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A SCALING LIMIT FOR ADDITIVE FUNCTIONALS
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ABSTRACT. Inspired by models for synchronous spiking activity in neuroscience, we consider
a scaling-limit framework for sequences of strong Markov processes. Within this framework,
we establish the convergence of certain additive functionals toward Lévy subordinators, which
are of interest in synchronous input drive modeling in neuronal models. After proving an
abstract theorem in full generality, we provide detailed and explicit conclusions in the case of
reflected one-dimensional diffusions. Specializing even further, we provide an in-depth analysis
of the limiting behavior of a sequence of integrated Wright-Fisher diffusions. In neuroscience,
such diffusions serve to parametrize synchrony in doubly-stochastic models of spiking activity.
Additional explicit examples involving the Feller diffusion and the Brownian motion with drift
are also given.

1. INTRODUCTION

1.1. Neuroscientific motivation. This work is concerned with constructing and characteriz-
ing scaling limits of certain additive functionals of reflected diffusions and more general strong
Markov processes that feature in a variety of applied fields including statistical inference [TJOT;
GG11; BJP12], economics and finance [Kru91l; LS07; Lin05], queuing theory [Kin61; Har88;
RRO08] and mathematical biology [RS87].

Our primary motivation, however, stems from mathematical neuroscience. Within that field, a
leading approach to modeling neural networks posits that neuronal state variables obey systems
of coupled stochastic differential equations [GK02; Izh07]. In that approach, these neuronal state
variables model membrane voltages and evolve continuously in time, whereas the interactions
coupling these variables occur in an impulse-like fashion, by exchanging spikes among neurons.
A core conundrum in mathematical neuroscience is understanding the relationship between the
structure of neural networks and the regime of spiking activity that they support. Addressing
this question hinges on producing a repertoire of probabilistic spiking models that is rich enough
to reproduce realistic spiking activity, but also simple enough to drive stochastic dynamics that
are amenable to analysis [GN09].

One such recently proposed stochastic model [Bec+24] captures synchrony in spiking neurons
by using mixtures of iid distributions. More precisely, it models spiking configurations of K
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neurons as random vectors (By, ..., Br) € {0, 1}¥ with probability law

K
170 -2
k=1

where Z has the distribution F(dz) (called the mixing measure) supported by [0,1]. Thus,
F' represents the probability distribution of the fraction Z of coactivating inputs. The more
dispersed the distribution F', the more synchronous the spiking activity, a phenomenon that
can be quantified by remarking that Cov[By, B;] = Var[Z], k # [, so that the pairwise spiking
correlation satisfies

p = corr [By, Byl = Var [Z] /(E[Z] (1 — E[Z])) for k # .

As the model is exchangeable with respect to the neuron indices, it is enough to focus on the
total number of spiking neurons S = Zszl By. Moreover, to make the model dynamic, we
replace S by a sequence {S;};cn of iid copies of S, where j plays the role of time.

Next, we pick a family of mixing distributions {F*}__, on [0,1] whose means scale linearly
with € as € N\, 0, and construct the family {SJ€ }ien, € > 0 as above. The scaling limit

t/e]

Y(t)=lim Y S5t >0, (1.2)

e\0 “4 J
J=1

P[B, =b,...,Bx = bg] =E (1.1)

can be shown to be a compound Poisson process whose jumps come at rate lim.\ o(1-P[S® = 0]) /e,
with the size J of each jump distributed as P[J = k] = lim .\ oP[S* =k | S > 0] fork =1,..., K.
The limiting spiking correlation can be backed out of this distribution as follows:

lim o = B = D]

e\ (K — 1)E[J]
These compound Poisson processes can then serve as models for synchronous input drive to
biophysical neuronal models, where the degree of synchrony is entirely parametrized by the
jump distribution. Importantly, such compound-Poisson-process drives are simple enough to
allow for the analysis of the resulting driven neuronal dynamics, e.g., via classical point-process
techniques [BB13]. For instance, one can derive formulas quantifying the impact of synchrony
on the mixed moments of the neuronal voltage responses [Bec+24].

There are two key limitations to the approach of [Bec+24]. First, being computationally ori-
ented, the analysis of [Bec+24] focuses on a single exemplar, namely, a family of mixing measures
with beta distributions F. ~ Be(a., ) with az = fre/(1 — re) and for which p =1/(1+ (). In
this narrow setting, it is possible to derive the exact jump distribution of the limiting compound
Poisson process. However, it is unclear whether one can obtain similar exact results for a wider
class of mixing measures, possibly corresponding to more realistic modeling choices. Second, the
construction by which compound Poisson processes emerge asymptotically in [Bec+24] is rather
unphysical as it assumes perfect independence across time at each step of the scaling process.
Such an assumption is contrary to biophysically realistic models of spiking activity which are
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known to exhibit nonzero correlation time. It would therefore be desirable to obtain asymp-
totic independence via a limiting procedure involving physically relevant, temporally correlated
spiking models rather than artificially independent ones.

A more realistic approach to modelling synchrony in discrete time uses doubly-stochastic
models of spiking activity: total spiking counts are defined as random variables {5} en with

J
]P)[Sl =51,...,95 = SJ] =E H (f)Z;J(l — Zj)l_sj , (13)
j=1 "7

for J € Nand sq,...,s5 € {1,..., K}, where Z; = fj]—l X dt, j € Nand {X;}s>0 is a continuous-
time process with values in [0, 1], for instance the Wright-Fisher diffusion which will be treated
in detail later in the paper.

Given this setting, the primary motivation for this work is to understand under which con-
ditions more realistic doubly-stochastic models such as (1.3) yield compound Poisson scaling
limits. To formulate this problem more generally, let us remark that for the independent spiking
models (1.1) the process X is constant on intervals [j—1, j) with iid F*-distributed values. In the
properly chosen scaling limit, with F*¢ taken to be a beta distribution parameterized as above,
dZ* converges towards the random measure dA on [0,00) as € \, 0, such that A is the Lévy
subordinator with jump measure rB3z~! (1 — x)ﬁ ~Ldz. Tt is straightforward to show that given
a discrete spiking generation mechanism, e.g., a binomial or Poisson random generator, the limit
compound Poisson processes Y (t) emerge as scaling limits if and only if the limit mixing process
is a nondecreasing Lévy process. Since the mixing process of the doubly-stochastic model (1.3)
is given by the additive functional t — fot X, ds associated to the underlying Markov process X,
the general form of the problem at stake is to determine under which conditions scaling additive
functionals of Markov processes admit a Lévy subordinator as a limit.

1.2. Our contributions. The main focus of this work is the derivation of a class of scaling limits
which, in special cases, apply to models that address some of the above-mentioned limitations
of [Bec+24]. Before we describe them, let us outline the major mathematical contributions of
the paper.

1.2.1. The abstract convergence theorem. In their most general form, our results establish con-
ditions under which scaling limits of nonnegative additive functionals of stationary reflected
diffusions and, even more generally, stationary strong Markov processes converge to Lévy sub-
ordinators. While we give a formal definition at the beginning of Section 2, we remark here
that, informally speaking, an additive functional {A;}c0,c) of @ Markov process { X }e(o,00) 18

a generalization of the integral functional ¢ — fot 9(Xs) ds where g is deterministic, and includes,
e.g., the local time functional (which corresponds, formally, to the case g = d;9y when X is a
Brownian motion and the local time is accumulated at 0).

