
ar
X

iv
:2

41
2.

15
99

9v
1 

 [m
at

h.
PR

]  
20

 D
ec

 2
02

4

CONVERGENCE OF NONHOMOGENEOUS HAWKES PROCESSES AND FELLER

RANDOM MEASURES

TRISTAN PACE AND GORDAN ŽITKOVIĆ

Abstract. We consider a sequence of Hawkes processes whose excitation measures may depend on
the generation, and study its scaling limits in the near-unstable limiting regime. The limiting random
measures, characterized via a nonlinear convolutional equation, form a family parameterized by a pair
consisting of a locally !nite measure and a geometrically in!nitely divisible probability distribution
on the positive real line. These measures can be interpreted as generalizations of the Feller di"usion
and fractional Feller (CIR) processes, but also allow for the "driving noise" associated to general Lévy-
type operators of order at most 1, including fractional derivatives of any order α > 0 (formally
corresponding to possibly negative Hurst parameters).

1. Introduction

Hawkes (point) processes were introduced in [Haw71b, Haw71a] as models for self-exciting sto-
chastic phenomena. Their fundamental property is that new points are generated at the rate that
depends on the number and locations of existing points via a function known as the excitation
kernel. Initially used as models for seismic events, Hawkes processes have since found numerous
applications in various disciplines ranging from epidemiology and criminology, over genetics and
neuroscience to economics and !nance (see the survey [LLPT24] and its references).

1.1. Limiting theory of Hawkes processes - an overview of the literature. The investigation
into the limiting theory of Hawkes processes began almost immediately after their introduction. A
central limit theorem (as t → ∞) for Hawkes processes whose kernels admit a !nite !rst moment
was established already in [HO74] (this paper also introduced the cluster representation we use in
the current paper). We start with a brief survey of existing pertinent results split into two classes,
based on the scaling regime.

In the !rst class, the total mass a =
∫→
0 φ(t) dt of the kernel φ is kept constant, while time, space

and other parameters are scaled. One of the earliest results here was provided by [BDHM13], where
a functional central limit theorem (FCLT) with convergence towards a scaled Brownian motion
was established under a !niteness assumption on the 1/2-th moment of the kernel. Later, [GZ18]
introduced a framework where the background (immigrant) intensity is taken to in!nity, but only
space is scaled to compensate. Under the assumption that the kernel is exponential, it is shown
there that the limiting process is no longer Brownian but only Gaussian with a non-Markovian
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covariance function. More recently, a FCLT formarkedHawkes processes and associated shot noises
was established in [HX21]. We also mention a recent preprint [HX24] by the same authors where
FCLTs or parallel negative results are established for Hawkes processes in several stability regions
de!ned by the values of the total mass and the !rst moment of the kernel φ.

The second class of results features the "nearly unstable" scaling regime, introduced in [JR15],
which is also utilized in the present work. In this regime, both time and space are scaled in a non-
Brownian manner, while the total mass of the kernel is sent to 1 - the stability threshold constant.
Assuming that the kernel has a !nite !rst moment, these authors establish a functional scaling limit
theorem for the integrated intensity process with the Feller (CIR) di"usion, a non-Gaussian process,
as the limit. In the follow-up paper [JR16b], the requirement for a !nite !rst moment is relaxed to
the !niteness of some moment above 1/2, and the limiting Feller di"usion is replaced by a fractional
Feller (CIR) process, which is neither Markovian nor a semimartingale. The mode of convergence
obtained in [JR16b] was considerably strengthened in [HXZ23] under the same assumptions on the
kernel. These authors show that the intensity processes themselves converge in the Skorokhod
topology, and not only their integrals, as in [JR16b].

1.2. Our contributions. The goal of this paper is to add to the existing literature by extending
the aforementioned results in several directions. Firstly, we consider nonhomogeneous Hawkes
processes, i.e., the generalizations of Hawkes processes where the kernel is allowed to vary from
generation to generation (see [FLM15] for a related model). This not only provides additional mod-
eling #exibility, but also unlocks a wider range of possible limiting objects. Additionally, we allow
the kernels themselves to serve as scaling parameters in that they may depend on the scaling pa-
rameter n. Compared to the existing results, these two extensions can be though of as a transition
from scaled sums of iid sequences to sums of (triangular) arrays of independent random variables
in classical probability theory. Continuing this analogy, the class of our limiting objects now in-
cludes not only the analogues of stable distributions (fractional Feller (CIR) processes), but also the
analogues of in!nitely-divisible distributions (termed Feller random measures in this paper).

Another direction in which we broaden all existing results is that we do not impose any condi-
tions on the integrability of the kernels; we do not even require them to be functions in L1([0,∞))
but permit them to be general !nite measures on [0,∞). This allows us, in particular, to expand the
analysis of [JR15, JR16b] down to and below the critical 1/2-moment threshold imposed in the exist-
ing literature. In this regime, the limiting objects are no longer necessarily (integrals of) stochastic
processes; they can now be located in the space of nonnegative random measures. Consequently,
we cannot talk about convergence in Skorohod’s J1, or any related topology, but need to work with
the vague topology this space is naturally endowed with.

A novel di$culty encountered in our approach is that the tools of stochastic analysis and martin-
gale theory, standard in the Hawkes-process literature, seem to lose much of their usefulness. This
is largely due to the appearance of genuine random measures as limits, but is also exacerbated by
the nonhomogeneity of our model. This dependencymakes it challenging to express the conditional
intensity process in a convenient form without sacri!cing !nite dimensionality. Consequently, we
are led to the cluster representation of the Hawkes process and the related cascade of relationships
among the Laplace functionals associated to a sequence of auxiliary point processes. Here, the
process indexed bym represents the progeny of an individual of generationm. The crux of the ar-
gument then rests on obtaining tight coupling estimates for pairs of such processes. This results in
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an convergence theorem which provides scaling constants, gives su$cient conditions under which
the scaling limit exists, and characterizes its Laplace functional in terms of the unique solution to a
nonlinear convolutional Riccati equation.

With the convergence theorem established, we turn to its conditions in the second part of the pa-
per. There we use the theory of of random summation (see the monograph [GK96]) to give a detailed
characterization of the possible limiting random measures and fairly explicit conditions on the ar-
rays of excitation kernels that achieve them. It turns out that the limits are completely described by
two measure-valued parameters: a locally !nite measure µ and a geometrically in!nitely-divisible
probability distribution ρ on [0,∞). We call them Feller random measures because, as shown in
[JR15] and [JR16a], their densities are given by the Feller di"usion when ρ is the exponential dis-
tribution and fractional Feller process when ρ is the Mittag-Le%er distribution. We go on to show
that these random measures admit interesting distributional properties, like in!nite divisibility, and
allow for simple recursive formulas for the cumulants (and, therefore, moments). We also observe
that Feller random measures can be used to produce stochastic representations for a class of Riccati
equations where the classical derivative is replaced by a general Lévy-type di"erential operator of
at-most !rst order.

1.3. Connections with fractional Brownian motion and rough volatility models. One of
the motivations for this work comes from the role Hawkes processes have in !nancial modeling.
Their self-exciting nature is particularly well-suited for capturing the dependence of market buy
and sell orders on past orders (see, e.g., [BMM15] for an overview). A phenomenon well-explained
by such modeling is the observed "roughness" (see [CR98] and [GJR18]) of market volatility. Indeed,
the fractional Feller (CIR) process that appears in the results of [JR16b] - and corresponds to the
squared volatility - can be informally thought of as a continuous stochastic process "driven" by the
fractional Brownian motion (fBM). The value of the Hurst parameterH ∈ (0, 1) of this fBM, used to
describe the degree of "roughness" of the volatility process, has been the subject of several empirical
studies. Early estimates gaveH ∈ (1/2, 1) ([CR98]) whereas two decades later the consensus shifted
towardsH ∈ (0, 1/2) (see [GJR18], [BLP21] and [FTW22]). Many of the latter estimates putH very
close to 0, suggesting thatH = 0 might be the "true" value (see [FFGS22], [BHP21]).

Even though there is no universally accepted way to de!ne the fractional Brownian motion with
H = 0 either as a stochastic process or as a random measure/!eld, several authors have proposed
models that could play such a role in one sense or another. These include the multifractal random
walks (see [BDM01]) and various Gaussian random !elds with a logarithmic kernel (see [FKS16],
[NR18], and [HN22] for a sample of di"erent approaches). Our framework allows not only to de!ne
generalized fractional Feller (CIR) processes corresponding to values of the Hurst parameter H in
the interval (−1/2, 1/2], but also corresponding to a much wider range of driving noises beyond
the one-dimensional fractional family. Moreover, we only require a single passage to the limit, and
do not de!ne a limiting process for H > 0 !rst, and then pass it to a (second) limit H → 0, as is
often done in the literature mentioned above. While a full analysis is left for future research, and
it is di$cult to give a formal de!nition of the notion of a driving noise for random measures, we
do note that the form of the covariance kernel we obtain in subsection 4.3.3 below suggests the
log-correlated class (see the survey [DRSV17]).

1.4. Organization of the paper. Following this introduction, Section 2 provides the necessary
background, established the notation and de!nes nonhomogeneous Hawkes. Section 3 contains the
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statement and the proof of the convergence theorem, while Section 4 delves into various properties
of the limiting Feller random measures.

1.5. Notation and conventions. For a constant c ∈ R and a function f : D ր Rd → R, we write
f ց c if there exists ε > 0 such that f ≤ c− ε.

Let D be a subset of a Euclidean space, let B(D) denote the Borel σ-algebra on D and let Leb
denote the Lebesgue measure. Unless otherwise speci!ed, measurability will always be understood
with respect to B(D). The family of all measurable functions on D is denoted by L0(D), while
L1(D) denotes the standard Lebesgue space with respect to the Lebesgue measure on D, except
that we do not pass to Leb-a.e.-equivalence classes and |f |L1(D) :=

∫

D|f(x)| dx is only a seminorm.

We let S→(D) be the family of all bounded functions in L0(D) and let |f |S∞

loc(D) := supx∈D|f(x)|.
The space L1

loc(D) (respectively S→
loc(D)) consists of all f ∈ L0(D) such that f ∈ L1(D ∩ B)

(respectively S→
loc(D ∩ B) for all bounded B ∈ B(D). For {fn}n∈N, f ∈ L1(D), we write fn → f

in L1
loc(D) if |fn − f |L1(D∩B) → 0 for each bounded B ∈ B(D).

Cb(D) andCc(D) denote the families of bounded and compactly supported continuous functions
on D. When D = [0,∞), C0 = C0([0,∞)) denotes the family of continuous function f on [0,∞)
with f(0) = 0.

M(D) andMs(D) denote the sets of all positive and signed Borel measuresD, respectively, and
δ{a} denotes the Dirac measure on a ∈ D. The sets of !nite, !nite on bounded sets, and probability
measures on D are denoted by Mf(D), Mlf(D), and Mp(D), respectively. The total mass of
µ ∈ M(D) is denoted by |µ| and the total variation of µ ∈ Ms(D) by |µ|Ms(D).

When D = [0,∞) we omit it from notation and write, e.g., S→ for S→[0,∞), etc.

2. Nonhomogeneous Hawkes ,rocesses

In order to introduce the notation and to single out one of several similar (but not entirely equiv-
alent) frameworks found in the literature, we provide a short introduction to Hawkes processes
and their nonhomogeneous versions. We believe that most (or all) results here are well-known (at
least to specialists) but could not locate precise-enough references, and so we provide self-contained
proofs for some of them. The reader is referred to any standard text on random measures and point
processes (such as [DVJ03, DVJ08] or [Kal17]) for unexplained details. We also mention the paper
[FLM15] which focuses on some aspects of the asymptotic behavior of nonhomogeneous Hawkes
processes.

2.1. Random measures and point processes. For a subset D of an Euclidean space, we induce
the measurable structure on M(D) by the evaluation maps µ )→ µ(A), A ∈ B(D). The random
elements inM(D) are called random measures, while random measures with values inMlf(D) are
said to be locally !nite.

For f ∈ S→
loc and µ ∈ Mlf , the convolution f ∗ µ ∈ S→

loc is given by

(f ∗ µ)(t) :=
∫

[0,t]
f(t− s)µ(ds) for t ≥ 0.

