21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

PHYSICAL REVIEW FLUIDS 00, 000500 (2025)

The way bubbles gallop
Jian H. Guan®,' Saiful I. Tamim®,' Connor W. Magoon®,!
Howard A. Stone ®,2 and Pedro J. Sdenz®!*
' Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
2Department of Mechanical & Aerospace Engineering, Princeton University,
Princeton, New Jersey 08544, USA

M  (Received 28 May 2025; published XXXXXXXXXX)

This paper is associated with a video winner of a 2024 American Physical Society’s
Division of Fluid Dynamics (DFD) Gallery of Fluid Motion Award for work presented at
the DFD Gallery of Fluid Motion. The original video is available online at the Gallery of
Fluid Motion, https://doi.org/10.1103/APS.DFD.2024.GFM.V2684816.

DOI: 10.1103/tbdh-fnzv

Bubbles are more than fleeting pockets of air trapped in liquid: they exhibit an ever-expanding
repertoire of intriguing behaviors. From da Vinci’s sketches of their swirling paths to modern-day
studies of their erratic dances under acoustic waves, the rich dynamics of bubbles have long
captured the attention of everyday observers, engineers, and scientists alike [ [-4]. When exposed to
periodic sound waves, bubbles can shift from regular pulsations to rapid zigzagging, mimicking
the randomness of Brownian motion [5,6]. Under sudden pressure changes, they may collapse
violently, producing cavitation—intense shock waves capable of damaging solid surfaces [1,7]. In
extreme cases, the implosion may become so intense that the bubble emits a spark of light [8].
Remarkably, some crustaceans have evolved to harness this bubble collapse to stun their prey [9].
In medicine, cavitation bubbles assist in shock wave lithotripsy by enhancing the fragmentation of
kidney stones [10], while oscillating bubbles can be used to induce targeted vesicle deformation and
lysis, enabling controlled release or disruption at the microscale [11]. Bubbles can also challenge
common intuition: they may appear to violate Archimedes’ principle [12], sinking against gravity
in oscillating fluids [13-15], and carbonated drinks [16]. Despite centuries of explorations, new
and often surprising bubble phenomena continue to emerge. One such example is the recently
discovered “galloping” bubble, introduced in our recent publication [17]. Here, we showcase this
new mechanism of bubble locomotion, highlighting its rich dynamics and striking visual appeal.

In our experiments [17], we demonstrate that an air bubble held by buoyancy against the top
wall of a vertically vibrated chamber filled with silicone oil may spontaneously break symmetry
and begin a self-propelled “gallop” along the upper boundary (Fig. 1), driven by a resonant
interaction between its vibration modes. We image the bubble from the side using a high-speed
camera (Phantom 410L, 1280x800 px, 1000 fps) with LED backlighting (PHLOX LEDW) for
high-contrast visualization of the interface oscillations [Figs. 1(a) and (b)]. To capture the bubble’s
trajectory, we track its position from a top view using the same camera [Fig. 1(c)]. A color filter
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FIG. 1. Galloping bubbles. Experimental time sequences illustrating the dynamics of bubbles against the
upper boundary of a vertically vibrated fluid chamber under different driving conditions. The bubble is imaged
from the side in panels (a) and (b) and from the top in (c). (a) Below the galloping threshold, A < Ag, the bubble
undergoes vertically axisymmetric shape oscillations without horizontal translation. (b) Above the galloping
threshold, A > Ag, the bubble develops an asymmetric deformation pattern reminiscent of galloping motion
and begins to self-propel. The arrow indicates the direction of motion and time. (c) Different bubble sizes
and forcing parameters give rise to diverse domain exploration modes. Just above the galloping threshold, the
bubble typically exhibits steady rectilinear motion (left), which curves into a circular trajectory here due to
the chamber’s boundary (dashed line). Depending on the bubble volume and frequency, further increasing the
driving amplitude, A, may induce orbital motion (middle), or jagged paths with abrupt reorientations (right)
reminiscent of “run-and-tumble” dynamics [18,19].

was placed between the backlight and the chamber to provide the background color gradient. To
excite the bubble’s natural modes, the fluid chamber is mounted on a vibrating table [17] and
driven sinusoidally in the vertical direction, thereby inducing an effective time-varying gravitational
field G(t) = —g + Aw? sin(wt) that drives shape oscillations. Here, g is the standard gravitational
acceleration, while the driving parameters are the maximum bath displacement, A, and driving
frequency, f = w/2m. Atlow forcing, the bubble undergoes symmetric, harmonic shape oscillations
without horizontal translation [Fig. 1(a)]. Once the driving amplitude exceeds a critical threshold,
Ag, the bubble undergoes a spontaneous symmetry breaking about the vertical axis and begins
to self-propel horizontally in a galloping motion [Fig. 1(b)]. In our experiments, these galloping
bubbles display various domain exploration modes [Fig. 1(c)]: by tuning the bubble volume and
driving parameters, the propulsion transitions between rectilinear translation [Fig. 1(c), left], orbital
motion [Fig. 1(c), middle], and run-and-tumble dynamics [Fig. 1(c), right], the latter mimicking the
search strategy of a variety of organisms [18,19].

