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Khovanov homology of strongly invertible knots and their
quotients

Robert Lipshitz and Sucharit Sarkar

Abstract. We construct a spectral sequence relating the Khovanov homol-

ogy of a strongly invertible knot to the annular Khovanov homologies of the

two quotient knots. Using this spectral sequence, we re-prove that Khovanov
homology distinguishes certain slice disks. We also give an analogous spectral

sequence for ĤF of the branched double cover.
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1. Introduction

A knot K ⊂ R3 is called strongly invertible if K meets some straight line in
exactly two points, and is preserved setwise by rotation by 180◦ around that line;
this straight line is called the axis. While strongly invertible knots have been stud-
ied for decades (see [Sak86] and the references therein), they have recently seen a
surge in interest. For example, there is a somewhat mysterious, noncommutative
concordance group of strongly invertible knots [Sak86, DP23], as well as natu-
ral equivariant analogues of the slice genus [BI22]. Related to this, many of the
pairs of non-isotopic slice disks or more general slice surfaces which have appeared
in the literature recently come from strongly invertible knots [Hay, SS22, HS],
a phenomenon which has led to connections with Heegaard Floer-theoretic invari-
ants [DMS]. In addition to Heegaard Floer homology, Donaldson’s diagonalization
theorem [BI22], the G-signature theorem and related equivariant signature tech-
niques [AB, DP], Kojima-Yamasaki’s η-function [KY79, Sak86, BI22, DPF],
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and Khovanov homology [Cou09, Wat17, Sna18, LW21] have also been applied
recently to study strongly invertible knots.

The quotient of K by its strong inversion is naturally an embedded arc with
boundary on the axis. By gluing this arc to part of the axis, we obtain a quotient
knot; see Figures 1.1 and 5.2. (In S3, instead of R3, there are two equally natural
choices of quotient knot, corresponding to the two choices of half-axis; cf. [Sak86,
BI22].) The main goal of this paper is to construct a spectral sequence relating the
Khovanov homology of a strongly invertible knot K and a variant of the Khovanov
homology of its quotient.

Similar results have been proved before, for other symmetries. Stoffregen-
Zhang [SZ] and Borodzik-Politarczyk-Silvero [BPS21] showed that there is a spec-
tral sequence relating the Khovanov homology of a periodic knot (a knot preserved
by rotation around an axis disjoint from it) and the annular Khovanov homology
of its quotient (see also [Cor, Zha18]). An analogous result relating the sym-
plectic Khovanov homology of a 2-periodic knot and of its quotient was proved
earlier by Seidel-Smith [SS10]. Using the same technical tool, Hendricks proved
a similar relationship for knot Floer homology [Hen15], and analogous results
have been given for other symmetries in Heegaard and monopole Floer homol-
ogy [Hen12, HLS16, LT16, LM18, Lar, HLL22].

Like Stoffregen-Zhang’s and Borodzik-Politarczyk-Silvero’s spectral sequence
for periodic knots, the spectral sequence we construct for strongly invertible knots
relates the Khovanov homology of K to the annular Khovanov homology of its
quotient K. If τ denotes the 180◦ rotation around the axis then by a slight τ -
equivariant perturbation of the knot K we may assume that the projection of K
to the plane perpendicular to the axis is a knot diagram. Following the liter-
ature [Boy21, BI22], we call such a diagram intravergent. The quotient knot
K may be viewed as an annular knot in two natural ways, K0 and K1, cor-
responding to taking the quotients of the 0-resolution or the 1-resolution of the
fixed crossing of the intravergent diagram K; see Figure 1.1 and 5.2. (These quo-
tients depend on the diagram K; see Remark 4.5 and Proposition 4.6.) The an-
nular Khovanov chain complexes of these knots are related by an axis-moving map
f+ : Σ0,0,1ACKh(K1) → ACKh(K0), where Σa,b,c denotes a (homological, quan-
tum, annular) trigrading shift by (a, b, c); we construct the map f+, which is a spe-
cial case of Akhmechet-Khovanov’s maps associated to anchored cobordisms [AK],
in Section 3. By a slight abuse of notation, we define the annular Khovanov chain
complex of the pair of annular knots (K1,K0) to be the mapping cone of f+,

ACKh(K1,K0) = Cone
(
Σ0,0,1ACKh(K1)

f+

→ ACKh(K0)
)
,

and the annular Khovanov homology of the pair to be the homology of this complex
which, over any field F, is also (unnaturally) isomorphic to the homology of the
mapping cone of the induced map on homology,

AKh(K1,K0;F) = H∗ Cone
(
Σ0,0,1ACKh(K1;F)

f+

→ ACKh(K0;F)
)

∼= H∗ Cone
(
Σ0,0,1AKh(K1;F)

f+

→ AKh(K0;F)
)
.

Theorem 1.1. Given a strongly invertible knot K with annular quotients K0,
K1 there is a spectral sequence with the following properties:
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(Θ-1) The E1-page is Kh(K;F2)⊗F2[θ
−1, θ] with d1-differential the map θ(Id+τ∗),

θ−1Kh(K;F2) θ0Kh(K;F2) θ1Kh(K;F2)· · · · · · ,
θ(Id+τ∗) θ(Id+τ∗)

where τ∗ is induced by the strong inversion.
(Θ-2) The dr-differential preserves the quantum grading and increases the θ-power

grading by r.
(Θ-3) The spectral sequence converges to AKh(K1,K0;F2) ⊗ F2[θ

−1, θ]. Keeping
track of quantum gradings, the summand of the spectral sequence in quantum
grading j converges to

(1.1)
⊕

ı,ȷ,k∈Z
2ȷ+k=j−1+3N−−6N−

H∗ Cone
(
AKhı,ȷ,k−1(K1;F2)

f+

→ AKhı,ȷ,k(K0;F2)
)
⊗F2[θ

−1, θ]

where N− (respectively N−) is the number of negative crossings of K (re-
spectively K).

Since the quantity 3N− − 6N− comes up frequently, let

(1.2) ∆ = N− − 2N−.

See Remark 4.5 and Proposition 4.6 for a little further discussion of the grading
shift, and Section 2 for our grading conventions for Khovanov homology. Like the
periodic knot case, the proof of Theorem 1.1 uses the Khovanov stable homotopy
type and Smith theory.

Corollary 1.2. For any quantum grading j, we have∑
i

dimKhi,j(K;F2) ≥
∑

ı,ȷ,k∈Z
2ȷ+k=j−1+3∆

dimAKhı,ȷ,k(K1,K0;F2).

Proof. This follows from Theorem 1.1 by comparing the ranks of the E1-page
and E∞-page. □

Corollary 1.3. Assume that in some quantum grading j, Kh∗,j(K;F2) is
supported in a single homological grading i. Then,

dimKhi,j(K;F2)− 2 rank((Id+τ∗)i,j) =
∑

ı,ȷ,k∈Z
2ȷ+k=j−1+3∆

dimAKhı,ȷ,k(K1,K0;F2).

where (Id+τ∗)i,j is the induced endomorphism on Kh i,j(K;F2).

Proof. This also follows from Theorem 1.1 by equating the ranks of the E2-
page and E∞-page: since θ has homological, quantum bigrading (−1, 0), state-
ment (Θ-2) in the theorem implies that the dr-differentials vanish for r > 1. □

Corollary 1.4. Assume that in some quantum grading j, Kh∗,j(K;F2) is
supported in a single homological grading i. Suppose also that⊕

ı,ȷ,k|2ȷ+k=j−1+3∆

AKhı,ȷ,k(K1,K0;F2) = 0.

Then, the endomorphism (Id+τ∗)i,j on Khi,j(K;F2) has rank 1
2 dimKhi,j(K;F2).

In particular, if Khi,j(K;F2) is 2-dimensional then, up to a change of basis, τ∗ is
given by the matrix ( 0 1

1 0 ) .
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K K K0 K1

K ′ K
′

K
′
0 K

′
1

Figure 1.1. Strong inversions of the trefoil. Each row shows
an intravergent diagram for a strong inversion of the trefoil, the
quotient knot, and the two annular quotients. The two strong
inversions are isotopic in S3 but not R3; in S3, the two different
quotients correspond to the two choices of half-axis.

