Structured World Representations
in Maze-Solving Transformers

Michael L. Ivanitskiy*T' Alex F. Spiest?® Tilman Riiuker?

Guillaume Corlouer Chris Mathwin Lucia Quirke Can Rager Rusheb Shah Dan Valentine

Cecilia Diniz Behn' Katsumi Inoue?> Samy Wu Fung'
Editors: Marco Fumero, Emanuele Rodola, Clementine Domine, Francesco Locatello, Gintare

Karolina Dziugaite, Mathilde Caron

! Colorado School of Mines, Department of Applied Mathematics and Statistics
“Imperial College London ®National Institute of Informatics, Tokyo

Abstract

Transformer models underpin many recent advances in practical machine learn-
ing applications, yet understanding their internal behavior continues to elude
researchers. Given the size and complexity of these models, forming a compre-
hensive picture of their inner workings remains a significant challenge. To this
end, we set out to understand small transformer models in a more tractable setting:
that of solving mazes. In this work, we focus on the abstractions formed by these
models and find evidence for the consistent emergence of structured internal rep-
resentations of maze topology and valid paths. We demonstrate this by showing
that the residual stream of only a single token can be linearly decoded to faithfully
reconstruct the entire maze. We also find that the learned embeddings of individual
tokens have spatial structure. Furthermore, we take steps towards deciphering
the circuitry of path-following by identifying attention heads (dubbed adjacency
heads), which are implicated in finding valid subsequent tokens.

1 Introduction

In recent years, large transformer models have been applied to great effect in various domains,
including language modeling, computer vision, and reinforcement learning. The proliferation of such
architectures in applied settings has led to increased concern over the generality and robustness of the
behaviors they learn. To this end, researchers have begun to study small transformer models on toy
tasks to develop a mechanistic understanding of how transformers learn to solve varying classes of
problems. The generalizability of findings from toy models to larger scales remains uncertain, but
early findings in this direction have given cause for optimism [2].

The most well-known example of a mechanistic component (a circuit) found across many transformers
models are induction heads [3], which facilitate in-context sequence completion (4, B, [...], A — B)
and arise in transformers with at least 2 layers. While induction heads are fairly simple, they form
crucial building blocks of more complex circuits [4, 5]. Identifying complete circuits in more complex
models is highly labor intensive, but other methods, such as linear probing and the TunedLens [6],
allow researchers to interpret the representations learned by larger models. Indeed, recent work [7]
found that a GPT-2 model trained on the game of Othello learned to (linearly [8]) represent the board
state in a way which could be easily intervened upon to change the model’s future actions.

Code: github.com/understanding-search/structured-representations-maze-transformers
Full paper with supplementary material: arxiv.org/abs/2312.02566 [1]

*Corresponding Author: mivanits @mines.edu

"Primary Contributor

Proceedings of the I edition of the Workshop on Unifying Representations in Neural Models (UniReps 2023).

With the ultimate goal of better understanding how transformer models perform multi-step reasoning
in search-like tasks, we apply the interpretability methods to toy models trained to solve maze tasks.
In particular, we experiment with autoregressive transformers trained to solve mazes represented as a
list of tokens [9], which constitutes an offline reinforcement learning task with global observations.
By varying the precise configurations of these maze solving tasks, we are able to investigate the
conditions under which models tend to learn representations with varying degrees of interpretability
and generalizability. Additionally, while prior work has found that transformers struggle to perform
complex planning tasks [10], we find that relatively small (< 107 parameters) transformers are
capable of solving mazes.

We use various interpretability techniques to study our models, finding that the geometry of their
embedding space correlates with the spatial structure of the mazes (). We find that our
highest-performing models form a linear representation of maze connectivity structure, which can be
decoded at early layers (). Lastly, we identify specific attention heads that condition
over valid neighbors for a given state, implicating them in path-following behavior (

and).