Visit times of a recurrent point xy of a Markov process X split its trajectory into a sequence
of independent excursions. This independence property then transfers to the increments of an
additive functional A of X between visits to xg. This observation suggests a limiting regime in
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which the visits to xzg are “encouraged” by, for example, a time speedup. As the limit is ap-
proached, one has better and better mixing properties (in the sense of dynamical systems) which
leads to the convergence of the additive functional to a process with independent increments,
i.e., a Lévy process. These ideas are formalized in Theorem 2.1, with the most delicate task
being the identification of an appropriate topology on the path space. Indeed, the standard Sko-
rokhod’s Ji—topology happens to be too strong as we expect sequences of continuous processes
(such as integrals of diffusions) to converge towards a discontinuous process (a non-deterministic
Lévy subordinator) in our setting. It turns out that another topology introduced by Skorokhod
in [Sko56], namely, the M;j-topology, accomplishes the task. Indeed, our main, abstract, result
establishes weak-M; convergence of a sequence of nondecreasing additive functionals of a se-
quence of general strong Markov processes towards a Lévy subordinator, provided that three
conditions are met. The first one is of technical nature and requires a uniform bound on the
moduli of continuity of the expectations of the additive functionals. The second makes sure that
the recurrent point xy gets visited with higher and higher frequency, while the third concerns
the convergence of the one-dimensional distributions of the additive functionals. In addition to
the convergence result itself, our theorem gives an expression for the Laplace exponent of the
limiting Lévy subordinator.

To the best of our knowledge, the convergence of additive functionals of Markov processes
to subordinators has not been systematically studied in the literature. We do draw attention
to the recent work [Bét23] where convergence towards a stable Lévy process for sequences of
integrated one-dimensional diffusions is shown. In addition, related work on the convergence of
additive functionals, by [JKO09] in the Markov chain setting and by [CCG21] on the functional
central limit theorems for diffusions should be mentioned.

1.2.2. Reflected diffusions. Following our abstract result, we specialize to stationary one-di-
mensional reflected diffusions and give sufficient conditions (Theorem 3.2) on the sequence of
characteristics of the diffusions (speed measures and scale functions) and the characteristics of
the additive functionals (Revuz or representing measures). These are stated explicitly in terms
of the sequence of fundamental solutions associated with the diffusions killed at ”rates” dictated
by the additive functionals. Through this killing operation we combine each diffusion in the
sequence with its associated additive functional into a single killed diffusion which can than be
analyzed by analytic means. As a result, we derive a purely analytic criterion for convergence in
this framework, and give an expression for the Laplace exponent of the limiting subordinator.

1.2.3. The Wright-Fisher diffusion. Next, we return to our original application and consider a
model specified by (1.3) above, i.e., more precisely, the mixing process Z where the background
process X is a reflecting diffusion. In an effort to retain the marginal beta distribution, as in
the approach of [Bec+24], we choose the scaled stationary Wright-Fisher diffusion with three
parameters «, 5 and 7 as a model for our background parameter X. The first two, a and
dictate the shape of the marginal beta distribution, while 7 plays a role in scaling and time
correlation. The biophysically relevant regime where 3 is fixed, while o — 0 and 7° — 0 at
the same rate is adopted and the additive functionals are given by the integrals fot X¢(u) du.
Using the sufficient conditions of the previous section, we show that the limiting subordinator
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is a process whose Laplace functional can be expressed in terms of a quotient of modified Bessel
functions of the first kind. We stress that our analysis is made significantly more complicated
by the fact that explicit expressions for the fundamental solutions are not available for the
killed Wright-Fisher diffusion. Our approach is via series expansions where we show that one
can pass to the appropriate limit on the level of functions by passing to the limit coefficient-
by-coefficient. This, in turn, can be accomplished by observing that the coefficients come as
solutions to inhomogeneous but linear second-order recursive equations. The coefficients of
these recursive relations admit simple limits which then serve as the coefficients of the limits
recursion whose solution can be expressed in terms of hypergeometric and/or Bessel functions.

The limiting subordinator we obtain in this case has not been studied extensively in the
literature, to the best of the authors’ knowledge. Interestingly it has been featured in [PY03,
eq. (48), p. 12] where it is shown to admit a representation in terms of a time-changed occupation
time of a Bessel process. The last contribution of the section is a detailed study of various
properties of this subordinator. There we determine the range of finite moments of the jump
measure, give an explicit expression for its jump density in terms of the positive zeros of the
Bessel function, provide a computationally efficient recursive formula for its moments, express
its cumulants in terms of the Rayleigh function, and exhibit an unexpectedly simple continued-
fraction expansion of the Laplace exponent.

1.2.4. Additional examples. Besides our main example, the Wright-Fisher diffusion, we treat
explicitly two more. One involves Feller diffusions and the other the Brownian motion with
drift in specific, interesting, limiting regimes. In both situations, the increasing and decreas-
ing fundamental solutions of the killed processes admit explicit expressions in terms of special
functions: the Kummer U-function for the Feller diffusion and the Airy A and B functions for
the Brownian motion with drift. This simplifies the analysis and leads to thought-provoking
findings; while the limit in the Feller case is the inverse-Gaussian subordinator, it degenerates
to a determistic linear function even in the only natural scaling regime for the Brownian motion
with drift.

2. CONVERGENCE TOWARDS A LEVY SUBORDINATOR

Our first task is to prove an abstract convergence theorem for strong Markov processes. Even
though all applications later in the paper fit into a diffusion framework, this level of generality
allows us to better highlight the key properties we need, and provide a basis for eventual future
applications.

For a metric space E, let D(E) be the set of all right-continuous functions w : [0,00) — F
which admit left limits at all ¢ > 0. Such functions are commonly referred as cadlag(short for
“continue & droite, limite & gauche”). D(FE) comes naturally equipped with the o-algebra D(F)
generated by the evaluation maps X (t) : D(E) — E, X(t)(w) = w(t), as well as with the family
{0(t) }1e[o,00)> of shift operators 6(t) : D(E) — D(FE) given by by (0(t)(w))(u) = w(t + u) for
t,u > 0.

Let {E, }nen be a sequence of metric spaces, end let {z,, },en be a sequence of points x,, € E,,.
Moreover, for n € N, let P, be a measure on D(E,), and let {F,,(?) };c[0,00) be the Pp-completion
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of the natural filtration of the (canonical) process X, = {Xn(t)}ic[0,00) made up of evaluation
maps. on D(E,).

We assume that X,, is a time-homogeneous strong Markov process under P,,. More pre-
cisely, we assume that for each bounded random variable G on D(E),,), there exists a bounded
measurable function g, : £, — R such that for each {F,(t)}c[0,00)-Stopping time 7, we have

E, [G o 0,(T) | Fu(T)] = gn(Xn(7)), Pp-as. on {7 < oo}, (2.1)

where E, [-] denotes the expectation operator with respect to P,. In fact, we only need the
Markov property to hold on deterministic times and the following stopping times
Tt = inf{s >t : X,(s) =z, }.

Next, let { A, }nen be a sequence nondecreasing additive functionals on D(E,,). More precisely,
forn € N, A, is an {fn(t)}te[opo)—adapted, cadlag and nondecreasing process with the property
that A,,(0) =0 and, for each s > 0, we have

Ap(t+s) = Ap(t) + (An(s)) o 0y for all ¢ > 0,P,-a.s. (2.2)

Before we state the main result of this section, we recall that for each Lévy subordinator (non-
decreasing Lévy process) X there exists a nonnegative function ®—called the Laplace exponent
of X—such that E[exp(—uX;)] = exp(—t®(u)). We refer the reader to [Whi02, Chapter 12] for
the definition and the important properties of the Skorokhod’s M;-topology.

Theorem 2.1. Suppose that the following conditions hold:
(1) For each t > 0, TEt st in distribution as n — 0o.
(2) There ezists a function a : [0,00) — [0,00), continuous at 0, such that a(0) = 0 and, for
all 0 < s<t<ooandn €N, we have
E,[An(t) = An(s)] < a(t —s)

(3) There exists a constant A > 0 such that the limit

RM = limE, [ /0 h exp( — M- uAn(t)> dt] (2.3)

exists for all pu > 0.
Then the sequence {An(t)}icp,00) converges in law, under the Skorokhod’s My-topology, to a
Lévy subordinator whose Laplace exponent ®(u) is given by
1
Proof. For the sake of clarity, we divide the proof into four steps. As it will appear throughout
the proof, we define the following shortcut:

Tn = Trgzc n’tv
where the dependence on ¢ will always be clear from the context.