To enhance legibility, we often use the convention that functions and measures inside a convolution
take the value 0 outside their original domain of de!nition and often simply write (f ∗ µ)(t) =
∫

f(t− ·) dµ. Using this convention, we can de!ne the convolution of two measures µ, ν ∈ Mlf by
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(µ ∗ ν)(A) :=
∫

µ(A− s)ν(ds) =
∫

ν(A− s)µ(ds) and note that it is the unique element of Mlf

such that f ∗ (µ ∗ ν) = (f ∗ µ) ∗ ν for all f ∈ S→
loc.

The convolutional version of the standard moment-generating functional, de!ned below, proves
to be easier to work with in the context of Hawkes processes than its classical counterpart. The
value of the convolutional moment-generating functional Mξ on f ∈ S→

loc at t ∈ [0,∞) is given by

Mξ[f ](t) = E

[

e(f∗ξ)(t)
]

∈ [0,∞]. (2.1)

We note that, unlike in the standard case, the functional Mξ depends on the additional parameter
t. While this dependence does not encode any additional information (it simply shifts the function
f ), it leads to signi!cantly simpler notation in the sequel.

A locally!nite randommeasureN on [0,∞) is called a point process ifN(A) ∈ N0 for all bounded
A ∈ B([0,∞)). Each point processN admits a sequence {Tk}k∈N of [0,∞]-valued randomvariables
called the points of N , such that T0 ≤ T1 ≤ . . . and Tk → ∞, a.s., and

N =
∑

k δTk
,

where the sum is always taken only over k such that Tk < ∞; equivalently, δ+→ is identi!ed with
the zero measure on [0,∞). Since

∫

f(t)N(dt) =
∑

k f(Tk), a.s., whenever both sides are well
de!ned, we often use the convenient standard notation

∑

T∈N f(T ) :=
∫

f(t)N(dt).

We recall that for µ ∈ Mlf , the Poisson process (with the intensity measure µ) is the unique point
process P such that 1) P (A) is a Poisson random variable with expectation (parameter) µ(A) for
each bounded A ∈ B([0,∞)), and 2) P (A1), . . . , P (An) are independent random variables when-
ever A1, . . . , An ∈ B([0,∞)) are bounded and disjoint. For such P we have

MP [f ] = e(exp(f)−1)∗µ for all f ∈ S→
loc.

We will also need the following expression

JP [f ] = e(f−1)∗µ for g ∈ S→
loc, (2.2)

for the convolutional probability-generating functional

JP [f ](t) := E

[

∏

T∈P,Tցt g(t − T )
]

, t ≥ 0,

of the Poisson process P with intensity µ.

2.2. Nonhomogeneous single-progenitor Hawkes processes. The typical de!nition of a stan-
dard Hawkes process involves two inputs: the background intensity and the excitation kernel. It
will be convenient for our later analysis to separate the two and !rst construct a class of processes
without any background intensity, but started, instead, from a single point (progenitor) at time
t = 0. Their distributions are determined by two parameters: a constant a ∈ (0, 1) and a sequence
π = {πm}m∈N of probability measures on (0,∞). To relate them to the standard notation, we note
thatwhen πm is absolutely continuous, we can de!ne the excitation kernelφm (associated to the rate
at which the points in generationm−1 produce o"spring in generationm) by aπm(dt) = φm(t) dt.
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More precisely, the nonhomogeneous single-progenitor Hawkes process H̃ with parameters a and
π = {πm}m∈N is de!ned by

H̃ := ∪m∈N0H̃
m, (2.3)

where the sequence {H̃m}m∈N0 of "generations" is built from a double sequence P̃m(k), m ∈ N,

k ∈ N0 of independent Poisson processes, where P̃m(k) has intensity aπm, for each k ∈ N0. The

zero-th generation H̃0 is simply the Dirac mass δ0 at 0, i.e., a deterministic point process with a
single point at 0, representing the lone progenitor. Once the !rst m generations H̃0, . . . , H̃m−1,
m ∈ N, have been constructed, we set

H̃m :=
⋃

k∈N0

⋃

S∈P̃m−1(k)

(

Tm−1(k) + S
)

(2.4)

where {Tm−1(k)}k∈N0 denotes the point sequence of H̃m−1. In keeping with the convention in-
troduced above, the !rst union is taken over k such that Tm−1(k) < ∞.

In the sequel, we often identify a point process with its (random) point set. Moreover, we abuse
the notation and write, for example, P̃m−1(T ) for the Poisson process P̃m−1(k) whose index k is
such that T = Tm−1(k). This way, (2.4) takes the more legible form

H̃m =
⋃

T∈H̃m−1

(

T + P̃m−1(T )
)

.

The parameters a and {πm}m∈N of a single-progenitor Hawkes process can be used to construct a

double sequence of partial single-progenitor Hawkes processes H̃ [m,m+k),m ∈ N0, k ∈ N which will
be needed in sequel. The process H̃ [m,m+k) starts with a single individual in generationm ∈ N0, and
acrues individuals over the next k − 1 generations. This is distributionally equivalent to collecting
the !rst k generations of a single-progenitor process with parameters a and (πm+1,πm+2, . . . ).
These, individual, generations are denoted by H̃m,(m+j), j = 0, . . . , k − 1 so that H̃ [m,m+k) =
⋃k−1

j=0 H̃
m,(m+j).

For k ≥ 1, conditioning on the !rst generation H̃m,(m+1) of H̃m gives the following fundamental
recursive distributional equality

H̃ [m,m+k) (d)
= {0} ∪

⋃

T∈P̃m+1

(

T + H̃ [m+1,m+k)(T )
)

for k ≥ 1, (2.5)

where P̃m+1 is a Poisson process with intensity aπ(m+1), and (H̃ [m+1,m+k)(T ))T∈P̃m+1 are inde-
pendent partial single-progenitor Hawkes processes. We accumulate over all k in (2.5) to obtain

H̃m (d)
= {0} ∪

⋃

T∈P̃m+1

(

T + H̃m+1(T )
)

. (2.6)

2.3. The moment-generating functional and moments.

Proposition 2.1. Given f ∈ S→
loc and m ∈ N0, we have MH̃[m,m) [f ] = 1 and

MH̃[m,m+k) [f ] = exp
(

f + a(MH̃[m+1,m+k) [f ]− 1) ∗ πm+1
)

for k ≥ 1. (2.7)
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Proof. The equalityMH̃[m,m) [f ] = 1 follows trivially from the de!nition. Assuming that k ≥ 1 and
conditioning on generationm+ 1 in (2.5), we get

MH̃[m,m+k) [f ](t) = E

[

e
f(t)+

∑

T∈P̃m+1

∑

S∈H̃[m+1,m+k)(T ) f(t− T − S)
]

= ef(t)E

[

∏

T∈P̃m+1 E

[

e

∑

S∈H̃[m+1,m+k)(T ) f(t− T − S)
∣

∣

∣

∣

σ(P̃m+1)

]]

= ef(t)E

∏

T∈P̃m+1 MH̃[m+1,m+k) [f ](t− T )


= ef(t)JP̃m+1 [MH̃[m+1,m+k) ](t)

= exp

(

f(t) + a

∫

(

MH̃[m+1,m+k) [f ](t− s)− 1
)

πm+1(ds)

)

,

where the last equality follows from (2.2). !

Let W0 : [−e−1,∞) → R denote the principal branch of Lambert’s W-function (see, e.g. [DLM,
Section 4.13]).

Proposition 2.2. For β ∈ R, let l(β) := E[exp(β|H̃ |)] ∈ (0,∞] be the moment generating function
of the total number |H̃ | of points in H̃ . Then

l(β) =

{

+∞, β > a− 1− log(a),

− 1
aW0(− exp(β − a+ log(a))), β ≤ a− 1− log(a).

(2.8)

Proof. Since |H̃| depends only on the parameter a, and not on the sequence {πm}m∈N, we have

|H̃m| (d)= |H̃| for allm. Virtually the same argument as in the proof of Proposition 2.1 above can be

used to conclude that the functions lk(β) = E

[

exp
(

β|H̃ [0,k)|
)]

, k ∈ N0 satisfy

lk(β) = exp(β + a(lk−1(β)− 1)) for k ∈ N.

Assuming, !rst, that β ≥ 0, the fact that |H̃ | is the nondecreasing limit of |H̃ [0,k)|, as k → ∞
implies that lk(β) ↗ l(β). Since l0(β) = 1, it follows that l(β) is the smallest !xed point above
1, if one exists, of the function F (x) = exp(β + a(x− 1)); otherwise, l(β) = +∞. That latter
case happens, in particular, when β > a − 1 − log(a), as can be easily seen by inspection. For
β ≤ a− 1− log(a), the equation F (x) = x transforms into

(−ax) exp(−ax) = −a exp(β − a), (2.9)

with solutions given by

x0 = −
1

a
W0(− exp(−a+ β + log(a))) and x−1 = −

1

a
W−1(− exp(−a+ β + log(a))),

whereW0 and W−1 are the two branches of the Lambert’s W-function on [−e−1, 0). The principal
solutionW0 is increasing andW−1 is decreasing on (−e−1, 0), whileW0(−e−1) = W−1(−e−1) =
−1; this is easily seen directly, but we also refer the reader to [DLM, Section 4.13] for a more com-
prehensive treatment of the W -function. It follows that the smallest solution of F (x) = x above
x = 1 is given by x0 de!ned in (2.9) above, which completes the proof of (2.8).

The case β < 0 is almost identical, with the distinction that the sequence {lk(β)}k∈N is now
nonincreasing and bounded from above by 1, so we are looking for the largest !xed point of F

http://dlmf.nist.gov/4.13
http://dlmf.nist.gov/4.13
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below 1. Since F (1) < 1 in this case, l0(β) = 1 is located between the two solutions of F (x) = x
which leads us to choose the principal branchW0 again. !

Corollary 2.3. Let f ∈ S→
loc be such that f ≤ a− 1− log(a). Then

MH̃[m,m+k) [f ] ≤
1

a
and MH̃m [f ] ≤

1

a
for all m ∈ N0, k ∈ N. (2.10)

Moreover, we have

MH̃m [f ] = exp
(

f + a
(

MH̃m+1 [f ]− 1
)

∗ πm+1
)

for all m ∈ N0. (2.11)

Lastly, we use the recursive nature of the Hawkes process to derive an expression for itsmoments.
For f ∈ S→

loc, we let

ẽ[m,m+k)[f ] = E

[

f ∗ H̃ [m,m+k)
]

and ẽm[f ] = E

[

f ∗ H̃m
]

, form ∈ N0, k ∈ N.

Just like in the proof of Proposition 2.1, the relation (2.5) implies that

ẽ[m,m)[f ] = f and ẽ[m,m+k)[f ] = f + a ẽ[m+1,m+k) ∗ πm+1 for k ≥ 1. (2.12)

Therefore,

ẽ[m,m+k)[f ] = f ∗
(

∑k
j=0 a

jπ(m,m+j]
)

where

π(m,m+j] :=

{

δ0, j = 0,

πm+1 ∗ · · · ∗ πm+j , j > 0.
(2.13)

Since a < 1 and |π(m,m+j]| = 1 for allm, j ∈ N0, we have convergence in total variation in

ρm :=
→
∑

k=0

(1− a)akπ(m,m+k] ∈ Mp, (2.14)

and the following identity holds

ẽm[f ] =
1

1− a
f ∗ ρm for f ∈ S→

loc,m ∈ N0. (2.15)

2.4. The genealogical tree of a single-progenitor Hawkes process. The genealogical tree of a
single-progenitor Hawkes process is a random rooted directed tree associated to its construction
via generations H̃0, H̃1, . . . as in subsection (2.2) above. The vertices of the tree are the points of
the process, the root is the initial point at 0, and edges connect each point, except the root, to its
"parent" in the previous generation. We note that the structure of this tree does not depend on
the position of the individual points in each generation, only their number and the parent-child
relationship. This means, in particular, that the distribution of the genealogical tree depends only
on the value of the parameter a, but not on the choice of the of the sequence {πm}m∈N of probability
measures. It will be important in the sequel to observe that the number of points in each generation
of the genealogy is a Bienaymé-Galton-Watson process with the Poisson o"spring distribution with
parameter a. Moreover, one can construct the single-progenitor Hawkes process starting from the
genealogical tree as follows:
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(1) Construct a random directed tree corresponding to a Bienaymé-Galton-Watson process with
Poisson o"spring distribution with parameter a. This will be the genealogical tree of the
Hawkes process.

