
A Practical Guide to Unbinned Unfolding

Florencia Canelli,1, ⇤ Kyle Cormier,1, ⇤ Andrew Cudd,2, † Dag Gillberg,3, ‡ Roger G. Huang,4, † Weijie
Jin,1, ⇤ Sookhyun Lee,5, § Vinicius Mikuni,4, 6, ¶ Laura Miller,7 Benjamin Nachman,4, 8, 9, ⇤⇤ Jingjing
Pan,4, 10, ⇤⇤ Tanmay Pani,11, †† Mariel Pettee,4, ‡ Youqi Song,10, †† and Fernando Torales Acosta4, ¶

1Department of Physics, University of Zurich, 8006 Zürich, Switzerland
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Unfolding, in the context of high-energy particle physics, refers to the process of removing detector
distortions in experimental data. The resulting unfolded measurements are straightforward to use
for direct comparisons between experiments and a wide variety of theoretical predictions. For
decades, popular unfolding strategies were designed to operate on data formatted as one or more
binned histograms. In recent years, new strategies have emerged that use machine learning to unfold
datasets in an unbinned manner, allowing for higher-dimensional analyses and more flexibility for
current and future users of the unfolded data. This guide comprises recommendations and practical
considerations from researchers across a number of major particle physics experiments who have
recently put these techniques into practice on real data.
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I. INTRODUCTION

Science is driven by the pursuit of deeper truths about
our Universe, but scientists must extract these truths us-
ing datasets collected by instruments that carry inherent
measurement errors and resolution limits. To assess the
validity of a theory by directly comparing it with experi-
mental data, scientists must therefore account for the ex-
pected changes that will occur when a pristine theoretical
prediction is altered by the imperfections of the measure-
ment device. If the physics process to be measured and
the model to be tested are both known a priori, the stan-
dard approach used by researchers is “forward modeling”:
taking a theoretical prediction and then modifying it us-
ing a carefully-constructed, high-accuracy detector sim-
ulation that requires expert knowledge of the detector
geometry and its calibrations in order to directly com-
pare the prediction with real data. Each time one wants
to test a new theory or physics process, however, this
time- and compute-intensive process must be fully re-
run, making it impractical for testing multiple theories,
particularly if a new hypothesis is developed long after
the measurements have already taken place.

As an alternative to this paradigm, a real-world
dataset can instead be corrected to try to remove any
detector distortions from the data, thereby resulting in
measurements that can be directly compared between ex-
periments and theoretical predictions. Such a dataset
could then be tested against any number of theoretical
hypotheses without having to repeat the detector simu-
lation each time. The nuanced process of removing de-
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tector e↵ects from data is widespread across many areas
of science and can be variously referred to as “deconvolu-
tion”, “denoising”, “reconstruction”, or “inverse model-
ing”. In High-Energy Physics (HEP), it has historically
been called “unfolding”.

For decades, unfolding in HEP has been performed
on binned datasets of no more than a handful of vari-
ables at a time. Algorithms such as Iterative Bayesian
Unfolding [1] frame the experimental process as a series
of transformations including a detector response matrix
applied to the “true” dataset, i.e. an observable prior
to the interaction with the detector — or, equivalently,
what a detector with perfect resolution and detection ef-
ficiency would measure. The detector response matrix
encodes bin-by-bin measurement e↵ects such as recon-
struction errors, energy smearing, and background noise.
Unfolding, in this framing, means e↵ectively inverting
this detector response matrix so that it can be applied in-
stead to experimental data and thereby produce a truth-
level dataset. Approximating this inverted matrix can
produce numerical instabilities that can yield unreliable
results, particularly as the number of variables — and
therefore the number of independent degrees of freedom
— increases. As a result, unfolded results from tradi-
tional binned strategies are restricted to fixed histogram
bins for only a few simultaneous observables measured at
once.

Over the past few years, HEP researchers have pro-
posed new unfolding techniques that use machine learn-
ing pipelines to perform unfolding in an unbinned man-
ner [2–18], allowing for entire Monte Carlo simulated
datasets to be corrected event-by-event such that the en-
tire dataset aligns with the target. In addition to the
inherent flexibility of removing a predetermined choice
of bins from a measurement, these methods use neural
networks that can readily process high-dimensional in-
puts, meaning that the unfolding can be performed for
dozens or more variables at once without significant com-
putational overhead. One such method that has gained
recent prominence in the field is called OmniFold [7, 19].
OmniFold is a density reweighting method that deter-
mines a set of weights that can transform a simulated
dataset event-by-event to match the target, i.e. the data
one would see with an idealized detector. These weights
are derived from the ratio of the likelihoods of two sam-
ples. These ratios can be directly approximated by har-
nessing neural network classifiers, as these methods are
known to naturally learn likelihood ratios in order to op-
timally discriminate between classes.

Unbinned unfolding has now progressed well beyond
simulation-only and proof-of-concept results. Between
mid-2021 and mid-2025, a number of public results have
made use of unbinned unfolding methods for measure-
ments on datasets from at least five di↵erent HEP detec-
tors: ATLAS, CMS, H1, LHCb, and STAR, as well as a
study on highly realistic simulation from one accelerator-
based neutrino experiment, T2K. This white paper is de-
signed to further facilitate broader adoption of unbinned

unfolding in the field by synthesizing the lessons learned
from researchers involved in each of these measurements.
In Section II, we summarize the core methodology of Om-
niFold, the unbinned unfolding technique that enabled
each of these public measurements. In Section III, we
summarize the specific choices made by the various anal-
yses in areas including hyperparameter optimization, en-
sembling, uncertainty calculation, validation, and presen-
tation of the final results. Finally, in Section IV, we con-
clude and propose some future directions for unbinned
unfolding in HEP using machine learning.

II. UNBINNED UNFOLDING

Each unbinned analysis summarized in this work
makes use of the classifier-based machine learning
method called OmniFold [7, 19], which is illustrated in
Figure 1 and briefly reviewed here. OmniFold requires
two data samples that provide distributions of three dif-
ferent sets of observables in total:

1. ~x MC
true : a Monte Carlo simulation sample contain-

ing a list of events with a number of “truth-level”
observables, i.e. particle-level properties as they
would be captured by an idealized detector;

2. ~x MC
reco : a Monte Carlo simulation sample containing

that same list of events, but instead with “reco-
level” observables, i.e. the properties of those same
events as they would be captured by a realistic de-
tector; and

3. ~x data
reco : the experimental data that, by definition,

only has “reco-level” observables.