Proof. The first statement is immediate from Corollary 1.3. The second fol-
lows from the first and the fact that any involution of F2

2 is one of ( 1 0
0 1 ), (

0 1
1 0 ),

( 1 1
0 1 ), or (

1 0
1 1 ), and the last two are conjugate to the second one. □

Example 1.5. Figure 1.1 shows two intravergent diagrams K andK ′ for strong
inversions of the positive trefoil. (See also [BI22, Appendix A].) The first has

quotient K the unknot; the quotient K
′
of the second is the negative trefoil.

With our grading conventions, the E1-page of the spectral sequences from The-
orem 1.1 for both K and K ′ are given by the Khovanov homology of the trefoil
tensored with F2[θ

−1, θ], i.e.,

0 1 2 3

1

3

5

7

9

A

B

C

D E

F

,

where each letter is a copy of F2[θ
−1, θ]. The homological grading is horizontal

and quantum grading is vertical. The two involutions are isotopic in S3; hence, the
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induced maps τ∗ on Khovanov homology are the same [MWW22]. In fact, since τ∗
is a grading-preserving involution, it must be the identity map, so the d1-differential
on the spectral sequence from Theorem 1.1 vanishes. So, the table above also gives
the E2-pages.

By Point (Θ-2), the only possibly nontrivial differential is the d2-differential,
for which we could have d2(D) = θ2E. It is easy to check directly that for K this
differential is trivial and the spectral sequence collapses at E2 with total rank 6
over F2[θ

−1, θ]. It follows from Theorem 1.1 and the computation of the E∞-page
below that this holds for K ′ as well.

Direct computation shows that the cones of f+ for K and K
′
are given by

0−1

1

−1

−3

G(1)

H(−1)

0−1

1

−1

−3I(0) J(2)

K(0)

L(−2)

0

and

0−1−2−3

−1

−3

−5

−7

−9

T(−2)

S(0)

R(2)Q(0)P(0)

O(0)N(0)

M(0)

0−1−2−3

−1

−3

−5

−7

−9

Z(−1)

Y(1)

X(−1)

W(1)V(−1)

U(1)

respectively. Here, the subscripts indicate the k-grading. In the first case, the map
f+ vanishes; in the second, it is given by the dashed arrows. In particular, in both
cases the homology of the mapping cone has rank 6, consistent with Theorem 1.1.
One can further use the grading shift to match up the gradings. For example, for
K, ∆ = −2, while for K ′, ∆ = −5, and so the quantum gradings on K or K ′

corresponding to the generators of K and K
′
are:

G H I J K L
7 9 1 3 5 7

N P Q R V X
3 7 7 9 1 5

.

Again, this is consistent with Theorem 1.1. Alternatively, one could use Theo-
rem 1.1 to deduce that f+ is the map given above.

One reason strongly invertible knots have appeared recently is that they have
furnished examples of non-isotopic pairs of slice disks. It turns out that Corol-
lary 1.4 and properties of the maps on Khovanov homology can be used to prove
that certain pairs of slice disks are distinguished by Khovanov homology, with-
out explicitly computing the maps associated to the slice disks. We illustrate this
phenomenon for the knot 946 in Section 5.

The reduced Khovanov homology of K is closely related to the Heegaard Floer
homology of the branched double cover Σ(S3,K) of K [OSz05, Rob13, GW10],
and Theorem 1.1 has an analogue for Heegaard Floer homology:
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Theorem 1.6. Given a strongly invertible knot K with quotient knot K there

is an ungraded spectral sequence with E1-page given by ĤF (Σ(S3,K))⊗ F2[θ
−1, θ]]

converging to ĤF (Σ(S3,K))⊗ F2[θ
−1, θ]].

As we will see, this follows from a localization result of Hendricks, Lidman,
and the first author for the Heegaard Floer homology of double branched cov-
ers [HLL22], which in turn follows from a general localization theorem in La-
grangian intersection Floer homology of Large [Lar]. Note that in Theorem 1.6,
there are two choices for the quotient knot K, depending on which half of the axis
one chooses. The statement holds for either choice. There is also an analogue for
the knot Floer homology relative to a preimage of the axis, Theorem 6.3.

Another spectral sequence associated to a strongly invertible knot was con-
structed by Lobb-Watson [LW21], although they used a different kind of diagrams,
transvergent rather than intravergent. (They also mention intravergent diagrams
briefly, in the discussion around their Figure 7.) It might be interesting to compare
their F spectral sequence with the one constructed here; in particular, this might
give an approach to proving that their other, G, spectral sequence collapses [LW21,
Question 6.5].

We expect that the spectral sequence in Theorem 1.1 is an invariant of the
strong inversion on K, but do not pursue this here. (In fact, we expect a somewhat
stronger statement to hold: that the complex CKh(K), viewed as a complex of
F2[Z/2]-modules, is invariant up to quasi-isomorphism. Invariance of the spectral
sequence from Theorem 1.6 follows from [HLL22, Remark 4.13].) One could also
ask about whether the spectral sequence is an invariant of the strongly invertible
knot in S3, i.e., does not depend on the choice of half-axis, as was the case in
Example 1.5; this seems hard to prove using an intravergent diagram, but easier if
one could relate it to a transvergent one. Theorem 1.6 suggests there might be an
interesting reduced version of Theorem 1.1, but we do not pursue that either. One
could also consider links in Theorems 1.1 and 1.6, meeting the axis in more than
two points, but we also do not pursue that generalization.

This paper is organized as follows. Since there are many conventions for Kho-
vanov homology, we review ours in Section 2. We then introduce the axis-moving
maps on annular Khovanov homology and some of their basic properties in Sec-
tion 3. Section 4 proves the main localization result, Theorem 1.1. We give the
application to slice disks in Section 5. We end with the proof of the analogue for
Heegaard Floer homology, Theorem 1.6, in Section 6.

Acknowledgments. We thank Champ Davis for helpful conversations and
computer code and Keegan Boyle, Kristen Hendricks, Mikhail Khovanov, Tye Lid-
man, Andrew Lobb, Matthew Stoffregen, and Liam Watson for further helpful
discussions. We also thank the referee for suggestions and corrections.

2. Conventions for Khovanov homology

We start by describing our grading conventions for Khovanov homology (which
also serves as a terse review of Khovanov homology itself). Given a knot diagram
withN crossings numbered 1 through N , consider the Kauffman cube of resolutions,
where the complete resolution of the diagram at the vertex v = (v1, . . . , vN ) ∈
{0, 1}N is obtained by resolving the ith crossing by the 0-resolution if vi = 0

or by the 1-resolution if vi = 1, for each i ∈ {1, . . . , N}. We will view the cube



KHOVANOV HOMOLOGY OF STRONGLY INVERTIBLE KNOTS 7

as (1 → 0)N , so each edge runs from a vector with a 1 in some coordinate to the
corresponding vector with a 0 in that coordinate. Associated to each edge is an
elementary saddle cobordism between the corresponding resolutions.

The Frobenius algebra Z[X]/(X2) (with comultiplication given by 1 7→ 1⊗X+
X ⊗ 1, X 7→ X ⊗X) corresponds to a 2-dimensional TQFT. The Khovanov chain
complex CKh is obtained by applying this TQFT to the cube of resolutions, and
then taking the total complex. More concretely, CKh is freely generated by the
Khovanov generators x, which consist of a choice of a vertex v ∈ {0, 1}N and a
labeling of the circles in the complete resolution at v by the labels {1, X}. The
homological grading of x is |v| −N−, and the quantum grading is N − 3N− + |v|+
#{circles labeled X} − #{circles labeled 1}. (Here N− is the number of negative
crossings in the diagram and |v| =

∑
i vi is the L1-norm of v.) So, the quantum

grading of X is two more than the quantum grading of 1.
The differential on the Khovanov chain complex is a sum of maps along the

edges of the cube; it preserves the quantum grading and decreases the homological
grading by 1. The component of the differential along the edge from the vertex
v = (v1, . . . , vn−1, 1, vn+1, . . . , vN ) to the vertex w = (v1, . . . , vn−1, 0, vn+1, . . . , vN )
is (−1)v1+···+vn−1 times the map associated by the TQFT to the saddle cobordism.
That is, if the saddle cobordism merges two circles into one, then the map is induced
by the multiplication map in Z[X]/(X2), and if the saddle cobordism splits a circle
into two, then the map is induced by the comultiplication map in Z[X]/(X2).