Step 1. For n € N, let Q, denote the law of A, on D(]|0,00)). Our first claim is that
assumption (2) implies that the family {Q,, },ecn is tight under the M; topology on D([0,0)).
It will be enough to prove this fact for the restrictions of our processes to bounded intervals
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of the form [0,7), T > 0 (see [Whi02, section 12.9, pp. 414-416]). We base our approach on
[Whi02, Theorem 12.12.3, p. 426] which gives two necessary and sufficient conditions, labeled
(i) and (ii), for tightness under M; on D([0,T]). Condition (i) is easily seen to be satisfied in
our case because our assumption (2) implies that sup,, E,[A4,(T)] < co. Condition (ii) is related
to the modulus of continuity w’, which is defined in [Whi02, eq. (12.2), p. 424] as a maximum

S
of three terms. Since our processes are non-decreasing, the second term trivially vanishes. The

third term can be safely ignored since it is used to control the behavior at T', a point we left
out of our domain [0,7") precisely for this reason. This leaves us with a single term, and the
following, simplified version of condition (ii):

Ve,n>0,36>0, VneN, P, [A,(5) >e] <.

This, however, easily follows from assumption (2), via Markov’s inequality, thanks to the conti-
nuity of the function a at 0. Therefore, there exists an M;-weakly convergent subsequence

{an}kGN of {Qn}neNa (24)

and we denote its limit by Q. To keep the notation manageable in the sequel, we do not
relabel the convergent subsequence {Qy, }ren and proceed as if the original sequence {Qy, }nen
converges. Lastly, let (€2, F,P) be a probability space on which a non-decreasing cadlag process
A, with law Q, is defined.

Step 2. We start by transforming assumption (1) to a more useful form. Assumption (1)
implies that, for each ¢ > 0, there exists a strictly increasing sequence {ny }ren, in Ny such that
ng = 0 and for each k € N,

P,[rn>t+(k+1)7 < (k+1)7" for all n > ny.
We then define the sequence {e, }nen (which may depend on t) by
en =k ' fornp_y <n<ng keN, (2.5)
so that €, — 0, as n — oo. On the other hand, the inequality
P,[n>t+ep] =P, [m >t+ k7 <kt =g, for ng_, <n <ny,

implies that P, [, > t + €,] < &, for all n. Consequently, we have shown that assumption (1)
implies the existence of a sequence {e, }nen with €, — 0 such that

P, [T >t +en] 2% 0. (2.6)

Step 3. By [Whi02, Theorem 2.5.1, (iv), p. 404] there exists a dense subset T of [0, 00), which
includes 0, such A,, — A in the sense of finite-dimensional distributions on 7, i.e., such that for
all K e Nand all t1,...,tx € T we have

<An(t1), . ,An(tK)) 2, (A(tl), . ,A(tK)>. (2.7)

We pick ¢,5 > 0 and define the sequence {F}, } ey of random variables by
F, = f(An(tl), R ,An(tK)), for KeNand 0<t; <--- <t < t,
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where t1,...,tg, t,t+8 € T and f : R — R is continuous, bounded and bounded away from
0. For each n and each bounded Lipschitz function g : R — R, we have

E, [an<An(t +6) — An(t)>] =1} + 12413,

where
I} =B, [Fo g(An(t +0) = Au(t)Lirsr4en)]:
= E, | P (9(An(t +8) = An() = g(An(ra +6) = An(m) )L r<tsen)]
and
{Fn ( n(Tn +0) — An(Tn))> 1{Tn§t+an}] )

with {€n}neN given by (2.5).

Let C' denote a generic constant, independent of n, but possibly depending on f and g. As
is customary, we allow C' to change from occurrence to occurrence. The relation (2.6) above
implies that

‘I,H < CP,[r, >t+ey] — 0asn— oo (2.8)

Moving on to I2, we use condition (2) together with the Lipschitz property of g and boundedness
of f, to conclude that

I2| < CE, :‘g<An(t +6) — An(t)) - g(An(Tn +6) — An(Tn)) ‘1{Tngt+en}}

< CE, [|An(t +8) — An(t) —~ An(r +8) + An()| L7, <t

< CE, [ (14(r) = An(®)] + | An(7n + 8) = An(t + )| 1ro<sen

< CE, :(An(t Fen) — Ap(t) + An(t + 6 +n) — An(t + 5))]

< Ca(e,) — 0.

Lastly, by (2.2) and the strong Markov property (2.1), for each n € N, there exists a bounded
and measurable function g, : E,, — R such that

I3 = {an<A (Tn +9) — An(Tn)> 1{Tn§t+en}]

n [ < n(0) o QTn) 1{Tn<t+€n}:|
{ { < )o Hm) 1{Tn<t+an}
n[Fnl{mgtJranﬂ Gn(Tn).

n

E
_E
) fn(Tn)H
E
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Thanks to (2.7),
B [f(An(t1), -5 An(ti))g(An(t +6) — An(?))] = im B, [Fg(An(t +0) — An(t))] =
(I} + 12 4 13) = B B [P <1y )
As in (2.8) above, we have E, [F1¢;, ~14c,1] — 0 so that
B, [Ful(r, <tre,y] =B (AR), ., Altk))]-

Since f is bounded away from 0, we conclude that

E[f(A(tr), -, Altx))g(A(t +0) = A@)] _ .~
E[f(A(t1), ..., Altk))] = lim g, (). (2.9)

As the process A is cadlag, (2.9) holds for all K € N, and all 0 < ¢; < -+ < tg <t < o0,
0 > 0 — not only those in 7. Also, since the right-hand side depends neither on f nor on t,
the random variable A(t + J) — A(t) is independent of o(As, s < t) and its distribution does not
depend on ¢. In other words, A has stationary and independent increments. Since A, (0) = 0 for
each n and M;-convergence implies convergence in distribution at 0, we conclude that A(0) = 0,
as well. Being right-continuous and nondecreasing, A is, therefore, a Lévy subordinator.

Step 4. To close the loop and complete the proof, we use condition (3). The space D([0,0))
is Ji-separable, where J; refers to Skorokhod’s J; topology (see [Whi02, Section 3.3., p. 78]).
Since the M topology is weaker than J; (see [Whi02, Theorem 12.3.2, p. 398]), and D(]0, o))
is separable under J; (see [Bil99, p. 112]), we conclude that D([0,00)) is M;j-separable, as well.
Therefore, we can use the Skorokhod’s representation theorem (see [Whi02, Theorem 3.2.2,
p. 78]) to couple the laws of {A,}n,eny and A on the same probability space such that A, — A
in My, a.s. Next, we remember that, for right-continuous, nondecreasing functions, convergence
on a dense set towards a right-continuous function implies convergence at every continuity point
of the limit (see, e.g., [Kal21, proof of Theorem 6.20, p. 142], for the standard argument). From
there, we conclude that for nondecreasing functions Mj-convergence implies convergence a.e.,
with respect to the Lebesgue measure. This is enough to establish that given nonnegative,
continuous, and bounded function f : R? — R, integral functionals of the form

t
yH/O f(u, yu) du, (2.10)

are continuous in the M;j-topology when restricted to the set of nondecreasing functions in
D([0,00)). The dominated convergence theorem yields

E, [ / T e temman() dt} —E [ / e N A dt] ,
0 0

for all A > 0 and g > 0. Combined with condition (2.3), this implies that for some A > 0 we
have