(2) For each directed edge in the tree, connecting generationsm andm−1, sample an indepen-
dent random variable - which we call the length of the edge - with distribution πm.

(3) Construct the single-progenitor Hawkes process H̃ by starting with the point at 0 and for
each non-root vertex v of the tree add a point to H̃ at the position obtained by adding
together the lengths of the edges forming the unique path from the root to v.

2.5. Hawkes processes. The Hawkes process is de!ned as a superposition of independent single-
progenitor Hawkes processes, started as di"erent points of an underlying Poisson process. More
precisely, in addition to the parameters a and π = {πm}m∈N of a single-progenitor process, let a
background intensity measure µ ∈ Mlf be given. The Hawkes process with parameters µ, a and π is
de!ned by

H :=
⋃

T∈P

(

T + H̃(T )
)

, (2.16)

where P is a Poisson process with intensity µ and {H̃(j)}j∈N is a sequence of independent single-
progenitor Hawkes processes with parameters (a, {πm}m∈N), independent of P . Thanks to local
!niteness of the Poisson process and the !niteness of single-progenitor Hawkes processes (guaran-
teed by the assumption that a < 1),H is a locally !nite randommeasure, too. We have the following
continuation of Proposition 2.1

Proposition 2.4. Given f ∈ S→
loc with f ≤ a− 1− log(a), we haveMH [f ] ∈ S→ and

MH [f ] = exp
(

(MH̃ [f ]− 1) ∗ µ
)

. (2.17)

Proof. The de!ning relation (2.16) implies that

MH [f ](t) = E[exp(f ∗H(t))] = E

[

exp
(

∑

T∈P

∑

S∈H̃T
f(t− (T + S))

)]

= E

[

E

[

∏

T∈P exp
(

∑

S∈H̃T
f((t− T )− S)

) ∣

∣

∣
σ(P )

]]

= E

∏

T∈P MH̃ [f ](t− T )


= JP [MH̃ [f ]](t) = exp
(

((

MH̃ [f ]− 1
)

∗ µ
)

(t)
)

,

where the last equality follows from (2.2) and we use our standard convention that the functions f
and MH̃ [f ]− 1 take the value 0 for t < 0. !

An argument similar to the one leading to (2.17) above implies that we have the following ex-
pression for the !rst moment e[f ] = E[f ∗H] of the Hawkes process:

e[f ] = ẽ[f ] ∗ µ =
1

1− a
f ∗ (ρ ∗ µ). (2.18)

where ρ = ρ0 and ρ0 is given by (2.14).
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3. A convergence theorem for nonhomogeneous Hawkes ,rocesses

3.1. A convergence theorem. We start with a sequence {(an, {πmn }m∈N, µn)}n∈N of parameter
triplets of nonhomogeneous Hawkes processes. In particular, for each n ∈ N, an ∈ (0, 1), µn

is a locally bounded measure on [0,∞), and {πmn }m∈N is a sequence of probability measures on
(0,∞). For each n, we denote a Hawkes process with parameters (an, {πmn }m∈N, µn) by Hn, and
the associated single-progenitor process by H̃n . We also use the partial versions of these processes
together with the notation introduced in and after subsection 2.2, but additionally indexed by n.

Our !rst goal is to give su$cient conditions on the sequences {an}n∈N, {πmn }m,n∈N and {µn}n∈N
that will ensure that, when properly scaled, the processes Hn converge, and to characterize the
distribution of the limit.

We remind the reader that the vague topology, with convergence denoted by
v−→, is the coarsest

topology on Mlf such that the map µ )→
∫

f dµ is continuous for each f ∈ Cc. The weak topology

on the space Mf , with convergence denoted by
w−→, is de!ned similarly, but with Cc replaced by

Cb.
Since [0,∞) is complete and separable, the vague topology onMlf is Polish (completely metriz-

able and separable). For a sequence of locally !nite random measures {ξn}n∈N, we say that ξn

converges to ξ in distribution, and write ξn
d−→ ξ, if ξn converges to ξ weakly when interpreted as a

sequence of random elements inMlf metrized by the vague topology. We refer the reader to [Kal17,
Section 4.1, p. 111] for a textbook treatment and proofs of various properties of the vague and weak
topologies used throughout the paper.

Using the notation introduced in (2.14) above, we set

ρn :=
→
∑

k=0

(1− an)(an)
kπ(0,k]n ∈ Mp. (3.1)

It is convenient to express ρn as the expected value

ρn = E

[

π(0,Gn]
n

]

,

where Gn is an N0-valued geometrically distributed random variable with parameter (probability
of success) 1− an.

For ν1, ν2 ∈ Mlf and T ≥ 0, we set

W 1
[0,T ](ν1, ν2) =

∫ T

0
|Fν1(t)− Fν2(t)| dt,

where Fνi = νi([0, ·]), i = 1, 2, are distribution functions of ν1 and ν2. When ν1 and ν2 are prob-
ability measures with supports in [0, T ], W 1

[0,T ](ν1, ν2) coincides with the 1-Wasserstein distance

between ν1 and ν2 (see, e.g., [San15, Proposition 2.17, p. 66]).

The array {πmn } is said to be null if, for each ε > 0,

lim
n

sup
m
πmn ([ε,∞)) = 0.

We recall that C0 denotes the family of all continuous functions f on [0,∞) with f(0) = 0.

Theorem 3.1. Suppose that



CONVERGENCE OF NONHOMOGENEOUS HAWKES PROCESSES 11

(1) (1− an)µn
v−→ µ ∈ Mlf .

(2) The array {πmn }m,n∈N is null and ρn
w−→ ρ for some ρ ∈ Mp with ρ({0}) = 0.

(3) Either one of the following two conditions holds:
(a) there exists a constant d ∈ N such that

πm+d
n = πmn for all m ∈ N, n ∈ N0, or (3.2)

(b) for each T ≥ 0

lim
n
(1− an)

−2 sup
m

W 1
[0,T ](π

m
n ,π1n) = 0.

Then, there exists a locally !nite random measure ξ on [0,∞) such that

(1− an)
2Hn

d−→ ξ. (3.3)

It is characterized by

Mξ[f ] = exp(h[f ] ∗ µ) for all f ∈ C0 with f ≤ 1/2, (3.4)

where h[f ] the unique solution in S→
loc to the convolutional Riccati equation

h = (f + 1
2h

2) ∗ ρ. (3.5)

The proof is divided into several lemmas. Before we state them, we introduce the necessary
notation and terminology. A quantity is said to be a universal constant if it depends only on the
primitives {an}n∈N, {πmn }m,n∈N and {µn}n∈N. We will always denote a generic universal constant
with the letter C , even though it might change from use to use.

We retain all the notation from section 2 (subsections 2.2 and 2.5 in particular), but add a subscript
n to signal the association with the parameters an, {πmn }m∈N and µn. With that in mind, and using
the shortcut

εn := 1− an,

we de!ne the random measures ξmn and ξ̃mn by

ξmn := ε2nH
m
n and ξ̃mn := ε2nH̃

m
n . (3.6)

For f ∈ S→
loc and t ≥ 0, we set

hmn [f ](t) :=
1

εn

(

Mξ̃mn
[f ](t)− 1

)

=
1

εn

(

MH̃m
n
[ε2nf ](t)− 1

)

∈ (−∞,∞]. (3.7)

When the function f is clear from the context, we often omit it from notation and write, e.g., hmn
for hmn [f ].

An N0-valued geometrically distributed random variable with parameter (probability of success)
1− an will be denoted by Gn throughout the proof.

Given T > 0, a function f ∈ S→[0, T ] is said to be of bounded variation if there exists a signed
measureDf ∈ Ms[0, T ] such that f(t) = Df([0, t]) for all t ∈ [0, T ]. The Hahn decomposition of
Df is denoted by Df = D+f −D−f and the total variation measure D+f +D−f , associated to
Df , by |D|f . The map |f |BV[0,T ] := |Df |Ms[0,T ] = ||D|f | is a Banach norm on BV[0, T ] and the

set of all f ∈ S→
loc such that f |[0,T ] ∈ BV[0, T ] for all T ≥ 0 is denoted by BVloc.
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We start with a lemma about the asymptotic behavior of the total number |H̃m
n | of points of H̃m

n .
We note that the distribution of |H̃m

n | does not depend on m, so we denote it in the sequel plainly

by |H̃n| to simplify the notation and stress the uniformity of the obtained bounds inm.

Lemma 3.2. For δ ∈ [0, 1) we have

lim
n

1

εn

(

E

[

exp
(

1
2(1− δ)ε2n|H̃n|

)]

− 1
)

= 1−
√
δ, (3.8)

and, for δ ∈ (0, 1),

lim
n
ε2k−1
n E

[

|H̃n|k exp
(

ε2n
1−δ
2 |H̃n|

)]

=
(k − 1)!

2k−1

(

2(k − 1)

k − 1

)

δ1/2−k for k ∈ N. (3.9)

Proof. Let w(x) = −W0(−e−1−x2
) for x ≥ 0, where W0 is the principal branch of Lambert’s W-

function; see [DLM, Section 4.13] for the standard properties used in this proof. Proposition 2.2
above states that for β < βmax

n := − log(1− εn)− εn we have

E

[

exp
(

β|H̃n|
)]

=
1

1− εn
w(bn(β)) where bn(β) = (βmax

n − β)1/2. (3.10)

We have

bn
(

1
2ε

2
n

)

=
(

− log(1− εn)− εn − 1
2ε

2
n

)1/2
= O(ε3/2n )

Since w is continuously di"erentiable on [0,∞) and w(0) = 1, this implies that

1

1− εn
w
(

bn
(

1
2ε

2
n

))

= 1 + εn +O(ε3/2n ),

which, in turn, yields (3.8) for δ = 0. Similarly, when δ ∈ (0, 1) we have

bn
(

1
2(1− δ)ε2n

)

=
√

δ
2εn +O(ε2n),

and (3.8) when δ ∈ (0, 1) follows from

1

1− εn
w
(

bn
(

1
2(1− δ)ε2n

))

= 1 + (1−
√
δ)εn + o(εn).

Suppose that δ ∈ (0, 1) for the rest of the proof. Standard properties of moment-generating
functions allow us to di"erentiate k ∈ N times inside the expectation sign at each β < βmax

n in
(3.10) above to obtain

E

[

|H̃m
n |k exp

(

β|H̃m
n |
)]

=
1

1− εn
(w ◦ bn)(k)(β) for β < βmax

n , (3.11)

where (·)(k) denotes the k-th derivative in β. The formula of Faá di Bruno states that (w ◦ bn)(k)(β)
admits a representation of the form

∑ k!

m1! . . . mk!
w(m1+···+mk)

(

bn(β)
)

k
∏

j=1



b(j)n (β)

j!

)mj

, (3.12)

where the sum is taken over all m1, . . . ,mk ∈ N0 such thatm1 + 2m2 + · · · + kmk = k.

http://dlmf.nist.gov/4.13
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We have b(j)n (β) = (−1)jj!
(1/2

j

)

(βmax
n − β)1/2−j so that

k
∏

j=1



b(j)n (β)

j!

)mj

= K (βmax
n − β)

m1+···+mk
2 −k whereK =

k
∏

j=1

(

(−1)j
(

1/2

j

))mj

.

The lowest power of (βmax
n − β) appearing in (3.12) is 1/2 − k and is attained precisely at m1 =

· · · = mk−1 = 0, mk = 1. Furthermore, all functions w(m1+···+mk)(x) converge towards a !nite
limit as x ↘ 0 which implies that

(w ◦ bn)(k)(β) = k!w′(bn(β))(−1)k
(

1/2

k

)

(βmax
n − β)1/2−k + o

(

(βmax
n − β)1/2−k

)

.

We have

bn
(

1
2(1− δ)ε2n

)

=
√

δ
2 εn + o(εn), (3.13)

and using (3.13), together with the fact that limx↘0w′(x) = −
√
2, we get

lim
n

(w ◦ bn)(k)(βn)
(δε2n/2)

1/2−k
=

√
2(−1)k−1k!

(

1/2

k

)

,

which, in turn, implies (3.9). !

