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CONVERGENCE OF NONHOMOGENEOUS HAWKES PROCESSES AND FELLER
RANDOM MEASURES

TRISTAN PACE AND GORDAN ZITKOVIC

ABSTRACT. We consider a sequence of Hawkes processes whose excitation measures may depend on
the generation, and study its scaling limits in the near-unstable limiting regime. The limiting random
measures, characterized via a nonlinear convolutional equation, form a family parameterized by a pair
consisting of a locally finite measure and a geometrically infinitely divisible probability distribution
on the positive real line. These measures can be interpreted as generalizations of the Feller diffusion
and fractional Feller (CIR) processes, but also allow for the "driving noise" associated to general Lévy-
type operators of order at most 1, including fractional derivatives of any order > 0 (formally
corresponding to possibly negative Hurst parameters).

1. INTRODUCTION

Hawkes (point) processes were introduced in [Haw71b, Haw71a] as models for self-exciting sto-
chastic phenomena. Their fundamental property is that new points are generated at the rate that
depends on the number and locations of existing points via a function known as the excitation
kernel. Initially used as models for seismic events, Hawkes processes have since found numerous
applications in various disciplines ranging from epidemiology and criminology, over genetics and
neuroscience to economics and finance (see the survey [LLPT24] and its references).

1.1. Limiting theory of Hawkes processes - an overview of the literature. The investigation
into the limiting theory of Hawkes processes began almost immediately after their introduction. A
central limit theorem (as ¢ — oo) for Hawkes processes whose kernels admit a finite first moment
was established already in [HO74] (this paper also introduced the cluster representation we use in
the current paper). We start with a brief survey of existing pertinent results split into two classes,
based on the scaling regime.

In the first class, the total mass a = fooo ¢(t) dt of the kernel ¢ is kept constant, while time, space
and other parameters are scaled. One of the earliest results here was provided by [BDHM13], where
a functional central limit theorem (FCLT) with convergence towards a scaled Brownian motion
was established under a finiteness assumption on the 1/2-th moment of the kernel. Later, [GZ18]
introduced a framework where the background (immigrant) intensity is taken to infinity, but only
space is scaled to compensate. Under the assumption that the kernel is exponential, it is shown
there that the limiting process is no longer Brownian but only Gaussian with a non-Markovian
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covariance function. More recently, a FCLT for marked Hawkes processes and associated shot noises
was established in [HX21]. We also mention a recent preprint [HX24] by the same authors where
FCLTs or parallel negative results are established for Hawkes processes in several stability regions
defined by the values of the total mass and the first moment of the kernel ¢.

The second class of results features the "nearly unstable" scaling regime, introduced in [JR15],
which is also utilized in the present work. In this regime, both time and space are scaled in a non-
Brownian manner, while the total mass of the kernel is sent to 1 - the stability threshold constant.
Assuming that the kernel has a finite first moment, these authors establish a functional scaling limit
theorem for the integrated intensity process with the Feller (CIR) diffusion, a non-Gaussian process,
as the limit. In the follow-up paper [JR16b], the requirement for a finite first moment is relaxed to
the finiteness of some moment above 1/2, and the limiting Feller diffusion is replaced by a fractional
Feller (CIR) process, which is neither Markovian nor a semimartingale. The mode of convergence
obtained in [JR16b] was considerably strengthened in [HXZ23] under the same assumptions on the
kernel. These authors show that the intensity processes themselves converge in the Skorokhod
topology, and not only their integrals, as in [JR16b].

1.2. Our contributions. The goal of this paper is to add to the existing literature by extending
the aforementioned results in several directions. Firstly, we consider nonhomogeneous Hawkes
processes, i.e., the generalizations of Hawkes processes where the kernel is allowed to vary from
generation to generation (see [FLM15] for a related model). This not only provides additional mod-
eling flexibility, but also unlocks a wider range of possible limiting objects. Additionally, we allow
the kernels themselves to serve as scaling parameters in that they may depend on the scaling pa-
rameter n. Compared to the existing results, these two extensions can be though of as a transition
from scaled sums of iid sequences to sums of (triangular) arrays of independent random variables
in classical probability theory. Continuing this analogy, the class of our limiting objects now in-
cludes not only the analogues of stable distributions (fractional Feller (CIR) processes), but also the
analogues of infinitely-divisible distributions (termed Feller random measures in this paper).

Another direction in which we broaden all existing results is that we do not impose any condi-
tions on the integrability of the kernels; we do not even require them to be functions in ([0, o0))
but permit them to be general finite measures on [0, c0). This allows us, in particular, to expand the
analysis of [JR15, JR16b] down to and below the critical 1/2-moment threshold imposed in the exist-
ing literature. In this regime, the limiting objects are no longer necessarily (integrals of) stochastic
processes; they can now be located in the space of nonnegative random measures. Consequently,
we cannot talk about convergence in Skorohod’s Ji, or any related topology, but need to work with
the vague topology this space is naturally endowed with.

A novel difficulty encountered in our approach is that the tools of stochastic analysis and martin-
gale theory, standard in the Hawkes-process literature, seem to lose much of their usefulness. This
is largely due to the appearance of genuine random measures as limits, but is also exacerbated by
the nonhomogeneity of our model. This dependency makes it challenging to express the conditional
intensity process in a convenient form without sacrificing finite dimensionality. Consequently, we
are led to the cluster representation of the Hawkes process and the related cascade of relationships
among the Laplace functionals associated to a sequence of auxiliary point processes. Here, the
process indexed by m represents the progeny of an individual of generation m. The crux of the ar-
gument then rests on obtaining tight coupling estimates for pairs of such processes. This results in
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an convergence theorem which provides scaling constants, gives sufficient conditions under which
the scaling limit exists, and characterizes its Laplace functional in terms of the unique solution to a
nonlinear convolutional Riccati equation.

With the convergence theorem established, we turn to its conditions in the second part of the pa-
per. There we use the theory of of random summation (see the monograph [GK96]) to give a detailed
characterization of the possible limiting random measures and fairly explicit conditions on the ar-
rays of excitation kernels that achieve them. It turns out that the limits are completely described by
two measure-valued parameters: a locally finite measure i and a geometrically infinitely-divisible
probability distribution p on [0, 00). We call them Feller random measures because, as shown in
[JR15] and [JR16a], their densities are given by the Feller diffusion when p is the exponential dis-
tribution and fractional Feller process when p is the Mittag-Leffler distribution. We go on to show
that these random measures admit interesting distributional properties, like infinite divisibility, and
allow for simple recursive formulas for the cumulants (and, therefore, moments). We also observe
that Feller random measures can be used to produce stochastic representations for a class of Riccati
equations where the classical derivative is replaced by a general Lévy-type differential operator of
at-most first order.

1.3. Connections with fractional Brownian motion and rough volatility models. One of
the motivations for this work comes from the role Hawkes processes have in financial modeling.
Their self-exciting nature is particularly well-suited for capturing the dependence of market buy
and sell orders on past orders (see, e.g., [BMM15] for an overview). A phenomenon well-explained
by such modeling is the observed "roughness” (see [CR98] and [GJR18]) of market volatility. Indeed,
the fractional Feller (CIR) process that appears in the results of [JR16b] - and corresponds to the
squared volatility - can be informally thought of as a continuous stochastic process "driven" by the
fractional Brownian motion (fBM). The value of the Hurst parameter H € (0, 1) of this fBM, used to
describe the degree of "roughness" of the volatility process, has been the subject of several empirical
studies. Early estimates gave H € (1/2, 1) ((CR98]) whereas two decades later the consensus shifted
towards H € (0,1/2) (see [GJR18], [BLP21] and [FTW22]). Many of the latter estimates put H very
close to 0, suggesting that H = 0 might be the "true" value (see [FFGS22], [BHP21]).

Even though there is no universally accepted way to define the fractional Brownian motion with
H = 0 either as a stochastic process or as a random measure/field, several authors have proposed
models that could play such a role in one sense or another. These include the multifractal random
walks (see [BDMO01]) and various Gaussian random fields with a logarithmic kernel (see [FKS16],
[NR18], and [HN22] for a sample of different approaches). Our framework allows not only to define
generalized fractional Feller (CIR) processes corresponding to values of the Hurst parameter H in
the interval (—1/2,1/2], but also corresponding to a much wider range of driving noises beyond
the one-dimensional fractional family. Moreover, we only require a single passage to the limit, and
do not define a limiting process for H > 0 first, and then pass it to a (second) limit H — 0, as is
often done in the literature mentioned above. While a full analysis is left for future research, and
it is difficult to give a formal definition of the notion of a driving noise for random measures, we
do note that the form of the covariance kernel we obtain in subsection 4.3.3 below suggests the
log-correlated class (see the survey [DRSV17]).

1.4. Organization of the paper. Following this introduction, Section 2 provides the necessary
background, established the notation and defines nonhomogeneous Hawkes. Section 3 contains the
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statement and the proof of the convergence theorem, while Section 4 delves into various properties
of the limiting Feller random measures.

1.5. Notation and conventions. For a constant ¢ € R and a function f : D C R? — R, we write
f < cif there exists € > 0 such that f < ¢ —e.

Let D be a subset of a Euclidean space, let B(D) denote the Borel o-algebra on D and let Leb
denote the Lebesgue measure. Unless otherwise specified, measurability will always be understood
with respect to B(D). The family of all measurable functions on D is denoted by £°(D), while
L1(D) denotes the standard Lebesgue space with respect to the Lebesgue measure on D, except
that we do not pass to Leb-a.e.-equivalence classes and | f | 21y := Jp|f(z)| dx is only a seminorm.

We let S°°(D) be the family of all bounded functions in £°(D) and let |f|5loo (D) = SuPgeplf ()]
The space L& (D) (respectively S2° (D)) consists of all f € L£(D) such that f € £LY(D N B)

loc loc

(respectively S2° (D N B) for all bounded B € B(D). For { f, }nen, f € L1(D), we write f,, — f
in L1 (D) if |f, — flzy(pnpy — 0 for each bounded B € B(D).

loc

Cy(D) and C¢ (D) denote the families of bounded and compactly supported continuous functions
on D. When D = [0, 0), Cy = Cy(]0,00)) denotes the family of continuous function f on [0, o)
with f(0) = 0.