This convention differs from Khovanov’s original [Kho00] in a couple of ways:
the differential in Khovanov’s original paper increased the homological grading; and
the quantum grading of X was lower than the quantum grading of 1. However, in
order to ensure that arc algebras are supported in non-negative quantum gradings,
Khovanov switched the latter convention in [Kho02], and his subsequent papers
follow the switched convention (where the quantum grading of X is higher than
the quantum grading of 1). However, Khovanov’s original quantum grading con-
vention had a desirable feature that the positive knots (except the unknot) had
Khovanov homologies supported in positive quantum gradings; unfortunately, with
the switched convention, their Khovanov homologies were supported in negative
quantum gradings. With our grading conventions—additionally making the dif-
ferential decrease the homological grading—we try to tread a middle ground: arc
algebras and Khovanov homologies of (non-trivial) positive knots are both sup-
ported in non-negative quantum gradings.

The Khovanov chain complex with our convention is the dual of the Khovanov
chain complex from Khovanov’s original convention, preserving the bigrading (this
follows easily from the duality statement [Kho00, Proposition 32]). So, over any
field, Khovanov homology with our convention is (unnaturally) bigraded isomorphic
to the original Khovanov homology; over Z, the free parts are bigraded isomorphic,
and the torsion subgroup with our convention is isomorphic to the original torsion
subgroup, but with its homological grading shifted down by 1 (and quantum grading
unchanged).

The Khovanov complex of a link in the annulus inherits an extra annular or
winding number filtration; the homology of the associated graded complex is annu-
lar Khovanov homology. We follow the usual conventions in the literature for the
annular filtration. Specifically, given a labeled resolution, orient circles labeled 1
counter-clockwise (positively) and circles labeled X clockwise (negatively). Then,
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Figure 3.1. The axis moving maps. Left: the link L and the
arc connecting a point p on L to the axis (dotted). Center: the link
L⨿U . Right: the link L′ and the corresponding arc connecting p′

to the axis.

the annular filtration of a labeled resolution is the winding number around the axis.
Terms in the differential either preserve the annular filtration or decrease it by 2.
(The latter occurs when merging a nullhomotopic circle labeled X with an essential
circle labeled 1, merging two essential circles labeled 1, splitting an essential circle
labeled 1 into a nullhomotopic circle labeled 1 and an essential circle labeled X, or
splitting a nullhomotopic circle labeled X into two essential circles labeled X.)

3. A map on annular Khovanov homology

Let L be an annular link diagram. Fix a point p on L adjacent to the axis of
the annulus. Isotoping p across the axis of the annulus gives a new link L′. (See
Figure 3.1.) In this section we define and spell out basic properties of the axis
moving maps

f+, f− : AKh(L)→ AKh(L′).

While the rest of the results in this paper use F2-coefficients, in this section, we
will work with Z-coefficients.

Let L⨿U be the result of adding an essential circle U around the axis, adjacent
to the axis and disjoint from L. (See Figure 3.1.) The annular Khovanov complex of
L⨿U is ACKh(L)⊗ACKh(U) = ACKh(L)⊗Z⟨1, X⟩. So, there are two inclusions
ι1, ιX : ACKh(L) ↪→ ACKh(L ⨿ U), defined by ι1(y) = y ⊗ 1 and ιX(y) = y ⊗X;
these have (homological, quantum, annular) trigradings (0,−1, 1) and (0, 1,−1),
respectively. Merging L and U at the point p gives a map m : ACKh(L⨿ U)→ L;
this map has trigrading (0, 1, 0). (This is the annular merge map. So, for instance,
merging two essential circles labeled 1 is the zero map.) By composing, we get
trigrading-preserving maps

f+ = m ◦ ι1 : Σ0,0,1ACKh(L)→ ACKh(L′)

f− = m ◦ ιX : Σ0,2,−1ACKh(L)→ ACKh(L′),

where Σa,b,c denotes a trigrading shift by (a, b, c). The maps f± are compositions
of chain maps, hence are chain maps. Abusing notation, we will also use f± to
denote the induced map on annular homology.

When we want to indicate the dependence of f± on the point p we will write
them as f±

p . Also, the point p on L becomes a point p′ on L′ after the isotopy
across the axis.
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We give some basic properties of the maps f±; though we will not use them in
the rest of this paper, perhaps they will be useful in related applications.

Proposition 3.1. Up to homotopy and sign, the maps f± are isotopy invari-
ants of the pair of the annular link L and the arc connecting p to the axis. Further,

f+
p′ ◦ f+

p = f−
p′ ◦ f−

p = 0(3.1)

f+
p′ ◦ f−

p = f−
p′ ◦ f+

p = X·p(3.2)

Here, X·p is the basepoint action on annular Khovanov homology, the result of
merging in a nullhomotopic circle labeled X at the point p, via the annular merge
map. Also, the first statement uses naturality of annular Khovanov homology (see,
e.g., [GLW18]).

Proof. For the first statement, call an arc from an annular link to the axis
short if its projection to the annulus is a smooth embedding and disjoint from the
projection of the rest of the link to the annulus (i.e., the rest of the link diagram).
Given a pair of an annular link L and a (not short) arc γ connecting that link to
the axis, there is a canonical isotopy from L∪ γ to a pair L′ ∪ γ′ where γ′ is short:
just shrink γ and pull L along with it.

Now, fix link diagrams Li, i = 0, 1, and points pi on Li adjacent to the axis,
and let γi be the short arc from pi to the axis. Assume that L0 ∪ γ0 is isotopic
to L1 ∪ γ1, via an isotopy Lt ∪ γt. Applying the canonical isotopy Lt,s ∪ γt,s from
the previous paragraph to each Lt gives a new isotopy Lt,1 ∪ γt,1 from L0 ∪ γ0
to L1 ∪ γ1 so that the arc γt,1 is short for all t. Perturb this isotopy so that the
projection to the annulus is generic. This gives a sequence of Reidemeister moves
(in the annulus) connecting L0 to L1 and disjoint from the arc. Each Reidemeister
move induces a map on the annular Khovanov complex, and it is immediate from
the definitions that these maps commute with the maps f±.

Equations (3.1) and (3.2) are clear from the definitions. □

Remark 3.2. These maps are a special case of maps associated to anchored
cobordisms by Akhmechet-Khovanov [AK]. Specifically, the trace of an isotopy
moving p across the axis is an anchored cobordism. To define a map, we must also
label the intersection point between this cobordism and the axis (the point where
p crosses the axis) by 1 or 2. If the winding number of K around the axis is odd
then f+ corresponds to labeling the intersection point 1 and f− corresponds to
labeling it 2; if the winding number is even then f+ corresponds to labeling the
intersection point 2 and f− corresponds to labeling it 1 (compare [AK, Proof of
Theorem 2.19]).

Equations (3.1) and (3.2) follow from Akhmechet-Khovanov’s curtain rela-
tion [AK, Corollary 2.7].

Remark 3.3. Given (L, p) as above, let L′′ be the result of performing a Rei-
demeister I move at p across the axis, changing the winding number by ±1 (i.e.,
a Markov 2 move). Choose the Reidemeister move so that the 1-resolution of the
new crossing is the disjoint union of L and a new (essential) circle. Then, up to
some overall grading shift, the mapping cone of f+ : Σ0,0,1ACKh(L)→ ACKh(L′)
(respectively f− : Σ0,2,−1ACKh(L) → ACKh(L′)) is a subcomplex of ACKh(L′′):
it is the subcomplex where either the new crossing is 0-resolved or the new crossing
is 1-resolved and the new essential circle is labeled 1 (respectively X).
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4. The localization theorem for strongly invertible knots

In this section, we prove Theorem 1.1. The spectral sequence is constructed as
follows. Given an intravergent diagram for K, rotation τ by 180◦ induces a Z/2
action, which we still call τ , on CKh(K;F2). Consider the Tate complex for this
Z/2-action, which is given by CKh(K;F2)⊗F2[θ

−1, θ] with differential d+θ(Id+τ),
where d is the Khovanov differential:

(4.1)
θ0CKh(K;F2)

d

θ1CKh(K;F2)

d

· · · · · · .
θ(Id+τ) θ(Id+τ) θ(Id+τ)

If we give θ the (homological, quantum) bigrading (−1, 0) then this complex decom-
poses according to quantum gradings and the differential decreases the homological
grading by 1. The complex has a filtration by the θ-power. This filtration induces
the spectral sequence in Theorem 1.1.