By performing these analyses across models and at different stages in training, we find evidence for
grokking-like transitions during training, in which a model’s ability to generalize improves rapidly
[11]. These increases in generalization performance coincide with the times at which models’ internal
representations of the maze become more linearly decodable, suggesting that a structured internal
representation improves their ability to systematically solve mazes ().

2 Experimental Setting

2.1 Datasets

We use the maze-dataset library [9] to generate a variety of mazes and convert them into formats
suitable for a text-based autoregressive transformer. Starting with an n x n lattice, we generate paths
using a variety of algorithms. The resulting mazes are converted into tokenized representations,
shown in , which are used to train our models. The vocabulary consists of coordinate tokens
and various special tokens used to connect coordinates and delimit different parts of the maze and
solution description. While maze-dataset provides a variety of maze generation algorithms, filters,
and configuration parameters, in our interpretability experiments, we focus on mazes generated via 1)
Randomized Depth First Search (RDFS), which generates acyclic spanning trees; 2) “forkless” mazes
consisting of a sparse tree where each node has at most two connections; 3) Randomized Depth First
Search with percolation (pRDFS), which starts with RDFS, but then a OR is performed with a maze
where adjacent connections have probability p = 0.1 of occurring, thus creating mazes which may
have cycles.

<ADJLIST_START> (0,0) <-> (1,0) ; (2,0) <-> (3,0) ; (4,1) <-> (4,0) ;
(2,0) <-> (2,1) ; (1,0) <-> (1,1) ; (3,4) <-> (2,4) ; (4,2) <> (4,3) ;

() (3,1) <-> (3,2) ; (1,3) <-> (1,4) ; <ADJLIST_END>
<ORIGIN_START> (1,3) <ORIGIN_END> <TARGET_START> (2,3) <TARGET_END>
<PATH_START> (1,3) (0,3) (0,2) (1,2) (2,2) (2,1) (2,0) (3,0) (4,0) (4,1)
(4,2) (4,3) (4,4) (3,4) (2,4) (2,3) <PATH_END>

(a) An example training sequence with four parts. 1: The
adjacency list describes the connectivity of the maze (the order
of connections is randomized, ellipses represent omitted connec-
tion pairs). 2,3: The origin and target specify where the path
should begin and end, respectively. 4: The path itself is the
shortest sequence of coordinates from the origin to the target. For
a “rollout,” we provide everything up to (and not including) the

<PATH_START> token and generate a sequence via argmax sam- (b) Visual representation of the maze
pling until the <PATH_END> token is produced. For single-token defined from the tokens on the left. The
tasks (see), we provide a partially complete path and con- origin is indicated in green, the target
sider only the logits over the immediate next token. in red, and the correct path in blue.

Figure 1: Tokenization scheme and visualization of our shortest-path maze tasks.

2.2 Models and training

All models analyzed are autoregressive decoder-only models, identical to the GPT architecture. While
extensive sweeps were performed over hyperparameters, we focused our experiments on two trained
models. The first, denoted hallway, was trained only on “forkless” mazes and is a smaller model
with approximately 1.2M parameters. The second model, jirpy, has approximately 9.6M parameters
and was trained on sparsely connected mazes of varying sizes with multiple forking points (see

)." These two models trade off interpretability and task complexity, with the hallway
task allowing for a simpler model, while the task for jirpy requires decision making at each forking
point, potentially yielding a more complex maze representation. Full hyperparameters for our models
can be found in the supplement [1].

Models were trained to perform next-token prediction on a dataset of randomly generated mazes
and paths.” At inference time, the models are prompted with a complete adjacency list and path
specification (i.e., all tokens up to <PATH_START>) and rolled out until they yield a <PATH_END>
token. It is worth noting that we do not impose any constraints on the validity of a model’s output, so
a poorly trained model may output nonsensical paths consisting of special tokens or disconnected
coordinates.