E[/ e MerAl) dt] = RM for all u > 0.
0
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On the other hand, since A is a Lévy subordinator, we have

00 00 1
R)\,p, — / —)\t]E —pA(t) dt = / =Xt —tP(p) dit = ,
0 ‘ [e } 0 © A+ ®(p)

where ® is the Laplace exponent of A. Since ® completely characterizes the distribution of
A(1), and, thus, the law of the entire Lévy process A, we conclude that the limit is the same for
each choice of a convergent subsequence in (2.4). This implies that the entire sequence {4, }nen
converges in law, under M7, towards A. O

3. SEQUENCES OF STATIONARY REFLECTED DIFFUSIONS

In this section we derive sufficient conditions for Theorem 2.1 to hold for sequences of station-
ary reflected one-dimensional diffusions. We refer the reader to [BS02, Chapter II] for a succinct
but comprehensive summary of the terminology (such as “entrance” and “exit” boundaries, e.g.)
and the standard properties of one-dimensional diffusions, or to the canonical book [IM74] for
the complete treatment. In particular, for being Feller (C, — C}) processes, diffusions are strong
Markov processes and satisfy the pre-conditions for our abstract convergence result of Theorem
2.1.

3.1. Preliminaries on one-dimensional diffusions. Assume that X is a regular stationary
one-dimensional diffusion X without explosion or killing, with the state space I = [0,r), for
some r € (0,00]. We denote by (P?),cr the associated Markov family of probability measures
on the canonical space, with P* being the law of the process “started” at x at time 0. Non-
deterministic initial conditions correspond in the usual way to the mixtures P¥ := [ P* v(dz).
All of these laws are fully determined by the speed measure m and the strictly increasing and
continuous scale function s. We assume that the left endpoint 0 is nonsingular (both “entrance”
and “exit”) and that m({0}) = 0 (instantaneous reflection at 0). The right endpoint may or
may not be “entrance”, but we do not allow it to be “exit”.

Stationarity implies that m coincides with the unique stationary distribution up to a constant,
and we assume from now on that this constant is 1, i.e., that m is a probability measure. This
normalization immediately singles out a normalization for the increment s(z) — s(0) of the scale
function s. Since 0 € I, we may (and do) assume that s(0) = 0, which, then, completely
determines s.

Let T% denote the first hitting time of the level z for X. Given A > 0, the decreasing
fundamental solution (a.k.a. the decreasing function) " and the increasing fundamental solution
(a.k.a. the increasing function) ¢ associated with X are defined by

—AT® —AT"

) = E*[e w],z T > Ty, () = E” [e ], r < @y, (3.1)
1/E% [e7 7], & < xy, 1/E™ [e 7],z > my,

where z,, 2, € [0,7) are arbitrary, but fixed. In fact, we are only interested in the equivalence

classes of ¢° and 1" modulo equality up to a multiplicative constant. In particular, this makes
the choice of the constants x, and x, irrelevant.
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Let A be a continuous and nondecreasing additive functional of X. More precisely, A denotes
a continuous nondecreasing process, defined on the canonical space D([0, 00)), with the property
that for each s > 0 we have

At +s) = A(t) + A(s) 0 b, for all t > 0, P"-a.s.
One of the main ideas of this section is to use A to “kill” the process X so as to be able to
analyze the behavior of both A and X by studying a single, killed diffusion. With that in mind,
we let X* be the process with the same dynamics as X, but killed at the “rate” pdA(t), with

> 0. More precisely, with 7 being an exponentially distributed random variable with rate 1,
independent of {X () }/c[0,00) under each (P¥)es, we define

TH =inf{t > 0 : pA(t) > 7},
and then

XH(t) = {‘z(t)’ z igz (3.2)

where A is an isolated “cemetery” state added to the state space I. The killed diffusion process
X* can be equivalently characterized in terms of its killing measure k. This measure, also known
as the representing measure of A. has the property (see [BS02, par. 23., p. 28]) that

At) = /0 L(t,y) k(dy),

where L(t,y) denotes the (diffusion) local time of X at the level y, accumulated up to time ¢.
In the particular case for which we choose A(t fo w) du, the definition of the local time

as an occupation density with respect to the speed measure m implies that k(dy) = g(y) m(dy)
(see [BS02, par. 23., p. 28)).

Even though the speed measure and the scale function of X and X* are the same, the
decreasing and increasing fundamental solutions for the killed process X* defined by

T T

1/ESE¢ [E_AT 1{T:v<T/,L}:|, x < $§07
I (3.3)
W (z) = E [e 1I{T%<Tu}}, T < Ty,
L/E™ [e M Lgacquy], @ > @y,
generally differ from their X-related counterparts defined in (3.1). Note that x, and z, play
the same role in (3.1) and (3.3). To prepare for the statement of Lemma 3.1 below, we remind

the reader of the following notation:
f(x +e)— f(z) dr d*
—f (z) =

e s g T at) = lim == f(y).
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Lemma 3.1. Let A be a continuous and nonnegative additive functional of X, let k be its
representing measure. For each x € I, u > 0 and A > 0, we have

e % xmna 4| (@) Jr " (y) m(dy) 1/ )
om0 - e~ <A Fw) 4

T
/
where TY denotes the first-hitting time of level 0 for X. It follows directly from the definition
of the fundamental solutions (3.1) of X that

o< <[ ona] - 3(-eow]) -1 5).

On the other hand, we have

Proof. For x € I, we set
0

R(z) =E* {/ e~ M—rA) dt] and E(x) =E*
0

70

R(z) =E” / e~ M—HAR) gp 4 /Oo e~ A=A ¢
0 T0
= E(z) +E° [e—ATO—uMO) / % A=)~ (A~ AT)) dt}
T0

= B(z) + E° [e—AT“ﬂA(T“)} R(0)

where the last equality follows from the strong Markov property. Since E””[l{KTH} |]—"tX ] =
P?[TH > t | F{*] = exp(—pA(t)), the equality

@) _ po [E—ATO—MA(TO)]

pr(0)
follows readily from the definition of the fundamental solutions (3.3) of X*. Let

Urf(z) =E* [ /0 Y f(xH dt} = E® [ /0 . e MF(Xy) dt]
=E” [ /0 h F(X)e MrAl) dt]

be the resolvent operator associated to X*, so that R(z) = Uy f(z) for f = 1. According to
[BS02, Section II.1, par. 10, p. 18], the resolvent operator of the killed diffusion X* has a kernel
that is absolutely continuous with respect to m. Moreover, we have the following expression for

R(0):

R0) = [ ) m{dy). with () = 0" 00 (0),
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where the value of the Wronskian w given by
dr dt
w= (o) S (@) — P (2) (),
is independent of the choice of z € (0,r). Since 0 is a reflective (when k({0}) = 0) or an elastic

when > oundary, we have lim,_ .o = T) =1 , which, i turn, implies
hen k({0}) > 0) bound have i d” yp k({0})#(0), which, i impli
that

+ +
w= lim ($4() T (@) — ) )
+

= 04(0) k(0D 0) - 04 ).

completing the proof of the lemma. O

3.2. Sufficient conditions for convergence. Adopting the diffusion framework of the previ-
ous subsection, let {X,, },en be a sequence of diffusions, and {4, },en be an associated sequence
of continuous and nonnegative additive functionals. We keep all the notation from the previous
subsection with an additional subscript n € N; in particular, the state space of X, is I, = [0, ),
its speed measure m,,, and the representing measure of A,, is k.

The main result of this section is Theorem 3.2 below which provides sufficient—and readily
verifiable—conditions for Theorem 2.1 to hold within our diffusion framework. The notation
v =1 m refers to first-order stochastic dominance, i.e., to the fact that [ fdv < [ fdm, for
all nondecreasing, nonnegative, measurable function f. We remind the reader that the speed
measures m,, are always assumed to be finite and normalized so that m,(I,) = 1 for all n, and
denote by T the first hitting time of the level 0 by X,,.