Every dataset also specifies a “weight” for each event.
For the Monte Carlo datasets ~x MC

true and ~x MC
reco , these

weights are generally given by the Monte Carlo gener-
ator, but for the real data ~x data

reco these weights are all set
to 1. An event indexed i in the MC sample can hence
typically be written as (wi, ~x MC

true,i, ~x
MC
reco,i), and the task

of OmniFold is to use these three di↵erent sets of event
properties to adjust the weight wi for each MC event
such that the weighted sample of ~x MC

reco agrees with data.
At that point, the weighted sample of ~x MC

true will provide
an approximation (or measurement) of the target, i.e.
~x data
true . OmniFold and other likelihood-based methods do

not change the observables themselves in the dataset —
only the weights. This is in contrast to unfolding based
on generative models that change both the dataset ob-
servables and the weights.
OmniFold makes frequent use of a useful feature of

neural network binary classifiers: their learned decision
functions can be used to construct a smooth reweight-
ing function between the two datasets that participate in
the binary classification. This property holds for a broad
range of loss functions (see e.g. Ref. [20]), but the binary
cross-entropy loss function is a popular choice. With this
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FIG. 1. Illustration of the OmniFold method. In Step 1, MC is corrected to match data at the detector level, producing a
weighting function w1(~x

MC
reco ). In Step 2, a new function w2(~x

MC
true ) is learned based only on particle-level quantities. The method

proceeds iteratively, refining the function w2(~x
MC
true ) such that the particle-level MC can be reweighted to give event yields and

kinematics that match those observed in the data.

choice of loss function, a classifier trained to distinguish
whether a set of events ~x are drawn from either probabil-
ity distribution pA(~x) or pB(~x) will learn a function f(~x)
that minimizes:

LBCE[f ] = �

Z
d~x (pA(~x) log(f(~x)) + pB(~x) log(1� f(~x)))

The function that minimizes this expression will satisfy,
for any small variation �f(~x):

�LBCE =

Z
d~x

✓
�
pA(~x)

f(~x)
+

pB(~x)

1� f(~x)

◆
�f(~x) = 0,

therefore the integrand must be identically zero:

�
pA(~x)

f(~x)
+

pB(~x)

1� f(~x)
= 0.

Solving this equation, we find that we can reconstruct
the likelihood ratio:

f(~x)

1� f(~x)
=

pA(~x)

pB(~x)
,

This function of the neural network classifier f(x) can
then be used to reweight one sample to look like the
other by adjusting the event weight of each data point ap-
propriately. In practice, this method will asymptotically
approximate the likelihood ratio pA(~x)/pB(~x) [21, 22].

Like some binned unfolding methods that have been
widely used in HEP for decades, OmniFold operates
through multiple iterations. In fact, when applied to
binned data, OmniFold is mathematically equivalent to
Iterative Bayesian Unfolding [1]. Each iteration of Omni-
Fold consists of two steps both of which involve estimat-
ing a reweighting function using the procedure described
above:

• Step 1: First, a classifier is trained to distinguish
between distributions of ~x MC

reco and ~x data
reco . This clas-

sifier is used to construct a reweighting function
w1(~x MC

reco ) that can be applied to make ~x MC
reco match

~x data
reco at the detector level.

• Step 2: Next, a new classifier is trained to dis-
tinguish between distributions of ~x MC

true and the ad-
justed events from the previous step taken at the
particle level: ~x MC

true weighted by w1(~x MC
reco ). A new

reweighting function w2(~x MC
true ) is learned that can

be applied to make ~x MC
true statistically match the

target ~x data
true at the particle level.

These two steps are then repeated for multiple iterations,
where the next iteration instead takes ~x MC

reco weighted
by w2(~x MC

true ) as its input to compare with data. The
updated reweighting function becomes a product of the
previous one until a predefined number of iterations are
performed and the method stops.

III. PRACTICAL CONSIDERATIONS

A. Experimental Overview

Table I summarizes the eleven analyses considered.

B. Hyperparameter Optimization

The unbinned unfolding process includes a number
of hyperparameters that a↵ect either the core unfolding
methodology (e.g. number of unfolding iterations) or the
neural network training (e.g. batch size). The OmniFold
codebase [34] includes a suite of recommended default
hyperparameters that were generally su�cient for some
analyses. Other analyses chose to optimize hyperparam-
eters based on the particular needs of their experiments.
Those who did choose to perform a hyperparameter opti-
mization generally tracked the performance of the model
in unfolding with two di↵erent datasets of MC simula-
tions.

1. Unfolding Hyperparameters

a. Number of iterations: OmniFold [19], like its
binned analog IBU [1], is an iterative method. However,
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Experiment Paper Link Dimensions Final State Momentum Selection

ATLAS [23] 2405.20041 24 Z+jets p``T > 200 GeV
ATLAS [24] 2502.02062 6 Dijets pj1T > 240 GeV & pj1T < 1.5 pj2T
CMS [25] 2505.17850 8 Minimum bias > 2 charged particles with pT > 0.5 GeV
H1 [26] 2108.12376 8* High Q2 DIS Q2 > 150 GeV2

H1 [27] 2303.13620 10 High Q2 DIS Q2 > 150 GeV2

H1 [28] 2412.14092 8* High Q2 DIS Q2 > 150 GeV2

H1 [29] H1prelim-25-031 Variable High Q2 DIS Q2 > 150 GeV2

LHCb [30] 2208.11691 4 Z+hadrons in jets 20 < pjT < 100 GeV and phT > 0.25 GeV
STAR [31] 2307.07718 6 Jets 20 < pjT < 50 GeV
STAR [32] 2403.13921 7 Jets in heavy ions 20 < pjT < 45 GeV
T2K [33] 2504.06857 6 Muon + Proton pp > 450 MeV for single transverse variables

TABLE I. An overview of the recently-published experimental results that use unbinned unfolding methods. For most results,
the unfolded dimensionality is the same at reconstruction-level and at truth-level, but * indicates the analyses for which the
unfolded dimensionality at reconstruction-level was the full phase space, but the truth-level unfolded result is 8-dimensional.
Full details of the phase space for each measurement, including ⌘ selections, are listed in the individual papers.