The main work is to compute the E∞-page of the spectral sequence (Item (Θ-
3)); the other properties are immediate. The strategy is similar to Stoffregen-
Zhang’s [SZ] and Borodzik-Politarczyk-Silvero’s [BPS21]: we prove that the fixed
points of the Z/2-action induced by the strong inversion on a CW complex repre-
senting the Khovanov stable homotopy type of K is related to the annular Khovanov
stable homotopy type of (K1,K0), and then apply classical Smith theory.

Before embarking on the proof, we briefly summarize the relevant aspects of
the Khovanov stable homotopy type [LS14], following the more recent box map
construction [LLS20, LLS17] (see also [HKK16]). As sketched in Section 2, in a
fixed quantum grading j, the Khovanov chain complex CKh∗,j(K) is obtained as
follows:

(Kh-1) First construct a cube-shaped diagram of abelian groups, FKh
j : (1→ 0)N →

Ab, which associates to each vertex v the free abelian group generated by
all Khovanov generators x at v with quantum grading j, and associates to
each edge v → w the saddle cobordism map from the TQFT corresponding
to the Frobenius algebra Z[X]/(X2).

(Kh-2) Viewing FKh
j as a cube-shaped diagram of chain complexes, take the map-

ping cone N times, in the N directions of the cube, to obtain a single chain
complex. (The signs, like (−1)v1+···+vn−1 from Section 2, appear during
this iterated mapping cone construction; the precise signs depend on the
order in which the mapping cones are done.)

(Kh-3) Finally, shift the homological grading of the chain complex down by N− to
get the Khovanov chain complex CKh∗,j(K). (The total Khovanov complex
over all quantum gradings is given by

⊕
j CKh∗,j(K).)

In order to remove the choice about the order in which to take the mapping cones
(which amounts to choosing an ordering of the N crossings of the knot diagram),
one can replace Step (Kh-2) by the following:

(Kh-2′) Extend FKh
j trivially to a diagram (FKh

j )+ from a slightly larger category

(1 → 0)N+ which has an additional object and a unique morphism from
every v ̸= 0 to it, and then take the homotopy colimit to obtain a single
chain complex. (The functor (FKh

j )+ sends the new object to the trivial
group.)
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The lift to a Khovanov stable homotopy type follows the same outline, replacing
the cube of abelian groups by a cube of topological spaces. More concretely:

(X -0) Fix an integer D ≥ N .
(X -1) Construct a cube-shaped diagram FX

j : (1 → 0)N → Top of based CW
complexes which associates to each vertex a wedge sum of D-dimensional

spheres, so that its composition with the reduced homology functor, H̃D ◦
FX
j , equals the cube-shaped diagram FKh

j from Step (Kh-1). (It suffices
to construct a homotopy coherent diagram instead of a strictly commuting
one.)

(X -2) Extend (trivially) to a diagram (FX
j )+ from the larger category (1 → 0)N+

mapping the new object to a 1-point space, and then take homotopy colimit
to obtain a single topological space.

(X -3) Finally, formally desuspend (D + N−) times to get the Khovanov spec-
trum Xj(K) in quantum grading j. (The total Khovanov spectrum over all
quantum gradings is given by

∨
j Xj(K).)

Of these, the hardest step is Step (X -1), which we undertake by first constructing
a lax diagram in a third category—the Burnside 2-category B of finite sets, fi-
nite correspondences, and bijections between correspondences. Specifically, letting
Z⟨·⟩ : B → Ab denote the functor that replaces a finite set by the free abelian group
generated by it, we do the following:

(B-1) Construct a cube-shaped 2-functor FB
j : (1→ 0)N → B which associates to

each vertex v the set of Khovanov generators x at v with quantum grading

j, to each edge v → w a correspondence FB
j (v)

s← FB
j (v → w)

t→ FB
j (w),

so that Z⟨·⟩ ◦ FB
j = FKh

j , and to each 2-dimensional face u
v

v′
w

a 2-morphism (which is an isomorphism of correspondences) FB
j (v → w) ◦

FB
j (u→ v)

∼=−→ FB
j (v′ → w)◦FB

j (u→ v′) satisfying a coherence relation for
every 3-dimensional face. Note that this data specifies, for any v > w in the
poset (1 > 0)N , a correspondence FB

j (v → w) : FB
j (v) → FB

j (w), by com-
posing the correspondences along a sequence of oriented edges connecting
v to w; any two such sequences specify canonically isomorphic correspon-
dences. (We can also define the total Burnside functor over all quantum
gradings as

∐
j F

B
j where ⨿ is defined by taking disjoints unions of sets and

correspondences at vertices and edges, respectively.)

Most of the construction of FB
j is forced. The only choices are the isomorphisms of

correspondences for certain 2-dimensional faces (which we call ladybugs), and we
explicitly choose the isomorphisms for those faces (which we call ladybug match-
ings) [LS14, Section 5.4], [LLS20, Section 8.1]. Once we have the 2-functor
FB
j : (1 → 0)N → B, we can carry out Step (X -1) by the box map construction,

as follows:

(X -1′) For each vertex v, define FX
j (v) =

(∐
x∈FB

j (v) Bx

)
/∂, where Bx is a D-

dimensional rectangular prism (box ) associated to the Khovanov genera-
tor x. For each edge v → w, choose disjoint D-dimensional sub-boxes
{Bb}b∈FB

j (v→w) inside
∐

x∈FB
j (v) Bx so that each Bb lies in Bs(b); de-

fine the map FX
j (v → w) : FX

j (v) → FX
j (w) by sending each sub-box

Bb ⊂ Bs(b) to Bt(b) by scaling and translation, and the complement of all
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these sub-boxes to the basepoint. Call maps as in the previous sentence box
maps. To extend this to a homotopy coherent diagram FX

j on the entire

cube, we specify, for every chain vℓ > · · · > v0 in the poset (1 > 0)N , a
[0, 1]ℓ−1-parameter family of box maps FX

j (vℓ) → FX
j (v0) satisfying cer-

tain coherence conditions on its boundary, and refining the correspondence
FB
j (vℓ → v0) : F

B
j (vℓ) → FB

j (v0). By induction on ℓ, and using the co-
herence conditions and the 2-morphisms in the Burnside category, such a
family of maps is already defined on the boundary ∂[0, 1]ℓ−1. Extend it to
the entire cube [0, 1]ℓ−1 using (D−2)-connectedness of the space of labeled
sub-boxes and the assumption that D ≥ N .

The constructions for annular Khovanov complexes and annular Khovanov ho-
motopy types mirror these definitions. There is an extra annular grading, and we
only consider maps that preserve that grading. Therefore, in each (quantum, annu-

lar) bigrading (j, k), we get diagrams AFKh
j,k : (1→ 0)N → Ab, AFB

j,k : (1→ 0)N →
B, and AFX

j,k : (1 → 0)N → Top; their extensions (AFKh
j,k )+ : (1 → 0)N+ → Ab and

(AFX
j,k)+ : (1 → 0)N+ → Top; and the chain complex ACKh∗,j,k and the spectrum

AXj,k. For the pair (K1,K0) of annular knots whose annular Khovanov chain

complex ACKh(K1,K0) is defined as the mapping cone of Σ0,0,1ACKh(K1)
f+

→
ACKh(K0), it still may be viewed as a subcomplex of another annular Khovanov
chain complex—see Remark 3.3—and therefore, all these constructions work for
the pair (K1,K0) as well.

Given an intravergent diagram of K, the strong inversion induces Z/2-actions
on these various objects as follows.

Lemma 4.1. The 180◦ rotation on the intravergent diagram of K induces a
Z/2-action on the cube (1 → 0)N and an external Z/2-action on the 2-functor
FB
j (K) : (1 → 0)N → B in each quantum grading j, in the sense of Stoffregen-

Zhang [SZ, Definition 3.4].