3 Experiments

To understand our trained maze-solving transformers’ behavior and internal representations, we favor
a post-hoc interpretability approach [12]. We begin with behavioral experiments on maze-solving
trajectories and assess initial path predictions. Next, we explore the embedding space for spatial
token relationships and use direct logit attribution [2, 4] to pinpoint model components sensitive to
specific sub-tasks. Through linear probes on the residual stream, we decode the presence or absence
of walls, revealing structured representations. Lastly, we analyze training metrics to investigate
the relationship between the emergence of structured representations and improved generalization
performance. Collectively, these experiments shed light on how our transformers adeptly solve mazes.

3.1 Behavioral Experiments

Although several evaluation metrics are computed during the training process, we found visual
inspection of generated paths to be useful. Several example rollouts are provided in

= alol Fe= 5
: 1 [—
=N = 1

-1 =5 |
pupl{=z = El

v b
e | o | od |

Figure 2: Example generations of hallway model (top row) and jirpy model (bottom row) on a
random sample of held-out RDFS mazes (outside the training distribution of the hallway model).
The correct path is marked as a red dashed line, with e at the starting position and x at the target
position. For clarity, generated paths fade from blue to green. Note that both models often violate
constraints, such as by passing through walls, and reach the target despite being at a dead end. Further
example generations can be found with our codebase.

!Chosen as it was the most performant of the models trained to solve complex mazes. See supplement [1].
2jirpy received gradients only from tokens in the path (including special delimiters), while hallway
received gradients from the entire sequence.

To facilitate the isolation of specific sub-components of our transformers, which are implicated in
certain behaviors, we identify sub-“tasks” of maze solving, which consist of predicting a single
token. We describe several such tasks in . For each of these, the prompt given to the model
consists of all context tokens up to and not including the targeted token. Of particular note in our
experiments is the qualitative observation that the models tend to reach the goal at the conclusion of
their generations but often violate the constraints in the process’, as shown in and

<PATH_START> (1,3 (0,3) (0,2) [...1 (2,49 (2,3 <PATH_END>

Figure 3: Tasks used to assess model performance and their relative locations within a path prediction.
From left to right, the target tokens are: path_start, origin_after_path_start, first_path_choice,
rand_path_token_nonend, final_before_path_end, path_end. Notably, for forkless mazes, the
first_path_choice task is the only task that requires anything other than simple following of a path
and recognition of the origin and target. A rand_path_token task is also included, which is similar to
rand_path_token_nonend in that one of several tokens is selected at random, but for the latter, this pool of
possible tokens does not exclude endpoints. Performance on these tasks is shown in

In , we note that on out-of-distribution pRDFS mazes, both models generalize fairly well. We
observe that performance on the first_path_choice task is consistently the lowest. Performance
of hallway on 6 x 6 mazes is slightly lower than on larger mazes [1], possibly due to the short
prompt length being out-of-distribution.

dataset: forkless RDFS pRDEFS

model: hallway jirpy hallway jirpy hallway jirpy
exactly correct rollouts 383% 38.7% 24.2% 82.4% 24.2% 70.7%
valid rollouts 543% 53.5% 37.5% 84.0% 49.6% 87.1%
rollouts with target reached 871% 64.5% 94.5% 99.2% 92.6% 100.0%
path_start 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
origin_after_path_start 91.0% 86.7% 100.0% 100.0% 100.0% 100.0%
first_path_choice 71.5% 66.4% 67.2% 86.7% 66.4% 84.4%
rand_path_token 93.0% 87.1% 90.2% 98.0% 84.0% 94.5%
rand_path_token_nonend 97.3% 89.8% 92.2% 99.2% 84.4% 97.3%
final_before_path_end 95.7% 85.9% 93.4% 100.0% 84.4% 100.0%
path_end 86.7% T1.5% 100.0% 99.6% 100.0% 100.0%

Table 1: Setup: Performance across tasks of the hallway model and jirpy model assessed on
held-out 6 x 6 forkless, RDFS, and pRDFS mazes (See and [9]). All values are
binary, since we perform a single rollout per maze, and score for a task is argmax(logits) ==
correct_token. Tasks: The first group of metrics deals with sequence generations or “rollouts,”
as detailed in . A rollout is “exactly correct” if no deviations from the shortest path
occur (pRDFS mazes may not have a unique shortest path, and thus the provided values are a lower
bound). A rollout is “valid” if it obeys the topology of the maze (no wall jumps), but backtracking is
permitted. A rollout is considered to have reached the target if the final coordinate token is the target
token. The second group of single-token tasks used to assess performance are detailed in

Data for 7 x 7 mazes is provided in [1].