the number of iterations needed to see good performance
can vary. To estimate this number, most analyses used
dedicated studies with a known target to measure the
convergence of the unfolded dataset with the target over
a large number of iterations, sometimes reaching up to 70
or 100. In practice, far fewer iterations were used for the
actual analysis result, typically around 5, due to limita-
tions in the detector resolution. One notable exception
is the T2K study [33], which preferred as many as 20
to 40 iterations. It also explored using per-event weight
changes after each iteration to deal with the still open
question of how to choose the appropriate number of it-
erations in an unbinned manner. The default choice in
the OmniFold software is set to 3 iterations. Analyzers
can also report the unfolding results for di↵erent num-
bers of iterations to assess the impact of this choice, as
in Refs. [35, 36].

b. Network initialization: Most analyses chose to
train the networks for each unfolding step from scratch
with the onset of each new iteration, which is also the de-
fault choice in the OmniFold software. However, using a
pre-trained network as a starting point for training sub-
sequent steps can potentially reduce the overall training
time and improve the stability of the result, particularly
in cases for which there is a large imbalance in statistics
between simulation and data [29], or where the available
data statistics are just generally low [33].

c. Step 2 task: Step 2 of the unfolding procedure is
designed to learn a function that maps the truth-level MC
to the target of unfolded data. At each iteration, how-
ever, this task can be framed either as performing this
mapping in full or in part. “In part”, in this case, means
learning to map from the previous iteration’s reweighted
MC to the target and then composing each of these map-
pings together after training to learn the full mapping
from initial MC simulation to the target. The default
behavior in OmniFold is to learn this mapping in full.
In the CMS analysis [25], researchers found that learning
the mapping from the previous iteration’s reweighted MC
sample yielded worse performance and larger variance in

the OmniFold weights, though this behavior has not yet
been tested extensively.

2. Neural Network Hyperparameters

a. Network architecture: The classifiers across the
various analyses took the form of dense neural networks
with a small number of of hidden layers—typically three,
although some analyses also explored architectures with
two or four layers. The T2K study [33] found measurably
worse performance with smaller networks. Hidden layers
mostly used the ReLU activation function and the final
output layer used a sigmoid activation. Hidden layers
generally had a size of O(100), e.g. 100 or 200 nodes.
b. Batch size: Larger batch sizes of O(103) events

are preferable in order to maximize GPU usage and im-
prove stability of the results. The default recommenda-
tion is 128, but in practice, di↵erent analyses selected
batch sizes ranging from 1,028 [25] to 50,000 [31].
c. Number of training epochs: Instead of using a

fixed number of epochs, most analyses implemented early
stopping using either a pre-determined patience of e.g. 10
epochs or a minimum �, i.e. a lower bound on the change
in the loss that counts as an improvement to the model.
Early stopping was the most common form of regulariza-
tion used, but a few analyses also employed dropout and
batch normalization.

C. Preprocessing

Data preprocessing can have major e↵ects on the ul-
timate performance of a neural network training. Each
analysis had to determine not only how to represent the
features used as inputs, but also how to standardize the
inputs and weights.
a. Input features: Many analyses used jet features

represented as four-vectors, e.g. pT , ⌘, and �. In some

https://arxiv.org/abs/2405.20041
https://arxiv.org/abs/2502.02062
https://arxiv.org/abs/2505.17850
https://arxiv.org/abs/2108.12376
https://arxiv.org/abs/2303.13620
https://arxiv.org/abs/2412.14092
https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-25-031.long.html
https://arxiv.org/abs/2208.11691
https://arxiv.org/abs/2307.07718
https://arxiv.org/abs/2403.13921
https://arxiv.org/abs/2504.06857
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cases, these features were represented relative to an-
other reference frame such as the recoiling electron [29].
A few analyses chose to apply Graph Neural Networks
(GNNs) in order to process the particles as 3D point
clouds [27, 29]. The ATLAS Z+jets analysis [23] chose
to represent � coordinates as a combination of sin(�)
and cos(�) after a dedicated study that suggested this
representation was more e↵ective at reducing discontinu-
ities in the final results. In addition to raw input fea-
tures, summary statistics such as moments and cumu-
lants can also be successfully unfolded, even higher-order
ones with relatively small values (e.g. O(10�5)) [24]. In-
puts were generally standardized using their z-scores, i.e.
z = (x�µ)/�, before using them in the training process.

The T2K study [33] identified two outgoing particles
for each event, the muon and proton, and used the an-
gles and forward momentum of these particles as inputs.
However, in events for which there was no outgoing pro-
ton — whether because it was not reconstructed or be-
cause no proton was kicked out at truth level — place-
holder values were used for the proton kinematics. Addi-
tionally, this analysis separated events into di↵erent sam-
ples in detector space based on the locations within the
detector that the particles were reconstructed, and sep-
arated them into di↵erent reaction topologies in truth
space. This qualitative information was provided as one-
hot encoded input to the neural network.

b. Negative weights: Simulated samples of high-
energy physics data can sometimes be associated with
MC weights representing wide magnitude ranges, even
including negative values, which can introduce di�cul-
ties when using these weighted samples in training neural
networks. In the ATLAS Z+jets measurement [23], sev-
eral of the input MC samples su↵ered from a significant
fraction of negative event weights and large spread of
weights. For these samples, the original MC weight was
replaced by a new weight following a procedure similar
to the method described in Ref. [37]. The resulting sam-
ples had positive weights with a reduced spread (stan-
dard deviation), yielding datasets that are statistically
compatible to those produced using the original weights.

c. Calculating the di↵erential cross-section: Most
analyses performed the unfolding task on normalized
samples such that the neural networks learned the rel-
ative shape di↵erences between the datasets. This choice
allows for the use of standardization in the weights them-
selves as well as the input features. The measured dif-
ferential cross-sections can then estimated by scaling the
weights based on a calculation using the e�ciency and
ofiducial factor from the nominal MC sample as well as
the fiducial cross-section and number of data events:

L · �fiducial · ✏

ffiducial
= ndata.