We observed galloping for air bubbles immersed in silicone oil of kinematic viscosity of v =5
¢St and characteristic size, R, comparable to the characteristic capillary length, I, = /o /pg =
1.48 mm, where o is the surface tension, and p the liquid density. Outside this range, smaller
bubbles become spherical and larger ones flatten into puddles, both of which hinder galloping. In the
intermediate size range, the bubble adopts a nearly hemispherical equilibrium shape, and the emer-
gent vibration modes closely resemble those predicted for inviscid hemispherical bubbles [20,21].
Motivated by this observation, we complement our experiments with two-phase direct numerical
simulations performed in the fluid solver Basilisk [22] to rationalize the galloping locomotion [17].
We first simulate the galloping dynamics of bubbles similar to those in the experiments [17], which
are separated from the top wall by a thin lubrication film, and observe quantitative agreement
[Fig. 2(a)]. We then perform analogous simulations for hemispherical bubbles with a freely moving
contact line, finding that they exhibit an analogous symmetry breaking [Fig. 2(b)]. The emergence of
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FIG. 2. Simulated galloping bubbles. Direct numerical simulations, shown here from the side, demonstrate
the galloping locomotion in two distinct bubble configurations: (a) a bubble separated from the top wall by
a thin lubrication film, which prevents direct contact and suppresses contact-line formation, and (b) a sessile
bubble directly attached to the wall with a freely moving contact line and a 90° contact angle. The configuration
in (a) corresponds to that of the bubbles in our experiments, and the simulations were performed under the same
conditions and fluid properties. The configuration in (b) demonstrates that the galloping mechanism also arises
in a simplified geometry, where the equilibrium bubble shape (in the absence of forcing) is hemispherical and
can thus be interpreted with a minimal set of spherical harmonics. Gray lines illustrate the temporal evolution
of the simulated bubble interface over a single oscillation cycle, during which the bubble self-propels a small
distance to the right.

galloping in the idealized hemispherical geometry suggests that the underlying symmetry-breaking
mechanism can be interpreted using a minimal set of spherical harmonics, Y;;, which are specified
by a polar wavenumber k and an azimuthal wavenumber [ [20,21]. We perform a spectral analysis
on the hemispherical galloping bubble by projecting its shape onto the subset of spherical harmonics
that satisfy the no-penetration condition (k 4+ / = even). We find that axisymmetric modes, typically
dominated by the amplitude of the (2, 0) harmonic, are parametrically excited at low forcing, while
the nonaxisymmetric mode (3, 1) emerges only above the critical galloping threshold, As. The
Reynolds number is defined using the characteristic flow speed, u, = Aw, as Re = u.R/v, which
in our experiments typically falls in the range 30 < Re < 50, indicating weak viscous effects. In
this inertia-dominated regime, a nonaxisymmetric mode excited in isolation would yield reciprocal
oscillations without net propulsion [23,24]. Galloping bubbles overcome this constraint through a
coupling between the nonaxisymmetric mode that arises above the galloping threshold (A > Ag)
and the underlying axisymmetric oscillations, which breaks temporal symmetry and enables nonre-
ciprocal self-propulsion [17].

We conclude by highlighting the versatility of galloping bubbles with a series of proof-of-concept
experiments in Fig. 3, illustrating how the galloping instability may enable new technological ad-
vancements across diverse practical settings. The galloping instability can help dislodge and remove
bubbles from nucleation sites [Fig. 3(a)], potentially offering new methods to enhance heat transfer
during cooling of electronic microdevices, where trapped bubbles reduce thermal efficiency [25].
Provided the bubbles remain close or attached to the wall, as is typically the case for sessile bubbles
under moderate forcing, this mechanism may be especially useful in microgravity environments,
where the absence of buoyancy complicates bubble removal [26-28]. Galloping bubbles have a
tendency to follow lateral walls, which enables passive, size-dependent sorting: small bubbles enter
narrow collectors, while larger ones bypass them [Fig. 3(b)]. Their wall-following behavior also
allows for navigation through complex mazelike environments [Fig. 3(c)], with potential applica-
tions in microfluidics and drug delivery. Additionally, galloping bubbles may offer a noninvasive
cleaning method for removing microparticles from solid surfaces [29], where oscillation-induced
flows beneath the bubble sweep particles downward and away from the boundary [17], showing
potential as a new cleaning method for sensitive devices. We note that these applications are subject
to size constraints as the galloping mechanism for film-separated bubbles relies on sizes comparable
to the capillary length. By contrast, hemispherical bubbles [Fig. 2(b)] should be able to propel at
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FIG. 3. Proof-of-concept applications of galloping bubbles. (a) Bubble evacuation: the galloping instability
enables the removal of bubbles from a nucleation point, such as those arising during boiling processes. In
this demonstration, a bubble is injected through an artificial nucleation site; once it grows to the appropriate
size, the galloping instability is triggered and the bubble departs the surface autonomously, without the need
for external flows or buoyancy. (b) Size-dependent sorting: owing to their affinity to adhere to and follow
walls, bubbles of various volumes are autonomously directed into collectors of increasing sizes, facilitating
their sorting. Shown here from a top view, bubbles released from a wide inlet channel on the left follow the
sidewalls and enter the first collector whose opening exceeds their size, while larger bubbles bypass smaller
collectors until reaching one of appropriate width. The galloping dynamics thus provides a robust self-sorting
mechanism without the need for imposed pressure gradients or external flow control. (c) Navigation through
complex networks: galloping bubbles can traverse intricate flow networks and solve mazes. Apart from their
natural tendency to follow walls, galloping bubbles are also capable of reversing direction at dead ends, which
enables them to autonomously find a viable path from entry to exit. This robustness demonstrates that their
utility does not depend on perfectly straight channels or carefully prepared conditions, but persists in complex,
irregular geometries. Colored lines and arrows trace the paths taken by different bubbles from entry to exit.
Images in (a) are captured from the side, and (b) and (c) from above.

smaller scales under higher-frequency vibrations, though they may require surface treatments to
prevent contact-line pinning. Significant opportunities for future research into galloping bubbles
across different scales and configurations therefore lie ahead.
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