Theorem 3.2. Let {v,}, be a sequence of probability measures on {I,}, such that, v, <1 m,.
Suppose that
(1) lim,, [ @2 (z) my(dz) = 1,
(2) B2 [An(h) - An(s)] < alt -
[0,00), continuous at 0,
(3) For each pn >0
(a) lim,, [ oh(z)vp(de) =1 and
(b) the limit ®(p) := lim, ®,,(u) exists in R, where

o (o ] Oh) (d)

TL(IU) = n ’
J () my(dz)

where k, is the representing measure of A,.

Then the conditions (1), (2) and (3) of Theorem 2.1 are satisfied when X, is started from
Un, By =1, and x, = 0. Morover, ® is the Laplace exponent of the limiting subordinator.

s) for allm € N and all s < t, for some function a : [0,00) —

(3.5)

Proof. We start with the condition (1) of Theorem 2.1. Let p1, pa be two probability distribu-
tions on [0, 00) such that ps dominates p; in the first-order stochastic sense. This is equivalent
to saying that two random variables N7 and N5, with distributions p; and po can be defined on
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the same probability space (Q, F, f@) such that, a.s., we have N3 < No. The same space can be
extended so that it supports two processes X** and X*2, with laws P,' and P,?, respectively,
and with the additional requirement that X**(0) = Ny and X*2(0) = N». Denoting the coupling
time of X' and X#? by 7 =inf{t > 0 : XP'(t) = XP2(t)}, the strong Markov property implies
that the process X*! given by

~ XP(t), t<rT
P o )
= {Xﬁ2<t>, (>

has the same law as X!, namely P5'. Since the paths of X”' and X#? are continuous and
XP1(0) < X*P2(0), we have

X1 (t) < XP2(t) for all t > 0, P-a.s. (3.6)
Taking p1 = 6, and py = d,, with 77 < 3, allows us to conclude that the map z +— PZ[TY > ¢]

is nondecreasing. We then combine this fact with (3.6), but now applied to p; = v, and py = my,,
to obtain the following estimate:

Pur Tt 2 4+ ¢ = ES [PXrOT0 2 6| = B[PX" T2 > €| < B[PX™O[T) > €]
We conclude by observing that applying Markov inequality leads to
E[Pf’""(t) 0 > s]} - E[Pﬁf’””(t)u —e T s e—AE]}

< —xE [E[l — e | X (t)”

1
=1 % /(1 — op(x)) mn(dz) = 0,
where the convergence to 0 follows from assumption (1) above. This shows that assumption (1)
of Theorem 3.2 implies condition (1) of Theorem 2.1
Assumption (2) in Theorem 3.2 is identical to condition (2) in Theorem 2.1.

Moving on to condition (3) in Theorem 2.1, we start by applying inequalities (3.4) from
Lemma 3.1 to X, and A,. Integrating in = the resulting inequalities with respect to v, yields

o0
0< EZ” |:/ e—)\t—uAn dt:| _ bnRi\z’u < ecp,
0
where

J en()mn (dx)

- , and
({01 (0) — -eh (0+)

by = / Ph@nldn), RY ==

o = §<1 _ /wg(x) un(d:n)>.

Assumption (3a) in Theorem 3.2 directly implies the convergence b, — 1. Since ¢! is a non-
increasing function that is bounded from above by 1 and since v, <; m,, assumption (1) in
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Theorem 3.2 also implies that

1> /gpg(x) Up(dx) > /@2(3;) my(dz) — 1,

ie., ¢, — 0. To show that the assumptions of Theorem 3.2 imply condition (3) of Theorem
3.2, it remains to check that the existence of lim, Ry* is equivalent to that of lim, ®,, (). To
check this, notice that since the right endpoint 7, is either natural or entrance but not exit, the
function ¢}, has the following properties (see [BS02, Section IL.1, par. 10., pp. 18-19]):

(1) For all a < b with a,b € Int I,

b b d+ d+
3 [ i) madn) + [ ptmndn) = Sk - et
(2)
Codt
bligil E(pn(b) = 0.

Therefore, remembering that m,({0}) = 0 and letting b — 7, and then a — 0, we obtain

=+ [e'e}

d o0
k(04 =) /0 () mn(dz) + /0 k(e ki)

— A /Ooo (@) mp(dz) + o /OOO () kn(dz) — pkn({0}) 5 (0)

Bearing in mind the definitions of RM and ®,, (1), the above equality implies that Ry =

(A 4+ @, (1)), which shows that the existence of lim, Rp* is equivalent to the existence of
lim,, ®,,(1) and completes the proof. O

Remark 3.3. For practical purpose, establishing the existence of the limit in (3.5) is the only
“hard” condition of Theorem 3.2. Indeed,

(1) Condition (1) is equivalent to P [T > ¢] — 0. This will hold, in particular, if X"
is the sequence of time-dilations (speedup) of a single diffusion - subject to regularity
conditions - which has 0 as a recurrent point.

(2) Condition (2) is easy to check if the functional A,, is of the form A, (t) = fot g9(Xn(t)) dt,
which will be the case of interest in most applications. A simple sufficient condition in
that case is that the expectation EX*[g(X,,(t))] be bounded, uniformly in n € N and ¢
on compacts. This will clearly be the case when v, = m, and ¢ is uniformly integrable
over all m,. If we only have v, <1 m,, the coupling argument of the proof of Theorem
3.2, leading to (3.6) above, implies that the P/»-distributions of X,,(¢) increase with ¢ in
the sense of the first-order stochastic dominance. Therefore, (2) will hold in that case
too, if we additionally assume that g is nondecreasing.

(3) Finally, condition (3b) makes sure that the accumulation of the additive functional A,
by the time 0 is hit for the first time can be (asymptotically) ignored. A limiting theorem
could be proven even if this condition is not satisfied, but the limiting process would have
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a nontrivial independent initial jump, drawn from a possibly different jump distribution,
before shifting into the subordinator dynamics.

The two following sections deal with applications of Theorem 3.2. In the first section, we
focus on a sequence of Wright-Fisher diffusions, whose study is the practical motivation for this
work. In the next section, we examine additional examples for which an analytical treatment is
possible.

4. WRIGHT-FISHER DIFFUSIONS

4.1. The scaling regime. Using the notation of Section 3 above, we consider a sequence
{X }nen of diffusions on the state space I,, = [0,1), and generally parameterized by three
sequences {7y, tneN, {@n nen and {8, }nen of strictly positive numbers. Their infinitesimal gen-
erators are given by

Gnf(2) = —(1 = 2)f" () + —(an(1 = 2) ~ ) (2), (a.1)

n n

for f € C2((0,1)). We always assume that X,,(0) = 0, i.e., that the initial distribution v, is do.

