

The choice of R-HLD and HLD will be further discussed in
Section

B. Relating HeteroScore with Security

In this part, we present results through experiments in a 40-
node Kubernetes cluster. We first show the relation between
HeteroScore and co-location rate, and then we present how
our HLD and R-HLD mitigation strategies can decrease the
co-location rate. Finally, we provide a case study of applying
HeteroScore to clusters in a production environment.

1) Experiment Setup: Due to the limited access to large
scale hardware, our experiments are deployed on a 40-node
Kubernetes cluster on CloudLab [21]]. CloudLab is a platform
that provides dedicated cluster nodes for researchers to deploy
cloud systems. We utilize the default k8s profile to deploy
a Kubernetes cluster [4]. Our results obtained on Kubernetes
is representative since (1) Kubernetes is widely used and the
same type of schedulers are widely used in other types of cloud
infrastructure [6f], [7], (2) our focus is only on the scheduler
part; hence the selection of specific cloud framework is not
important.

Nodes in our cluster are all configured to have 10 label-
value pairs in their corresponding metadata description fields.
Because we cannot control the hardware or low-level system
environments in CloudLab cluster, we assign these label-value
descriptions only for scheduling purposes. These label-value
pairs resemble the setting in a real cloud, containing: GPU

n=2, categorical
n=2, continuous
n=3, categorical
n=3, continuous
n=4, categorical

|
|
|
|
|
n =4, continuous

|

HeteroScore
HeteroScore

— @~ n=5, categorical
—— /=5, continuous
— W= =6, categorical
—ay— =6, continuous

(b) tn = 2.

n=2, categorical
n=2, continuous

=2, categorical
n =2, continuous

n;=3, categorical n;=3, categorical

n=3, continuous n=3, continuous

n;=4, categorical =4, categorical

n=4, continuous

\
i
i
i
i
n=4, continuous

i

HeteroScore

n=5, categorical
=5, continuous 02

— B n=5, categorical
—— n;=5, continuous

=6, categorical — W= N6, categorical

—agi— =6, continuous

|
|
|
|
|
|
|
|
|
n,=6, continuous

Fig. 5: H. scores under different ¢, and encoding settings.

(c) HLD, 0.915. (d) R-HLD, 0.6784. (e) HLD, 0.7118.

Fig. 6: Effects of our proposed mitigation strategies on Het-
eroScore H.. In (b) and (c), approximately 33% of labels are
hidden either by random selection (R-HLD), or by determin-
istically hiding certain labels (HLD). In (d) and (e), 67% of
labels are hidden.

type, CPU type, memory type (high, medium or low capacity),
disk type (local SSD or not), network bandwidth, region,
partition, operating system version, FPGA type and security
level.

Since our evaluation in this part does not involve per-
formance analysis, symbolically assigning such description
information to nodes is acceptable. To better simulate a
production environment cluster, numbers of possible values
are not fixed for each label. For each label field, there
can be 2 to 7 different available values to choose from.
These descriptions are randomly generated and assigned
to nodes in our cluster using kubectl label nodes
<node name> <label>=<value> command.

To mimic the execution environment in real world, applica-
tions to be deployed on the cluster are selected from the most
widely used container applications from Docker Hub [2]. To
generate a job on the cluster, we randomly select an application
type out of 6 types of container applications and generate
its required .yaml metadata file that contains basic infor-
mation as well as scheduling constraints. We generate 1400
applications in each experiment, with: (1) 200 applications
as victim instances of 200 separate, independent co-location

attacks; (2) 200 applications as attack instances of the 200 cor-
responding co-location attacks; and (3) 1000 applications are
considered as background applications to provide background
contention/noise in a real multi-user environment. Here, each
attack instance only targets one victim instance.

Regarding scheduling constraints, we assume all users use
Node Affinity features [4], [23] to fine-tune scheduling results
and force the cloud scheduler to assign a node with specified
features. Also, attackers take the approach described in [22]
to replicate the scheduling constraints of victims to maximize
the probability of achieving co-location.

We set up machines and assign full node descriptions to
each node without empty label-value pairs, i.e., for every node,
each of the 10 label fields is assigned a value. Each experiment
consists of three phases: (1) generating .yaml files for the
1400 involved applications; (2) useing kubectl apply -f
<job