3.2 Emergent Structure in the Embedding Space

As in other language models, each token in the vocabulary corresponds to a unique orthogonal unit
vector. In our experiments, each coordinate on the lattice has a single corresponding token. The
embedding layer of our models maps each vocabulary vector from an input sequence to a dense
vector in R%1 Since each vocabulary vector is orthogonal, no spatial structure is encoded into the
model directly; however, a spatial structure emerges after we train the model. In particular, we note
that a correlation between the coordinate distance and distance between embedding vectors emerges
for short distances (). Note that proximity of tokens in the sequences alone is not enough to
allow this behavior to be learned due to the randomization of the adjacency list.

3Le. its output sequence is often of the form “ [...invalid path...], (goal), <PATH_END>”.

20
18 1

16 - =

1E(a) = E(®)[lx

14

12 T T T T T T T T T T T T

lla = bl

Figure 4: Structure of coordinate token embeddings for the hallway model. Given two coordi-
nates a, b and the embeddings of their corresponding tokens F(a), E(b) we observe the relationship
between the Manhattan (1-norm) distances. Note that all coordinates have orthogonal vocabulary vec-
tors, and the embeddings are learned. Left: Correlation between coordinate distance and embedding
distance. Right: Given the embedding of the coordinate at the x, Manhattan distance to the other
tokens on the grid is displayed. Note: full data for all models can be seen in the supplement [1].

3.3 Direct Logit Attribution

To investigate path-following behavior, we utilize direct logit attribution (DLA) [2, 4], which measures
the direct contribution of an isolated component of the network (e.g., an attention head) to a given
set of forward passes. We utilize the tasks defined in for this correlational analysis
(). Specifically, we compute the contribution Cj j, of head h at layer [to the probability
assigned by the model to the correct next token. We do this by empirically estimating (over samples
(p,c) € D) the dot product of the output” of that head R; ;,(p) with the difference between the
embedding of the correct token F(c) and some reference embedding r(c).

Con = é Z [LayerNorm (R 5 (p)) - (E(c) — r(c))] where r(c) = |V|1—1 Z E(t)
(reD teV\c

Where V is the set of vocabulary vectors, we compute’ the reference embedding as a mean of the
embeddings of all tokens except c. In this work, the DLA analysis serves to locate attention heads
of interest, which we subsequently investigate. Our future work will include ablations and other
interventions on model architecture to establish causal relationships between these attention heads
and path-following performance.

origin_after_path_start first_path_choice rand_path_token_non_endpoint path_end

“
|
“
I
°
S
“
|
°
“
|

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
Head Head Head Head

Figure 5: DLA of the hallway model across a subset of tasks, on held-out samples from the training
distribution. The numerical value is the contribution of a given attention head to the “correct” direction
in the residual stream. Note that only for first_path_choice must the model do anything besides
path-following, and this is shown in the performance statistics of

“Note that the application of LayerNorm is done to match the actual scaling at layer [, see
ActivationCache.apply_ln_to_stack() in [13].
5In a manner which is not common practice, to our knowledge.

Upon investigation of attention placed on tokens as a function of their distance from the current token,
we find that Layer 5, Head 0 simply places attention on the recent occurrences of the current coordinate
token. This is throughout the whole sequence, but primarily between the target specification tokens.
As such, its lack of involvement in origin_after_path_start becomes clear since the current
token, in that case, would be the <PATH_START> token and thus not a coordinate token.