Proof. The proof is similar to Stoffregen-Zhang’s corresponding result for
2-periodic knots [SZ, Proposition 6.4]. The 180◦ rotation τ around the axis in-
duces a Z/2-action on the N crossings of K, which in turn induces a Z/2-action
(also denoted τ) on the cube category (1 → 0)N after identifying it with (1 →
0){crossings of K} by ordering the crossings. It also induces a Z/2-action (still de-
noted τ) on the set of all Khovanov generators in quantum grading j, sending
FB
j (v) to FB

j (τv). Moreover, for each edge v → w, it induces an isomorphism of
correspondences

FB
j (v) FB

j (v → w) FB
j (w)

FB
j (τv) FB

j (τv → τw) FB
j (τw)

s t

s t

τ τ τ

since for any Khovanov generators x ∈ FB
j (v), y ∈ FB

j (w), the set s−1(x) ∩ t−1(y)
has 0 or 1 elements. So the only thing to check is that τ respects the ladybug
matchings across 2-dimensional faces, which holds since the ladybug matching is
invariant under planar isotopy, and in particular, the 180◦ rotation τ . □
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This Z/2-action on FB
j (K) : (1→ 0)N → B has a fixed point functor (FB

j (K))τ

[SZ, Definition 3.11]. The functor (FB
j (K))τ is defined on the fixed subcategory

of the cube category (1 → 0)N , which is itself isomorphic to the cube category

(1 → 0)N+1 where N = (N − 1)/2 is the number of crossings of the quotient
diagram K; (FB

j (K))τ assigns to vertices and edges the fixed subset of the τ -action
on the sets and correspondences, respectively. It turns out that these fixed point
functors are related to the Burnside 2-functors associated to the pair of annular
knots (K1,K0):

Lemma 4.2. For any quantum grading j, the fixed point functor (FB
j (K))τ is

isomorphic to
∐

ȷ,k|2ȷ+k=j−1+3∆ AFB
ȷ,k(K1,K0), where ∆ is as in Equation (1.2).

Proof. The proof is similar to the 2-periodic case [SZ, Theorem 6.7]. First, or-
der the N crossings of K arbitrarily. Then, at any vertex v = (v1, . . . , vN+1) ∈ (1→
0)N+1, the set AFB

ȷ,k(K1,K0)(v) is defined to be the set of Khovanov generators of

KvN+1
over the vertex (v1, . . . , vN ) in (quantum, annular) bigrading (ȷ, k − vN+1).

Order the N crossings of K such that the crossing on the axis is ordered
last and the quotient map {other crossings of K} → {crossings of K} is order-

preserving. Then, there is an inclusion of cube categories ι : (1 → 0)N+1 →
(1 → 0)N which sends the vertex v = (v1, . . . , vN , vN+1) to the vertex ι(v) =

(v1, v1, . . . , vN , vN , vN+1) ∈ (1→ 0)N ; the image is precisely the fixed subcategory

of (1→ 0)N .
We construct a natural isomorphism

η :
( ∐

ȷ,k
2ȷ+k=j−1+3∆

AFB
ȷ,k(K1,K0)

)
−→

(
(FB

j (K))τ ◦ ι
)

between the two Burnside functors. For any vertex v ∈ (1 → 0)N+1 and any

Khovanov generator x ∈ AFB
ȷ,k(K1,K0)(v), let η(x) be the Khovanov generator of

K over the vertex ι(v) which labels each circle in the ι(v)-resolution of K by the
same label that x labels its quotient circle in the (v1, . . . , vN )-resolution of KvN+1

.

It is a straightforward calculation that η(x) has quantum grading j if and only if
(ȷ, k) satisfies 2ȷ+ k = j− 1+ 3∆. For the reader’s convenience, we summarize the
calculation below.

In the (v1, . . . , vN )-resolution of the annular knot KvN+1
, let a1 and aX be the

numbers of essential circles that x labels by 1 and X, respectively, and let b1 and
bX be the numbers of non-essential circles that x labels by 1 and X, respectively.
Then,

ȷ = N − 3N− + (|v| − vN+1) + (aX + bX)− (a1 + b1)

k − vN+1 = a1 − aX

2ȷ+ k + 6N− + 1 = (2N + 1) + (2|v| − vN+1) + (aX + 2bX)− (a1 + 2b1).

In the ι(v) = (v1, v1, . . . , vN , vN , vN+1)-resolution of K, the number of circles la-
beled 1, X by the generator η(x) is (a1 + 2b1) and (aX + 2bX), respectively. Then,

j + 3N− = N + |ι(v)|+ (aX + 2bX)− (a1 + 2b1)

= (2N + 1) + (2|v| − vN+1) + (aX + 2bX)− (a1 + 2b1).
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Therefore, 2ȷ+ k = j − 1 + 3(N− − 2N−) = j − 1 + 3∆.

To make the notation less cumbersome, let AFB
[ȷ,k] =

∐
ȷ,k|2ȷ+k=j−1+3∆ AFB

ȷ,k.

Next, we must specify the natural isomorphism η on the 1-morphisms, that

is, for any edge v → w in {1 → 0}N+1, we must specify an isomorphism between
correspondences:

AFB
[ȷ,k](K1,K0)(v → w)

η−→ FB
j (K)(ι(v)→ ι(w)).

As in the proof of Lemma 4.1, for any generators x ∈ AFB
[ȷ,k](K1,K0)(v), y ∈

AFB
[ȷ,k](K1,K0)(w), the set s−1(x) ∩ t−1(y) ⊂ AFB

[ȷ,k](K1,K0)(v → w) has either

0 or 1 elements, and the set s−1(η(x)) ∩ t−1(η(y)) ⊂ FB
j (K)(ι(v) → ι(w)) also

has either 0 or 1 elements, correspondingly; therefore, the isomorphism η between
the correspondences is forced. This is checked by a direct case analysis: When
vN+1 = wN+1, then this is Stoffregen-Zhang’s case analysis for the 2-periodic link
KvN+1

[SZ, Theorem 6.8]. When vN+1 > wN+1, the proof is the following similar

(but shorter) case analysis. Consider the axis-moving isotopy from the (v1, . . . , vN )-

resolution of the annular knot K1 to the corresponding resolution of the annular
knot K0. There are two cases, depending on whether an essential circle becomes
inessential or an inessential circle becomes essential. In the first (respectively sec-

ond) case, s−1(x) ∩ t−1(w) ⊂ AFB
[ȷ,k](K1,K0)(v → w) is non-empty (and has only

one element) if and only if x and y label the moving circle by X (respectively 1) and
all other circles by the same labels. In the picture for K, we get a corresponding
saddle cobordism from the ι(v)-resolution of K to the ι(w)-resolution of K. In
the first (respectively second) case, the saddle is a split (respectively merge) and
s−1(η(x)) ∩ t−1(η(y)) ⊂ FB

j (K)(ι(v) → ι(w)) is non-empty (and has only one ele-
ment) if and only if η(x) and η(y) label all the circles involved in the saddle by X
(respectively 1), and all other circles by the same labels.

Finally, we have to check that compatibility of these isomorphisms across 2-

dimensional faces. That is, given a 2-dimensional face u
v

v′
w in {1 →

0}N+1, we have to check that the following diagram commutes:

AFB
[ȷ,k](K1,K0)(v → w)

◦AFB
[ȷ,k](K1,K0)(u→ v)

AFB
[ȷ,k](K1,K0)(v

′ → w)

◦AFB
[ȷ,k](K1,K0)(u→ v′)

FB
j (K)(ι(v)→ ι(w))
◦FB

j (K)(ι(u)→ ι(v))

FB
j (K)(ι(v′)→ ι(w))
◦FB

j (K)(ι(u)→ ι(v′))

where the horizontal arrows are induced by the isomorphisms that we just con-
structed, and the vertical arrows are induced by the isomorphisms that are part of
the data for the respective Burnside 2-functors. Unless the 2-dimensional face is a
ladybug, for any pair of generators x ∈ AFB

[ȷ,k](K1,K0)(u), y ∈ AFB
[ȷ,k](K1,K0)(w),

each of s−1(x) ∩ t−1(w) ⊂ AFB
[ȷ,k](K1,K0)(u → w) and s−1(η(x)) ∩ t−1(η(y)) ⊂

FB
j (K)(ι(u)→ ι(w)) has 0 or 1 elements, and so the check is automatic. Thus, the

only case remaining is when the 2-dimensional face is a ladybug. However, recall
from Remark 3.3 that the functor AFB

[ȷ,k](K1,K0) may be viewed as a subfunctor
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of the Burnside functor associated to a different annular knot obtained from K1

by performing a Reidemeister I move. However, such a crossing (coming from a
Reidemeister I move) cannot be involved in a ladybug configuration. Therefore,
in order to be a ladybug, we must have uN+1 = vN+1 = v′

N+1
= wN+1; and in

that case, commutativity of the above diagram follows from the analogue for the
2-periodic link KuN+1

[SZ, Lemma 6.15]. □

Now, given the Z/2-action on the Burnside functor FB
j (K), and the above

identification of its fixed point functor with those of the quotient annular knots
(K1,K0), all that remains is to refine these actions and the fixed points to the
category of topology spaces. This is precisely Stoffregen-Zhang’s central thesis:

Proposition 4.3. [SZ, Proposition 5.10] Let FB : (1→ 0)N → B be a Burn-
side 2-functor with an external Z/2-action τ and (FB)τ denote the fixed point
functor. Then, the homotopy coherent diagram FX : (1→ 0)N → Top refining FB

using the box map construction, as in Step (X -1′), may be chosen Z/2-equivariantly
so that the fixed point homotopy coherent diagram (FX )τ refines (FB)τ using box
maps.