These corrections are implicitly accounted for if the un-
folding is done without normalizing the samples, as was
done in the T2K study [33]. Alternatively, if the goal is

to measure the shape of an observable, the measurement
can be normalized again after unfolding such that the
weighted area sums to 1.
d. Simultaneously unfolding event- and particle-level

features: Unfolded features can potentially include both
aggregate and individual characteristics of event con-
stituents, e.g. a jet and its constituent particles. In the
LHCb measurements [30], to account for this, an initial
weight of unity for each particle was scaled down by the
particle multiplicity within the jet to allow the network
learn the substructure of jets and consistently normalize
the synthetic data by the number of jets.

D. Background and Acceptance E↵ects

These analyses broadly benefited from a lack of major
background sources that would require a detailed back-
ground subtraction process. However, their methodolo-
gies can in some cases be extended for analyses with non-
trivial backgrounds. We note that “backgrounds” can
comprise irreducible backgrounds, i.e. physics processes
with the same final states as the signal, as well as re-
ducible backgrounds, i.e. events that have been misclas-
sified as signal events due to detector artifacts or other
errors during particle reconstruction and identification.
a. E↵ects from irreducible backgrounds: Back-

grounds were estimated to be small or negligible for
the analyses covered in this report, and were generally
either ignored or were treated by assigning an overall
uncertainty. For example, the ATLAS Z+jets measure-
ment [23] had a primary background of top events, but
these were small enough (< 0.25% of total events) to
simply subtract them from a set of pseudodata, run the
full unfolding procedure, and then take the di↵erence
between this and the nominal result as an uncertainty.
The CMS measurement [25] targeted minimum bias
proton-proton collisions, and the fiducial space for the
measurement is as inclusive as possible. In the STAR
heavy ions jets analysis [32], backgrounds were modeled
using an embedding simulation to remove residual
e↵ects. To mitigate any discrepancies between data and
MC due to choice of embedding strategy, an extra weight
was then multiplied to the reco-level jets to make their
multiplicity and luminosity distributions look similar
to real minimum-bias data. For future users dealing
with nontrivial irreducible backgrounds, we recommend
incorporating these backgrounds into the initial MC
dataset as MC events with negative weights such that in
total, the initial MC dataset corresponds to data with
background subtracted.
b. Acceptance and reducible background e↵ects:

These e↵ects emerge due to events that pass the truth-
level selections but not reconstruction-level selections, or
vice-versa. Generally, the former is the dominant accep-
tance e↵ect due to tracking or trigger ine�ciencies. The
default OmniFold [19] procedure handles these events
by assigning them the average weight in their region of
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phase space, which has been found to yield better conver-
gence than directly including them in the unfolding pro-
cedure [33]. Unfolding a larger fiducial region than the
one reported in the final measurement can also help miti-
gate acceptance e↵ects—for instance, the ATLAS Z+jets
measurement [23] measures the phase space p``T > 190
GeV, but only reports results with p``T > 200 GeV in
order to mitigate acceptance e↵ects due to migrations
across this threshold.

In the LHCb measurements of charged particles in jets
[30], the track reconstruction e�ciencies along with par-
ticle identification corrections were applied to each re-
constructed particle in data being unfolded based on a
look-up table prepared prior to unfolding.

In the STAR measurement of jet substructure variables
[31], this correction is instead done after the unfolding,
and involves applying an e�ciency correction by divid-
ing the normalized unfolded dataset over the e�ciency
function bin-by-bin. Backgrounds due to misidentified
jets were estimated using simulations and were used to
construct initial weights for the data by subtracting the
fake rates [31].

The minor background from the minimum-bias CMS
measurement [25] came from fake tracks induced by de-
tector noise or misidentification of the algorithms, which
resulted in events that passed the detector-level selec-
tion but failed the truth-level selection. Acceptance ef-
fects came from tracking ine�ciency corresponding to
events that passed the truth-level selection but failed the
detector-level selection. Both e↵ects were taken into ac-
count by adding two steps1 to each iteration of the un-
folding, as described in Ref. [7].

The T2K study [33] dealt with both significant inef-
ficiencies from acceptance e↵ects and significant back-
grounds, which are common features of measurements in
neutrino detectors due to their large volumes and rel-
atively low fidelity. The backgrounds and e↵ects from
non-uniform detector acceptance were dealt with by split-
ting the detector-level events into distinct samples based
on the topology with which they were reconstructed in
the detector, including background-enhanced samples to
constrain background contributions to the overall signal.
This qualitative sample information was included as ad-
ditional input to the neural network used in the unfold-
ing. Additionally, results on single transverse variables

1
After Step 1, a Step 1b is added in which the weighting function

w1(~x MC
reco ) is pulled back to the truth-level w1b(~x MC

true ) to correct

the detector acceptance. w1b is derived by training a classifier at

the truth level and can weight the original MC events passing the

selections on both truth and detector levels to the same events

with weights from Step 1. w1b(~x MC
true ) is applied to MC events

not passing the truth-level selection. After Step 2, a Step 2b is

added, in which the weighting function w2(~x MC
true ) is pushed to

the detector-level w2b(~x MC
reco ) to correct the detector background.

w2b is from training a classifier at the detector level and weights

the original MC events passing both selections to the same events

weighted by Step 2. Then w2b(~x MC
reco ) is applied to MC events

not passing the detector-level selection.

were only reported for events with proton momentum
> 450 MeV, but the unfolding was performed over the
entire available phase space without this restriction.

E. Ensembling

Most analyses found that ensembling improved the
stability of the unfolded result. “Ensembling” refers
to training multiple independent instances of the same
model and then using the mean or median weight. In
principle, this ensembling could occur at the level of
binned observables, but ensembling the weights them-
selves facilitates publishing a fully unbinned dataset that
does not depend on any particular choice of binning. The
standard error on this quantity across the trained models
is then included as a source of uncertainty. This uncer-
tainty can be thought of as measuring the impact of the
stochastic nature of the neural network training — i.e.
choice of random seed— on the final unfolded result. The
magnitude of this uncertainty is generally small (< 2%).
Most analyses used some form of ensembling, with num-
bers of ensembles typically ranging from 4 to 10. Both
the ATLAS Z+jets measurement [23] and the ATLAS
jet track functions measurement [24] used an ensemble of
100 models, which helped to mitigate the compounding
e↵ects of these statistical fluctuations over a large num-
ber of uncertainties. Ensembling was usually performed
by re-running the entire result, but as an alternative, the
ensembling could instead be done independently for Step
1 and Step 2 of each unfolding iteration [38].