Also of interest is Layer 1, Head 2. We find that consistently across tasks, this head places attention
on the <TARGET_END> token. We hypothesize that this head is a component of an induction head [3]
but operating in reverse — a later head likely attends to the token before <TARGET_END> to find the
target. This information may then be used to inform the model’s choices of which path to take at
forks, as well as identifying when the path is concluded.

o = e I:
UL =t] _:_q |j| ‘1.

[] 1

e =il T [
| O &= |

Figure 6: Attention of Layer 5, Head 3, on the rand_path_token_nonend task. Attention is
displayed over the maze positions for five random held-out mazes. Blue shading is attention weight,
true path is red dashed line from e to x, current position is m.

067 0.6

0.4 1

Attention
Attention

0.4 1
0.2 1

oL*él ot Oz‘ AAA‘AL“

- T
0 5) 10

manbhattan distance over the lattice path length

Figure 7: Attention of Layer 5, Head 3, on the rand_path_token_nonend task: violin plots of
attention as a function of the distance between the current node and the node being attended to.
z-axis on the left is the pure manhattan distance between the notes, while xz-axis on the right is the
path length between the nodes. Sample size n = 200. Note that while on the right, attention is
overwhelmingly applied to nodes path length 1 away, some attention is applied to nodes at odd path
lengths away because a node adjacent to the lattice will always be an odd path length away.

As observed in and , the attention head at layer 5, head 3, which we term an
Adjacency Head, consistently attends to tokens of path length 1 from the current position and thereby
learns to respect the maze’s topology. This differs from the results of in that the
embedding map, since it processes each token individually, can only correlate vectors that are close
on the lattice (shared across all training runs) and cannot see the topology which can only be learned

in-context.

3.4 Learned internal representations

To assess whether the models learn to internally represent mazes, we follow the approach in [8] and
train a set of linear probes to predict the ground-truth maze structure from a single latent vector. In
particular, for a maze with m X m positions, we train nyayers X M X M X 4 probes p on residual
stream activations R;(t) collected across many rollouts, such that

[Ri(t) - pi(x,y,dir)] > 0.5 = wall(x,y,dir)

where the token, t, is fixed and all layers, [, are considered. In essence, if the dot product between a
particular direction dir probe with R;(t) exceeds 0.5, then this should reflect the presence of a wall
in the input maze at that particular probing location. For all experiments, we take the token, ¢, to be
<PATH_START>, as it is the final token presented in each sequence at test time and will have seen all
previous tokens.

By looking at the variation in probing accuracy across layers and throughout training, we can
understand how the formation of the world model occurs and potentially contributes to the model’s
performance. We focus our discussion here on jirpy as it was the most performant model, both
in terms of solving mazes and yielding the best set of probes (see supplement [1] for the results on
all layers). In we show the examples of mazes decoded at layer 2 with a set of probes that
achieved the highest accuracy. shows that the maze representation was already learned by
the second layer. More examples, as well as results of sweeps across different transformers are shown
in the supplement [1].

Input 0 Input 1 Input 2 Input 3
1.0 d P! p P

| |
[[
= Ul nE
083 | |_| _ - —
o
g Reconstruction 0 Reconstruction 1 Reconstruction 2 Reconstruction 3
L0.7 3 | |_I
c
g 1 [
062 — —L | }‘_
su | | o] | o
-05

(a) Probe set accuracy across (b) Four random examples of mazes reconstructed using the probes.
maze positions for layer 2 (for Reconstructions are made from a set of probes using a single latent
which jirpy yielded the most ac- embedding of the <PATH_START> token at layer 2. Wall colors indicate
curate probes). that thresholded probes Correctly Predicted, or a wall.

Figure 8: Analysis of Linear Probes applied to the <PATH_START> token for the jirpy model.

3.5 Investigating Neighbor information through Tuned Lens

To further analyze the latent representations learned by our models, we apply the Tuned Lens method
introduced in [6].

The Tuned Lens provides a direct view into the information encoded at each layer, [, by learning
a linear transformation L; : R%eat — Rt (referred to as a “translator”) which attempts to map
embeddings to their final state (after the last layer), i.e., L;(R;(t)) = Ry,,..,(t). By applying these
learned translators, we are able to unembed (into the vocabulary) embeddings from any layer in
the model, thus gaining insight into what the model has captured after performing a few layers of
computation.