The inequalities in Lemma 3.3 below are well known (the !rst one is the simplest special case of
Young’s inequality), but we give short proofs for completeness.

Lemma 3.3. Suppose that T ≥ 0 and ν, ν ′ ∈ Mf([0, T ]).

(1) If h ∈ L1[0, T ], then h ∗ ν ∈ L1[0, T ] and

|h ∗ ν|L1[0,T ] ≤ |h|L1[0,T ]|ν|. (3.14)

(2) If h ∈ BV[0, T ], then h ∗ ν ∈ BV[0, T ] withD(h ∗ ν) = Dh ∗ ν and

|h ∗ ν|BV[0,T ] ≤ |h|BV[0,T ]|ν| (3.15)

as well as
∣

∣h ∗ (ν − ν ′)
∣

∣

L1[0,T ]
≤ |h|BV[0,T ]W

1
[0,T ](ν, ν

′) (3.16)

Proof. (1) By Fubini’s theorem
∫ T

0
|h ∗ ν(t)| dt ≤

∫ T

0

∫

|h(t− u)| ν(du) dt

=

∫ ∫ T

u
|h(t− u)| dt ν(du) ≤ |h|L1[0,T ]ν[0, T ].

(2) We have (h ∗ ν)(t) = (Dh ∗ ν)[0, t], which implies that h ∗ ν ∈ BV[0, T ] with D(h ∗ ν) =
Dh ∗ ν . Therefore,

|h ∗ ν|BV[0,T ] = |D(h ∗ ν)|Ms[0,T ] = |Dh ∗ ν|Ms[0,T ]

=
∣

∣Dh+ ∗ ν −Dh− ∗ ν
∣

∣

Ms[0,T ]
≤ (Dh+ ∗ ν)[0, T ] + (Dh− ∗ ν)[0, T ]

≤ Dh+[0, T ]ν[0, T ] +Dh−[0, T ]ν[0, T ] = |Dh|Ms[0,T ]|ν| = |h|BV[0,T ]|ν|.
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To show (3.16), we observe that

(Dh ∗ ν)[0, t] = (ν ∗Dh)[0, t] = (Fν ∗Dh)(t) for t ≥ 0,

where Fν(t) = ν([0, t]) denotes the distribution function of ν . Hence,
∣

∣h ∗ ν(t)− h ∗ ν ′(t)
∣

∣ ≤
∫

|Fν(t− u)− Fν′(t− u)| |Dh|(du) for t ≥ 0,

and so,
∫ T

0

∣

∣h ∗ ν(t)− h ∗ ν ′(t)
∣

∣ dt ≤
∫ T

0

∫

|Fν(t− u)− Fν′(t− u)| |Dh|(du) dt

≤
∫ ∫ T

0
|Fν(t)− Fν′(t)| dt |Dh|(du) = |h|BV[0,T ]W

1
[0,T ](ν, ν

′). !

Lemma 3.4. For each δ > 0, there exists a universal constant C such that for allm ∈ N0, n ∈ N, T ≥
0 and all f ∈ S→

loc with f ≤ 1
2 (1− δ) we have

(1) hmn ∈ S→
loc and

inf
u∈[0,T ]

f(u) ≤ hmn (t) ≤ C sup
u∈[0,T ]

f(u) for t ∈ [0, T ]. (3.17)

(2) If, additionally, f ∈ BVloc, then hmn ∈ BVloc and

|hmn |BV[0,T ] ≤ C|f |BV[0,T ]. (3.18)

Proof. We pick δ ∈ (0, 1) and f ∈ S→
loc with f ≤ 1

2(1− δ) as in the statement and set

Zm
n = exp

(

1−δ
2 |ξ̃mn |

)

(3.19)

with ξ̃mn as de!ned in (3.6), noting that the distribution of Zm
n does not depend on m.

Since f ∗ ξ̃mn ≤ 1
2(1− δ)|ξ̃mn |, (3.9) with k = 1 implies that

hmn (t) ≤ ε−1
n E

[

Zm
n (f ∗ ξ̃mn )(t)

]

≤
(

supu∈[0,T ] f(u)
)

εnE
[

Zm
n |H̃m

n |
]

≤ C supu∈[0,T ] f(u) for t ∈ [0, T ].
(3.20)

To get a lower bound, we use Jensen’s inequality and (2.15):

hmn (t) ≥ ε−1
n

(

exp
(

E

[

(f ∗ ξ̃mn )(t)
])

− 1
)

≥ ε−1
n E

[

(f ∗ ξ̃mn )(t)
]

= (f ∗ ρmn )(t) ≥ inf
u∈[0,T ]

f(u).

To establish (3.18), we pick 0 ≤ r ≤ s ≤ T and observe that

|hmn (s)− hmn (r)| ≤ ε−1
n E

[
∣

∣

∣
exp
(

f ∗ ξ̃mn (s)
)

− exp
(

f ∗ ξ̃mn (r)
)
∣

∣

∣

]

≤ ε−1
n E

[

Zm
n

∣

∣

∣
f ∗ ξ̃mn (s)− f ∗ ξ̃mn (r)

∣

∣

∣

]

≤ ε−1
n

(

Fm
n (r, s) + F̂m

n (r, s)
)

,

(3.21)
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where

Fm
n (r, s) = E

[

Zm
n

∫ r

0
|f(s− u)− f(r − u)| ξ̃mn (du)

]

, and

F̂m
n (r, s) = E

[

Zm
n

∫ s

r
|f(s− u)| ξ̃mn (du)

]

.

Since |f(b)− f(a)| ≤
∫

1(a,b] d|D|f , for all a < b in [0, T ], we have

Fm
n (r, s) ≤ E

[

Zm
n

∫∫

1{v∈(r−u,s−u],uցr} |D|f(dv) ξ̃mn (du)

]

.

Hence, for κ ∈ (0, T ),

1

κ

∫ T−κ

0
Fm
n (r, r + κ) dr =

= E

[

Zm
n

∫∫

1

κ

∫

1{r∈[v+u−κ,v+u)∩[T−κ,u]} dr |D|f(dv)ξ̃mn (du)

]

≤ E

[

Zm
n

∫∫

|D|f(dv)ξ̃mn (du)

]

≤ |f |BV[0,T ]E

[

Zm
n |ξ̃mn |

]

≤ εnC|f |BV[0,T ],

where the last inequality follows from (3.9). Similarly,

1

κ

∫ T−κ

0
F̂m
n (r, r + κ) dr ≤

1

κ

∫ T

0
|f |S∞[0,T ]E

[

Zm
n ξ̃

m
n ([u, u+ κ])

]

du

≤ |f |S∞[0,T ]E

[

Zm
n

∫

1

κ

∫

1{s∈[u,u+κ]} du ξ̃
m
n (ds)

]

≤ εnC|f |S∞[0,T ] ≤ εnC|f |BV[0,T ].

Therefore,

1

κ

∫ T−κ

0
|hmn (u+ κ)− hmn (u)| du ≤ C|f |BV [0,T ] (3.22)

uniformly in m ∈ N0, n ∈ N and κ ∈ (0, T ]. Thanks to [Leo17, Corollary 2.51, p. 53], this im-
plies that for all m ∈ N0, n ∈ N there exists a signed measure νmn on (0, T ] with |νmn |Ms[0,T ] ≤
C|f |BV[0,T ] such that

hmn (t)− hmn (0) = νmn ((0, t]) a.e., for all t ∈ [0, T ].

Thanks to part (2) of Lemma 3.3, for f ∈ BVloc we have f ∗ ξmn ∈ BVloc, a.s, and, in particular,
(f ∗ ξ)(s) → (f ∗ ξ)(t), a.s., when s ↘ t. Since, as above,

sup
t

∣

∣

∣
exp
(

f ∗ ξ̃mn )(t)
)

− 1
∣

∣

∣
≤ CZm

n |ξ̃mn | ∈ L
1,

we can use the dominated convergence theorem to conclude that the function hmn is right continu-
ous. This implies that hmn (t)−hmn (0) = νmn ((0, t]) everywhere, and, consequently, that hmn ∈ BVloc.
Lastly, by (3.17), we have

|hmn |BV[0,T ] ≤ |hmn − hmn (0)|BV[0,T ] + |hmn (0)| ≤ C|f |BV[0,T ]. !
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Lemma 3.5. For each δ ∈ (0, 1), there exists a universal constant C such that for all f ∈ BVloc with
f ≤ 1

2 (1− δ) we have
∣

∣hmn − hm+1
n

∣

∣

L1[0,T ]
≤ C

(

εn +W 1
[0,T ](π

m
n , δ0)

)

, (3.23)

as well as

hmn = E

[

f ∗ π(m,m+Gn]
n + 1

2 (h
m+Gn
n )2 ∗ π(m,m+Gn]

n

]

+ rmn , (3.24)

for all m ∈ N0, n ∈ N and T ≥ 0, where the remainders rmn satisfy

lim
n

rmn = 0 in BV[0, T ] uniformly in m.

Proof. Thanks to the relation (2.11) of Corollary 2.3, we have

ε2nf + εnanh
m+1
n ∗ πm+1

n = log(1 + εnh
m
n ). (3.25)

Assuming that n is so large that εnhmn ≥ −1/2, we can use the mean-value theorem to conclude
that there exists a sequence {θmn }n∈N in (0, 2) such that θmn → 1 uniformly inm, and

log(1 + εnh
m
n ) = εnh

m
n − 1

2ε
2
nθ

m
n (hmn )2.

Therefore, (3.25) can be rewritten as

hmn − anh
m+1
n ∗ πm+1

n = εnf + 1
2εnθ

m
n (hmn )2. (3.26)

It follows that
∣

∣hmn − hm+1
n

∣

∣

L1[0,T ]
≤ εn|f |L1[0,T ] + εn

∣

∣hm+1
n ∗ πm+1

n

∣

∣

L1[0,T ]
+

+ εn
∣

∣(hmn )2
∣

∣

L1[0,T ]
+
∣

∣hm+1
n − hm+1

n ∗ πm+1
n

∣

∣

L1[0,T ]
.

(3.27)

The three terms on the right-hand side of (3.27) above are bounded by universal constants by Lemma
3.4 and the inequality (3.14) of Lemma 3.3. To bound the fourth term in (3.27) by the second term
on the right-hand side of (3.23), we use Lemma 3.3 again, but now with the inequality (3.16).

Moving on to the proof of (3.24), given k ≥ 0 we replacem by m+ k in (3.26), convolve it with
π(m,m+k] and multiply by (an)k to obtain:

(an)
khm+k

n ∗ π(m,m+k] − (an)
k+1hm+k+1

n ∗ π(m,m+k+1] =

= (1− an)(an)
kf ∗ π(m,m+k] + 1

2(1− an)(an)
kθm+k

n (hm+k
n )2 ∗ π(m,m+k].

Summing over k ≥ 0 gives

hmn =
∑

k≥0

(1− an)(an)
kf ∗ π(m,m+k]

n

+ 1
2

∑

k≥0

(1− an)(an)
kθm+k

n (hm+k
n )2 ∗ π(m,m+k]

n

= E

[

f ∗ π(m,m+Gn]
n + 1

2θ
m+Gn
n (hm+k

n )2 ∗ π(m,m+Gn]
n

]

.

The choice

rmn = 1
2E

[

(θm+Gn
n − 1)(hm+Gn

n )2 ∗ π(m,m+Gn]
n

]
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yields (3.24). To show that rmn → 0, we start with

sup
m

|rmn |BV[0,T ] ≤
1
2

(

sup
k

∣

∣

∣
θkn − 1

∣

∣

∣

)



sup
k≥0

∣

∣

∣
(hm+k

n )2 ∗ π(m,m+k]
n

∣

∣

∣

BV[0,T ]

)

.

The !rst supremum converges to 0 asn → ∞, so it remains to show that the second one is uniformly
bounded in m and n. This follows from the inequality (3.14) together with the observation that
(hmn )2 ∈ BVloc and

∣

∣(hmn )2
∣

∣

BV[0,T ]
≤ 2|hmn |S∞[0,T ]||h

m
n |BV[0,T ] ≤ 2|hmn |2BV[0,T ] ≤ C|f |2BV[0,T ]. (3.28)

!