F. Uncertainties

Despite the introduction of neural networks underly-
ing the unfolding procedures in these analyses, the pro-
cedure of estimating uncertainties is, with a few excep-
tions, relatively standard for particle physics measure-
ments. These uncertainty estimation strategies include
bootstrapping for estimating statistical uncertainties and
calculating the e↵ects of varying the MC sample for es-
timating systematic uncertainties. One new uncertainty
included in these measurements was an uncertainty asso-
ciated with the neural network initialization, i.e. the in-
herent variation in repeating the neural network training
with a di↵erent random seed but otherwise an identical
configuration. These variations are typically small, but
they a↵ect every other reported uncertainty, so they are
important to constrain.

1. ATLAS unfolding uncertainty

In the ATLAS Z+jets measurement, the unfolding un-
certainty consisted of two parts: an uncertainty due to
the truth-level prior as well as an uncertainty due to the
potential mismodeling of the detector e↵ects [23]. These
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e↵ects were estimated separately and reported as two sep-
arate sources of unfolding uncertainty. Together, the un-
folding uncertainty represented the dominant uncertainty
across most of the measured phase space.

The first component of the ATLAS unfolding uncer-
tainty, which measures the sensitivity of the result to the
modeling of the particle-level sample, is estimated via
a data-driven process: the MC is reweighted at truth-
level such that all of its reco-level observables agree with
data, and the result of unfolding using this dataset is
compared with the nominal unfolding result. Crucially,
the reweighting function used here is a sequence of one-
dimensional Gaussian-kernel functions, not the Omni-
Fold procedure that is itself being probed. The second
component of the ATLAS unfolding uncertainty, which
measures the sensitivity of the result to potential mis-
modeling of the detector response for features not in-
cluded in the unfolding, is sometimes called a “hidden
variable” uncertainty. To estimate this component, a MC
sample from a di↵erent generator is used in the unfolding,
but it is first reweighted at truth-level to match the MC
sample from the original generator as closely as possible.

2. CMS unfolding uncertainty

In the CMS measurement [25], uncertainty templates
are implemented as weighting functions applied to nom-
inal MC events. These functions are learned by classi-
fiers trained to distinguish nominal and alternative MC
samples, either at truth- or reco-level, depending on the
source of the uncertainty. The templates for the CMS un-
folding bias, which originate from the mismodeled truth-
level prior on the target variables to be unfolded, are con-
structed as weighting functions w↵(~x MC

true ) at the truth
level from the nominal MC sample to the MC sample
from each alternative model ↵. When applied to the
nominal MC events, w↵(~x MC

true ) makes their truth-level
samples match the ones from the alternative model. Sim-
ilarly, the templates for mismodeled detector responses,
which come from the discrepancies between the recon-
struction in the simulation and truth, are constructed
as weighting functions wdet(~x MC

reco ) at the detector level,
mapping the nominal MC sample to the MC sample from
the same truth-level model but alternative detector sim-
ulation.

A two-stage reweighting scheme handles mismodeled
priors in kinematic variables not directly unfolded. First,
a truth-level weighting v1↵(~x

MC
true ) is applied to MC events

from the alternative model ↵ to match their truth-
level samples to the ones from the nominal model.
Then, a joint weighting of both truth and detector level,
v↵(~x MC

true , ~x
MC
reco ), is applied to the nominal MC events to

match their samples at both levels to the ones from the
alternative samples weighted by v1↵(~x

MC
true ). The resulting

weighting function keeps the truth-level of the nominal
sample while mapping its detector response to that of
the alternative model. These reweighted templates al-

low smooth interpolation between models via nuisance
parameters and enable uncertainty estimation via boot-
strapping.

G. Validation

Many analyses were performed “blinded”, i.e. not con-
sidering the real data while configuring the analysis pa-
rameters. This meant using a di↵erent MC sample in
place of the real data while developing the analysis, and
then only using the real data after the analysis passed
a number of predetermined validation criteria. Even if
the analysis itself was not formally blinded, all analyses
validated their unfolding procedure using alternate MC
samples.
a. Pseudodata: The ATLAS Z+jets analysis [23]

constructed a realistic set of “pseudodata” in place of the
actual data to validate their procedure before obtaining
results using the data. The pseudodata has a known un-
derlying dataset ~xtrue, so the measured OmniFold result
of any quantity can be compared to the desired “tar-
get” value. To produce the pseudodata, alternate signal
and background MC samples were reweighted to match
data using a dedicated reweighting algorithm. The full
analysis was performed using this pseudodataset, and the
unfolded results were evaluated by analyzing the p-value
distributions between the unfolded result and the tar-
get truth pseudodata. The agreement was checked using
not only the 24 input observables, but also on some se-
lect composite observables (i.e. observables that can be
calculated using the 24 but are not included in the un-
folding), for a series of 2D distributions and for a series
of phase space cuts.
The CMS analysis [25] used a few sets of “pseudo-

data” from detector simulations of alternative models
that are not used in unfolding or uncertainty estima-
tion. The pseudodata sets are generated from distinct
generators, parton distribution functions, or underlying-
event tunes. The unfolding results of pseudodata sets are
compared with their corresponding truth-level samples.
The agreements are used for hyperparameter optimiza-
tion and have been confirmed for all the variables to be
unfolded and their multi-dimensional distributions.
b. Validation: Technical closure tests and stress

tests served to validate the unfolding methodology itself
using di↵erent sets of MC samples. In the ATLAS Z+jets
measurement, the stress tests were performed using a sin-
gle MC sample to unfold itself, but the half used for data
had additional stress weights applied. Two tests were
performed: one where the weights were based on a deter-
ministic function of the observables, and another where
the weights were based on a stochastic function of the ob-
servables. In the T2K study [33], the test was performed
using a set of fake data with reweightings that were func-
tions of non-observable parameters. This resulted in the
unfolding needing to learn a reweighting that is not a
simple function of the quantities made available to it –
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a type of stress test that is frequently done for neutrino
cross-section measurements.