We apply the Tuned Lens approach to see at which layers models write information about neighbors
onto coordinate tokens; this includes connected neighbors (those not blocked by walls) and all
neighbors (all adjacent coordinates). The resulting analysis for the jirpy model is shown in
. We see that after the first layer, the residual stream already contains significant information
concerning whether the next token in a path will be a coordinate, coinciding with the layer in the
model where a linear representation of the maze is captured most clearly. This information is then
refined gradually throughout the model, such that at later layers, the validity of the next token is
enforced more strongly, perhaps owing to the effects of the heads identified in ().

1.0
—— Linear Probes

--- Always 1

0.9 1

o
®

Avg. Probe Acc
e
N

0.6 1

(a) Accuracy of linear probes averaged across all coor-
dinate positions and wall directions in 15,000 mazes.
In the supplement [1], we show that across models
with high accuracy and a linearly decodable represen-
tation of the maze (> 90% accuracy), 4/5 of these
were most effective at layer 2, and 1/5 at layer 3.
Models that performed poorly often acquired such rep-
resentations at later layers, but the resulting accuracies
of probe sets never exceeded 80%.

Probability
o
o

I
IS

0.2+

—— Neighbor Prob
—— Valid Neighbor Prob

0.0 T
10 Output

0 2 2 6 8

Layer
(b) Results from the TunedLens. For each layer, we
compute the probability mass given to connected, or
merely adjacent neighboring coordinates for all coor-
dinate tokens in the path gathered across 50 rollouts.
We observe that valid neighbors become relatively
more probable after layer 2, and the most significant
variations in neighbor probability are aligned with the
layers in the model when the maze representation is
most clear.

Figure 9: Analysis of Linear Probes and Tunes Lens applied to the <PATH_START> token for the
most performant transformer (jirpy). Shaded regions correspond to 1o.

3.6 When Do Models Learn to Represent the Maze?

Prior work has shown that the phenomenon of grokking [11, 14], in which the test accuracy (i.e., the
generalizability of a model’s learned behavior) improves abruptly during training, may be linked to
the formation of structured representations over which a task can be robustly solved [14]. As we
established in that models learn linearly structured representations of mazes, it is a
natural question to ask when these are learned and if they co-occur with any notable changes in a
model’s performance during training. To this end, we trained probe sets across checkpoints for both
the hallway and jirpy models, with results shown in . We find that the hallway model
does not learn a clear linear representation of the maze, while jirpy does. Furthermore, the periods
during training in which these representations improve the most also correspond to the times at which
the model’s performance improves most sharply. This provides suggestive but incomplete evidence
for the possibility that these representations play a causal role in the model’s behavior.

0.8 8 0.8 8

=4
o
o
o
o
o

o
=
o
=
IS

Exact Path Predicted
Streak Length Until Invalid
Exact Path Predicted
Streak Length Until Invalid

0.2

—%— Avg. Probe Accuracy (Same Scale as Exact Path Predicted) —— Avg. Probe Accuracy (Same Scale as Exact Path Predicted)

0

0.0

40000 60000 80000 0.0 0.5 1.0 15 2.0 2.5 3.0
Step Step 1le7

6 20600
(a) hallway (b) jirpy

Figure 10: Layerwise analysis of maze structure captured by the model. Note that the distribution of
paths for hallway mazes is shorter than those for forking mazes.

4 Related Work

Transformers’ ability to solve inherently difficult tasks is increasingly being explored. In particular, the
capability of transformers to process semantic information and emulate program behavior, especially
with structural recursion, has been investigated [10, 15, 16].

Other research on transformers suggests that some performance may be attributed to an architectural
bias towards mesa-optimization [17]. Here, it is argued that transformers employ mesa-optimization
during their forward pass, constructing an internal learning objective and optimizing it. Akyurek et
al. note that transformers might harness standard learning algorithms implicitly, encoding miniature
models within their activations and updating these based on incoming examples [18].