M(D) and Mg (D) denote the sets of all positive and signed Borel measures D, respectively, and
014} denotes the Dirac measure on a € D. The sets of finite, finite on bounded sets, and probability
measures on D are denoted by My (D), My(D), and M(D), respectively. The total mass of
p € M(D) is denoted by || and the total variation of ;1 € Mg(D) by || s, (p)-

When D = [0, c0) we omit it from notation and write, e.g., S* for S0, o), etc.

2. NONHOMOGENEOUS HAWKES PROCESSES

In order to introduce the notation and to single out one of several similar (but not entirely equiv-
alent) frameworks found in the literature, we provide a short introduction to Hawkes processes
and their nonhomogeneous versions. We believe that most (or all) results here are well-known (at
least to specialists) but could not locate precise-enough references, and so we provide self-contained
proofs for some of them. The reader is referred to any standard text on random measures and point
processes (such as [DVJ03, DVJ08] or [Kal17]) for unexplained details. We also mention the paper
[FLM15] which focuses on some aspects of the asymptotic behavior of nonhomogeneous Hawkes
processes.

2.1. Random measures and point processes. For a subset D of an Euclidean space, we induce
the measurable structure on M(D) by the evaluation maps p — u(A), A € B(D). The random
elements in M (D) are called random measures, while random measures with values in M¢(D) are
said to be locally finite.

For f € S and 1 € My, the convolution f x p € S, is given by
(f *p)(t) ::/ ft —s)u(ds) fort > 0.
[0,¢]

To enhance legibility, we often use the convention that functions and measures inside a convolution
take the value 0 outside their original domain of definition and often simply write (f * u)(t) =
[ f(t —-) dp. Using this convention, we can define the convolution of two measures i, v € M by
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(p*xv)(A) == [ (A —s)v(ds) = [v(A — s) pu(ds) and note that it is the unique element of M;
such that f * (u*v) = (f xp) *vforall f € SX.

The convolutional version of the standard moment-generating functional, defined below, proves
to be easier to work with in the context of Hawkes processes than its classical counterpart. The
value of the convolutional moment-generating functional M¢ on f € S att € [0, 00) is given by

M[f](t) = E[e“*@@)} € [0,00). 2.1)

We note that, unlike in the standard case, the functional M depends on the additional parameter
t. While this dependence does not encode any additional information (it simply shifts the function
f), it leads to significantly simpler notation in the sequel.

Alocally finite random measure N on [0, 00) is called a point process if N(A) € Ny for all bounded
A € B(]0,00)). Each point process N admits a sequence {7} }ren of [0, 0o]-valued random variables
called the points of N, such that Ty <77 < ... and T, — o0, a.s., and

N = Zk 0Ty
where the sum is always taken only over k such that 7T}, < oo; equivalently, d. o is identified with
the zero measure on [0,00). Since [ f(t) N(dt) = >, f(Tk), a.s., whenever both sides are well
defined, we often use the convenient standard notation

ZTGN f(T) = f f(t) N(dt).

We recall that for u € My, the Poisson process (with the intensity measure p) is the unique point
process P such that 1) P(A) is a Poisson random variable with expectation (parameter) p(A) for
each bounded A € B([0,0)), and 2) P(A;), ..., P(A,) are independent random variables when-
ever Ay, ..., A, € B(]0,00)) are bounded and disjoint. For such P we have

Mp[f] = PVt forall f e 5.
We will also need the following expression
Jplf] = eV D* for g € S, (2.2)
for the convolutional probability-generating functional
Jp[f1t) =E|[lrepr<i 9(t — T)]at >0,

of the Poisson process P with intensity p.

==

2.2. Nonhomogeneous single-progenitor Hawkes processes. The typical definition of a stan-
dard Hawkes process involves two inputs: the background intensity and the excitation kernel. It
will be convenient for our later analysis to separate the two and first construct a class of processes
without any background intensity, but started, instead, from a single point (progenitor) at time
t = 0. Their distributions are determined by two parameters: a constant a € (0, 1) and a sequence
m = {7} men of probability measures on (0, c0). To relate them to the standard notation, we note
that when 7" is absolutely continuous, we can define the excitation kernel ¢"* (associated to the rate
at which the points in generation m — 1 produce offspring in generation m) by an™(dt) = ¢™(t) dt.
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More precisely, the nonhomogeneous single-progenitor Hawkes process H with parameters a and
T = {7} men is defined by
H .= UmGNon7 (23)
where the sequence { H "} men, of "generations” is built from a double sequence P™(k), m € N,
k € Ny of independent Poisson processes, where P (k) has intensity an™, for each k € Ny. The
zero-th generation HY is simply the Dirac mass &y at 0, i.e., a deterministic point process with a
single point at 0, representing the lone progenitor. Once the first m generations H°, ..., H™ !,
m € N, have been constructed, we set

=) (T’”‘l(k)JrS) (2.4)

kGNo SEI}’”*l(k)

where {71 (k)}ren, denotes the point sequence of H™~!. In keeping with the convention in-
troduced above, the first union is taken over k such that 7~ 1(k) < oo.

In the sequel, we often identify a point process with its (random) point set. Moreover, we abuse
the notation and write, for example, P™~'(T') for the Poisson process P™!(k) whose index k is
such that T = T™~ (k). This way, (2.4) takes the more legible form

= (T + ﬁm—l(T)).

TeHm—1

The parameters a and {7 },,,cr of a single-progenitor Hawkes process can be used to construct a
double sequence of partial single-progenitor Hawkes processes H™™ %) m e Ny, k € N which will
be needed in sequel. The process H™™*¥) starts with a single individual in generation m € Ny, and
acrues individuals over the next & — 1 generations. This is distributionally equivalent to collecting
the first k generations of a single-progenitor process with parameters a and (7™ 7m+2 ),
These, individual, generations are denoted by ﬁm’(mﬂ), 7 =0,...,k — 1 so that Hlmmtk) —
Uéf;é Hmu(m+3)

For k > 1, conditioning on the first generation H"("+1) of H™ gives the following fundamental
recursive distributional equality

atmmt @ goyy | (7 + Hm (T ) for k > 1, 2.5)
Tepmtl
where P! is a Poisson process with intensity ar(™*1), and (HIm+1m+k) (1)) pepm+r are inde-
pendent partial single-progenitor Hawkes processes. We accumulate over all £ in (2.5) to obtain
a2 (7 + E™(T))). (2.6)
Tepmtl
2.3. The moment-generating functional and moments.

Proposition 2.1. Given f € S and m € Ny, we have M g [f] = 1 and

loc

Mf{[m,m+k) [f] = eXp (f + a(Mg[erl,erk) [f] - 1) * 7Tm+1) fork 2 1 (27)
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Proof. The equality M gim.m)[f] = 1 follows trivially from the definition. Assuming that £ > 1 and
conditioning on generation m + 1 in (2.5), we get

Mt 1) = B[/ Srcoms Zscessniu 167 =9)

= /K |:HT€I5m+1 E [ezsemm+1’m+k)(T) ft-T-35) ' U(ﬁ””“)”

= ef(t)E[HTerH M g ms+1,m+1) [f1(t - T)]

— f® I pm1 [M gms1.mar ) (1)

= exp <f(t) + a/(Mf{[m+1,m+k) [flit—s)— 1) 7Tm+1(d8)>,
where the last equality follows from (2.2). 0

Let Wy : [-e~!,00) — R denote the principal branch of Lambert’s W-function (see, e.g. [DLM,
Section 4.13]).

Proposition 2.2. For 3 € R, let () := Elexp(3|H|)] € (0, 0] be the moment generating function
of the total number |H| of points in H. Then

_ T B>a—1-1log(a),
= {—%Wo(—exp(ﬂ —a+log(a))), B<a-—1-1log(a).

Proof. Since |H| depends only on the parameter a, and not on the sequence {7 },,cn, we have

(2.8)

|H™| @ |H| for all m. Virtually the same argument as in the proof of Proposition 2.1 above can be

used to conclude that the functions [ (5) = E [exp (5|ﬁ[0’k) |)} , k € Ny satisfy

l(8) = exp(B + a(lp—1(B) — 1)) for k € N.

Assuming, first, that 5 > 0, the fact that ]ﬁ | is the nondecreasing limit of \JZI [O’k)\, as k — oo
implies that 15 (3) 7 I(8). Since ly(8) = 1, it follows that () is the smallest fixed point above
1, if one exists, of the function F'(x) = exp( + a(z — 1)); otherwise, [(8) = +oo. That latter
case happens, in particular, when § > a — 1 — log(a), as can be easily seen by inspection. For
B < a—1-1log(a), the equation F'(x) = x transforms into

(—azx)exp(—ax) = —aexp(S — a), (2.9)

with solutions given by
1 1
xg = _EWO(_ exp(—a+ f +1log(a))) and x_1 = _EW_l(_ exp(—a + S +log(a))),

where Wy and W_; are the two branches of the Lambert’s W-function on [—e ™!, 0). The principal
solution Wy is increasing and W_ is decreasing on (—e ™1, 0), while Wy(—e™!) = W_;(—e7!) =
—1; this is easily seen directly, but we also refer the reader to [DLM, Section 4.13] for a more com-
prehensive treatment of the W-function. It follows that the smallest solution of F'(z) = x above
x = 1 is given by xg defined in (2.9) above, which completes the proof of (2.8).