Proof. For the reader’s convenience, we sketch the proof (summarizing the
proofs of [SZ, Lemma 4.7 and Proposition 5.10]).

Fix D1, D2 ≥ N . For every x ∈
∐

v F
B(v), associate a (D1 +D2)-dimensional

box Bx
∼= [0, 1]D1+D2 ; endow it with the Z/2-action τ which reflects the first D1-

coordinates and is the identity along the last D2-coordinates, that is,

τ(x1, . . . , xD1+D2) = (1− x1, . . . , 1− xD1 , xD1+1, . . . , xD1+D2).

As in Step (X -1′), for chains vℓ > · · · > v0 in the poset (1 > 0)N , we will
construct a [0, 1]ℓ−1-parameter family of box maps FX

j (vℓ)→ FX
j (v0) refining the

correspondence FB(vℓ → v0) : F
B(vℓ) → FB(v0) by induction on ℓ. These maps

will already be specified on the boundary ∂[0, 1]ℓ−1 by the compatibility condition.
There are two cases:

• If the entire chain vℓ > · · · > v0 is not fixed by τ , choose one of the two chains
c = (vℓ > · · · > v0) or τc = (τvℓ > · · · > τv0) arbitrarily; without loss of
generality, say we pick c. Construct the [0, 1]ℓ−1-parameter family of box maps
for c, refining the correspondence FB(vℓ → v0), arbitrarily using the (D1+D2−
2)-connectedness of the space of labeled sub-boxes. Then define the [0, 1]ℓ−1-
parameter family of box maps for the other chain τc, refining the correspondence
FB(τvℓ → τv0), by pre-composing and post-composing by τ , as well as relabeling
the sub-boxes by the map τ : FB(vℓ → v0)→ FB(τvℓ → τv0).
• If the entire chain vℓ > · · · > v0 is fixed by τ , construct the [0, 1]ℓ−1-parameter
family of box maps refining the correspondence FB(vℓ → v0) as follows.
– Let A ⊂ FB(vℓ → v0) be the subset not fixed by τ . From every pair
{a, τa} ⊂ A, choose one element arbitrarily. Let B ⊂ A be the subset of
chosen elements. Pick the [0, 1]ℓ−1-parameter family of sub-boxes labeled by
B in the complement of the τ -fixed subspace of the boxes using the (D1 − 2)-
connectedness of that space. Construct the [0, 1]ℓ−1-parameter of sub-boxes
labeled by A \B by applying τ .

– Let C ⊂ FB(vℓ → v0) be the subset fixed by τ . Pick the [0, 1]ℓ−1-parameter
family of sub-boxes labeled by C symmetrically with respect to τ . (First choose
a [0, 1]ℓ−1-family of D2-dimensional boxes inside the fixed subset { 12}

D1 ×
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[0, 1]D2 using the (D2 − 2)-connectedness of that space, and then thicken the
boxes τ -equivariantly to get (D1 +D2)-dimensional boxes, while staying dis-
joint from the sub-boxes labeled by A.)

This produces a homotopy coherent diagram FX refining FB using (D1+D2)-
dimensional box maps, and the fixed point functor (FX )τ is also a homotopy
coherent diagram refining (FB)τ using D2-dimensional box maps. □

Combining these ingredients, we get:

Proposition 4.4. The strong inversion of K induces a Z/2-action on the Kho-
vanov spectrum X (K) whose geometric fixed point set is AX (K1,K0) up to some
formal (de)suspension. Keeping track of quantum gradings, the geometric fixed point
set of the Z/2-action on Xj(K) is the spectrum

∨
ȷ,k|2ȷ+k=j−1+3∆ AXȷ,k(K1,K0),

up to some formal (de)suspension.

Proof. Choose the homotopy coherent diagram FX
j (K) Z/2-equivariantly, as

in Proposition 4.3. Up to some (de)suspension, the Khovanov spectrum Xj(K) is
the homotopy colimit of the extended diagram (FX

j (K))+. The geometric fixed
point set of this homotopy colimit is the homotopy colimit of the extended fixed
point functor (FX

j (K))τ+. But by Lemma 4.2 and Proposition 4.3, the fixed point

functor (FX
j (K))τ refines Burnside functor

∐
ȷ,k|2ȷ+k=j−1+3∆ AFB

ȷ,k(K1,K0), and

therefore, up to some (de)suspension, the homotopy colimit of (FX
j (K))τ+ is simply∨

ȷ,k|2ȷ+k=j−1+3∆

AXȷ,k(K1,K0),

as claimed. □

Proof of Theorem 1.1. Since the spectral sequence is induced by the θ-
filtration on the Tate complex, Formula (4.1), we only need to prove Item (Θ-3): the
other parts are immediate from the definition. However, this is simply the classical
Smith inequality applied to the Proposition 4.4, stated in the language of spectral
sequences. To wit, the Tate complex from Equation (4.1) computes the localized
equivariant homology of X (K), which by the classical localization theorem, equals
the localized equivariant homology of the geometric fixed point set AX (K1,K0),
which simply equals its homology AKh(K1,K0), tensored with F2[θ

−1, θ]. (It is
also easy to keep track of the quantum gradings using Proposition 4.4.) □

Remark 4.5. The expression ∆ = N− − 2N− appears as grading shifts in
Theorem 1.1, but it is not an invariant of the knot K and its strong inversion. Ge-
ometrically, the 2-periodic annular links K0,K1 obtained by resolving the crossing
of K on the axis, and their quotient annular knots K0,K1, are only well-defined up
to how many times they wind around the axis, and ∆ captures information about
this winding number. In more detail, if B (respectively T ) denotes the underpass
(respectively overpass) of K near its crossing on the axis, then orient the quotient
knot K by orienting the quotient arc B (respectively T ) towards (respectively away
from) the axis. This induces orientations of the two annular knots K0 and K1, as
well as their pre-images K0 and K1 (but not of the original knot K). Let W be the
winding number of K0 (equivalently, K0) around the axis; this is one higher than
the winding number of K1 (equivalently, K1) around the axis. Then W −∆ is an
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Figure 4.1. An additional move. The left half shows a new
move for intravergent diagrams, corresponding to rotating the over-
pass T counter-clockwise over the underpass B. The right half
shows the corresponding change for the 2-periodic link K0 (with
the orientation from Remark 4.5).

invariant of the knot K and its strong inversion; we prove this as Proposition 4.6
below.

Proposition 4.6. The quantity W −∆ is independent of the choice of the in-
travergent diagram, and in fact equals twice the axis linking number invariant [BI22,
Definition 4.6] of the knot K and its strong inversion.

Proof. We first prove that W − ∆ is an invariant. Given two intravergent
diagrams for K and its strong inversion, connect them by a generic Z/2-equivariant
isotopy in R3; this produces a generic isotopy (in R3) connecting the quotient
diagrams forK. As in the proof of Reidemeister’s theorem, this implies that the two
diagrams for K are related by a finite sequence of Reidemeister moves (away from
the axis), as well as a new move, corresponding to the situation when during the
isotopy of K, the projection of the underpass B becomes tangent to the projection
of the overpass T at the axis. The Reidemeister moves of K lift to Z/2-equivariant
pairs of Reidemeister moves for K, while this new move lifts to the move shown in
the left half of Figure 4.1. (Actually, there are two moves, depending on whether
the overpass T rotates clockwise or counter-clockwise over B. Figure 4.1 shows
the move for the counter-clockwise rotation; the other move can be obtained by
performing a Z/2-equivariant pair of Reidemeister II moves of T over B near the
axis, and then the above move in reverse.)