Lemma 3.6. For each f ∈ BVloc with f ց 1/2, there exist sequences {rn}n∈N and {Rn}n∈N in L1
loc,

as well as a universal constant C such that

h0n = E

[

f ∗ π(0,Gn]
n

]

+ 1
2E

[

(h0n)
2 ∗ π(0,Gn]

n

]

+ rn +Rn,

and

|rn|L1[0,T ] → 0 and |Rn|L1[0,T ] ≤ CE

[

∣

∣hGn
n − h0n

∣

∣

L1[0,T ]

]

for all T ≥ 0.

Proof. The equation (3.24) of Lemma 3.5 can be rewritten form = 0 as

h0n = E

[

f ∗ π(0,Gn]
n

]

+ 1
2E

[

(h0n)
2 ∗ π(0,Gn]

n

]

+ rn +Rn

where rn = r0n of Lemma 3.5 and

Rn = 1
2E

[

(

(hGn
n )2 − (h0n)

2
)

∗ π(0,Gn]
n

]

.

By Lemma 3.5, we have limn r0n = 0 inBV[0, T ], and, therefore, also inL1[0, T ]. Thanks to inequal-
ity (3.14), the fact that |hmn |S∞[0,T ] is uniformly bounded overm,n, Lemma 3.3 and equation (3.28),
we have

|Rn|L1[0,T ] ≤
1
2E

[

∣

∣

∣

(

(hGn
n )2 − (h0n)

2
)

∗ π(0,Gn]
n

∣

∣

∣

L1[0,T ]

]

≤ 1
2E

[

∣

∣(hGn
n )2 − (h0n)

2
∣

∣

L1[0,T ]
π(0,Gn]
n [0, T ]

]

≤ CE

[

∣

∣hGn
n − h0n

∣

∣

L1[0,t]

]

. !

Lemma 3.7. Suppose that the condition (3) of Theorem 3.1 holds, the array {πmn }m,n∈N is null, and
that f ∈ BVloc with f ց 1/2 is given. Then

lim
n

sup
m

∣

∣hmn − h0n
∣

∣

L1[0,T ]
= 0 for each T ≥ 0. (3.29)

Proof. We assume, !rst, that (3a) holds with period d ∈ N. The inequality (3.23) of Lemma 3.5
implies that for each T ≥ 0 we have

lim supn supm,k

∣

∣hm+k
n − hmn

∣

∣

L1[0,T ]
= lim supnmaxm1,m2ցd|hm1

n − hm2
n |L1[0,T ]

≤ 2C(d− 1) lim supn

(

εn +maxmցd W 1
[0,T ](π

m
n , δ0)

)

.

Since {πmn }m,n∈N is a null array, for each ε > 0 there exists a sequence κn(ε) ↘ 0 such that

πmn ([0, t]) ≥ 1− κn(ε) for t ≥ ε and m ∈ N.
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Therefore, for each ε > 0 we have

lim supn supmW 1
[0,T ](π

m
n , δ0) = lim supn supm

∫ T
0 (1− πmn ([0, t])) dt

≤ ε+ (T − ε)+ lim supn κn(ε) = ε,

and (3.29) follows.

Next, we establish the statement under the condition (3b). Let m ∈ N be !xed throughout the
proof. Using the terminology of subsection 2.4 above, we note that the genealogical trees corre-
sponding to H̃m

n and H̃0
n have the same distribution. Indeed, this distribution depends only on the

parameter an, and not on the probabilities {πmn }m∈N. This observation allows us to couple H̃m
n and

H̃0
n on the same probability space by following the alternative construction of a Hawkes process in

items (1)-(3) of subsection 2.4 as follows. We start by constructing a single Bienaymé-Galton-Watson
tree T as in of item (1) which will be common to both H̃m

n and H̃0
m. For each vertex v of the tree T ,

let (0, v] denote the set of edges on the (unique) directed path from v to the root, and let |v| denote
the generation number of v, i.e., the cardinality of (0, v]. For a directed edge e from child v to parent
w, we set |e| = |w|.

It is straightforward to see that, given two probability measures ν1 and ν2 on [0,∞), we have

W 1
[0,T ](ν1, ν2) = inf E

[

|L1 ∞ T − L2 ∞ T |
]

(3.30)

where the in!mum is taken over all random vectors (L1, L2) with marginals ν1 and ν2. The same
argument as in the classical (T = +∞) case (see [San15, Theorem 1.4., p. 5, Proposition 2.17, p. 66])
can be used to show that the in!mum is attained at some pair (L1, L2). Conditionally on the tree T ,
for each edge e we construct the "lengths" L(e) and L′(e) so that their joint distribution attains the

in!mum in (3.30) for ν1 = πm+|e|
n and ν2 = π|e|n . Conditionally on the tree T , the pairs (L(e), L′(e))

are then chosen independently of each other over all edges e.

Since the total number of points depends only on the genealogical tree, we have |H̃m
n | = |H̃0

n| in
this coupling, and, consequently Zm

n = Z0
n, where Z

m
n , m ∈ N0, are de!ned in (3.19). We denote

these common values by |H̃n| and Zn, respectively and use E[·] to denote the expectation operator
on the common probability space for H̃m

n and H̃0
n. As at the beginning of the proof of Lemma 3.4

above, we have

∣

∣hmn − h0n
∣

∣

L1[0,T ]
= ε−1

n

∫ T

0
E

[∣

∣

∣
e(f∗ξ̃

m
n )(t) − e(f∗ξ̃

0
n)(t)

∣

∣

∣

]

dt

≤ ε−1
n E

[

Zn

∫ T

0

∣

∣

∣
f ∗ (ξ̃mn − ξ̃0n)(t)

∣

∣

∣
dt

]

= εnE

[

Zn

∣

∣

∣
f ∗ H̃m

n − f ∗ H̃0
n

∣

∣

∣

L1[0,T ]

]

.

By inequality (3.16) of Lemma 3.3 above, we have
∣

∣hmn − h0n
∣

∣

L1[0,T ]
≤ εn|f |BV[0,T ]E

[

ZnW
1
[0,T ](H̃

m
n , H̃0

n)
]

. (3.31)
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Seen ω-by-ω, the measuresHm
n and H0

n are, respectively, sums of Dirac masses at points

T (v) =
∑

e∈(0,v]

L(e) and T ′(v) =
∑

e∈(0,v]

L′(e), v ∈ T .

It follows easily from the de!nition that

W 1
[0,T ](H̃

m
n , H̃0

n) ≤
∑

v

∣

∣T (v) ∞ T − T ′(v) ∞ T
∣

∣ ≤
∑

v

∣

∣T (v)− T ′(v)
∣

∣

so that

E

[

W 1
[0,T ](H̃

m
n , H̃0

n)
∣

∣

∣ T
]

≤
∑

v∈T

E

∣

∣T (v)− T ′(v)
∣

∣

∣

∣ T


For v ∈ T , we observe that we canwrite the di"erence T (v)−T ′(v) as a sum of |v| random variables
L(e)− L′(e), e ∈ (0, v] so that, by condition (3b), we have

E

∣

∣T (v)− T ′(v)
∣

∣

∣

∣ T


≤
∑

e∈(0,v]

E

∣

∣L(e)− L(e′)
∣

∣



≤ |Hn| sup
m,k

W 1
[0,T ](π

m+k
n ,πmn )

≤ bnε
2
n|Hn|, where bn → 0 as n → ∞.

Consequently, by (3.9) with k = 2, we have

εnE
[

ZnW
1
[0,T ](H̃

m
n , H̃0

n)
]

≤ Cε3nbnE
[

Zn|H̃n|2
]

≤ Cbn → 0,

which, in view of (3.31), completes the proof. !

Lemma 3.8. Suppose that conditions (2) and (3) of Theorem 3.1 hold, and that f ∈ BVloc with f ց
1/2 is given. If {Dh0n}n∈N converges vaguely towardsDh ∈ Ms, possibly only through a subsequence,
then h = Dh0[0, ·] ∈ BVloc is the unique solution in S→

loc of the equation

h = (f + 1
2h

2) ∗ ρ. (3.32)

Proof. We assume for notational reasons and without loss of generality that the whole sequence
{Dh0n}n∈N converges vaguely towards Dh. The portmanteau theorem then ensures that for all
t ≥ 0, except at most countably many, we have

h0n(t) = Dh0n[0, t] → Dh[0, t] = h(t).

Thanks to the uniform bound (3.17) of Lemma 3.4, this establishes the convergence h0n → h in L1
loc.

Lemma 3.7 implies that for each T ≥ 0

E

∣

∣hGn − h0n
∣

∣



L1[0,T ]
→ 0,

and so, thanks to Lemma 3.6, we have

h0n − f ∗ ρn − 1
2 (h

0
n)

2 ∗ ρn → 0 in L1[0, T ] for each T ≥ 0.

Condition (2) of Theorem 3.1 implies that W 1
[0,T ](ρn, ρ) → 0 for all T ≥ 0. Therefore, by the

estimate (3.16) of Lemma 3.3 we have

|f ∗ (ρn − ρ)|L1[0,T ] ≤ |f |BV[0,T ]W
1
[0,T ](ρn, ρ) → 0 for each T ≥ 0.
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Similarly, inequalities (3.14) and (3.16) of Lemma 3.3, together with Lemma 3.4 and the estimate
(3.28), yield

∣

∣(h0n)
2 ∗ ρn − h2 ∗ ρ

∣

∣

L1[0,t]
≤
∣

∣

(

(h0n)
2 − h2

)

∗ ρ
∣

∣

L1[0,T ]
+
∣

∣(h0n)
2 ∗ (ρ− ρn)

∣

∣

L1[0,T ]

≤
∣

∣(h0n)
2 − h2

∣

∣

L1[0,T ] +
∣

∣(h0n)
2
∣

∣

BV[0,T ]W
1
[0,T ](ρ, ρn)

≤ C|f |L1[0,T ]

∣

∣h0n − h
∣

∣

L1[0,T ]
+ C|f |S∞[0,T ]|f |BV[0,T ]W

1
[0,T ](ρ, ρn) → 0,

for each T ≥ 0. It follows that h satis!es (3.32), Leb-a.e. Since h is in BVloc, and, therefore,
right continuous and the same is true for (f + 1

2h
2) ∗ ρ, we conclude that (3.32) holds everywhere.

Uniqueness is established in Proposition A.4 in the Appendix. !

Conclusion of the proof of Theorem 3.1. Condition (1) of the theorem, expression (2.18) and the port-
manteau theorem imply that

lim sup
n

E[ξn[0, T ]] = lim sup
n

ε2nE


H0
n[0, T ]



= lim sup
n

εn(ρ
0
n ∗ µn)[0, T ]

≤ lim sup
n

ρ0n[0, T ] lim sup
n

(εnµn[0, T ])

≤ ρ[0, T ]µ[0, T ] < ∞.

(3.33)

Thanks to the standard tightness criterion (see, e.g., [Kal17, Theorem 4.10, p. 118]) for weak conver-
gence of randommeasures, the bound (3.33) implies that the sequence {ξn}n∈N := {ξ0n}n∈N is tight.
We pick an arbitrary convergent subsequence of {ξn}n∈N, and, taking the usual liberty of not rela-
beling the indices, we denote this sequence by {ξn}n∈N and its limit by ξ. To show the convergence
of the original sequence it will be enough to show that the limit ξ does not depend on the choice of
the convergent subsequence of {ξn}n∈N.

We pick f ∈ BVloc with f ց 1/2 and associate to it the array {hmn }m,n = {hmn [f ]}m,n, as in
(3.7) above. For each T ≥ 0, Lemma 3.4 implies that the restrictions to [0, T ] of the elements of the
sequence {h0n}n∈N are bounded inBV[0, T ]. By Prokhorov’s theorem, we can pass to a subsequence,
if necessary, to conclude that the restrictionsDh0n|[0,T ] converge weakly on [0, T ] towards a signed
measure Dh with |Dh|Ms[0,T ] ≤ C|f |BV[0,T ]. Lemma 3.8 then implies that the limit h := Dh[0, ·]
uniquely satis!es (3.32). In particular, h does not depend on the speci!c choices of subsequences
made above so that no passage to a subsequence is necessary when Prokhorov’s theorem is used.