The case 8 < 0 is almost identical, with the distinction that the sequence {lx(8)}ren is now
nonincreasing and bounded from above by 1, so we are looking for the largest fixed point of F
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below 1. Since F'(1) < 1 in this case, lo(/5) = 1 is located between the two solutions of F'(x) = x
which leads us to choose the principal branch Wy again. g

Corollary 2.3. Let f € S be such that f < a — 1 —log(a). Then

1 1
M gim,mak) [f] < ’ and M g, [f] < Efor allm € Ng, k € N. (2.10)
Moreover, we have
Mpn[f] = exp(f + a(Mpgmi [f] — 1) = ™) forallm € Ny. (2.11)

Lastly, we use the recursive nature of the Hawkes process to derive an expression for its moments.
For f € 82, we let

é[m,m+k)[f] — E[f *ﬁ[m,m—kk)] and é"[f] = E[f* ﬁm], form € Ng,k € N.

Just like in the proof of Proposition 2.1, the relation (2.5) implies that

emm ] = fand e™ R[] = f 4 a el ER) 7t for ko> 1. (2.12)
Therefore,
glm,m-+k) [f] = f * (Z;?:O ajﬂ(m,m+ﬂ)
where
, ) =0
(mm+j] ._ } 005 J=5 2.13
" ' {ﬂm+1*---*ﬂm+j, j > 0. (2.13)
Since a < 1 and |7(™™+7l| = 1 for all m, j € Np, we have convergence in total variation in
P = Z(l — a)aFrmmTkl ¢ My, (2.14)
k=0
and the following identity holds
1
e"f] = mf x p" for f € S, m € Np. (2.15)

2.4. The genealogical tree of a single-progenitor Hawkes process. The genealogical tree of a
single-progenitor Hawkes process is a random rooted directed tree associated to its construction
via generations HOY H',... as in subsection (2.2) above. The vertices of the tree are the points of
the process, the root is the initial point at 0, and edges connect each point, except the root, to its
"parent” in the previous generation. We note that the structure of this tree does not depend on
the position of the individual points in each generation, only their number and the parent-child
relationship. This means, in particular, that the distribution of the genealogical tree depends only
on the value of the parameter a, but not on the choice of the of the sequence {7 },en of probability
measures. It will be important in the sequel to observe that the number of points in each generation
of the genealogy is a Bienaymé-Galton-Watson process with the Poisson offspring distribution with
parameter a. Moreover, one can construct the single-progenitor Hawkes process starting from the
genealogical tree as follows:
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(1) Construct a random directed tree corresponding to a Bienaymé-Galton-Watson process with
Poisson offspring distribution with parameter a. This will be the genealogical tree of the
Hawkes process.

(2) For each directed edge in the tree, connecting generations m and m — 1, sample an indepen-
dent random variable - which we call the length of the edge - with distribution 7.

(3) Construct the single-progenitor Hawkes process H by starting with the point at 0 and for
each non-root vertex v of the tree add a point to H at the position obtained by adding
together the lengths of the edges forming the unique path from the root to v.

2.5. Hawkes processes. The Hawkes process is defined as a superposition of independent single-
progenitor Hawkes processes, started as different points of an underlying Poisson process. More
precisely, in addition to the parameters @ and @ = {7 },en of a single-progenitor process, let a
background intensity measure . € Mg be given. The Hawkes process with parameters i, a and 7 is
defined by

"= (T + FI(T)), (2.16)
TeP

where P is a Poisson process with intensity p and {ﬁ (4)}jen is a sequence of independent single-
progenitor Hawkes processes with parameters (a, {7 }nen), independent of P. Thanks to local
finiteness of the Poisson process and the finiteness of single-progenitor Hawkes processes (guaran-
teed by the assumption that a < 1), H is alocally finite random measure, too. We have the following
continuation of Proposition 2.1

Proposition 2.4. Given f € S with f < a — 1 — log(a), we have My[f] € 8 and
Mp[f] = exp((Mg[f] = 1) * ). (2.17)
Proof. The defining relation (2.16) implies that
My [)(t) = Elexp(f » H(t))] = E[exp(Srep Soen, [t~ (T +5))]
= E[E[[Trep exv(Soen, F(t=T) = 5)) [o(P)]]
= E[[Trep My 1t = )] = Jp[Mg[f11(0) = exp( (Mglf] = 1) * 1) @),

where the last equality follows from (2.2) and we use our standard convention that the functions f

and Mg |[f] — 1 take the value 0 for t < 0. O

An argument similar to the one leading to (2.17) above implies that we have the following ex-
pression for the first moment e[f] = E[f * H] of the Hawkes process:

elf] = elf] % = ——f % (p* ). (2.18)

1—-a
where p = p® and p° is given by (2.14).
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3. A CONVERGENCE THEOREM FOR NONHOMOGENEOUS HAWKES PROCESSES

3.1. A convergence theorem. We start with a sequence {(an, {7 }men, tn) }nen of parameter
triplets of nonhomogeneous Hawkes processes. In particular, for each n € N, a,, € (0,1), up
is a locally bounded measure on [0, 00), and {7 },nen is a sequence of probability measures on
(0,00). For each n, we denote a Hawkes process with parameters (a,,, {7 }men, in) by Hy, and
the associated single-progenitor process by H,, . We also use the partial versions of these processes
together with the notation introduced in and after subsection 2.2, but additionally indexed by n.

Our first goal is to give sufficient conditions on the sequences {ay, nen, {7} }im nen and { i fnen
that will ensure that, when properly scaled, the processes H,, converge, and to characterize the
distribution of the limit.

We remind the reader that the vague topology, with convergence denoted by —, is the coarsest
topology on M¢ such that the map p — [ f dp is continuous for each f € C. The weak topology

on the space M, with convergence denoted by —, is defined similarly, but with C, replaced by
Ch.

Since [0, 00) is complete and separable, the vague topology on Ms is Polish (completely metriz-
able and separable). For a sequence of locally finite random measures {&, },en, we say that &,

converges to £ in distribution, and write &, A, &, if &, converges to £ weakly when interpreted as a
sequence of random elements in M); metrized by the vague topology. We refer the reader to [Kal17,
Section 4.1, p. 111] for a textbook treatment and proofs of various properties of the vague and weak
topologies used throughout the paper.

Using the notation introduced in (2.14) above, we set

Pn = Z(l - an)(an)kﬂﬁo’k} € Mp. 3.1)
k=0

It is convenient to express p,, as the expected value

pn=E [W(O’G"}] )

n

where G, is an Ny-valued geometrically distributed random variable with parameter (probability
of success) 1 — ay,.

For v1,v9 € Mjrand T > 0, we set

T
Wi g1 (1, v2) = /0 Fo (1) — Fou(t)] dr,

where F,,, = 14([0,-]), ¢ = 1,2, are distribution functions of v, and 5. When v; and v» are prob-
ability measures with supports in [0, 7], W[%) T}(I/l, v9) coincides with the 1-Wasserstein distance

between 1y and v (see, e.g., [San15, Proposition 2.17, p. 66]).
The array {7} is said to be null if, for each ¢ > 0,
lign sup (e, 00)) = 0.
We recall that Cy denotes the family of all continuous functions f on [0, co) with f(0) = 0.

Theorem 3.1. Suppose that
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(1) (1 - an)ﬂn L> IS M.
(2) The array {m™ };n nen is null and p, — p for some p € M,, with p({0}) = 0.
(3) Either one of the following two conditions holds:

(a) there exists a constant d € N such that

amtd — 7™ forallm € N,n € Ny, or (3.2)
(b) foreachT >0

lim(1 — ay) =2 sup Wig, 7y (70, 7w5) = 0.

Then, there exists a locally finite random measure & on [0, 00) such that

(1 — an)2H, % ¢. (3.3)
It is characterized by
M¢[f] = exp(h[f] * p) forall f € Co with f < 1/2, (3.4)
where h[f] the unique solution in S, to the convolutional Riccati equation
h=(f+ $h?) *p. (3.5)

The proof is divided into several lemmas. Before we state them, we introduce the necessary
notation and terminology. A quantity is said to be a universal constant if it depends only on the
primitives {an, tnen, {7 }m.nen and {1 }nen. We will always denote a generic universal constant
with the letter C, even though it might change from use to use.

We retain all the notation from section 2 (subsections 2.2 and 2.5 in particular), but add a subscript
n to signal the association with the parameters a,,, {7 };nen and pi,. With that in mind, and using
the shortcut

En i =1—ay,

we define the random measures 7 and £ by

€ :=e2H™ and &M :=cXHM (3.6)
For f € 5§ and t > 0, we set
WA o= = (Mg [71) — 1) = = (M) — 1) € (coo,00. (39)
En n € n

When the function f is clear from the context, we often omit it from notation and write, e.g., h’
for A f].

An Nyj-valued geometrically distributed random variable with parameter (probability of success)
1 — a,, will be denoted by G,, throughout the proof.

Given T' > 0, a function f € S*°[0, T is said to be of bounded variation if there exists a signed
measure D f € M;[0,T] such that f(t) = Df([0,¢]) for all ¢ € [0, T]. The Hahn decomposition of
Df is denoted by Df = DT f — D~ f and the total variation measure Dt f + D~ f, associated to
Df, by |D|f. The map | f[gyjo 1) = [Df| o) = IPIf] is a Banach norm on BV(0, 7] and the
set of all f € S, such that f|g 7] € BV[0, 7] for all T > 0 is denoted by BV,
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We start with a lemma about the asymptotic behavior of the total number | H"| of points of H™.
We note that the distribution of |H]"| does not depend on m, so we denote it in the sequel plainly
by |H,| to simplify the notation and stress the uniformity of the obtained bounds in m.