In the CMS result, bias and coverage tests were per-
formed to evaluate the bias of the unfolded results com-
pared to the truth and to validate the coverage of the
unfolding uncertainties. The tests were based on unfold-
ing pseudodata using a frequentist framework. Multiple
toy experiments of unfolding were performed, in which
both the MC and pseudodata samples were randomly
deviated from the original ones according to the consid-
ered uncertainties. The cumulative behaviors of these
toy experiments indicate the fluctuations if the measure-
ment is repeated several times. The bias was evaluated
as the deviations between the central values from the toy
experiments and the pseudodata truth, and the coverage
was estimated as the frequencies that the toy experiment
results are compatible with the pseudodata truth, con-
sidering the uncertainties.

Furthermore, the CMS analysis performed a bottom-
line test to compare the di↵erences between the unfolded
results and the truth-level nominal MC sample to the
ones between the (pseudo)data and the detector-level
nominal MC sample. Since the unfolded results cannot
be more discriminative to the models than the detector-
level data, the former should always be smaller than the
latter ones. A failure of the bottom-line test could come
from the algorithm attributing the data-MC discrepan-
cies from statistical fluctuations to the truth-level mis-
modeling and overfitting the given samples.

H. Presentation of Results

Some community-sourced guidelines have already pro-
posed how to best present unbinned measurements [3].
Across all of the results presented in this paper, how-
ever, though the unfolding procedure itself is performed
unbinned, the unfolded results are presented in a binned
histogram format for all but the ATLAS Z+jets mea-
surement, which was presented in an unbinned manner.

a. Binned format: Measurements are presented as
individual histograms corresponding to each unfolded di-
mension. The specifications and bin counts of these his-
tograms can then be uploaded to HEPData.

b. Unbinned format: In the ATLAS Z+jets mea-
surement [23], the final result is presented as a set of
Pandas DataFrames in which each DataFrame row cor-
responds with a truth-level Monte Carlo event, inspired
by the example set by Ref. [36] using CMS Open Data.
More than one DataFrame is needed for the full ATLAS
result in order to account for all sources of systematic
uncertainty. Columns correspond with the 24 unfolded
dimensions, i.e. truth-level particle quantities, along with
hundreds of weights used to construct the nominal mea-
surement and calculate uncertainties. These datasets are
published on Zenodo [39] and are paired with a detailed
codebase illustrating how to use them to replicate the
results in the paper as well as how to produce new mea-

surements (see Figure 2). This presentation format was
closely informed by the recent white paper that discusses
the presentation of unbinned results [3]. The CMS results
will also be released in a similar unbinned format.

I. Computing Requirements

Across each of these measurements, an individual un-
folding procedure could, in most cases, be run on a single
NVIDIA A100 GPU with 40 GB or 80 GB of RAM in
O(1 hour), generally between 1 and 4 hours. The main
factors influencing this training time include dimension-
ality of the unfolding, number of trainable model param-
eters, and number of unfolding iterations. If ensembling
is used, identical copies of the unfolding setup are run up
to O(100) times in order to reduce the uncertainty due
to the stochastic nature of the training process. These
ensembling runs are able to be fully trained in parallel,
if compute availability permits.
A full physics measurement, however, includes the

calculation of a number of sources of uncertainty, and
the number of uncertainties included can directly scale
the computational resources required. Computational
complexity for systematic uncertainties depends on the
uncertainty sources and estimation strategies, requiring
O(100) unfolding runs if bootstrapping is used. Statis-
tical uncertainties estimated through bootstrapping can
also require about 50 to 100 individual bootstrap runs.
In total, most analyses reporting significant compu-

tational needs for the unfolding portion of their experi-
ments estimated that they used between approximately
500 and 10,000 GPU hours in total to perform their mea-
surement once the full procedure had been fixed. Nec-
essary computational resources depended heavily on the
number of models used for ensembling and ranged from
the STAR heavy ions analysis [32], which did not use any
ensembling and was able to run on a single GPU, to the
24-dimensional ATLAS Z+jets measurement [23], which
used an ensemble of 100 models to calculate each weight
and took approximately 25,000 GPU hours in total.

IV. CONCLUSIONS AND OUTLOOK

The recent emergence of more than 10 di↵erent high-
energy physics publications using unbinned unfolding
methods underscores that these methodologies are un-
doubtedly publication-ready. These results cover a vari-
ety of final states, six di↵erent experimental detectors, a
range of unfolded dimensions (from four to 24 to the full
phase space). Importantly, these methods have also been
tested and validated in a number of di↵erent scenarios
and have yielded unbinned cross-section measurements
using large-scale physics datasets and full sets of uncer-
tainties. As this field continues to expand, we expect
that many more analyses will opt to both perform and
publish their measurements in an unbinned fashion using
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FIG. 2. An example of the documentation from the ATLAS Z+jets measurement [23] shows how to use the unbinned data to
configure plots of not only the unfolded result, but also the uncertainty breakdown (left) and correlation matrix (right) using
bins of one’s choice for a given observable such as leading lepton pT .

the frameworks these first publications have established
as a guide.

A. Future Directions

While unbinned unfolding has now been proven e↵ec-
tive for a range of particle physics applications, there
remain several interesting directions for the development
of future work in this area, including:

• Pre-trained models: Would fine-tuning pre-
trained models instead of training from scratch
each time help improve the stability of the result
as well as save computational resources, and should
this become the new default methodology? (See
Ref. [38] for some additional discussion.)

• Statistical uncertainties: Are there viable al-
ternatives to bootstrapping, to reduce the compu-
tational requirements needed in calculating statis-
tical uncertainties? How can we best capture the
statistical uncertainty not only in terms of the lim-
itation of the total number of data events, but also
in terms of the resulting instability in the neural
network training?

• Unfolding after many iterations: In some
cases, unfolding performance suddenly plummeted
after many (O(100)) iterations. Though this be-
havior did not a↵ect the quality of the results ul-
timately presented here, which all relied on small
numbers of iterations (5 or fewer), this behavior
could merit future study.

• Unfolding the whole phase space: While the
methodology for unfolding variable-length events
is well-established in theory, we are only recently
starting to see examples of this put into practice
(e.g. Ref. [29]). To what extent do these recommen-
dations apply to unfolding the whole phase space?
Some researchers observed that when unfolding the
whole phase space with datasets that were too sim-
ilar, the unfolding performance could oscillate with
each iteration — what is responsible for this behav-
ior, and how could it be mitigated?