The vague convergence εnµn → µ implies thatW 1
[0,T ](εnµn, µ) → 0 for each T > 0 and we can

use inequalities (3.14) and (3.16) to conclude that

|εnhn ∗ µn − h ∗ µ|L1[0,T ] ≤ |(hn − h) ∗ εnµn|L1[0,T ] + |h ∗ (εnµn − µ)|L1[0,T ]

≤ C|hn − h|L1[0,T ] + |h|BV[0,T ]W
1
[0,T ](εnµn, µ) → 0.

Assume, next, that f ∈ C0 ∩ BVloc and f ≤ 0. The weak convergence ξn → ξ implies that

Mξ[f ] = lim
n

Mξn [f ] = lim
n

exp(εnhn ∗ µn) = exp(h ∗ µ), a.e., (3.34)

where a passage to a subsequence, if necessary, is made to guarantee a.e.-convergence of εnhn ∗µn

to h ∗ µ. The convolution f ∗ ξ is in BVloc and, therefore, right continuous a.s. Since f ≤ 0, this
right continuity is inherited by Mξ[f ] by the bounded convergence theorem. Consequently, (3.34)
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can be strengthened to its pointwise version

Mξ[f ] = exp(h[f ] ∗ µ) for all f ∈ C0 ∩ BVloc with f ≤ 0. (3.35)

Hence, given any two subsequential limits ξ and ξ′ of {ξn}n∈N, the functionals Mξ and Mξ′ agree
on the set of all f ∈ C ∩ BVloc with f ≤ 0. By density, the same is true for all f ∈ C with f ≤ 0
which is, in turn, enough to conclude that ξ and ξ′ have the same law as random elements in M
(see [Kal17, Theorem 2.2, p. 52]). As mentioned at the beginning, this implies that the full sequence
{ξn}n∈N converges in law towards the random measure ξ.

Next, we show that (3.35) holds when f ց 1/2, and not only for f ≤ 0. The vague convergence
ξn → ξ implies that for any f ∈ C0 ∩ BVloc , we have

(f ∗ ξn)(t)
w−→ (f ∗ ξ)(t) for all t ≥ 0.

The expression (2.17) for the moment-generating function ofHn implies that for p = (1− δ)−1 > 1
we have

logE
[(

e(f∗ξn)(t)
)p]

= logMHn [ε
2
npf ](t) =

(

(MH̃n
[ε2npf ]− 1) ∗ µn

)

(t)

≤
(

E

[

e
1
2ε

2
nH̃n[0,·] − 1

]

∗ µn

)

(t)

≤ ε−1
n E

[

e
1
2ε

2
n|H̃n| − 1

]

εnµn[0, t].

Both terms after the last inequality are bounded in n; the !rst one by (3.8), and the second one as
in (3.33) above. It follows that {exp((f ∗ ξn)(t))}n∈N is uniformly integrable for each t ≥ 0 so that
Mξn [f ] → Mξ[f ] pointwise for all f ∈ C0 ∩ BVloc with f ց 1/2. Moreover, it the monotone
convergence theorem implies that

E


exp
(

1
2ξ[0, T ]

)

< ∞ for all T ≥ 0, (3.36)

This allows us to conclude, as above, that Mξ[f ] is a right-continuous function for all f ∈ BVloc

with f ≤ 1/2 and reuse the argument following (3.35).

The last step is to show that Mξ[f ] = exp(h[f ] ∗ µ) for f ∈ C0 with f ≤ 1/2 without the
additional requirement that f ∈ BVloc. We pick such f , and choose a sequence {fn}n∈N inC1 with
fn(0) = 0 such that f ց 1/2 on [0, T ] and |f − fn|S∞[0,T ] → 0, for each T ≥ 0; note also that

fn ∈ C ∩ BVloc. The dominated convergence theorem implies, via (3.36), that Mξ[fn] → Mξ[f ]
pointwise on [0,∞). On the other hand, Proposition A.4 in the Appendix guarantees that

∫ T

0
|h[fn]− h[f ]|S∞[0,t] dt → 0,

for each T ≥ 0. The monotonicity of t )→ |h[fn]− h[f ]|S∞[0,t] implies that h[fn] → h[f ] in
S→[0, T ] for each T ≥ 0. Since µ is locally bounded and {h[fn]}n∈N admits a uniform S→[0, T ]
bound, the bounded convergence theorem implies that h[fn] ∗ µ → h[f ] ∗ µ pointwise, and, conse-
quently, thatMξ[f ] = exp(h[f ] ∗ µ).
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4. Feller random measures and their ,ro,erties

4.1. Attainable limiting distributions ρ. We start by characterizing the family of all probability
measures ρ that can arise as limits in Theorem 3.1.

De!nition 4.1. A random variableX is said to be geometrically in!nitely divisible (GID) if for each
p ∈ (0, 1) there exists an iid sequence {Xm(p)}m∈N of random variables such that

X
(d)
=

G(p)
∑

m=1

Xm(p),

whereG(p) is an N0-valued geometrically distributed random variable with parameter (probability
of success) p, independent of the sequence {Xm(p)}m∈N.

This notion has been introduced in [KMM84] as a part of an answer to the following question
of Zolotarev: characterize the family Y of distributions of random variables Y such that, for any
p ∈ (0, 1), there exists a random variableX(p) such that

Y
(d)
= X(p) +B(p)Y

where Y , X(p) and B(p) are independent and P[B(p) = 1] = 1 − P[B(p) = 0] = p. In the same
paper, the authors show that Y coincides with the set of all GID distributions. Furthermore, they
show that a probability measure ρ on [0,∞) is GID if and only if its Laplace transform ρ̂ has the
form

ρ̂(λ) =
1

1− log(ρ̂′(λ))
, (4.1)

where ρ̂′ is the Laplace transform of some in!nitely divisible distribution ρ′ on [0,∞). Thanks to
the Lévy-Khinchine representation, this is further equivalent to ρ̂ admitting the following form

ρ̂(λ) =
1

1 + Lλ+
∫→
0 (1− e−λt) ν(dt)

. (4.2)

for some constant L ≥ 0 and some measure ν on (0,∞) with
∫→
0 min(1, t)ν(dt).

Proposition 4.2. Let ρ be a GID distribution on [0,∞)with ρ({0}) = 0 and let {an}n∈N be a sequence
in (0, 1) with an → 1. Then there exists a sequence {πn}n∈N in Mp such that the array {πmn }m,n∈N,

given by πmn = πn satis!es the conditions of Theorem 3.1 and we have ρn
w−→ ρ.

Proof. Let ρ ∈ Mp be a GID distribution, and let ρ′ be an in!nitely divisible probability measure
on [0,∞) such that (4.1) holds. By in!nite divisibility, for each n ∈ N we can !nd a sequence
{Xm

n }m∈N of iid nonnegative random variables such that
mn
∑

k=1

Xk
n ∈ ρ′ wheremn = 3(1− an)

−14. (4.3)

We de!ne {πmn }m,n∈N to be the row-wise constant array given by πmn = πn, where πn is the law of
X1

n.
First, we show that {πmn }m,n∈N satis!es the conditions of Theorem 3.1. Since πmn does not depend

onm, the condition (3a) of Theorem 3.1 is trivially satis!ed, so we are left to argue that πmn ({0}) = 0
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for all m and n, and that {πmn }m,n∈N is null. Since ρ({0}) = 0, we have limλ→→ ρ̂(λ) = 0 and so,
by (4.1),

lim
λ→→

ρ̂′(λ) = 0.

Since π̂n(λ) = (ρ̂′(λ))1/mn , we have limλ→→ π̂n(λ) = 0which implies that πmn ({0}) = πn({0}) =
0. Moreover, since mn → ∞ and ρ̂′(λ) > 0 for λ > 0, we have

lim
n
π̂n(λ) = lim

n
(ρ̂′(λ))1/mn = 1 for λ > 0.

Therefore, πn
w−→ δ{0} which implies that {πmn }m,n∈N is null.

Turning to the convergence ρn
w−→ ρ, we notice that it is equivalent to the convergence

Gn
∑

m=1

Xm
n → ρ in distribution, (4.4)

where {Gn}n∈N is a sequence of N0-geometric random variables with parameters {1−an}n∈N and
independent of {Xm

n }m∈N. We start from the following expressions

E



exp



−λ
mn
∑

m=1

Xm
n

)]

= (π̂n(λ))
mn and E



exp



−λ
Gn
∑

m=1

Xm
n

)]

= E

[

(π̂n(λ))
Gn

]

,

and a straightforward-to-check fact that Gn/mn → E in distribution, where E is an exponen-
tially distributed random variable with parameter 1. Assuming, without loss of generality, that that
{Gn}n∈N and E are all coupled on a probability space whereGn/mn → E, a.s., we obtain

(π̂n(λ))
Gn =

(

ρ̂′(λ)
)Gn/mn →

(

ρ̂′(λ)
)E

, a.s. (4.5)

The dominated convergence theorem allows us to pass the limit in (4.5) outside the expectation.
This implies that

E



exp



−λ
Gn
∑

m=1

Xm
n

)]

→ E

[

(

ρ̂′(λ)
)E
]

= ρ̂(λ),

which, in turn, implies (4.4). !

While it does add tomodeling #exibility, allowing for general {πmn }m,n∈N, as the following propo-
sition shows, does not enlarge the class of attainable distributions ρ.

Proposition 4.3. Suppose that the measure ρ can arise as a limit ρ = limn ρn associated to an array
{πmn }m,n∈N which satis!es the conditions of Theorem 3.1. Then ρ is GID.

Proof. See [KK93, Theorem 5.1, p.116]. !

Remark 4.4.

(1) Propositions 4.2 and 4.3 above should be viewed in the context of the general "theory of
random summation" (see, e.g., themonograph [GK96]) which establishes an almost complete
analogy with the classical theory of triangular arrays of independent random variables.
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(2) The proof of Proposition 4.2 above allows us to give su$cient conditions on the array
{πmn }m,n∈N so that a particular GID distribution ρ is attained as a limit. Indeed, it su$ces
to choose them so that (4.3) holds for the in!nitely divisible "counterpart" ρ′ of ρ, given via
its Laplace transform

ρ̂′(λ) = exp(1− 1/ρ̂(λ)),λ ≥ 0.

Su$cient conditions for that, in turn, are classical and have been very well understood since
the early days of probability (see, e.g., [GK54] or [Kal21, Chapter 7] for a more accessible
modern treatment).

Proposition 4.2 states that any GID distribution can arise in the row-constant case πmn = πn, for
any scaling sequence {an}n∈N. When the dependence on n is restricted further, namely, so that each
πn is a rescaled version of the same probability distribution π (as is the case, e.g., in [JR15, JR16b]),
the limiting distribution must belong, up to scaling, to a speci!c one-parameter family, and the
sequence {an}n∈N is essentially determined by it.

De!nition 4.5. A probability measure ρ on [0,∞) is called the Mittag-Le"er distribution with
parameter α ∈ (0, 1] if its Laplace transform ρ̂ takes the form

ρ̂(λ) =
1

1 + λα
. (4.6)

The Mittag-Le%er distribution admits an explicit density

pα(t) = tα−1Eα,α(−tα), t ≥ 0, (4.7)

where, for α,β > 0, the Mittag-Le"er function Eα,β is given by

Eα,β(x) =
→
∑

n=0

xn

Γ(αn + β)
x ≥ 0,

and Γ denotes the Gamma-function. In the special case α = 1 this distribution is exponential, with
rate 1, while for α = 1/2 its density takes an especially simple form. Indeed, a straightforward, if a
bit tedious, derivation directly from the de!nition yields

p1/2(t) =



2

π

(√
2t−m

(

1√
2t

))

, (4.8)

wherem(x) = 1−Φ(x)
ϕ(x) is the ratio (known as the Mill’s ratio) of the survival function 1−Φ and the

density ϕ of the standard normal distribution.

Proposition 4.6. Let ψ be a probability measure on [0,∞) with ψ({0}) = 0 and let the array
{πmn }m,n∈N be given by

πmn (B) = πn(B) = ψ(nB) for all B ∈ B[0,∞). (4.9)

Then {πmn }m,n∈N satis!es the condition (2) of Theorem 3.1 if and only if one of the following two
conditions are met:

(1) limt→→
ψ[t,→)

1
t

∫ t
0 ψ[s,→)ds

= 0, or

(2) there exists α ∈ (0, 1) such that limt→→
ψ[t,→)
ψ[ct,→) = cα for all c > 0.
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In either case, if an = 1−κnn−α for some κn → κ ∈ (0,∞), ρn converges towards a (possibly scaled)
Mittag-Le"er distribution with parameter α (where α = 1 in case (1)).