As our focus will be on the regime o, — 0, the Feller condition at the left boundary point will
not be satisfied, rendering it nonsingular. This implies, in particular, that information about
the behavior there, additional to that contained in the generator (4.1), needs to be specified
separately. We choose instantaneous reflection there as it is not only the most interesting
choice mathematically, but it also best fits our intended application to neuroscience. The Feller
condition at the right boundary, on the other hand, will be met since we always assume that
Brn > 1. Thanks to [KT81, eq. (6.19), p. 240], this assumption will imply that the right boundary
is “entrance” but not “exit”. We have the following expressions for the derivatives of the scale
functions and the densities of the speed measures

s (z) = TaB(an, Bn) 7 (1 — x)~Fn,
1

!/

n\t) = 57—~
“) = Blam B

where B(a, 8) = T'(a)T'(8)/T'(a + ) is the Beta function and I'(+) is the Gamma function. We

refer the reader to [KT81, Example 8, p. 239] for the details, as well as for a discussion of various

properties and features of the Wright-Fisher diffusion.

m xo‘"_l(l —x)ﬁ"_l,

The scaling regime adopted in this section is

Tn — 0, B = >1and n ~y for some 7 € (0, 0), (4.2)
T,

n

with the sequence {A, }nen of additive functionals given by

A (t) = T_ln/o Xn(u) du. (4.3)

The particular choices made in (4.2) are partly dictated by modeling considerations, and partly
by their mathematical interest. Moreover, this regime is essentially forced by the choice that
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{Bn}nen be constant, the assumptions of Theorem 3.2 and the requirement that the limit be
nondeterministic. Indeed, as can be checked directly, we have

« 1
E/n X, (t)dt - and 4.4
|:Tn / :| Tn Qi + /8 ( )
an+5

- Qn B

2 e — 1+ 2ot
ar’" | — | X, (t)dt| = i 4.5
! [m/ ©) ] (an + B)* (1 + om + ) 2oth 9
From there, it follows that 1/7, is, indeed, the proper scaling for fo t)dt, and that, given

that scaling, the limiting variance will be nontrivial only if the limit of ozn / T, €exists in (0, 00).

4.2. An application of Theorem 3.2. Next, we turn to the decreasing fundamental solutions
{¢h}nen of the killed diffusion defined in (3.3) above. We take the analytic approach and
characterize ¢}, up to a multiplicative constant, as a decreasing solution of the following second
order ODE:

Gou(z) — (A + ﬁx>u(:¢) —0, z¢(0,1). (4.6)

Tn
Since the right boundary is singular, we impose no boundary conditions at all.

In order to pass to a limit in the following subsection we need a better understanding of
the structure of the solution of (4.6) than is provided by the general theory. Given that we
are working with a polynomial diffusion, i.e., a diffusion with an infinitesimal generator whose
coefficients are polynomials, it is likely that the solutions to (4.6) admit power-series expansions
amenable to further analysis. It turns out that this most direct approach is the most convenient
one as well. To see this, let us consider a candidate solution u}, specified as

Z an(k)(1 — ) (4.7)

where the coefficient sequence {a, (k) }ren, is deﬁned by the following recursive relations:

an(0) = 1, an(1) = Lﬁﬂ‘ and (4.8)
an(k) = cn(k — 1)an(k — 1) — en(k — 2)an(k —2), for k>0, (4.9)
where
cn(k—1) = ATn 1 (k(ﬁ_—il—)lik——i_l)an +h- 2), and (4.10)
cn(k —2) = m (4.11)

These recursions are obtained by coefficient matching when (4.7) is formally inserted in (4.6).
Moreover, even though the equation (4.6) is of second order, the value of the coefficient a, (1) is
completely determined by the equation due to degeneration of ellipticity at the right boundary.
On the other hand, the choice a,(0) =1 is only a normalization.
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Lemma 4.1. For each € > 0 there exist constants Cz > 0 and N, € N such that
lan (k)| < Cok~%79) for all k € N and n > N.. (4.12)

Proof. Given ¢ € (0,1), we set K! = 83/ and pick N. € N, such that o, < /4 and 7, < 1 for
n > N,. Fork‘>K1 and n > N, we have 2—an_ > 2= 6/2 , so that

k+B—1
2—an) 24 A —a,—B+p n+e/2  p
0<cp(k—1)=1-— <1- Ly
< ek —1) k+pB—1 kk+p—1) = TR
where n =2 — &, A = sup,, AT, < o0 and p = 2+ X + p. We also have
I
0<cu(k—2)< =k

Let b,(k) = |an(k)|/k™", so that, for k > K} and n > N. we have

b (k) = (1 _n +]:/2 n %> bn(k — ;)_(l; — 1) N %bn(k — 2,)€E7k —2)™n

< max(bn(k — 1), ba(k — 2)>f(1//<;),

where
fla)=(1—2)™" (p:z:2 —xz(n+¢e/2)+ 1) + (1 — 22)7"2? for z < 1/2.

Clearly, fis C' on [0,1/2), f(0) = 1 and f’(0) = —¢&/2, so there exists 2y > 0 such that f(z) <1
for x € [0, z¢], i.e

bn(k) < max(b,(k — 1), bp(k — 2)) for k> K, := max(K_!,1/x). (4.13)

The absolute values of the coefficients ¢, (k) and the initial conditions ay(0),a,(1) admit n-
independent bounds, which implies that

B(k) := sup by (k) < sup k"|a, (k)| < oo for each k € N. (4.14)

Combined with (4.13), the finiteness of B(k) in (4.14) above implies that, for n > N, we have
lan(k)|E™" < C: : niz}?(B(k‘) < 0. O

Proposition 4.2. The function ul is well-defined by (4.7) on [0,2], real analytic on (0,2), and
we have @ = ul, on [0,1], up to a multiplicative constant.

Proof. The bounds of (4.12), for ¢ < 1, imply immediately that the series (4.7) converges
absolutely on [0,2] and that it defines a continuous function there. Analyticity on (0,2) then
follows from the fact that the radius of convergence is at least 1. In particular, we can differentiate
them term by term and then perform an easy calculation using (4.9) and (4.8) to conclude that
uh solves (4.6) on (0,1) and that uh(1) =1, (uh)' (1) = —(A1, + p)/B.

Next, we show that u}, is strictly decreasing. Arguing by contradiction, we assume, first, that
(uh) () > 0 for some z € (0,1), and let zy € (0,1] be the supremum of all such x. Strict
negativity of the derivative (uf)(1) implies that (u) < 0 in a neighborhood of 1, and so,
zo < 1. Hence, (uh) (z9) = 0 and (uh) (z) < 0 for x € (x¢,1), which, in turn, implies that
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(uh)"(z0) < 0. Since uf, satisfies (4.6), we must have ul(z9) < 0. This is in contradiction with

the fact that uh(1) =1 and (uh) (z) <0 for all z € [z, 1).

Finally, we appeal to the general general theory of one-dimensional diffusions (see [BS02,
Section II.1, par. 10., pp. 18-19]), which states that ¢}, is the unique, up to a multiplicative
constant, decreasing solution to (4.6) (no boundary conditions needed). Therefore, ¢f, and u*
agree on (0, 1), up to a multiplicative constant. By continuity, the same is true on [0, 1]. O

Next, we analyze the limiting behavior of the sequence {¢h}, = {uh}nen. Since the coeffi-
cients in (4.9), as well as the initial conditions (4.8), converge to finite values as n — oo, the
solutions converge too, and we set a(k) := lim,, a,, (k). Moreover, the limiting coefficients satisfy
the following (limiting) recursive equation

a(0) =1, a(1) = % and (4.15)
pt(k—1)(k+5-2) 1t
= —1) = ——an(k — > 2. .
a(k) T a(k —1) k(5+k_1)an(k 2) for k > 2 (4.16)
It is easily checked that (4.15) with (4.16) above admit an explicit solution, namely,

k
i

alk) = -2 417

®) kN(B)k (4.17)

where (B8) := B(B+1)...(B+k—1) is the Pochhammer symbol (also known as rising factorial).
Therefore, we set

P () = i T
T ) ’

with absolute convergence for all x, and note that *(z) = ['(8)2~0+#/215 1 (2\/z), where I,
is the modified Bessel function of the first kind of order v.

By Lemma 4.1 applied with € = 1/2, we have |a, (k) — a(k)| < Ck=3/2 some C > 0, all k € Ny,
and large enough n € N. Therefore, we can use the dominated convergence to conclude that
limy, > ;. |an (k) — a(k)| = 0 so that

sup |gh(x) — p*(z)] < Z\an(kz) —a(k)] - 0 as n — oo. (4.18)
z€[0,1] k—0

Since m, — §y weakly, where dy denotes the Dirac measure concentrated at 0, the uniform
convergence of (4.18) above implies that

o0 k
[ ehwrmaan) 00 = 3. e =T R 2. @)
k=0 "

To compute the limit [ ¢} (x) &k, (dz), we first note that the density &, (z) of k,, with respect

to the Lebesgue measure satisfies
MNap+14+p5 _
n (an + Bk, (x) = (o )x(aﬂ) !