Lemma 3.2. Ford € [0,1) we have

lim L <E [exp(%(l - 5)€Z|I~{n|>:| - 1) =1-0, (3.8)

ngn

and, foré € (0,1),

~ - —1)! —
limfj%k_lE[‘Hn‘kexp(E%%‘Hﬂ)] _ (k 1). <2(1€ 1)>51/2—k fork e N. (3.9)

2k—1 k—1

Proof. Let w(z) = —Wo(—e~*=%") for z > 0, where W is the principal branch of Lambert’s W-
function; see [DLM, Section 4.13] for the standard properties used in this proof. Proposition 2.2
above states that for § < "% := —log(1 — &,,) — &, we have

E|exp(81Hn]) | = T=—w(ba(8)) where by () = (87" — §)"/2 (3.10)

1—e,
We have 12
bu(3e2) = (~log(1 =) —ca = 4e2) = O
Since w is continuously differentiable on [0, 00) and w(0) = 1, this implies that
1
T w(bn(3en)) = 1+en+ O,
which, in turn, yields (3.8) for 6 = 0. Similarly, when § € (0,1) we have

ba(3(1 = 8)e2) = /320 + O(E2),
and (3.8) when ¢ € (0, 1) follows from
(o (30 - 8)23)) = 1 (1= VB)zy + ofe).
Suppose that § € (0,1) for the rest of the proof. Standard properties of moment-generating

functions allow us to differentiate £ € N times inside the expectation sign at each 8 < (3" in
(3.10) above to obtain
B[ exp (BI71) | = -=—(wo b)) (8) for < e, (311)
—<n

where (-)*) denotes the k-th derivative in 5. The formula of Faa di Bruno states that (w o b, )*) ()
admits a representation of the form

k

B st o (8)\ "
Zml' mk!w( ot k)(bn(5)>H< : (3.12)

=AW

where the sum is taken over all mq, ..., my € Ny such that my 4+ 2mo + --- + kmy = k.
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We have bg)(ﬁ) = (—1)jj!(1§2)(ﬁ£’wx — B)1/?77 50 that

ﬁ (bs‘j)(ﬂ)) T K (B — 8)"™ 5™k where K = ﬁ<(—1)j <1/.2>>mj.

|
j=1 J: J=1 J

The lowest power of (5]'** — ) appearing in (3.12) is 1/2 — k and is attained precisely at m; =
- = my_1 = 0, my = 1. Furthermore, all functions w(™*+7)(z) converge towards a finite
limit as  \, 0 which implies that

(w0 b)) (8) = Klu! (ba(8))(~1)* (

We have

1/2> (ﬁ;na:c i B)l/2—k + O((B:Lnam _ /8)1/2—]6).
k
bu(3(1—d)er) = \/ga‘n +o(en), (3.13)
and using (3.13), together with the fact that lim,~ o w'(z) = —/2, we get
(k)
(o3 /2) ki
which, in turn, implies (3.9). O

The inequalities in Lemma 3.3 below are well known (the first one is the simplest special case of
Young’s inequality), but we give short proofs for completeness.
Lemma 3.3. Suppose that T > 0 and v,v' € M;([0,T)).
(1) Ifh € L0, T), then h * v € £[0,T] and

\hox | pap 7y < Rl gapo V- (3.14)
(2) Ifh € BV[0,T], then h x v € BV[0,T] with D(h xv) = Dh * v and
|h vy < |Plgvio |Vl (3.15)
as well as
[l (v =) oy < Thleviory Wy (v ) (3.16)

Proof. (1) By Fubini’s theorem

/OT|h* V()] dt < /OT/|h(t — )| w(du) dt

T
— [ [ e~ wldtvtan) < bl gy plo. 7).

(2) We have (h * v)(t) = (Dh % v)[0, t], which implies that » x v € BV[0,T] with D(h * v) =
Dh x v. Therefore,

|h vlgyior) = [D(h )| ypo.) = PR * v pg o
= |Dh* xv — Dh™ x V‘MS[O,T} < (DhT % v)[0,T] + (Dh™ % v)[0,T]

< DR*[0,T)v[0,T] + Dh™[0,T|v[0,T] = ‘Dh’MS[O,T}‘V‘ = ‘h‘BV[O,T}‘V’-
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To show (3.16), we observe that
(Dh % v)[0,t] = (v * Dh)[0,t] = (F, = Dh)(t) fort > 0,
where F, (t) = v([0,t]) denotes the distribution function of v. Hence,

|hsv(t) —hx/(t /|F (t —u) — F(t —u)| |Dh|(du) for t > 0,

and so,

/\h*y et |dt</ /|Ft—u Fy(t — u)| | Dh(du) di

/ / By () — By (8)] dt | DRI (du) = |y io.0 Wy (v V).

14

0

Lemma 3.4. Foreach § > 0, there exists a universal constant C' such that for allm € No,n € N;T >

0 and all f € S with f < $(1 — ) we have
(1) k™ € 8 and

loc 4

inf f(u) <h'(t) <C sup f(u)fort €[0,T].
u€[0,T] u€l0,T]

(2) If, additionally, f € BV, then h]' € BV, and
1ha levior < Clf lgvio,r)-
Proof. We pick 6 € (0,1) and f € 82 with f < 2(1 — §) as in the statement and set
zy = exp (152171

with g,’f as dgﬁned in (3.6), notmg that the distribution of Z" does not depend on m.
Since f * £™ < (1 — 6)|€™, (3.9) with k = 1 implies that

m(t) < s,:lE[z:?(f €M) < (supuepr) F())enk | Zi |
< Csupyejo.r) f(u) for t € 0, T7.

To get a lower bound, we use Jensen’s inequality and (2.15):
P (t) = et (exo (B[ (£ + EM®)]) 1) 2 e E[(F + E1)(0)]
= (=) = nf fw),
To establish (3.18), we pick 0 < 7 < s < T and observe that
1 (s) = B ()] < " [exp (f +€22(s) ) = exo(f <€) )]
&n(s) — £+ €00
<&t (Bres) + B ns)).

< 'E|Z;

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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where

F0s) =B[22 [ 1166 = ) = £ = )| & w)] . and

Fm(r.s) = E[Z;” [ 1s6- u>réﬁ<du>]
Since |£(5) — ()| < [ 1oy d|D

F(r,s) <E [Z:f J/ -l é:?:(duﬂ .

Hence, for k € (0,7),

1

T—k
—/ F'(r,r + k) dr =
K Jo

f,foralla < bin [0,T], we have

m 1 cm
=E |:Zn // E / 1{re[v+u—fc,v+u)ﬂ[T—n,u}} dr |D|f(dv)£n (du):|

. [z;n e f(dwg;n(du)] < flnviorE| Z71ER ]

< enC|flBvio1

where the last inequality follows from (3.9). Similarly,

1 T—k . 1 T ~

[ R0 dr <L [ B[22 (et 1) du
0 0

K
m 1 cm
< \f\soo[o,T]E[Zn /;/1{s€[u,u+ﬁ]}du§n (ds)}

< enC|flsspom < enClflBVI0T)-

Therefore,
1 T—k
[ s B < Clflav (.2)

uniformly in m € Ng, n € N and x € (0,7]. Thanks to [Leo17, Corollary 2.51, p. 53], this im-
plies that for all m € No, n € N there exists a signed measure 157" on (0, 7] with [v7"| v j0.7] <
C|flgvio,r] such that

hot(t) — h'(0) = 1v,'((0,t]) a.e., forallt € [0,T].

Thanks to part (2) of Lemma 3.3, for f € BV, we have f % £]" € BV, a.s, and, in particular,
(f*&)(s) = (f*&)(t), a.s., when s \ t. Since, as above,

suplexp(f + E7)(1)) 1| < Oy € L,

we can use the dominated convergence theorem to conclude that the function A} is right continu-
ous. This implies that )" (¢)—h"(0) = v7*((0, t]) everywhere, and, consequently, that 4" € BV,..
Lastly, by (3.17), we have

\h levior) < 1hy = 1 (O)lgvio,r) + 1’ (0)] < Clflgvio17- O
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Lemma 3.5. Foreach ¢ € (0,1), there exists a universal constant C' such that for all f € BV, with
f < 3(1—6) we have

B = Y g < C (20 + Wiy (720, 80)). (3.23)
as well as
h:? —F |:f x ﬂr(Lm,m-i-Gn} + %(hzl-i-Gn)Q % ﬂ_gm,m-i—Gn}] + T;Ln7 (324)

forallm € Nog,n € N andT > 0, where the remainders r]"* satisfy
limr)* = 0 in BVI]0, T uniformly in m.
n

Proof. Thanks to the relation (2.11) of Corollary 2.3, we have
&2 f 4+ enanh™ s 7L = log(1 + ,A™). (3.25)

Assuming that n is so large that €,,h]" > —1/2, we can use the mean-value theorem to conclude
that there exists a sequence {6]""},,en in (0, 2) such that " — 1 uniformly in m, and

log(1 + e,hl) = e hlt — 2201 (hIM)2.
Therefore, (3.25) can be rewritten as
A — aph e m T = f + e, 0m ()2 (3.26)
It follows that
7 B gy < Loy + a2 g
+ 5”‘(hnm)2|£1[0,ﬂ + |hgb+1 - han * 7T7T+1‘£1[0,T]' e

The three terms on the right-hand side of (3.27) above are bounded by universal constants by Lemma
3.4 and the inequality (3.14) of Lemma 3.3. To bound the fourth term in (3.27) by the second term
on the right-hand side of (3.23), we use Lemma 3.3 again, but now with the inequality (3.16).

Moving on to the proof of (3.24), given k > 0 we replace m by m + k in (3.26), convolve it with
7(mmFE] and multiply by (a,,)* to obtain:

(an)khm—l—k % 7_‘_(m,m—l—k] . (an)k—l—lhm—l—k—l—l % 7_‘_(m,rn—l—k—l—l] —
= (1 — an)(an)* f 5 w7 p 5 (1= an)(@n) 07 (R HE)? s ot h,
Summing over k£ > 0 gives
P = D01 = an)(an) S« mlme
k>0
3D = an) (@) O (R
k>0
_ E[f (e Gnl | LgmetGn etk 7T7(Lm,m+Gnq.