Finding Meaningful Directions in Activation Space:

Mechanistic interpretability seeks to reverse engineer neural networks. In the pursuit of this ambitious
approach to interpretability, several techniques have been proposed in an effort to find and understand
meaningful directions in a model’s activation spaces. Belrose et al.’s Tuned Lens [6] involves training
affine transformations that translate the basis associated with representations in any single layer’s
activation space with the expected basis of that of the final layer. Such transformations, when coupled
with the model’s unembedding layer, can be used to map the residual stream to a distribution over the
model’s vocabulary.

Sparse Coding employs autoencoders augmented with sparsity regularization to derive disentangled
representations of an activation space; this approach has been explored in work by Bricken et al. [19].
Other efforts to find meaningful directions in activation space include using k-sparse linear classifiers
that map the activations of a single neuron or a collection of neurons to specific features [20].

World Models:

Much recent research has been focused around finding and understanding world models, especially
in planning tasks. Li et al. [21] studied world representations in the game of Othello, with Nanda
et al. [8] further investigating the linearity of these representations. Turner et al. [22] focused on
reinforcement learning, examining maze-solving tasks and the underlying representations. Addition-
ally, the introduction of mechanistic interpretability for decision transformers by Bloom et al. [23]
offers a new perspective on interpretability in strategic planning tasks. Together, these studies provide
valuable insights into the structure and utility of world models across different contexts.

5 Conclusion

We demonstrate that transformers trained to solve mazes acquire emergent linear representations that
capture maze connectivity and are encoded in a single token’s latent state. The embedding layer of
trained models is shown to learn an emergent spatial structure. Furthermore, we find that in simple
models, some attention heads learn to respect the topology of the maze and present some evidence
and hypotheses as to their function. In future work, we aim to construct a more complete mechanistic
picture of how these elementary heads operate over the linear world model and ultimately form
circuits responsible for solving mazes. Additionally, future work will investigate the generality of
such emergent models by investigating distinct classes of neural networks trained to perform the
same tasks over entirely different input representations in an attempt to provide further evidence for
claims of representational “universality”. With this work, we hope to inspire other researchers to
investigate the seemingly systematic yet elusive internal behavior of transformer models.

Acknowledgments and Disclosure of Funding

We are grateful to Al Safety Camp for initially supporting this project and bringing many of the authors
together. This work was partially funded by National Science Foundation awards DMS-2110745 and
DMS-2309810.

References

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

Michael Igorevich Ivanitskiy, Alex F Spies, Tilman Réuker, et al. Structured world representations in
maze-solving transformers. URL https://arxiv.org/abs/2312.02566. — Pages 1, 3,4,5,7, and 8

Tom Lieberum, Matthew Rahtz, Janos Kramdr, et al. Does circuit analysis interpretability scale? evidence
from multiple choice capabilities in chinchilla, 2023. URL http://arxiv.org/abs/2307.09458. —
Pages 1, 3, and 5

Catherine Olsson, Nelson Elhage, Neel Nanda, et al. In-context learning and induction heads, 2022. URL
http://arxiv.org/abs/2209.11895. — Pages 1, and 6

Kevin Wang, Alexandre Variengien, Arthur Conmy, et al. Interpretability in the wild: a circuit for indirect
object identification in gpt-2 small. URL http://arxiv.org/abs/2211.00593. — Pages 1,3, and 5

Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, et al. Towards automated circuit discovery for
mechanistic interpretability, 2023. URL http://arxiv.org/abs/2304.14997. — Page 1

Nora Belrose, Zach Furman, Logan Smith, et al. Eliciting Latent Predictions from Transformers with the
Tuned Lens, Mar 2023. URL http://arxiv.org/abs/2303.08112. — Pages 1,7, and 9

Kenneth Li, Aspen K Hopkins, David Bau, et al. Emergent world representations: Exploring a sequence
model trained on a synthetic task, 2022. URL http://arxiv.org/abs/2210.13382. — Page 1