PRV '
o Nan T 1T(0) S (4.20)
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where the right-hand side above can be recognized as the probability density of the Beta distri-
bution with parameters «,, + 1 and 5. As n — oo, these distributions converge weakly towards
the Beta distribution with parameters 1 and £, and so, by (4.18), we have

T — ) ldr = oo'u—k 1 — )31t gy
[ et > 3 [ a0 - "3 R, 4

5 Z k! 5 T 1) dr = VF(ﬁ)x_BmIB@\/E) (4.21)

We are now ready for the main result of this section.

Theorem 4.3. Consider the sequence { X, }nen of Wright-Fisher diffusions on [0,1) with gen-
erators given by (4.1), started at X,,(0) = 0, reflected at 0, and in the scaling regime (4.2). The
sequence {Apnen of scaled and integrated diffusions, given by

t
Apn(t) = Ti/o Xp(u)du, t >0,

converges weakly, under the Skorokhod’s My -topology, towards a Lévy subordinator A with Laplace
exponent given by
15(2y/1n)
W) = iy 2V (1.22)
B— 1( \/_)

where I, is the modified Bessel function of the first kind with index v.

Proof. Since v, = dy, conditions v, =<1 m,, and (3a) are trivially satisfied. For (1), we note
that ¢°(x) = 1 and that ¢0 — " uniformly, so S ©% dm,, — 1 as m,, — &y weakly. Next, the
explicit formula (4.4) above implies that E""[X,,(¢)/7,] is bounded in n and t. By part (2) of
Remark 3.3, this - together with the trivial fact that g(x) = x /7, is nondecreasing - is enough to
satisfy condition (2). Lastly, to establish the existence of and get an expression for the limiting
exponent @, it is enough to take the quotient of (4.19) and (4.21). d

4.3. Properties of the limiting subordinator. We conclude this section with some facts
about the limiting Laplace functional ® and the limiting subordinator, which we denote by A
in Theorem 4.3 above. Given that it is only a scaling parameter, we assume throughout that
~v = 1, for simplicity.
(1) It has been shown in [PY03, eq. (48), p. 12] that a subordinator with the Laplace exponent
® can be realized as

7(t)
0
where X is a Bessel process of index 8 — 1 and 7 is the inverse local time of X at level 1, i.e.,
T(t) =inf{s > 0 : L'(s) =},

where L' denotes the local time of X at level 1.
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(2) Since @ is a Laplace exponent of an infinitely-divisible distribution supported by [0, 00), it
admits a Lévy-Khinchine representation of the form:

D) = bu+ /000(1 — e M)I(dx) for p >0, (4.23)

where d > 0 and II is a measure on (0,00) such that [min(1,z)Il(dz) < oo. By [DLMF,
(10.30.4)], we have lim,_ o vV27mxe *1,(z) = 1, so
1 115-
lim —®(p) =2 lim — 5-1(2) =0,
=00 14 T—00 T [B(;p)
which implies that b = 0, i.e., that A has no drift.

(3) According to [IK79, Theorem 1.9, p. 886], the function

_ 28 (Vi)
Y = A

is a Laplace transform of the infinitely divisible distribution with density

Fly) =48> exp(=j5_1.,9),y >0,

with p > 0,

where {j,n}nen is an enumeration of the set of strictly positive zeros of the Bessel function .J,

of index v. We have
AR
U(p) = 7¢<Z>

g _ wﬂ
/0 e f(y) dy = 43 /0 ()

zg/ow/ome—iydyn(da;)
:/OOO e_“Z4BH<Ez,oo>> dz,

for all u > 0, we conclude that the Lévy measure Il is absolutely continuous with respect to the
Lebesgue measure, with density

7(@) = 3040) = Y (g e B, w0, (1.24)

so that

n

(4) Thanks to (4.24) above, we have

/ Z / 2" (2p-1p) e B T dp = 47D+ 1) Y a7 (4.25)


http://dlmf.nist.gov/10.30.E4
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Since the zeros of the Bessel functions grow approximately linearly, or, more precisely (see
[DLMF, (10.21.19)]),

Jo—10 ~ (0 + 5(8 —3/2)) + O(1/n)

for each T € [0, 00), we have

E|) (AA) | =

t<T

+00, r <1/2, and
< 400, T>1/2.

(5) When the Lévy exponent ® is analytic in a neighborhood of 0, as in our case, the sequence
{kn}tnen of cumulants is defined using the Maclaurin expansion

o) = S,
n=0 )

of the function ®. Their importance stems from the fact that they are the moments of the jump
measure, i.e.,

Kp = / z"II(dx), for n € N.
0

The explicit expression (4.25) reveals that, in our case, we have

kn =47 "nl o, (8 — 1) where 0, (v) = Z(jy,n)_zm.
m
The function o, is known as the Rayleigh function, and satisfies the following simple convolu-
tion identity (see [Kis63, Eq. (20), p. 531]), useful for efficient computation of cumulants and
moments:

- 1 n—1 B 1
on(v) = v+n ;Jk(u)an—k(y)v ) = m

Once the cumulants are known, the moments m,, = E[A(t)"], n € N, of the distribution of A(t)
can be efficiently computed by using the following well-known recursive relationship, which is,
in turn, a direct consequence of the formula of Faa-di-Bruno:

n
(n
Mp41 = tZ(_l)Z<i>Hi+lmn—ia mo = 1.
i=0

In particular, as is the case with any Lévy process, m,, is a polynomial in ¢ of order at most n.
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(6) We have the following simple continued-fraction expansion of Laplace exponent ® (see [JT81,
Theorem 6.3, p. 206]):

u
u

() =

B+

(B+1)+
W

(B+3)+

(B+2)+

5. ADDITIONAL EXAMPLES

Additional examples illustrating Theorem 3.2 are given in this section. In all of them we take
vp = 0o, i.e., X,(0) = 0.

5.1. Feller (CIR) diffusions. Each process in the sequence {X,}nen has I,, = [0,00) as its
state space and the infinitesimal generator G,, given by

Gnf = naf"(x) + n(an — Bz) f'(x) for f € CZ((0,00)).
The speed-up factor n takes the place of the (formally) more general 1/7,, for simplicity. Since
the Feller condition will not be satisfied for large enough n, instantaneously reflective behavior
at 0 is assumed. The normalized speed measure (stationary distribution) of X, is the I'(a,, 8)-
distribution, i.e., m,(dx) = m/ (z) dz, where

by BT
my,(z) = m

—n/X

and consider the regime a,, — 0 with na,, — v € (0, 00).

Let U(a,b, ) be Kummer’s U-function (see [DLMF, (13.2.6)]) so that u(z) = U(a, b, x) solves
Kummer’s differential equation

9 e=P 2 e [0, 00)

We set

v’ (z) + (b — z)u/(z) — au(z) = 0 for z € (0, 00). (5.1)

A direct computation shows that for y > 0, the function
1
gpﬁ(ﬂ:) = F(An)eLxU(Anyoé, S:E)
where
_ /B2 /32 _
L:w’ R:w, S=R-1L, An:M

2 2 S

satisfies

Gnpn(x) — (A + pnz) = 0. (5.2)
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For a > 0 and z > 0, the following integral representation (see [DLMF, (13.4.4)]))

1 o0
U(a,b,z) = —/ e 11 4 )72 dt for a,z € (0, 0),
I'(a) Jo
can be used to justify the identity

1 o
o) = T /0 e~o(SI-D)An=1(1 4 pha=Ae=l gt (5.3)

Since S > 0 and L < 0, we conclude immediately that ¢* is positive and strictly decreasing.
This is enough (see [BS02, Section II.1, par. 10., pp. 18-19]) to identify ¢* out of all solutions
of (5.2) as the decreasing fundamental solution, up to a multiplicative constant.