The choice

= E[(0 O — 1) (O )2 el Gl
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yields (3.24). To show that r]* — 0, we start with

ek 1 hm-i—k 2 (m,m+k] )
m D (ig% ()™ BV[0,T)

The first supremum converges to 0 asn — o0, so it remains to show that the second one is uniformly
bounded in m and n. This follows from the inequality (3.14) together with the observation that
(h™)2 € BV}, and

(P2 gyior < 21h lsseqo,m 1P lpvior) < 2\ b [Bvior) < Clf [Bvio (&ZSD)

1
sup|ry' gy < 3 <SUP
m k

Lemma 3.6. Foreach f € BV, with f < 1/2, there exist sequences {ry, }nen and { Ry }nen in L1,
as well as a universal constant C' such that

h = E[f * w&O’G"}] + 1E [(h2)2 * 7T7(LO’G"]:| + 7+ Ry,
and
Il gy = 0 and [Rylp1yg 7y < CEUhS” — h9L|£1[07TJ forallT > 0.
Proof. The equation (3.24) of Lemma 3.5 can be rewritten for m = 0 as
h) = E[f * W,QO’G"]] + %E[(hg)z * wﬁlo’G”}} +rn+ Ry
where r,, = r0 of Lemma 3.5 and
Ry = SE[((h§")? = (h))?) + n2CH1].

By Lemma 3.5, we have lim,, 70 = 0in BV/[0, T'], and, therefore, also in £![0, T']. Thanks to inequal-
ity (3.14), the fact that |h]"| seo[o,7] is uniformly bounded over m, n, Lemma 3.3 and equation (3.28),
we have

Bl 10,71 < %E“ ((R5")? = (1)) # m:C)

El[O,T]:|

< 3E[|(h5)? = (1) pajo gy 710, T)| < CE|[nG — 1) O

L1 [O,t]} :

Lemma 3.7. Suppose that the condition (3) of Theorem 3.1 holds, the array {m]" } , nen is null, and
that f € BV, with f < 1/2 is given. Then

. 0 o

1171ln sglp‘hff - hn‘ﬁl[O,T] =0 foreach T > 0. (3.29)
Proof. We assume, first, that (3a) holds with period d € N. The inequality (3.23) of Lemma 3.5
implies that for each 7' > 0 we have

. k .
lim sup,, supm,k|hg”+ - hnm‘ﬁl = lim sup,, maxy, m,<dalhy" — hyy'?| 210 7

[0,7]
<2C(d —1)limsup,, (En + max;,<q W[l0 7] (m, 50)) .
Since {7} };m nen is a null array, for each € > 0 there exists a sequence x,,(¢) \, 0 such that
T ([0,t]) > 1 — kp(e) fort > e and m € N.
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Therefore, for each € > 0 we have
lim sup,, sup,, VV[l0 7] (m, 8p) = lim sup,, sup,, fOT(l — 7 ([0,¢])) dt

<e+ (T —¢)" limsup,, kn(c) =&,

and (3.29) follows.

Next, we establish the statement under the condition (3b). Let m € N be fixed throughout the
proof. Using the terminology of subsection 2.4 above, we note that the genealogical trees corre-
sponding to ﬁ{[b and H 9 have the same distribution. Indeed, this distribution depends only on the
parameter a,,, and not on the probabilities {7 },,en. This observation allows us to couple H”* and
IEIQ on the same probability space by following the alternative construction of a Hawkes process in
items (1)-(3) of subsection 2.4 as follows. We start by constructing a single Bienaymé-Galton-Watson
tree 7 as in of item (1) which will be common to both H!" and HY,. For each vertex v of the tree T,
let (0, v] denote the set of edges on the (unique) directed path from v to the root, and let |v| denote
the generation number of v, i.e., the cardinality of (0, v]. For a directed edge e from child v to parent
w, we set |e| = |w|.

It is straightforward to see that, given two probability measures v and v2 on [0, c0), we have

W (1, 2) = inf E [\Ll AT — Ly AT| (3.30)

where the infimum is taken over all random vectors (L1, Ly) with marginals 14 and v5. The same
argument as in the classical (I = +00) case (see [San15, Theorem 1.4., p. 5, Proposition 2.17, p. 66])
can be used to show that the infimum is attained at some pair (L1, L2). Conditionally on the tree 7T,
for each edge e we construct the "lengths" L(e) and L'(e) so that their joint distribution attains the
infimum in (3.30) for v; = el and vy = lfl. Conditionally on the tree 7, the pairs (L(e), L' (e))
are then chosen independently of each other over all edges e.

Since the total number of points depends only on the genealogical tree, we have |[H™| = |H?| in
this coupling, and, consequently Z* = Zg, where Z)", m € Ny, are defined in (3.19). We denote
these common values by |H,,| and Z,,, respectively and use E[] to denote the expectation operator
on the common probability space for ﬁ;bn and ﬁg As at the beginning of the proof of Lemma 3.4
above, we have

T N -
= 2 oy = &5 /0 Euew*smm _ 6(f*52)(t)u gt
T
<<B |2 [ |7 - &) al
0

felp — e 00

= E [Zn

o [o,TJ '
By inequality (3.16) of Lemma 3.3 above, we have

‘h;n - h?L‘El[O’T] < 5n|f|BV[07T}E [ZnW[lo,T](f{gLv f{g):| : (3-31)
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Seen w-by-w, the measures H™ and H_ are, respectively, sums of Dirac masses at points

= Y Lle)andT'(v) = Y L'(e),veT.

ec(0,v] e€(0,v]

It follows easily from the definition that
m 0
Wity (', HY) <Z|T AT —T'(v) AT| <> |T(v) -

so that
E [W[O o (HDH

)| 7] < S ElITw) - ') | 7]

veT

For v € T, we observe that we can write the difference 7'(v) —7"(v) as a sum of |v| random variables
L(e) —L'(e), e € (0 v] so that, by condition (3b), we have

EHT(U) | |T Z E |L H < |H, ‘SUPW[OT]( m+ka77;?)
e€(0,v]
< bpe2|H,|, where b, — 0 as n — oco.

Consequently, by (3.9) with k£ = 2, we have
E[znw[gﬂ (ﬁ;ﬂ,ﬁg)] < Ce3b,E [zn|ﬁn|2] < Cby, — 0,
which, in view of (3.31), completes the proof. O

Lemma 3.8. Suppose that conditions (2) and (3) of Theorem 3.1 hold, and that f € BV, with f <
1/2 is given. If{ DhY },,cn converges vaguely towards Dh € Mj, possibly only through a subsequence,
then h = Dh®[0, -] € BV is the unique solution in S2°, of the equation

= (f + 32 % p. (3.32)

Proof. We assume for notational reasons and without loss of generality that the whole sequence
{Dh%},,en converges vaguely towards Dh. The portmanteau theorem then ensures that for all
t > 0, except at most countably many, we have

K2 (t) = Dh2[0,t] — Dh[0,t] = h(t).

Thanks to the uniform bound (3.17) of Lemma 3.4, this establishes the convergence h? — h in £110C
Lemma 3.7 implies that for each 7" > 0

E[[nC" — hpl]
and so, thanks to Lemma 3.6, we have
— f*pp — %(h2)2 % pn — 01in £1[0, T for each T' > 0.

Condition (2) of Theorem 3.1 implies that W[%),T} (pn,p) — 0 for all T > 0. Therefore, by the
estimate (3.16) of Lemma 3.3 we have

|f * (on = P)l 20,1y < |FlevioyWio ) (Pns p) — 0 for each T > 0.

cior 0
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Similarly, inequalities (3.14) and (3.16) of Lemma 3.3, together with Lemma 3.4 and the estimate
(3.28), yield

‘(hgz)z * Pn — h? x p‘ﬁl[o’t] < ‘((h2)2 - h2) * P|£1[07T} + |(h2)2 *(p — pn)|£1[0’T]
0\2 _ 12 02 1
<|(hn)* =h ‘£1[0,T} +[(hy) ‘BV[O,T}W[O,T](/)’ Pn)
< Clflppomlhn = Pl oo + Clfls=pmf lsvio Wio (0 pn) = 0,

for each T' > 0. It follows that h satisfies (3.32), Leb-a.e. Since h is in BV, and, therefore,
right continuous and the same is true for (f + %h2) x p, we conclude that (3.32) holds everywhere.
Uniqueness is established in Proposition A.4 in the Appendix. g

Conclusion of the proof of Theorem 3.1. Condition (1) of the theorem, expression (2.18) and the port-
manteau theorem imply that

lim sup E[¢,[0, T]] = limsup e2E [HS[O, T]] = limsup en(p2 % 11,)[0, T
< limsup p2[0, T lim sup(&, 11, [0, T]) (3.33)

< pl0, T pl0,T] < oo

Thanks to the standard tightness criterion (see, e.g., [Kal17, Theorem 4.10, p. 118]) for weak conver-
gence of random measures, the bound (3.33) implies that the sequence {&,, }nen := {€0 }nen is tight.
We pick an arbitrary convergent subsequence of {&,, },en, and, taking the usual liberty of not rela-
beling the indices, we denote this sequence by {&,, },en and its limit by £. To show the convergence
of the original sequence it will be enough to show that the limit £ does not depend on the choice of
the convergent subsequence of {&, }nen.

We pick f € BVjo, with f < 1/2 and associate to it the array {h])' }r,, = {R])'[f]}mn, as in
(3.7) above. For each T' > 0, Lemma 3.4 implies that the restrictions to [0, 7'] of the elements of the
sequence {h0 },,cny are bounded in BV[0, T']. By Prokhorov’s theorem, we can pass to a subsequence,
if necessary, to conclude that the restrictions DAY | (o,7] converge weakly on [0, '] towards a signed
measure Dh with [Dh| o 71 < C|f[gyo7)- Lemma 3.8 then implies that the limit / := Dh[0, -]
uniquely satisfies (3.32). In particular, h does not depend on the specific choices of subsequences
made above so that no passage to a subsequence is necessary when Prokhorov’s theorem is used.