The Reidemeister moves for K—lifting to a Z/2-equivariant pair of Reidemeis-
ter moves for K—do not change W , the winding number of K0. For the Reide-
meister I move, depending on the shape of the clasp, either N− increases by 2
and N− increases by 1, or both N− and N− are unchanged. For the Reidemeister
II move, N− increases by 2 and N− increases by 1, and for the Reidemeister III
move, both N− and N− are unchanged. So, in each case ∆ = N− − 2N− does not
change. Finally, for the new move from Figure 4.1, N− increases by 1 and N− also
increases by 1, so ∆ decreases by 1, but the winding number W decreases by 1, so
the quantity W −∆ is preserved.

Next we will prove that this invariant W − ∆ equals twice Boyle-Issa’s axis
linking number invariant [BI22, Definition 4.6]. Fix an orientation of the knot
K. By performing the move from Figure 4.1 once if necessary, we may assume
the crossing of K on the axis is a positive crossing. Then K0 is a 2-component
link, and it inherits an orientation from K. To avoid confusion, let ocan denote
the canonical orientation of K0 from Remark 4.5, and let oind denote the induced
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orientation from K. These two orientations agree on one of the components of K0,
and disagree on the other.

The number of negative crossings of K0 with orientation oind is N− and the
number of the negative crossings of K0 with orientation ocan is 2N−. Therefore,
∆ = N− − 2N− is twice the linking number between the two components of K0

(with orientation ocan); in particular, it is an even number.
Now perform the move from Figure 4.1 ∆ times. (If ∆ < 0, then perform

the reverse move −∆ times.) In the new diagram, the crossing on the axis is still
positive, so the above discussion applies. Now ∆ = 0, and so the invariant is simply
the new winding number W . Also, the linking number between the two components
of K0 in the new diagram is zero, so K0 is the 2-component butterfly link [BI22,
Definition 4.1], and by definition its winding number W is twice the axis linking
number invariant. □

Remark 4.7. Given a theorem about Khovanov homology, it is natural to
wonder if it lifts a result about the Jones polynomial. Let VK(q) be the unreduced
Jones polynomial, that is, the graded Euler characteristic of Kh(K). Let JK(q) =
VK(q)/(q + q−1) denote the reduced Jones polynomial. For an annular knot K,
let AVK(q, a) be the graded Euler characteristic of annular Khovanov homology,
which was studied briefly by Roberts [Rob13, Section 2]. By Theorem 1.1,

VK(q) ≡ q1−3∆(qAVK1
(q2, q) + AVK0

(q2, q)) (mod 2).

It is easy to see from Kauffman’s state sum formula that if we quotient by (q2 +
q−2)− (q + q−1) then AV (q2, q) ≡ V (q2) and V (q) ≡ V (q2). Therefore, we have

VK(q) ≡ q−3∆(q2 + q)VK(q2) ≡ q−3∆(q2 + q)VK(q) (mod 2, q2 − q − q−1 + q−2),

where K denotes either K0 or K1, viewed as an ordinary, not annular, knot. Since
q2 − q − q−1 + q−2 = (q + q−1)(q − 1 + q−1) over F2[q

−1, q], we may divide by
(q + q−1) to get the equation for reduced Jones polynomial

(4.2) JK(q) ≡ q−3∆(q2 + q)JK(q2) ≡ q−3∆(q2 + q)JK(q) ≡ JK(q)

modulo (2, q − 1 + q−1). An analogous result can also be obtained for 2-periodic
knots using [SZ, Theorem 1.3], giving the 2-periodic case of a formula of Mura-
sugi’s [Mur88, Theorem 1] and, using the fact that JK(i) ≡ 1 (mod 2), the 2-
periodic case of Yokota’s refinement [Yok91, Theorem 2]. However, Formula (4.2)
is actually vacuous, since if we quotient by (q + q−1)− 1, in Kauffman’s state sum
formula each circle contributes 1, and so for any knot or link diagram K with N
crossings, N− of which are negative, we get

JK(q) ≡
∑

v∈{0,1}N

qN+|v|−3N− = (1 + q)NqNq−3N− ≡ 1 (mod 2, q − 1 + q−1).

(Murasugi’s and Yokota’s formulas are also vacuous for 2-periodic knots, though
interesting for higher periods. For Murasugi, this is [Mur88, Proposition 7]; Yokota
only states his results for odd primes, presumably for this reason.)

5. An application to slice disks

Consider the knotK = 946. It bounds two slice disks as illustrated in Figure 5.1;
denote them D1 and D2, and view them as cobordisms in [0, 1] × R3 from K to

the empty link ∅. Let D̂i denote the image of Di under the map (t, x, y, z) 7→
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∅

∅

sa
dd

le

saddle

isotopy

isotopy

deaths

deaths

Figure 5.1. The knot K = 946 and a pair of slice disks for
it. The knot is on the left, and the two movies on the two rows
represent its two slice disks. Note that the two movies are related
by a 180◦ rotation around the dashed line.

(1− t, x, y, z), so D̂i is a cobordism from ∅ to K. Sundberg-Swann showed that the
disks D1 and D2 are distinguished by their induced maps on Khovanov homology.
We will recover this result using Theorem 1.1. In fact, we get a little more; see
Porism 5.2 below. The argument is reminiscent of the recent work of Dai-Mallick-
Stoffregen using Heegaard Floer homology [DMS].

Theorem 5.1. [SS22] The slice disks D1 and D2 induce different maps on
Khovanov homology Kh(946;F2)→ Kh(∅;F2) = F2.

Proof. For any cobordism F , let F∗ denote the induced map on Khovanov ho-
mology. We will find an element γ ∈ Kh0,1(K;F2) satisfying (D1)∗(γ) ̸= (D2)∗(γ).

The Khovanov homology of K in quantum grading ±1, retrieved from the Knot
Atlas [BM] and converted to the conventions of Section 2, is

−1 0

−1

1

F2 Z

Z2

and therefore the Khovanov homology over F2 of K in these quantum gradings is

−1 0

−1

1

F2 F2
2

F2
2

where the arrow indicates a rank one Bockstein homomorphism associated to the
coefficient sequence 0→ Z/2→ Z/4→ Z/2→ 0.
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K K K0 K1

Figure 5.2. The strongly invertible knot K = 946, its quo-
tient knot K, and the two induced annular trefoil knots
K0 and K1. Here K has been redrawn as an intravergent diagram
with the axis coming straight out of the page through the marked
point; it is also the axis for the two annular trefoils.

Let α ∈ Kh0,−1(K;F2) be the generator of the kernel of the Bockstein homo-
morphism, and let β ∈ Kh0,1(K;F2) be the image of α under the X-action (the
basepoint map). If Id• denotes the identity cobordism from K to itself decorated
with a single dot, then this X-action is the map Id•∗ induced on Khovanov homology
by Id•.

For i ∈ {1, 2}, consider the cobordism Fi = Di ◦ Id• ◦D̂i from ∅ to ∅. Since
Fi is a (knotted) dotted sphere, by a result of Rasmussen and Tanaka [Ras,
Tan06] (or, more precisely, a trivial extension of it [LS22, Lemma 6.16]), (Fi)∗ =

(Di)∗ ◦ Id•∗ ◦(D̂i)∗ is the identity map on Khovanov homology F2 = Kh(∅;F2) →
Kh(∅;F2) = F2. Therefore, both (D̂1)∗ and (D̂2)∗ map the generator of Kh(∅;F2)
(in bigrading (0, 0)) to α, which is the unique non-zero element of Kh0,−1(K;F2)

in the kernel of the Bockstein. Therefore, both Id•
∗ ◦(D̂1)∗ and Id•∗ ◦(D̂2)∗ map the

generator of Kh(∅;F2) to β ∈ Kh0,1(K;F2), and both (D1)∗ and (D2)∗ map β to
the generator of Kh(∅;F2). Choose some γ ∈ Kh0,1(K;F2) so that {β, γ} is a basis
of Kh0,1(K;F2).