Neel Nanda. Actually, othello-gpt has a linear emergent world model, Mar 2023. URL https://
neelnanda.io/mechanistic-interpretability/othello. — Pages 1,7, and 9

Michael 1. Ivanitskiy, Shah Rusheb, Alex E. Spies, et al. A Configurable Library for Generating and
Manipulating Maze Datasets, Sep 2023. URL http://arxiv.org/abs/2309.10498. — Pages 2, and 4

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira, et al. Evaluating Cognitive Maps and Planning in
Large Language Models with CogEval, September 2023. URL http://arxiv.org/abs/2309.15129.
— Pages 2, and 9

Neel Nanda, Lawrence Chan, Tom Lieberum, et al. Progress measures for grokking via mechanistic
interpretability, January 2023. URL http://arxiv.org/abs/2301.05217. — Pages 2, and 8

Tilman Réuker, Anson Ho, Stephen Casper, and Dylan Hadfield-Menell. Toward transparent ai: A survey
on interpreting the inner structures of deep neural networks, 2023. — Page 3

Neel Nanda and Joseph Bloom. TransformerLens. https://github.com/neelnanda-io/
TransformerLens, 2022. — Page 5

Ziming Liu, Ouail Kitouni, Niklas Nolte, et al. Towards Understanding Grokking: An Effective Theory of
Representation Learning, October 2022. URL http://arxiv.org/abs/2205.10343. — Page 8

Shizhuo D. Zhang, Curt Tigges, Stella Biderman, et al. Can Transformers Learn to Solve Problems
Recursively?, June 2023. URL http://arxiv.org/abs/2305.14699. — Page 9

Chang Liu and Bo Wu. Evaluating large language models on graphs: Performance insights and comparative
analysis, 2023. URL http://arxiv.org/abs/2308.11224. — Page 9

Johannes von Oswald, Eyvind Niklasson, Maximilian Schlegel, et al. Uncovering mesa-optimization
algorithms in Transformers, Sep 2023. URL http://arxiv.org/abs/2309.05858. — Page 9

Ekin Akyiirek, Dale Schuurmans, Jacob Andreas, et al. What learning algorithm is in-context learning?
Investigations with linear models, 2023. URL http://arxiv.org/abs/2211.15661. — Page 9

Trenton Bricken, Adly Templeton, Joshua Batson, et al. Towards monosemanticity: Decomposing
language models with dictionary learning, 2023. URL https://transformer-circuits.pub/2023/
monosemantic-features/index.html. — Page 9

Wes Gurnee, Neel Nanda, Matthew Pauly, et al. Finding Neurons in a Haystack: Case Studies with Sparse
Probing, May 2023. URL http://arxiv.org/abs/2305.01610. — Page 9

Kenneth Li, Aspen K. Hopkins, David Bau, et al. Emergent World Representations: Exploring a Sequence
Model Trained on a Synthetic Task, Feb 2023. URL http://arxiv.org/abs/2210.13382. — Page 9

Alex M. Turner, peligrietzer, Ulisse Mini, Monte M, and David Udell. Understanding and control-
ling a maze-solving policy network, Mar 2023. URL https://www.alignmentforum.org/posts/
cAC4AXiNC5ig6jQnc/. — Page 9

Joseph Bloom. A Mechanistic Interpretability Analysis of a GridWorld Agent-Simulator (Part 1 of N),
May 2023. URL https://www.lesswrong.com/posts/JvQWbrbPjuvwdeqxv. — Page 9

10

	1 Introduction
	2 Experimental Setting
	2.1 Datasets
	2.2 Models and training

	3 Experiments
	3.1 Behavioral Experiments
	3.2 Emergent Structure in the Embedding Space
	3.3 Direct Logit Attribution
	3.4 Learned internal representations
	3.5 Investigating Neighbor information through Tuned Lens
	3.6 When Do Models Learn to Represent the Maze?

	4 Related Work
	5 Conclusion