The vague convergence &, (t,, — (4 implies that W[ZB,T] (Entin, ) — 0 for each T' > 0 and we can
use inequalities (3.14) and (3.16) to conclude that

|entin * pin — % N|Ll[0,T] < |(hn — h) = 5nﬂn|51[o,T] + |hx (Enpin — /‘)|£1[0,T]
< Clhn — h’gl[o,T] + ‘MBV[O,T}W[%],T] (Enbtn, p) — 0.
Assume, next, that f € Cp N BV, and f < 0. The weak convergence &, — ¢ implies that
Me([f] = lim Mg, [f] = limexp(enhn * pn) = exp(h * p), ace., (3.34)

where a passage to a subsequence, if necessary, is made to guarantee a.e.-convergence of €, hy, * iy,
to h * u. The convolution f * £ is in BV}, and, therefore, right continuous a.s. Since f < 0, this
right continuity is inherited by M¢|f] by the bounded convergence theorem. Consequently, (3.34)
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can be strengthened to its pointwise version
M¢[f] = exp(h[f] * p) for all f € Co N BV, with f < 0. (3.35)

Hence, given any two subsequential limits £ and £ of {&, } e, the functionals M, and M agree
on the set of all f € C' N BV, with f < 0. By density, the same is true for all f € C with f <0
which is, in turn, enough to conclude that £ and &’ have the same law as random elements in M
(see [Kal17, Theorem 2.2, p. 52]). As mentioned at the beginning, this implies that the full sequence
{&n }nen converges in law towards the random measure &.

Next, we show that (3.35) holds when f < 1/2, and not only for f < 0. The vague convergence
&, — & implies that for any f € Cp N BV, , we have

(f*&)() - (f % &)(t) forall t > 0.

The expression (2.17) for the moment-generating function of H,, implies that for p = (1—§)7! > 1
we have

log B[ (e7€)0)"| = 1og My, [2p1(t) = (Mg, [3p] — 1) * un ) ()
< <IE [eée%ﬁ”[o"} — 1] * ,un> (t)
<e'E [eéegl,g"’ — 1] Entin]0, t].

Both terms after the last inequality are bounded in n; the first one by (3.8), and the second one as
in (3.33) above. It follows that {exp((f * &£,)(t)) }nen is uniformly integrable for each ¢ > 0 so that
Me,[f] = M¢[f] pointwise for all f € Cy N BVj, with f < 1/2. Moreover, it the monotone
convergence theorem implies that

E[exp(%ﬁ[O,T])] < ooforall T >0, (3.36)
This allows us to conclude, as above, that M [f] is a right-continuous function for all f € BV,
with f < 1/2 and reuse the argument following (3.35).

The last step is to show that M¢[f] = exp(h[f]* pn) for f € Cp with f < 1/2 without the
additional requirement that f € BV),.. We pick such f, and choose a sequence { f,, }nen in O with
fn(0) = O such that f < 1/20n[0,7] and [f — fu|gecjo ) — O, for each T" > 0; note also that
fn € C N BViy. The dominated convergence theorem implies, via (3.36), that M¢[f,] — M¢[f]
pointwise on [0, 00). On the other hand, Proposition A.4 in the Appendix guarantees that

T
[ = WPt = 0.

for each T > 0. The monotonicity of ¢ — |h[fn] — h[f]|se[o implies that h[fn] — R[f] in
80, T] for each T" > 0. Since y is locally bounded and {h[f,]}nen admits a uniform S0, 7]
bound, the bounded convergence theorem implies that [ f,,] * i — h[f] * p pointwise, and, conse-

quently, that M¢[f] = exp(h[f] * u).
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4. FELLER RANDOM MEASURES AND THEIR PROPERTIES

4.1. Attainable limiting distributions p. We start by characterizing the family of all probability
measures p that can arise as limits in Theorem 3.1.

Definition 4.1. A random variable X is said to be geometrically infinitely divisible (GID) if for each
p € (0,1) there exists an iid sequence { X, (p) } men of random variables such that

@ G(p)
X =) Xulp),
m=1

where G(p) is an Ny-valued geometrically distributed random variable with parameter (probability
of success) p, independent of the sequence { X, (p) }men.

This notion has been introduced in [KMM84] as a part of an answer to the following question
of Zolotarev: characterize the family ) of distributions of random variables Y such that, for any
p € (0,1), there exists a random variable X (p) such that

y @ X(p)+BpY

where Y, X (p) and B(p) are independent and P[B(p) = 1] = 1 — P[B(p) = 0] = p. In the same
paper, the authors show that ) coincides with the set of all GID distributions. Furthermore, they
show that a probability measure p on [0, 00) is GID if and only if its Laplace transform p has the
form
. 1
PA) = ———~>
W= T )
where /' is the Laplace transform of some infinitely divisible distribution p’ on [0, c0). Thanks to
the Lévy-Khinchine representation, this is further equivalent to p admitting the following form
1
() = .
P L+ LA+ [,5(1 — e M) v(dt)

for some constant L > 0 and some measure v on (0, c0) with [ min(1, £)v(dt).

(4.1)

(4.2)

Proposition 4.2. Let p be a GID distribution on [0, 00) with p({0}) = 0 and let {a,, } nen be a sequence
in (0,1) with a, — 1. Then there exists a sequence {my, }nen in My, such that the array {m]" } m, nen,

given by m™ = m,, satisfies the conditions of Theorem 3.1 and we have p,, — p.

Proof. Let p € M, be a GID distribution, and let p’ be an infinitely divisible probability measure
on [0,00) such that (4.1) holds. By infinite divisibility, for each n € N we can find a sequence
{X}"} men of iid nonnegative random variables such that

mn
ZXS ~ o where m,, = (1 —a,)""]. (4.3)
k=1
We define {7 },», nen to be the row-wise constant array given by m,)* = m,,, where ,, is the law of
X}
First, we show that {7 },, nen satisfies the conditions of Theorem 3.1. Since 7])* does not depend
on m, the condition (3a) of Theorem 3.1 is trivially satisfied, so we are left to argue that 7" ({0}) = 0



CONVERGENCE OF NONHOMOGENEOUS HAWKES PROCESSES 23

for all m and n, and that {7}, },, nen is null. Since p({0}) = 0, we have lim_,,, p(A) = 0 and so,

lim p'(\) = 0.

A—00

Since 7, (\) = (§'(\))/"", we have lim_, oo 7, () = 0 which implies that 77 ({0}) = 7, ({0}) =
0. Moreover, since m,, — oo and p'(\) > 0 for A > 0, we have

lim 7, (A) = Lim(p'(\))Y/™ =1 for A > 0.

Therefore, 7, — d¢0y which implies that {7}," },, nen is null.
Turning to the convergence p,, —» p, we notice that it is equivalent to the convergence
Gn
Z X' — pin distribution, (4.4)
m=1
where {G,, } en is a sequence of Ny-geometric random variables with parameters {1 — a,, }nen and
independent of { X' },,cn. We start from the following expressions

mn Gn
E [exp <—/\ Z X?)] = (77p(X))™™ and E | exp (—/\ Z X:Ln>
m=1 m=1

and a straightforward-to-check fact that G,,/m,, — FE in distribution, where E is an exponen-
tially distributed random variable with parameter 1. Assuming, without loss of generality, that that
{G, }nen and F are all coupled on a probability space where G,,/m,, — E, a.s., we obtain

(7 (W) = (F )™ = (F(V), as. (45)

The dominated convergence theorem allows us to pass the limit in (4.5) outside the expectation.

This implies that
Gn
E [exp <—A 3 X;”) —E[(7(N)7] =500,
m=1

which, in turn, implies (4.4). O

= E|(m ()],

While it does add to modeling flexibility, allowing for general {7)," },, neN, as the following propo-
sition shows, does not enlarge the class of attainable distributions p.

Proposition 4.3. Suppose that the measure p can arise as a limit p = lim,, p,, associated to an array
{7 }in.nen which satisfies the conditions of Theorem 3.1. Then p is GID.

Proof. See [KK93, Theorem 5.1, p.116]. O

Remark 4.4.
(1) Propositions 4.2 and 4.3 above should be viewed in the context of the general "theory of
random summation” (see, e.g., the monograph [GK96]) which establishes an almost complete
analogy with the classical theory of triangular arrays of independent random variables.
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(2) The proof of Proposition 4.2 above allows us to give sufficient conditions on the array
{7 }mm.nen so that a particular GID distribution p is attained as a limit. Indeed, it suffices
to choose them so that (4.3) holds for the infinitely divisible "counterpart" p’ of p, given via
its Laplace transform

F#(N) = exp(l = 1/5(\), A = 0.
Sufficient conditions for that, in turn, are classical and have been very well understood since

the early days of probability (see, e.g., [GK54] or [Kal21, Chapter 7] for a more accessible
modern treatment).

Proposition 4.2 states that any GID distribution can arise in the row-constant case 7" = 7, for
any scaling sequence {ay, }nen. When the dependence on 7 is restricted further, namely, so that each
Ty, is a rescaled version of the same probability distribution 7 (as is the case, e.g., in [JR15, JR16b]),
the limiting distribution must belong, up to scaling, to a specific one-parameter family, and the
sequence {ay, }nen is essentially determined by it.

Definition 4.5. A probability measure p on [0, 00) is called the Mittag-Leffler distribution with
parameter e € (0, 1] if its Laplace transform p takes the form

1
H(N) = . 4.6
PN =150 (4.6)
The Mittag-Leffler distribution admits an explicit density
pU(t) =t Eqo(—t%),t >0, (4.7)

where, for o, B > 0, the Mittag-Leffler function E, g is given by

z"
E = E - >
08(7) vt I'(an + B) z 20,

and I" denotes the Gamma-function. In the special case av = 1 this distribution is exponential, with
rate 1, while for & = 1/2 its density takes an especially simple form. Indeed, a straightforward, if a
bit tedious, derivation directly from the definition yields

pl/Z(t) _ 2<\@_m<i>>, (4.8)

T V2t
where m(x) = 1;2():0 ) is the ratio (known as the Mill’s ratio) of the survival function 1 — ® and the

density ¢ of the standard normal distribution.

Proposition 4.6. Let ¢ be a probability measure on [0,00) with 1»({0}) = 0 and let the array
{7 e be given by
' (B) = m,(B) = ¢¥(nB) forall B € B0, c0). (4.9)

n

Then {7 }yn.nen satisfies the condition (2) of Theorem 3.1 if and only if one of the following two
conditions are met:

1) limy_s e __ Yltoo) 0,
() t— %fotw[s,oo)ds or

(2) there exists a € (0, 1) such that lim;_, 1%[;’2)) =c* forallc > 0.
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In either case, ifa, = 1 — Kk,n~ for some k, — k € (0,00), p,, converges towards a (possibly scaled)
Mittag-Leffler distribution with parameter o (where o = 1 in case (1)).