Proof. This is, essentially, given in [GK96, Theorem 2.5.1, p. 35] for case (1) and [GK96, Theorem
2.5.2, p. 37] for case (2). While not explicitly mentioned in the statements of these theorems, the
behavior of the scaling sequence can be read o" their proofs. !

Remark 4.7.

(1) In the case (1) the limiting distribution ρ is exponential and the condition is satis!ed, in
particular, if the probability measure ψ admits a !nite !rst moment

∫→
0 tψ(dt) as in [JR15].

(2) The case (2) covers all ψ such that ψ[t,∞) is a regularly varying function with a nontrivial
tail, i.e.,

ψ[t,∞) ∈ l(t)t−α as t → ∞
for some α ∈ (0, 1) and some slowly varying (e.g., constant) function l.

(3) The choice of n as the scaling factor in (4.9) is simply a convenient normalization and can
be easily generalized.

4.2. Feller random measures. If we combine the results of Theorem 3.1 and Proposition 4.2, we
can conclude that for each µ ∈ Mlf and each GID probability measure ρ with ρ({0}) = 0, there
exists a locally !nite random measure ξ whose law is characterized by

Mξ[f ] = exp(h[f ] ∗ µ), f ∈ C0 with f ≤ 1/2, (4.10)

where h = h[f ] is the unique solution in S→
loc to the following convolutional Riccati equation

h = (f + 1
2h

2) ∗ ρ on [0,∞). (4.11)

We call ξ the Feller random measure with parameters (µ, ρ), and denote this by ξ ∈ F (µ, ρ).
When it exists, a nonnegative measurable process {Yt}t≥0 such that

ξ[A] =

∫

A
Yt dt for all A ∈ B([0,∞)), a.s.,

is called the density of ξ.

Remark 4.8. It has been shown in [JR15] and [JR16b] that when ρ is the Mittag-Le%er distribution
with index α > 1/2 and µ is the Lebesgue measure on [0,∞), the Feller randommeasure ξ admits a
density Y which has the distribution of a solution to a Volterra-type stochastic di"erential equation
of the form

Yt = Y0 + c1

∫ t

0
(t− s)α−1(θ − Ys) ds + c2

∫ t

0
(t− s)α−1

√

Yt dBt, (4.12)

where c1, c2 and θ are constants and B is a Brownian motion. The form of (4.12) explains why Y is
called the fractional CIR (or Feller) process in the literature, and alsowhywe adopted the name Feller
random measure for the general case. In addition to [JR15, JR16b], we refer the reader to [EER19]
for further information on the fractional CIR process and to [JLP19] for a treatment of more general
stochastic di"erential equations of the Volterra type.

4.3. Distributional properties.
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4.3.1. Cumulants. We recall that a real sequence {κn[Y ]}n∈N is called the sequence of cumulants of
(the distribution of) the random variable Y if

E[exp(εY )] = exp





∑

n≥1

εn

n!
κn[Y ]





for ε in some neighborhood of 0. For a pair (X,Y ), we also de!ne the partial cumulants κn[X,Y ]
by

E[exp(X + εY )] = exp





∑

n≥0

εn

n!
κn[X,Y ]





provided the series converges for ε in some neighborhood of 0. As is well known, knowledge of cu-
mulants of a distribution is tantamount to the knowledge of its moments. Indeed, the two sequences
are related to one another via an explicit formulas based on Faà di Bruno’s formula and involving
Bell polynomials (see [Smi95]).

As our next result shows, cumulants of random variables of the form f ∗ ξ, where ξ ∈ F (ρ, µ),
satisfy a simple recursive relationship and admit explicit representation. Partial cumulants admit a
representation in terms of a solution of a system of convolutional equations.

Proposition 4.9. Let ξ be a Feller random measure with parameters ρ and µ, and let f ∈ C0.

(1) The cumulants κn[f ∗ ξ] of f ∗ ξ are given by

κn[f ∗ ξ] = n!Kn ∗ µ for n ≥ 1,

where the functions Kn ∈ S→
loc are de!ned recursively by

K1 = f ∗ ρ, Kn = 1
2

(

∑n−1
i=1 KiKn−i

)

∗ ρ for n ≥ 2. (4.13)

(2) For f0 ∈ C0 with f ց 1/2, the partial cumulants κn[f0 ∗ ξ, f ∗ ξ] are given by

κn[f0 ∗ ξ, f ∗ ξ] = n!K ′
n ∗ µ for n ≥ 1,

where {K ′
n}n∈N0 is the unique solution in (S→

loc)
N0 of the system

K ′
0 = h[f0],

K ′
1 = f +

(

K ′
0K

′
1

)

∗ ρ
K ′

n = 1
2

(
∑n

i=0 K
′
iK

′
n−i

)

∗ ρ for n > 2.

(4.14)

Proof. To obtain (2), we simply combine the representation (4.10) with Proposition A.8 with F =
h[f0] and G = f . The assertion in (1) is a special case of (2) with F = h[0] = 0 and G = f . In that
case, the system (4.14) simpli!es and turns into the recursive de!nition given in (4.13). !

The !rst three cumulants/moments are given below:

κ1 = E[f ∗ ξ] = (f ∗ ρ) ∗ µ

κ2 = Var[f ∗ ξ] =
(

(f ∗ ρ)2 ∗ ρ
)

∗ µ

κ3 = E

[

(f ∗ ξ − E[f ∗ ξ])3
]

= 3
((

(

(f ∗ ρ)((f ∗ ρ)2 ∗ ρ)
)

)

∗ ρ
)

∗ µ

(4.15)
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4.3.2. In!nite divisibility. The following "branching" property of F (µ, ρ) follows directly from the
characterization (4.10), (4.11).

Proposition 4.10. Suppose that ξ1 ∈ F (µ1, ρ) and ξ2 ∈ F (µ2, ρ) where µ1, µ2 are locally !nite and
ρ is a probability measure with ρ({0}) = 0. If ξ1 and ξ2 are independent then

ξ1 + ξ2 ∈ F (µ1 + µ2, ρ).

Corollary 4.11. Given ξ ∈ F (µ, ρ), the random variable (f ∗ξ)(t) is in!nitely divisible for all f ∈ C0

and t ≥ 0.

We say that a stochastic process {Yt}t≥0 is in!nitely divisible if the random vector (Yt1 , . . . , Ytn)
is in!nitely divisible for any n ∈ N, 0 ≤ t1 < t2 < · · · < tn < ∞.

Corollary 4.12. Suppose that F ( 1
N µ, ρ) admits a right-continuous density Y (N) for each N ∈ N.

Then Y (1) is in!nitely divisible.

4.3.3. The Covariance Structure. The polarization identity and the expression for κ2 in (4.15) yield

Cov[f ∗ ξ, g ∗ ξ] =
(

(

(f ∗ ρ)(g ∗ ρ)
)

∗ ρ
)

∗ µ, (4.16)

for f, g ∈ C0. We can rewrite (4.16) as

Cov[f ∗ ξ, g ∗ ξ](t) =
∫∫

f(t− r)g(t− s)γ(dr, ds), (4.17)

where

γ(dr, ds) =

∫

ρ(dr − u)ρ(ds − u)(ρ ∗ µ)(du)

i.e., γ(B) =
∫

(

∫∫

1B+(u,u)(s, r)ρ(ds)ρ(dr)
)

(ρ∗µ)(du) forB ∈ B([0,∞)× [0,∞)). In the special

case when ρ admits a density p with respect to Lebesgue measure, the measure γ is absolutely
continuous and

γ(dr, ds) = Σ(r, s) dr ds where Σ(r, s) =

∫

p(r − u)p(s− u)(p ∗ µ)(u) du. (4.18)

A further specialization yields tight asymptotics around the "diagonal" r = s. For two functions
f : Df ր Rd → R and g : Dg ր Rd → R we write f ≈ g if for each bounded B ∈ B(Rd) there
exists a strictly positive constant C such that f ≤ Cg and g ≤ Cf on Df ∩Dg ∩B.

Proposition 4.13. Suppose that ρ is a Mittag-Le"er distribution with parameter α ∈ (0, 1], and that
µ is the Lebesgue measure on [0,∞). Then

Σ(r, s) ≈α (r, s) (4.19)

where Γα :
{

(s, r) ∈ (0,∞)2 : s 7= r
}

→ (0,∞) is a symmetric function de!ned for r < s by

Bα(r, s) = r2αsα−1











(

1− r
s

)2α−1
, α < 1

2 ,

1− log(1− r
s), α = 1

2 ,

1, α > 1
2 .

(4.20)
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Proof. Being entire, the Mittag-Le%er function Eα,α satis!es Eα,α ≈ 1, and so, thanks to (4.7), we
have p(t) ≈ tα−1. Moreover, since µ is the Lebesgue measure, we have (p ∗ µ)(t) ≈ tα so that

p(r − u)p(s− u)(p ∗ µ)(u) ≈ (r − u)α−1(s− u)α−1uα.

Therefore, by (4.18), we have

Σ(r, s) ≈
∫ r

0
(r − u)α−1(s− u)α−1uα du = r2αsα−1

∫ 1

0
(1− w)α−1(1− r

sw)
α−1wαdw

According to [DLM, eq. (15.6.1)], we have
∫ 1

0
(1− w)α−1(1− r

sw)
α−1wαdw = Γ(α+ 1)Γ(α) 2F1

(

1− α,α+ 1; 2α + 1;
r

s

)

,

where 2F1 denotes the hypergeometric function. Since 2F1 is entire, we have 2F1 ≈ 1 which,
coupled with di"erent asymptotic regimes described in [DLM, §15.4.2], implies that

2F1(1− α,α+ 1; 2α + 1;x) ≈ (1− x)2α−1 for α < 1
2 ,

2F1(1− α,α+ 1; 2α + 1;x) ≈ 1− log(1− x) for α = 1
2 , and

2F1(1− α,α+ 1; 2α + 1;x) ≈ 1 for α > 1
2 ,

which, in turn, establishes (4.19). !

Corollary 4.14. Suppose that ρ is a Mittag-Le"er distribution with parameter α ∈ (0, 1], and that µ
is the Lebesgue measure on [0,∞). Then ξ ∈ F (µ, ρ) admits a square-integrable density if and only if
α > 1/2.

A,,endix A. The convolutional Riccati eqation

We collect in this appendix several properties of the solutions of the convolutional Riccati equa-
tion

K = F + 1
2K

2 ∗ ρ (A.1)

used throughout the paper. We !x T ≥ 0 and focus on functions de!ned [0, T ]. Extensions to locally
de!ned spaces, such as S→

loc are straightforward. We assume that ρ ∈ Mp satis!es ρ({0}) = 0, but
do not put any other restrictions on it. A constant depending only on a quantities q1, q2, . . . is
denoted by C(q1, q2, . . . ) and can change from occurrence to occurrence.

A.1. Comparison, bounds and stability.

Lemma A.1. Suppose that K ∈ S→[0, T ] satis!es

K ≥ (QK) ∗ ρ on [0, T ]. (A.2)

for some Q ∈ S→[0, T ] with Q ≥ 0. Then K ≥ 0.

Proof. We set F = (QK) ∗ρ−K ≥ 0, so thatK = F +(QK) ∗ρ on [0, T ]. Given t > 0, we de!ne
the operatorAt by AtL = F + (QL) ∗ ρ for L ∈ S→[0, t] so that,

|AtL2 −AtL1|S∞[0,t] ≤∈ εtQ(t− s)|L2(t− s)− L1(t− s)|ρ(ds)

≤
(

|Q|S∞ρ[0, t]
)

|L2 − L1|S∞[0,t] for L1, L2 ∈ S→[0, t].
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Since ρ[0, t] → ρ({0}) = 0 as t ↘ 0, there exists ε > 0 (which depends only on an upper bound
on |Q|S∞[0,T ] and ρ, but not on F ) such that Aε is a contraction on S→

[0,ε]. For such ε, we have

K = limnAn
ε (F ) in S→

[0,ε], and, since Aε is a positive operator and F ≥ 0, it follows thatK ≥ 0 on

[0, ε].
To extend the conclusion of the previous paragraph from [0, ε] to the entire [0, T ], we assume,

without loss of generality, that T = Nε for some N ∈ N. If N = 1, we are done. Otherwise,
for i ∈ {0, . . . , N − 1} we set Ki(t) = K(iε + t), Qi(t) = Q(iε + t) and F i(t) = F (iε + t) +
∫ iε
0 Q(s)K(s)ρ(iε+ t− ds) for t ∈ [0, ε] and observe that

Ki(t) = F (iε+ t) +

(
∫ iε

0
+

∫ iε+t

iε

)

Q(s)K(s) ρ(iε + t− ds)

= F i(t) +

∫ iε+t

iε
Q(s)K(s)ρ(iε + t− ds)

= F i(t) +

∫ t

0
Qi(u)Ki(u)ρ(t− du) = F i(t) +

(

(QiKi) ∗ ρ
)

(t).