• Goodness-of-fit tests for unbinned data: How
can we best measure closure with a known target in
an unbinned manner, therefore bypassing the typi-
cal �2 and p-value binned statistical tests? Existing
metrics include the Wasserstein distance [40] and
permutation tests [41], among others, but many
open questions still remain in this area.

• Generative methods: Each of these measure-
ments has employed a version of OmniFold [7, 19].
Could other ML-based unbinned unfolding meth-
ods, including generative methods, yield competi-
tive results?

• Nontrivial background subtraction: While
there are proposed methods for putting nontriv-
ial background estimation into practice, there is a
strong need for researchers to put these methods to
the test and explore which are most e↵ective.
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U. Köthe, Invertible Networks or Partons to Detec-
tor and Back Again, SciPost Phys. 9, 074 (2020),
arXiv:2006.06685 [hep-ph].

[13] M. Vandegar, M. Kagan, A. Wehenkel, and G. Louppe,
Neural Empirical Bayes: Source Distribution Estima-

tion and its Applications to Simulation-Based Inference,
in Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, Proceedings of Ma-
chine Learning Research, Vol. 130, edited by A. Baner-
jee and K. Fukumizu (PMLR, 2021) pp. 2107–2115,
arXiv:2011.05836 [stat.ML].

[14] J. N. Howard, S. Mandt, D. Whiteson, and Y. Yang,
Foundations of a Fast, Data-Driven, Machine-Learned
Simulator, (2021), arXiv:2101.08944 [hep-ph].

[15] M. Backes, A. Butter, M. Dunford, and B. Malaescu, An
unfolding method based on conditional Invertible Neu-
ral Networks (cINN) using iterative training, (2022),
arXiv:2212.08674 [hep-ph].

[16] A. Shmakov, K. Greif, M. Fenton, A. Ghosh, P. Baldi,
and D. Whiteson, End-To-End Latent Variational Di↵u-
sion Models for Inverse Problems in High Energy Physics,
(2023), arXiv:2305.10399 [hep-ex].

[17] T. Alghamdi et al., Toward a generative modeling anal-
ysis of CLAS exclusive 2⇡ photoproduction, (2023),
arXiv:2307.04450 [hep-ph].

[18] S. Diefenbacher, G.-H. Liu, V. Mikuni, B. Nachman,
and W. Nie, Improving Generative Model-based Unfold-
ing with Schrödinger Bridges, (2023), arXiv:2308.12351
[hep-ph].

[19] A. Andreassen, P. T. Komiske, E. M. Metodiev, B. Nach-
man, and J. Thaler, OmniFold: A Method to Simulta-
neously Unfold All Observables, Phys. Rev. Lett. 124,
182001 (2020).

[20] S. Rizvi, M. Pettee, and B. Nachman, Learning Like-
lihood Ratios with Neural Network Classifiers, Journal
of High Energy Physics 2024, 10.1007/jhep02(2024)136
(2024).

[21] T. Hastie, R. Tibshirani, and J. Friedman, The Ele-
ments of Statistical Learning, Springer Series in Statistics
(Springer New York Inc., New York, NY, USA, 2001).

[22] M. Sugiyama, T. Suzuki, and T. Kanamori,Density Ratio
Estimation in Machine Learning (Cambridge University
Press, Cambridge, UK, 2012).

[23] ATLAS Collaboration, Simultaneous Unbinned Di↵eren-
tial Cross-Section Measurement of Twenty-Four Z + jets
Kinematic Observables with the ATLAS Detector, Phys.
Rev. Lett. 133, 261803 (2024).

[24] ATLAS Collaboration, Measurement of jet track func-
tions in pp collisions at

p
s = 13 TeV with the ATLAS

detector (2025), arXiv:2502.02062 [hep-ex].
[25] CMS Collaboration, Measurement of event shapes in

minimum bias events from pp collisions at 13 TeV, Tech.
Rep. (CERN, Geneva, 2024).

https://doi.org/10.1016/0168-9002(95)00274-X
https://doi.org/10.1016/0168-9002(95)00274-X
https://doi.org/10.1016/0168-9002(95)00274-X
https://doi.org/10.1016/0168-9002(95)00274-X
https://arxiv.org/abs/1712.01814
https://arxiv.org/abs/2109.13243
http://aspbooks.org/custom/publications/paper/521-0394.html
http://aspbooks.org/custom/publications/paper/521-0394.html
https://doi.org/10.1103/PhysRevLett.124.182001
https://doi.org/10.1103/PhysRevLett.124.182001
https://arxiv.org/abs/1911.09107
https://arxiv.org/abs/2105.04448
https://doi.org/10.1088/1748-0221/17/07/P07009
https://arxiv.org/abs/2203.16722
https://arxiv.org/abs/2203.16722
https://doi.org/10.1103/PhysRevD.108.016002
https://arxiv.org/abs/2302.05390
https://arxiv.org/abs/2302.05390
https://arxiv.org/abs/1806.00433
https://arxiv.org/abs/1806.00433
https://doi.org/10.21468/SciPostPhys.8.4.070
https://arxiv.org/abs/1912.00477
https://arxiv.org/abs/1912.00477
https://doi.org/10.21468/SciPostPhys.9.5.074
https://arxiv.org/abs/2006.06685
https://proceedings.mlr.press/v130/vandegar21a.html
https://proceedings.mlr.press/v130/vandegar21a.html
https://arxiv.org/abs/2011.05836
https://arxiv.org/abs/2101.08944
https://arxiv.org/abs/2212.08674
https://arxiv.org/abs/2305.10399
https://arxiv.org/abs/2307.04450
https://arxiv.org/abs/2308.12351
https://arxiv.org/abs/2308.12351
https://doi.org/10.1103/PhysRevLett.124.182001
https://doi.org/10.1103/PhysRevLett.124.182001
https://doi.org/10.1007/jhep02(2024)136
https://doi.org/10.1017/CBO9781139035613
https://doi.org/10.1017/CBO9781139035613
https://doi.org/10.1103/PhysRevLett.133.261803
https://doi.org/10.1103/PhysRevLett.133.261803
https://arxiv.org/abs/2502.02062
https://arxiv.org/abs/2502.02062
https://arxiv.org/abs/2502.02062
https://arxiv.org/abs/2502.02062
https://cds.cern.ch/record/2899591
https://cds.cern.ch/record/2899591


11

[26] H1 Collaboration, Measurement of Lepton-Jet Correla-
tion in Deep-Inelastic Scattering with the H1 Detector
Using Machine Learning for Unfolding, Phys. Rev. Lett.
128, 132002 (2022).