The knot K is strongly invertible with respect to the 180◦ rotation around the
dashed vertical line in Figure 5.1; call the involution τ and the induced map on
Khovanov homology τ∗ : Kh(K;F2) → Kh(K;F2). The two slice disks D1 and D2

are related by the involution (Id, τ) of [0, 1] × R3. Therefore, τ∗ ◦ Id•∗ ◦(D̂1)∗ =

Id•∗ ◦(D̂2)∗, which implies τ∗(β) = β.
The annular quotient knots K0 and K1 are shown in Figure 5.2. We consider

their annular Khovanov homology in gradings corresponding to the quantum grad-
ing j = 1 on K. (The grading correction term ∆ = 4.) Computer computation,
using code by Davis [Dav], gives that the annular Khovanov homology of K1 in
gradings with 2ȷ + k + 1 = 12 is F2

2, supported in gradings (2, 7,−3) and (3, 5, 1),



KHOVANOV HOMOLOGY OF STRONGLY INVERTIBLE KNOTS 21

X

X

1 1 X

X

X

X
1
1

1
X
1

1
1
X f+

X

X X X

X

X X X

f+

Figure 5.3. Cycles in and their images under f+. Top
left: a generator for AKh2,7,−3(K1;F2). Top right: its image

in AKh2,7,−2(K0;F2) under f+. Bottom left: an element of

AKh3,5,1(K1;F2) which is the sum of three terms, where the two
inessential circles and one essential circle are labeled X and the
other two essential circles are labeled 1. (We have labeled the
inessential circles and listed all possible labels of the three essential
circles.) Bottom right: its image in AKh3,5,2(K0;F2). Crossings
that were 1-resolved, i.e., where there is a Khovanov differential
out of this state, are indicated with thick line segments.

while the annular Khovanov homology of K0 in gradings with 2ȷ + k = 12 is also
F2
2, supported in gradings (2, 7,−2) and (3, 5, 2). It is not hard to find representa-

tives of these cycles in AKh(K1;F2) by hand; see Figure 5.3. Their images under
f+ are (distinct) nontrivial elements of AKh(K0;F2), so f+ is an isomorphism.
(Verifying that the image is nontrivial by hand is straightforward for the cycle in
grading (3, 5, 1), but is quite tedious for the cycle in grading (2, 7,−3), and might
be better done by computer.) Thus,

⊕
ı,ȷ,k|2ȷ+k=1−1+3∆ AKhı,ȷ,k(K1,K0;F2) = 0

so, by Corollary 1.4 the map τ∗ : Kh0,1(K;F2) → Kh0,1(K;F2) is given by ( 0 1
1 0 )

with respect to an appropriate basis.
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Since τ∗(β) = β, it follows that the basis must be {γ, γ+β} and τ∗(γ) = γ+β.
So,

(D1)∗(γ)+ (D2)∗(γ) = (D1)∗(γ)+ (D1)∗(τ∗(γ)) = (D1)∗(β) = 1 ∈ F2 = Kh(∅;F2),

and hence (D1)∗(γ) ̸= (D2)∗(γ), as claimed. □

Porism 5.2. The knot 946 does not admit an equivariant slice disk, with respect
to the Z/2-action on [0, 1]× R3 by (Id, τ). In fact, for any slice disk D for 946, D
and (Id, τ)(D) are distinguished by the induced maps on Khovanov homology.

Proof. The proof is the same as the proof of Theorem 5.1, with D and
(Id, τ)(D) in place of D1 and D2. □

Note that the first half of the porism also follows from Sakuma’s work [Sak86].
The second half implies that D and (Id, τ)(D) are not even related by taking con-
nected sum with a knotted 2-sphere, since that operation does not change the map
on Khovanov homology.

Remark 5.3. For the last portion of the proof of Theorem 5.1, one could instead
compute the map τ∗ directly; arguably, that involves less work than the argument
given. On the other hand, the argument above only requires computing the dimen-
sions of certain annular Khovanov homology groups (including AKh(K1,K0)), for
which there is a well-known, fast divide-and-conquer algorithm [BN07]; computing
the action of τ∗ efficiently would require further conceptual work.

6. An analogue in Heegaard Floer homology

The main ingredient in the proof of Theorem 1.6 is a recent localization theorem
for the Heegaard Floer homology of branched double covers:

Theorem 6.1. [HLL22, Theorem 4.1] Let Y be a closed 3-manifold and K ⊂ Y
an oriented, nullhomologous knot with Seifert surface F . Let Σ(Y,K) be the double
cover branched along K induced by the Seifert surface F . Then, there is a spectral
sequence with E1-page given by

ĤF (Σ(Y,K))⊗ F2[θ
−1, θ]]

converging to

ĤF (Y )⊗ F2[θ
−1, θ]].

Consider a strongly invertible knot K ⊂ R3 ⊂ S3 with axis A ⊂ S3 (a circle).
The intersection of K with A decomposes A into two intervals; let A1 be the interval
contained in R3 and A2 the other interval. Let τ : S3 → S3 be rotation by 180◦

around A and let K ⊂ S3 = S3/τ be the image of K ∪A1 under the quotient map.

Proof of Theorem 1.6. Let K ′ be the preimage of A2 in Σ(S3,K). We
claim that Σ(S3,K) is the double cover of Σ(S3,K) branched along K ′. Theo-
rem 6.1 then gives the result.

The claim follows from [AB, Lemma 3.1]; we explain this case of their proof.
Let q : S3 → S3/τ be the quotient map. The map q is the double cover branched
along q(A). Fix a Seifert surface F for K meeting q(A2) transversely, and let
F = q−1(F ). Let Y be the result of cutting S3 along F , so ∂Y = F+ ∪K F−.
Since F is taken to itself by τ , τ induces an involution of Y . The fixed set of this
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involution is a copy of (the preimage of) A2; the two copies of A1 (one in F+ and
the other in F−) are exchanged by the involution.

We can form Σ(S3,K) by gluing two copies of Y together. The involution τ
induces an involution τ̃ of Σ(S3,K) with fixed set the preimage of A2. The deck
transformation of Σ(S3,K) gives another involution σ̃, exchanging the two copies
of Y and commuting with τ̃ . So, σ̃ descends to an involution σ of Σ(S3,K)/τ̃ . The
quotient

(
Σ(S3,K)/τ̃

)
/σ is S3, and the fixed set of σ is the preimage of K. Thus,

Σ(S3,K)/τ̃ = Σ(S3,K) and

(6.1) Σ(S3,K) = Σ(Σ(S3,K),K ′),

as claimed. □

Example 6.2. For the knots in Example 1.5, since the double cover of S3

branched over the trefoil is a lens space, the spectral sequence associated to K has
E1-page F2[θ

−1, θ]]3. The involution acts nontrivially on the set of SpinC-structures
on Σ(S3,K), so two of the three generators cancel under the d1-differential and the

spectral sequence collapses at the E2-page to ĤF (S3) ⊗ F2[θ
−1, θ]] = F2[θ

−1, θ]].

By contrast, for K ′, the E1-page and E∞ page are both given by ĤF (Σ(S3,K ′))⊗
F2[θ

−1, θ]] = F2[θ
−1, θ]]3, and di is trivial for all i ≥ 1. (The action of the involution

on the set of SpinC-structures is trivial in this case.) In particular, unlike the
spectral sequences for Khovanov homology, the spectral sequences in Heegaard
Floer homology distinguish K and K ′.

We conclude with a relative version of Theorem 1.6, which follows from a
theorem of Large [Lar] (see also [Hen12]). As in the proof of Theorem 1.6, the

preimage of A2 is a knot K ′ inside Σ(S3,K); let K̃ ′ be the preimage of K ′ in
Σ(S3,K), which is also the preimage of A2 in Σ(S3,K).

Theorem 6.3. With notation as in Theorem 1.6, there is a spectral sequence

with E1-page given by ĤFK (Σ(S3,K), K̃ ′) ⊗ F2[θ
−1, θ]] and which converges to

ĤFK (Σ(S3,K),K ′)⊗ F2[θ
−1, θ]].

Proof. Large proved that given a nullhomologous knot L in a 3-manifold Y
and a branched double cover Σ(Y,L) of (Y,L) there is a spectral sequence

ĤFK (Σ(Y,L), L̃)⊗ F2[θ
−1, θ]]⇒ ĤFK (Y, L)⊗ F2[θ

−1, θ]],

where L̃ is the preimage of L [Lar, Theorem 1.5]. (He states the result as a rank
inequality.) By Formula (6.1), Large’s theorem with Y = Σ(S3,K) and L = K ′

gives the result. □

Remark 6.4. The spectral sequence in Theorem 1.6 decomposes along SpinC-
structures on Σ(K) (see [HLL22, Theorem 1.1]), and the spectral sequence in

Theorem 6.3 decomposes along SpinC-structures on Σ(K) and Alexander gradings,

i.e., relative SpinC-structures on (Σ(K),K ′).
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