Assuming, as the induction hypothesis, thatK ≥ 0 on [0, iε], we haveF i(t) ≥ 0 on [0, ε]. Moreover,
∣

∣Qi
∣

∣

S∞[0,ε]
≤ |Q|S∞[0,T ], so we can use the result of the previous paragraph to conclude thatK

i ≥ 0

on [0, ε], i.e., thatK ≥ 0 on [0, (i + 1)ε]. Therefore,K ≥ 0 on [0, T ]. !

Proposition A.2. Suppose that that F1, F2,K1,K2 ∈ S→[0, T ] are such that

K1 ≤ F1 +
1
2K

2
1 ∗ ρ andK2 ≥ F2 +

1
2K

2
2 ∗ ρ.

If F1 ≤ F2 and K1 +K2 ≥ 0 then K1 ≤ K2.

Proof. We observe that the functionK = K2 −K1 satis!es the inequality

K ≥ F2 − F1 +
1
2(K

2
2 −K2

1 ) ≥ (QK) ∗ ρ where Q = 1
2 (K1 +K2).

Since Q ≥ 0, by the assumption, Lemma A.1 above can be applied to conclude that K ≥ 0, i.e.,
K2 ≥ K1. !

Lemma A.3. Suppose that F ∈ S→[0, T ] satis!es |F | ≤ 1/2 and that K solves (A.1). Then

−|F |S∞[0,t] ≤ K(t) ≤ 1−
√

1− 2|F |S∞[0,t] for all t ∈ [0, T ]. (A.3)

Proof. To get the lower bound, we simply observe thatK ≥ F . For the upper bound, we de!ne

K2(t) = 1−
√

1− 2|F |S∞[0,t].

SinceK2 is nonnegative and nondecreasing, we have K2
2 ∗ ρ ≤ K2

2 , and, so,

K2(t)− 1
2(K

2
2 ∗ ρ)(t) ≥ K2(t)− 1

2K
2
2 (t) = |F |S∞[0,t] ≥ F (t)

We have

(K +K2)(t) ≥ −|F |S∞[0,t] + 1−
√

1− 2|F |S∞[0,t] =
1
2

(

1−
√

1− 2|F |S∞[0,t]

)2
≥ 0,

which allows us to use Proposition A.2 above with K1 = K and F1 = F2 = F to conclude that
K ≤ K2. !
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Proposition A.4. Suppose that M ≥ 0 and Ki, Fi ∈ S→[0, T ] are such that |Ki|S∞[0,T ] ≤ M for
i = 1, 2 and

Ki = Fi +
1
2K

2
i ∗ ρ for i = 1, 2, (A.4)

then
∫ T

0
|K2 −K1|S∞[0,t] dt ≤ C(ρ,M, T )

∫ T

0
|F1 − F2|S∞[0,t] dt. (A.5)

In particular, (A.1) has at most one solution in S→[0, T ] for F ∈ S→[0, T ].

Proof. For t ∈ [0, T ] we de!ne m(t) = |K2 −K1|S∞[0,t] and mF (t) = |F2 − F1|S∞[0,t]. For s ≤
t ≤ T we have

|K2(s)−K1(s)| ≤ |F2(s)− F1(s)|+ 1
2

∫ s

0

∣

∣K2
2 (s− u)−K2

1 (s− u)
∣

∣ ρ(du)

≤ mF (s) +M

∫ s

0
m(s− u) ρ(du),

so that

m ≤ mF +M(m ∗ ρ) on [0, T ].

We multiply both sides by exp(−λ·) and integrate on [0, T ] to obtain
∫ T

0
e−λtm(t) dt ≤

∫ T

0
e−λtmF (t) dt+M

∫ T

0

∫ t

0
e−t−um(t− u) e−λuρ(du) dt

=

∫ T

0
e−λtmF (t) dt+M

∫ T

0

∫ T−u

0
e−λsm(s) ds e−λuρ(du)

≤
∫ T

0
e−λtmF (t) dt+M

(
∫ T

0
e−λtm(t) dt

)(
∫ T

0
e−λuρ(du)

)

≤
∫ T

0
e−λtmF (t) dt+

(

M

∫ T

0
e−λuρ(du)

)
∫ T

0
e−λtm(t) dt

Since ρ({0}) = 0, there exists λ0 = λ0(ρ,M) ≥ 0 such that

M

∫ T

0
e−λ0uρ(du) ≤ 1/2.

With such λ0, we have

e−λ0T
∫ T

0
m(t) dt ≤

∫ T

0
e−λ0tm(t) dt ≤ 2

∫ T

0
e−λ0tmF (t) dt ≤ 2

∫ T

0
mF (t) dt,

which implies (A.5) with the constant 2 exp(λ0T ).
To prove uniqueness note that for F1 = F2 = F (A.5) yields

∫ T

0
|K2 −K1|S∞[0,t] dt = 0,
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which, in turn, implies that |K2 −K1|S∞[0,t] = 0, a.e., on [0, T ]. It follows, by monotonicity, that

K1 = K2 on [0, T ). The missing equality K1(T ) = K2(T ) is a consequence of the assumption
ρ({0}) = 0 since

K2(T )−K1(T ) =
1
2

∫

(0,T ]

(

K2
2 (T − u)−K2

1 (T − u)
)

ρ(du) = 0. !

A.2. Existence and series representation. We start from an in!nite triangular system of convo-
lutional equations:

K0 = B,

K1 = F + (K0K1) ∗ ρ

Kn =



1

2

n
∑

i=0

KiKn−i

)

∗ ρ for n > 2.

(A.6)

in the unknown functions {Kn}n∈N0 , where B,F ∈ S→[0, T ].
In order to establish well-posedness of (A.6), we list in Lemma A.5 below a few well-known

basic facts about linear convolution equations. We omit the standard argument based on Banach’s
!xed-point theorem.

Lemma A.5. Suppose that F,B ∈ S→[0, T ] are such that |B|S∞[0,T ] < 1. Then the equation

K = F + (BK) ∗ ρ (A.7)

admits a unique solution K in S→[0, T ]. Moreover K satis!es

|K|S∞[0,T ] ≤
|F |S∞[0,T ]

1− |B|S∞[0,T ]

. (A.8)

Proposition A.6. Suppose that |B|S∞[0,T ] < 1. Then the system (A.6) has a unique solution in

(S→[0, T ])N0 , denoted by {Kn[B,F ]}n∈N0 . Moreover,

|Kn[B,F ]|S∞[0,T ] ≤ Cn−3/2



2|F |S∞[0,T ]

(1− |B|S∞[0,T ])
2

)n

for all n ∈ N. (A.9)

Proof. We observe that for n ≥ 1, the n-th equation in the system (A.6) can be written in the form

Kn = Fn + (BKn) ∗ ρ, where Fn =

{

F, n = 1,
1
2

∑n−1
i=1 (KiKn−i) ∗ ρ, n ≥ 2.

(A.10)

We also observe thatFn does not involveKn or anyKm withm > n. This allows us to argue induc-
tively, using Lemma A.5 in each step, that the system (A.6) has a unique solution {Kn[B,F ]}n∈N0

in (S→[0, T ])N0 and that

|Kn[B,F ]|S∞[0,T ] ≤ M |Fn|S∞[0,T ] whereM = (1− |B|S∞[0,T ])
−1.

This implies that |K1[B,F ]|S∞[0,T ] ≤ M |F |S∞[0,T ] and that

|Kn[B,F ]|S∞[0,T ] ≤
1
2M

n−1
∑

i=1

|Ki[B,F ]|S∞[0,T ]|Kn−i[B,F ]|S∞[0,T ] for n ≥ 2. (A.11)
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If F = 0 thenKn[B,F ] = 0 for all n ≥ 1. Otherwise, we set

cn =
2n−1|Kn[B,F ]|S∞[0,T ]

M2n−1|F |nS∞[0,T ]

, for n ≥ 1,

so that, by (A.11),

c1 ≤ 1 and cn ≤
n−1
∑

i=1

cicn−i for n ≥ 2.

We recall that the sequence {Cn}n∈N0 of Catalan numbers satis!es (see [Rom15, eq. (1.2), p. 3]) the
recurrence relation

Cn =
n
∑

k=1

Ck−1Cn−k, C0 = 1,

Hence, by induction, cn ≤ Cn−1, for all n ≥ 1 and so, the standard asymptotics (see e.g. [Rom15,
Theorem 3.1, p. 15]) for Catalan numbers implies that

cn ∈
4n−1

n3/2
√
π
as n → ∞,

which, in turn, implies (A.9). !

LemmaA.7. LetB,F ∈ S→[0, T ] be such that |B|S∞[0,T ] < 1 and |F |S∞[0,T ] ≤
1
2(1−|B|S∞[0,T ])

2,

and let {Kn[B,F ]}n∈N0 ∈ (S→[0, T ])N0 be the unique solution to the system (A.6). Then the series
∑

n≥0Kn[B,F ] converges absolutely in S→[0, T ] and its sum

K[B,F ] :=
∑

n≥0Kn[B,F ]

satis!es the equation

K[B,F ] = F + 1
2(K[B,F ])2 ∗ ρ+B − 1

2B
2 ∗ ρ (A.12)

Proof. The assumption on the size of F implies, via Proposition A.6, that, using the shortcuts K =
K[B,G] and Kn = Kn[B,F ], we have

|Kn|S∞[0,T ] ≤ Cn−3/2 for n ∈ N.

This, in turn, implies that the series
∑

n≥0Kn converges absolutely in S→[0, T ]. Moreover,

1
2K

2 ∗ ρ = 1
2

(

∑

n≥0 Kn

)2
∗ ρ = 1

2K
2
0 ∗ ρ+ (K0K1) ∗ ρ+

∑

n≥2

(

1
2

∑n
i=0KiKn−1

)

∗ ρ

= 1
2B

2 ∗ ρ+ (K1 − F ) +
∑

n≥2Kn = 1
2B

2 ∗ ρ−B +K − F. !

Proposition A.8. If |F |S∞[0,T ] ≤ 1/2 the function

K[F ] =
∑

n≥1 Kn[0, F ] (A.13)

de!nes the unique solution of (A.2) in S→[0, T ]. Moreover if G ∈ S→[0, T ] and ε ∈ R are such that
|F |S∞[0,T ] + |ε||G|S∞[0,T ] ≤ 1/2 we have

K[F + εG] = K[F ] +
∑

n≥1 ε
nKn[K[F ], G].

with absolute convergence in S→[0, T ] .
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Proof. In the special case B = 0, the conditions of Lemma A.7 are satis!ed as soon as |F |S∞[0,T ] ≤
1/2. Therefore (A.13) de!nes a solution to (A.1). Uniqueness is the content of Proposition A.4 above.

Let F , G and ε be as in the second part of the statement. Thanks to Lemma A.3 above, we have

|K[F ]|S∞[0,T ] ≤ max
(

|F |S∞[0,T ], 1−
√

1− 2|F |S∞[0,T ]

)

= 1−
√

1− 2|F |S∞[0,T ].

so that
1
2(1− |K[F ]|S∞[0,T ])

2 ≥ 1/2− |F |S∞[0,T ] ≥ |εG|S∞[0,T ],

which is exactly what is needed for Lemma A.7 to apply. Therefore,

h[F + εG] = K[F ] +
∑

n≥1 Kn[K[F ], εG].

It remains to observe that functions ε−nKn[K[F ], εG] solve the system (A.6) for any ε 7= 0, so that,
by uniqueness, we have

Kn[K[F ], εG] = εnKn[K[F ], G] for ε ∈ R. !
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