Proof. This is, essentially, given in [GK96, Theorem 2.5.1, p. 35] for case (1) and [GK96, Theorem
2.5.2, p. 37] for case (2). While not explicitly mentioned in the statements of these theorems, the
behavior of the scaling sequence can be read off their proofs. g

Remark 4.7.

(1) In the case (1) the limiting distribution p is exponential and the condition is satisfied, in
particular, if the probability measure 1) admits a finite first moment fooo t(dt) as in [JR15].

(2) The case (2) covers all ¢ such that v [t, 00) is a regularly varying function with a nontrivial
tail, i.e.,

Y[t,00) ~ I(t)t™ ast — oo

for some a € (0, 1) and some slowly varying (e.g., constant) function [.
(3) The choice of n as the scaling factor in (4.9) is simply a convenient normalization and can
be easily generalized.

4.2. Feller random measures. If we combine the results of Theorem 3.1 and Proposition 4.2, we
can conclude that for each u € Mjs and each GID probability measure p with p({0}) = 0, there
exists a locally finite random measure { whose law is characterized by

Melf) = exp(h[f] # ), f € Co with f < 172, (410)
where h = h[f] is the unique solution in {2, to the following convolutional Riccati equation
h = (f—l—%hz)*pon [0,00). (4.11)

We call ¢ the Feller random measure with parameters (i, p), and denote this by & ~ F'(u, p).
When it exists, a nonnegative measurable process {Y; };>¢ such that

£[A] = /AYtdt forall A € B([0,00)), as.,

is called the density of €.

Remark 4.8. 1t has been shown in [JR15] and [JR16b] that when p is the Mittag-Leffler distribution
with index o > 1/2 and p is the Lebesgue measure on [0, 00), the Feller random measure § admits a
density Y which has the distribution of a solution to a Volterra-type stochastic differential equation
of the form

t t
Y, =Yy +c1/ (t =510 - Ys)ds+c2/ (t—s)""'/YdBy, (4.12)
0 0

where ¢y, c2 and 6 are constants and B is a Brownian motion. The form of (4.12) explains why Y is
called the fractional CIR (or Feller) process in the literature, and also why we adopted the name Feller
random measure for the general case. In addition to [JR15, JR16b], we refer the reader to [EER19]
for further information on the fractional CIR process and to [JLP19] for a treatment of more general
stochastic differential equations of the Volterra type.

4.3. Distributional properties.
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4.3.1. Cumulants. We recall that a real sequence {r,,[Y]},en is called the sequence of cumulants of
(the distribution of) the random variable Y if

n

Elexp(eY)] = exp | Y- alY]

n>1
for € in some neighborhood of 0. For a pair (X,Y"), we also define the partial cumulants k,[X,Y]
by

En
Elexp(X +€Y)] = exp Z mmn[X, Y]
n>0

provided the series converges for ¢ in some neighborhood of 0. As is well known, knowledge of cu-
mulants of a distribution is tantamount to the knowledge of its moments. Indeed, the two sequences
are related to one another via an explicit formulas based on Faa di Bruno’s formula and involving
Bell polynomials (see [Smi95]).

As our next result shows, cumulants of random variables of the form f &, where £ ~ F'(p, ),
satisfy a simple recursive relationship and admit explicit representation. Partial cumulants admit a
representation in terms of a solution of a system of convolutional equations.

Proposition 4.9. Let £ be a Feller random measure with parameters p and u, and let f € C.
(1) The cumulants k,,[f * &] of f * £ are given by

Enlf & =nl Ky x pforn > 1,
where the functions K,, € S\, are defined recursively by
K = fxp, K, = %(z;;—f KKn_> % p forn > 2. (4.13)
(2) For fy € Cy with f < 1/2, the partial cumulants k[ fo * £, f * £] are given by
Knlfox & f*& =nl K], *uforn > 1,
where { K, }nen, is the unique solution in (S2)N0 of the system
Ky = hlfol,
K = f+ (KyK7) = p (4.14)
K, =131 KIK],_,) = p forn > 2.

Proof. To obtain (2), we simply combine the representation (4.10) with Proposition A.8 with F' =
h[fo] and G = f. The assertion in (1) is a special case of (2) with F' = h[0] = 0 and G = f. In that
case, the system (4.14) simplifies and turns into the recursive definition given in (4.13). ([l

The first three cumulants/moments are given below:
r1=E[f x&] = (fxp) *p
py = Varlf €] = ((f  p)? 5 p) + (4.15)

rs =E|(f <&~ B +&)°| =3((((F=p)((f+0)? p) ) 5 p) 51
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4.3.2. Infinite divisibility. The following "branching" property of F'(u, p) follows directly from the
characterization (4.10), (4.11).

Proposition 4.10. Suppose that&; ~ F(u1, p) and &o ~ F(ug, p) where 1, po are locally finite and
p is a probability measure with p({0}) = 0. If&; and &2 are independent then

&1+ &~ F(ur + pa, p).

Corollary 4.11. Given{ € F(u, p), the random variable ( f x£)(t) is infinitely divisible forall f € Cj
andt > 0.

We say that a stochastic process {Y} }, is infinitely divisible if the random vector (Y, ,...,Y%,)
is infinitely divisible for any n € N, 0 <t <ty < -+- < t,, < 0.

Corollary 4.12. Suppose that F(%u, p) admits a right-continuous density Y™V) for each N € N.
Then YV is infinitely divisible.

4.3.3. The Covariance Structure. The polarization identity and the expression for x5 in (4.15) yield

Cov[f*& g*&] = (((f*p)(g*p)) *p> * 1, (4.16)
for f,g € Cp. We can rewrite (4.16) as
Cov[f* & g&](t) = // f(t=r)g(t = s)y(dr,ds), (4.17)

where

Wdreds) = [ ptdr = wplds —u)(p x ) du)

ie,v(B) = f(ff 154 (uu) (8 T)p(ds)p(dr)) (p*p)(du) for B € B(]0,00) x [0,00)). In the special
case when p admits a density p with respect to Lebesgue measure, the measure ~ is absolutely
continuous and

~v(dr,ds) = X(r, s) dr ds where X(r, s) = /p(r —u)p(s —u)(p * p)(u) du. (4.18)

A further specialization yields tight asymptotics around the "diagonal" » = s. For two functions
f:DyC R? > Randg : D, C R? — R we write f = g if for each bounded B € B(R?) there
exists a strictly positive constant C' such that f < Cgand g < Cf on Dy N Dy N B.

Proposition 4.13. Suppose that p is a Mittag-Leffler distribution with parameter o € (0, 1], and that
W is the Lebesgue measure on [0, 00). Then

X(r, 8) R (1, 5) (4.19)
where T, : {(s,1) € (0,00)? : s 1} — (0,00) is a symmetric function defined forr < s by
(=57 a<s
Ba(r,s) =r**s* 1 {1 -log(1-1), a=1, (4.20)
1, a > %
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Proof. Being entire, the Mittag-Leffler function E, , satisfies I/, o, ~ 1, and so, thanks to (4.7), we
have p(t) =~ t*~1. Moreover, since j is the Lebesgue measure, we have (p * j1)(t) ~ t® so that

p(r —w)p(s — u)(p* p)(u) = (r —u)* (s —u)*tu®,
Therefore, by (4.18), we have

r 1
X(r,s) ~ / (r —u)* (s —u)* u® du = r?@s271 / (1 —w)* (1 - Zw)* tw*dw
0 0
According to [DLM, eq. (15.6.1)], we have
1
/ (1 —w)* (1 = Lw)* 'wdw = Da + DI'(a) 2 F (1 —a,a+1;2a + 1, f),
0 S

where 9 F) denotes the hypergeometric function. Since 9 F] is entire, we have 2 F) = 1 which,
coupled with different asymptotic regimes described in [DLM, §15.4.2], implies that

oF1(1—a,a+1;2a + 1;2) = (1 — )2 ! for o < 3,
oFi(1 —a,a+1;2a+ 1;2) =& 1 —log(1 — x) fora—i, and
oFi(l—a,a+1;2a+ 1;2) =~ 1 fora>§,

which, in turn, establishes (4.19). O

Corollary 4.14. Suppose that p is a Mittag-Leffler distribution with parameter o € (0, 1], and that p
is the Lebesgue measure on [0, 00). Then & ~ F(pu, p) admits a square-integrable density if and only if
a>1/2.

APPENDIX A. THE CONVOLUTIONAL RICCATI EQUATION

We collect in this appendix several properties of the solutions of the convolutional Riccati equa-
tion
K=F+iK*xp (A.1)

used throughout the paper. We fix ' > 0 and focus on functions defined [0, T']. Extensions to locally
defined spaces, such as S° are straightforward. We assume that p € M, satisfies p({0}) = 0, but
do not put any other restrictions on it. A constant depending only on a quantities ¢1, g2, ... is
denoted by C(q1, g2, . . . ) and can change from occurrence to occurrence.

A.1. Comparison, bounds and stability.
Lemma A.1. Suppose that K € S*°[0, T satisfies

K > (QK)*pon0,T]. (A.2)
for some Q) € [0, T] with@Q > 0. Then K > 0.

Proof. Weset F' = (QK)*p—K > 0,sothat K = F + (QK)#*pon|0,T]. Givent > 0, we define
the operator A; by AL = F + (QL) * p for L € §*°(0, ] so that,

ALy — ALl gy <€ £'Q(t — 8)|La(t — ) — Ly(t — 5)|p(ds)
< <|Q|Soop[0,t]) Ly — Li|wepoy for L1, Ly € S[0,1).
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Since p[0,t] — p({0}) = 0 as t \, 0, there exists ¢ > 0 (which depends only on an upper bound
on ‘Q’SW[O,T} and p, but not on F') such that A, is a contraction on S[Ooc”e]. For such ¢, we have
K = lim,, AZ(F) in Sﬁi’a}, and, since A is a positive operator and F' > 0, it follows that K > 0 on
[0,¢].