[27] H1 Collaboration, Unbinned Deep Learning Jet Sub-
structure Measurement in High Q2 ep collisions
at HERA, Physics Letters B 844, 138101 (2023),
arXiv:2303.13620 [hep-ex].

[28] H1 Collaboration, Machine Learning-Assisted Mea-
surement of Lepton-Jet Azimuthal Angular Asymme-
tries in Deep-Inelastic Scattering at HERA (2024),
arXiv:2412.14092 [hep-ex].

[29] H1 Collaboration, Towards Unfolding All Particles
in High Q2 DIS Events, https://www-h1.desy.de/

h1/www/publications/htmlsplit/H1prelim-25-031.

long.html (2025), preliminary result.
[30] LHCb Collaboration, Multidi↵erential study of identified

charged hadron distributions in Z-tagged jets in proton-
proton collisions at

p
s = 13 TeV, Phys. Rev. D 108,

L031103 (2023).
[31] Y. Song, Measurement of CollinearDrop jet mass and its

correlation with SoftDrop groomed jet substructure ob-
servables in

p
s = 200 GeV pp collisions by STAR, https:

//arxiv.org/abs/2307.07718 (2023), arXiv:2307.07718
[nucl-ex].

[32] T. Pani, Generalized angularities measurements from
STAR at

p
sNN = 200 GeV, https://arxiv.org/abs/

2403.13921 (2024), arXiv:2403.13921 [nucl-ex].
[33] R. G. Huang, A. Cudd, M. Kawaue, T. Kikawa, B. Nach-

man, V. Mikuni, and C. Wilkinson, Machine learning as-
sisted unfolding for neutrino cross-section measurements
with the OmniFold technique, Phys. Rev. D 112, 012008
(2025), arXiv:2504.06857 [hep-ex].

[34] V. Mikuni, OmniFold Codebase, https://github.com/
ViniciusMikuni/omnifold (2020).

[35] P. T. Komiske, S. Kryhin, and J. Thaler, Disentangling
quarks and gluons in CMS open data, Physical Review
D 106, 10.1103/physrevd.106.094021 (2022).

[36] P. Komiske, S. Kryhin, and J. Thaler, OmniFold Weights
— CMS 2011A Open Data — Jet Primary Dataset — pT
375-700 GeV , 10.5281/zenodo.6519307 (2022).

[37] B. Nachman and J. Thaler, Neural resampler for Monte
Carlo reweighting with preserved uncertainties, Physical
Review D 102, 10.1103/physrevd.102.076004 (2020).

[38] F. T. Acosta, T. Wamorkar, V. Mikuni, and B. Nachman,
Stabilizing Neural Likelihood Ratio Estimation, https:
//arxiv.org/abs/2503.20753 (2025), arXiv:2503.20753
[hep-ph].

[39] ATLAS Collaboration, ATLAS OmniFold 24-
Dimensional Z+jets Open Data, 10.5281/zen-
odo.11507450 (2024).

[40] R. L. Dobrushin, Prescribing a system of ran-
dom variables by conditional distributions, Theory
of Probability & Its Applications 15, 458 (1970),
https://doi.org/10.1137/1115049.

[41] M. Williams, How good are your fits? Unbinned mul-
tivariate goodness-of-fit tests in high energy physics,
JINST 5, P09004, arXiv:1006.3019 [hep-ex].

https://doi.org/10.1103/PhysRevLett.128.132002
https://doi.org/10.1103/PhysRevLett.128.132002
https://doi.org/10.1016/j.physletb.2023.138101
https://arxiv.org/abs/2412.14092
https://arxiv.org/abs/2412.14092
https://arxiv.org/abs/2412.14092
https://arxiv.org/abs/2412.14092
https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-25-031.long.html
https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-25-031.long.html
https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-25-031.long.html
https://doi.org/10.1103/PhysRevD.108.L031103
https://doi.org/10.1103/PhysRevD.108.L031103
https://arxiv.org/abs/2307.07718
https://arxiv.org/abs/2307.07718
https://arxiv.org/abs/2307.07718
https://arxiv.org/abs/2307.07718
https://arxiv.org/abs/2403.13921
https://arxiv.org/abs/2403.13921
https://arxiv.org/abs/2403.13921
https://doi.org/10.1103/sp1f-n9k2
https://doi.org/10.1103/sp1f-n9k2
https://arxiv.org/abs/2504.06857
https://github.com/ViniciusMikuni/omnifold
https://github.com/ViniciusMikuni/omnifold
https://doi.org/10.1103/physrevd.106.094021
https://doi.org/10.5281/zenodo.6519307
https://doi.org/10.1103/physrevd.102.076004
https://arxiv.org/abs/2503.20753
https://arxiv.org/abs/2503.20753
https://arxiv.org/abs/2503.20753
https://arxiv.org/abs/2503.20753
https://doi.org/10.5281/zenodo.11507450
https://doi.org/10.5281/zenodo.11507450
https://doi.org/10.1137/1115049
https://doi.org/10.1137/1115049
https://arxiv.org/abs/https://doi.org/10.1137/1115049
https://doi.org/10.1088/1748-0221/5/09/P09004
https://arxiv.org/abs/1006.3019

	A Practical Guide to Unbinned Unfolding
	Abstract
	Contents
	Introduction
	Unbinned Unfolding
	Practical Considerations
	Experimental Overview
	Hyperparameter Optimization
	Unfolding Hyperparameters
	Neural Network Hyperparameters

	Preprocessing
	Background and Acceptance Effects
	Ensembling
	Uncertainties
	ATLAS unfolding uncertainty
	CMS unfolding uncertainty

	Validation
	Presentation of Results
	Computing Requirements

	Conclusions and Outlook
	Future Directions

	Acknowledgments
	References