The representation (5.3) yields

P(An) " _ Ap—1 an—Ap—1 1 / an—1_—(R+St)z
T () /gpn(a;) my, (dz) = /t (1+1¢) () x e dx dt

- /(St + Ryt (1 ) ATl gy
1
_ / U (R(L = 1) + Sr) =" dr,
0
where we use the substitution r <— ¢/(1 +t) to get the last equality. Similarly

P(4n) L
m/@ﬁ(:n)xmn(dw) —/0 poltA (1—7‘)(R(1—7‘)—|—ST) Ly

Combining the integral representations given above allows one to express

7‘71+An —r o
B, (1) = [ "z ,unxmn(d;p) _ nanpu(l+ An) 1W(3(1_T)+ST) 1 gy
' [ et @)ma(da) fol ;3(,147” — 1)+ Sr)"% dr

To apply Theorem 3.2, there remains to study the limit behavior of the above ratio when
n — oo. Since A, — 0, the sequence of beta distributions with parameters (A,, B) for any
B > 0 converge weakly towards the Dirac mass at 0. Moreover, since R, S > 0, we have

(RA—7r)+Sr)™@ - 1and (R(1—r)+ Sr)™ 1 = (R(1—r)+ Sr)~!

uniformly on [0, 1]. Since nay, — 7, it follows directly that

[erpnemdr) 2 (fi+2u1)
) = e s vEeas PWHE )

In the case p = 0, we have,

o (x) = U(%,amﬂx)w > 0.

and a similar analysis to the one discussed above shows that [ ¢2(z)my,(dz) — 1. The choice
of v, = dp and of ay, so that sup, EI""[A,(t)] < co makes sure that all remaining assumptions
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of Theorem 3.2 are met. Consequently, the processes A,, converge weakly under M; to a sub-
ordinator with the Laplace exponent ® given above. We recognize it as the Laplace exponent
of the inverse-Gaussian distribution with the mean v/ (typically denoted by u) and the scale
parameter 72/ (typically denoted by ).

5.2. Reflected Brownian Motion with Drift. In this subsection X, is the sped-up Brownian
motion with negative drift on I, = [0,00), reflected at 0. More precisely, its infinitesimal
generator G, is given by

Gnu = nu” (x) — nBuu/ ()

The normalized speed measure (stationary distribution) is the exponential distribution with
parameter 3, i.e., my,(dx) = m/,(z) dz where

n
m! (z) = Bpe Pr®,

The decreasing fundamental solution ¢ without killing, solves G,u — Au = 0 and is easily seen
to be given by

fhe = VT

)

Therefore
/gpg(x) my(dz) = 2(1 +1+ 4)\/(6%71))
and, in order for condition (1) of Theorem 3.2 to be satisfied, we need to impose the condition:

B2n — oo. (5.4)

The random variable 3, X,,(t) is exponentially distributed under m,,, with parameter 1, so the
choice

A (t) = Bn/o X (u) du,

is essentially the only one which makes the condition (2) of Theorem 3.2 (nontrivially) satisfied.
We turn, next, to the computation of the decreasing fundamental solution ¢4, for > 0. Two
independent solutions, u; and wug of the equation Gyu(z) — (A + Bpaxp)u(x) = 0, are given by

uy(x) = 20 Ai( (@), ua(w) = /2 Bi(fu (@),
where
Fulw) = BRm)P3u  M(Bm) ™o g Y, (55)

and Ai and Bi are the AiryA and AiryB functions, respectively (see [DLMF, Chapter 9]). Since
Bi is unbounded (see, e.g., [DLMF, (9.7.7)]), we must have

() = 7% Ai(fu(2)),
up to a multiplicative function.
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Lemma 5.1. If a > 0,7, > 0,6, >0, ¢, = o0, and c%/zyn/% — p € (0,00), then

1 0 slta P e
I n__ =0Ty Ai(e, + ynz) da = (1 o

Proof. We will need the following tail bounds for the Airy function (see [DLMF, (9.7.5)], [DLMF,
(9.7.iii)))

(1 =r(y))ay)e(y) < Ai(y) < q(y)e(y), for y > (3/2)%/°. (5.6)
where
3 e 5v*?
_ 9. -3/2 _ _—1/4
r(y) = , e(y) = and = .
() =5y () Nz ay) =y
Moreover, we will use the following three simple inequalities: valid for all y, b, ¢ > 0,
M2y > 2(03/2 e+ y)3/2> > /2y }c—l/2y27 (5.7)
3 4
e\ /4 y
> > - .
1> <c—|—y> _exp( 40) and (5.8)
oo plta b 2 1/2 P(l + « b5/4)
1> e gy > e l]—- -7 .
—/0 Tl+a) © v=r P(l+a) ) 9

where T'(1 + o, y) = fyoo £%e~€ d¢ is the incomplete Gamma function. Inequalities in (5.7) are
a consequence of convexity bounds for the function y +— y3/2, those in (5.8) follows from the
standard bounds on the exponential function, while (5.9) is obtained by estimating the integral
from below by e~ JPovtrey*e=v dy for yy = b'/4 and from above by [b'Foy*e=dy =
'l + a).

Using the upper bounds from (5.6) - (5.9) we obtain

; 1/2
Ai(en +y) < 6_% ((cn+y)3/2—ci/2) < Cn >1/4 1 < e Cn Y
Ai(e,) cnty 1—r(e,) — 1— 'r'(cn)’

so that, with 8, := On/Yn, We have

a+1 : Sa+1 - :
/ 5n e OnT 0 Al(cn. + ’Ynx) de — / 5n e—ényya Al((?n + y) dy <
INa+1) Ai(cy) INa+1) Ai(ey)

~ ~ a+1
1 yatl c L —1/2 )
< n o, —(0n+cn )y dy < _n
_1—r(cn)/F(a+1)ye y=n, 5 +C’}L/2 ’

where n = (1 - r(cy)) L.
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Lower bounds of (5.6) - (5.8) yield

Ai(cn + y) _2 ((cn+y)3/2—03/2) Cn 1/4
—~  J > 3 n 1— n +
(o) e e+ ( r(c Y))

1 _ 1 _
> exp(~(ef? + gty - G0 ) (1= i)

so that, by the lower bound of (5.9), we have

a+1 ;
/ 5n e—6nxxa Al(Cn. + ’an) dx
MNa+1) Ai(cy)

~ ~ a+1
5?;+1 o —bpy—Len M 2y2 [ 9n
2(1—T(Cn))/my e~bn¥maen Y dyZﬁn<b—>

where b,, = 0, +ci/2 + %c;l, én = by /c, and

L
Tm = (1 —1r(cy))exp <—ié}/2> (1 — w>

It remains to note, under the assumed conditions, we have b, — oo, ¢, — oo and ¢, — 0.
Hence,n — 1,7, — 1, r(ep,) — 1 and 6111/2/5n — p, which implies the both the lower and the
upper bounds converge to the same quantity, namely (1 + p)~1~¢, O

We use Lemma 5.1 above, with 8, = 8,/2, ¢, = p~2/3(62n)%/3 /4 + \u=2/3(B2n)~1/3, ~,, =
ul/?’ﬂyl/gn_l/?’ and p = 1:

n [en(@)ma(z) v [ BaePr Ai(en + ) dx
aiey J Brae P Ailen + yaz) de

= plim =pu
Therefore,

Ap(t) — ¢
weakly under the M;j-topology.
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