To extend the conclusion of the previous paragraph from [0, ¢] to the entire [0, 7], we assume,

without loss of generality, that T' = Ne¢ for some N € N. If N =1, we are done. Otherwise,
fori € {0,.. — 1} we set K'(t) = K(ie +t), Q'(t) = Qi +t) and F'(t) = F(ic +t) +

i€

o Q(s)K (s )p(ze +t —ds) fort € [0, ] and observe that

K'(t) = F(ie + 1) </ /ze+t> K(s) p(ie +t — ds)

e+t

= Fi(t) + Q(s)K(s)p(ie +t — ds)

= Fi(t / Q' (u) K" (w)p(t — du) = F'(t) + (Q'K") x p) (t).

Assuming, as the induction hypothesis, that K > 0 on [0, i€], we have F(t) > 0 on [0, €]. Moreover,
|Q’ |S°° 0.] <1Q| g [0,7]> SO We can use the result of the previous paragraph to conclude that K* > 0

on [0,¢], ie., that K > 0 on [0, (i + 1)e]. Therefore, K > 0 on [0, 7. O
Proposition A.2. Suppose that that Fy, F, K1, Ky € 8|0, T are such that
K §F1—|—%K12>kpandK2 ZFQ—I—%K%*;).
IfFy < Fyand K1 4+ Ko > 0 then K7 < Ko.
Proof. We observe that the function K = Ky — K satisfies the inequality
K > F— F + 3(K3 — K7) > (QK) * p where Q = (K + K»).

Since Q > 0, by the assumption, Lemma A.1 above can be applied to conclude that K > 0, i.e,,
Ky > K. O

Lemma A.3. Suppose that F' € S°[0, T satisfies |F'| < 1/2 and that K solves (A.1). Then

_|F|Soo[07t} S K(t) S 1 — ,/1 — 2|F|S°°[0,t] fO}" allt € [O,T] (A?))

Proof. To get the lower bound, we simply observe that K > F'. For the upper bound, we define

Ka(t) =1~ \/ 1— 2’F‘sw[o,t]'
Since K is nonnegative and nondecreasing, we have K. 22 xp < K22, and, so,
Ka(t) — J(K3  p)(t) = Ka(t) — SK3(t) = |Flgmpoq = F(1)
We have

2
(K + K2)(t) = ~|Flsmiog + 1= /1= 2Flsapog = 3(1 = /1= 21Flsmpg) >0,

which allows us to use Proposition A.2 above with K; = K and F} = F> = F to conclude that
K < K. O
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Proposition A.4. Suppose that M > 0 and K;, F; € 8*[0,T] are such that |K;|gecpo r < M for
i=1,2 and
Ki=F,+ 1K}« pfori=1,2, (A.4)
then
T T
/0 ’K2 - Kl’sw[o,t} dt < C(P7 M, T)/O ’Fl - F2’3<><>[07t} dt. (A.5)
In particular, (A.1) has at most one solution in S*°[0,T] for F € §*[0,T].

Proof: For t € [0,T] we define m(t) = [K2 — K1|gecp g and mp(t) = [F2 — Fi[gocfg - For s <
t < T we have

|Ka(s) — Ki(5)] < |Fas) — Fi(s)] + 3 /0 K3 (s — u) — K2 (s — u)| pldu)

<mp(s)+ M/Os m(s —u) p(du),

so that
m < mpg+ M(mxp)on [0,T].
We multiply both sides by exp(—A\-) and integrate on [0, T'] to obtain

/OTe_)‘tm(t)dtS/o e Mmp(t dt+M/ / m(t —u) e p(du) dt
:/0 e Mmp(t dt+M/ /T ' s)ds e p(du)
< /OTe Mg (t )dt+M</0 e Mm(t) dt> </OT e_A“p(du)>
< /OT e Mmp(t)dt + <M /OT e_A“p(du)> /OT e Mm(t) dt

Since p({0}) = 0, there exists \g = \g(p, M) > 0 such that
T
M/ e MUp(du) < 1/2.
0
With such )\g, we have
T T T T
e—AOT/ m(t) dt < / e Mtm(t) dt < 2/ e Mtmp(t) dt < 2/ mp(t) dt,
0 0 0 0

which implies (A.5) with the constant 2 exp(AgT").
To prove uniqueness note that for /7 = F, = F' (A.5) yields

T
/0 |K2_K1|Soo[07t} dtZO,
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which, in turn, implies that | Ky — K| S%[04] = 0, a.e., on [0, T]. It follows, by monotonicity, that
K, = K3 on [0,T). The missing equality K;(T') = K3(T') is a consequence of the assumption
p({0}) = 0 since

IQUU—KNU=%A¥$K5T—M—K3T—UDMMOZ& O

A.2. Existence and series representation. We start from an infinite triangular system of convo-
lutional equations:

Ky =B,

K1 =F+ (KoK1) *p

1 n
K, = <§ Z; KKn_> % pforn > 2.
1=
in the unknown functions { K, }nen,, where B, F' € §*[0, T.
In order to establish well-posedness of (A.6), we list in Lemma A.5 below a few well-known
basic facts about linear convolution equations. We omit the standard argument based on Banach’s
fixed-point theorem.

(A.6)

Lemma A.5. Suppose that I, B € §°°(0,T] are such that |B|gec ) < 1. Then the equation
K=F+ (BK)xp (A7)
admits a unique solution K in S*°[0,T]. Moreover K satisfies

| E| goc 0,77

| K| socp0,7] < T (A.8)

— [Bls=o1)

Proposition A.6. Suppose that |B|Soo[0 m < L Then the system (A.6) has a unique solution in
(8%°[0, T])No, denoted by { K| B, F]}nen,. Moreover,

_ 2|F | goo 10,1 !
K[ B, Fl| gy < O™/ <(1 — 1B 07] | forallnen. (A.9)
§°°[0,7]
Proof. We observe that for n > 1, the n-th equation in the system (A.6) can be written in the form

F, n=1,

- (A.10)
LSS (KK i)+ p, > 2,

K, = F, + (BK,) * p, where F,, = {

We also observe that F;, does not involve K, or any K, with m > n. This allows us to argue induc-

tively, using Lemma A.5 in each step, that the system (A.6) has a unique solution {K,,[B, F|},en,

in (§%°[0, 7))o and that

[Kn[B, Fl|sooo. 1) < M|Fp|goofo ) Where M = (1 — |B|S°°[O,T})_l'

This implies that [K1[B, F]| g ] £ M|F|ge[o 1) and that

n—1
|KnlB, Fllsseio ) < M Y _|Ki[B, Fl| goe(g 1| Kni[ B, Fl| g 1) for n > 2. (A.11)

i=1
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If F = 0then K,,[B, F| = 0 for all n > 1. Otherwise, we set
B 2n_1|Kn[B,F]|soo[0,T]

C, = forn > 1,
" M2 E | Goo o7y
so that, by (A.11),
n—1
cg<landeg, < Zcicn_,- forn > 2.
i=1

We recall that the sequence {C), }nen, of Catalan numbers satisfies (see [Rom15, eq. (1.2), p. 3]) the
recurrence relation

n
Co=> Ck1Cpg, Co=1,
k=1
Hence, by induction, ¢, < C,,_1, for all n > 1 and so, the standard asymptotics (see e.g. [Rom15,
Theorem 3.1, p. 15]) for Catalan numbers implies that

gn—1
~ m
which, in turn, implies (A.9). O
Lemma A.7. Let B, F € §°(0, T be such that | B|scjo 7 < 1 and |F|geoto 77 < 5(1=|Blgoopo 1)

and let {K,[B, F]}nen, € (S®[0,T))N0 be the unique solution to the system (A.6). Then the series
> n>0 Kn[B, F] converges absolutely in S°[0,T] and its sum

K[B,F]:= ZnEOKn{BvF]

Cn as n — 090,

satisfies the equation
K[B,F]=F+ 3(K[B,F))**p+ B —3B*xp (A.12)

Proof. The assumption on the size of F' implies, via Proposition A.6, that, using the shortcuts K =
K[B,G] and K,, = K,,[B, F], we have

|Kn|S°°[O,T] S Cn_3/2 for n e N

This, in turn, implies that the series ), -, K, converges absolutely in S°°[0, T']. Moreover,

2
1K % p= %(ano Kn> xp=3K3*p+ (KoK1) % p+ Y ,55(3 Xing KiKn_1) # p

:%32*p+(Kl—F)+zn22Kn:%B2*p—B+K—F. O
Proposition A.8. If |F| gec 71 < 1/2 the function
K[F] =351 Ku[0, F] (A.13)

defines the unique solution of (A.2) in S°°[0,T]. Moreover if G € S*°[0,T] and ¢ € R are such that
|F|soo0.77 + |€l|Glgoopo,r) < 1/2 we have

K[F + G| = K[F] + 3,5, " Ky [K[F], G].

with absolute convergence in S*°[0,T] .
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Proof. In the special case B = 0, the conditions of Lemma A.7 are satisfied as soon as ’F’SM[O,T} <
1/2. Therefore (A.13) defines a solution to (A.1). Uniqueness is the content of Proposition A.4 above.
Let F', G and ¢ be as in the second part of the statement. Thanks to Lemma A.3 above, we have

|K[F]|g0p0,m) < maX<|F|S°°[O,T]’ 1 - \/1 - 2|F|S°°[O,T]) =1—/1=2[F|gecp)-

5(1—|K[Fllswior)® > 1/2 = |Flswo1) > 1€Gl g0
which is exactly what is needed for Lemma A.7 to apply. Therefore,
h[F +eG] = K[F] + 3,51 Ku[K[F],eG].

It remains to observe that functions e " K, [K[F], €G] solve the system (A.6) for any £ # 0, so that,
by uniqueness, we have

so that

Ko |K[F],eG] = e"K,[K[F],G] for € € R. O
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