
REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

Jinyao Guo∗ 1 Chengpeng Wang∗ 1 Xiangzhe Xu 1 Zian Su 1 Xiangyu Zhang 1

Abstract

Code auditing is the process of reviewing code

with the aim of identifying bugs. Large Language

Models (LLMs) have demonstrated promising ca-

pabilities for this task without requiring compi-

lation, while also supporting user-friendly cus-

tomization. However, auditing a code repository

with LLMs poses significant challenges: limited

context windows and hallucinations can degrade

the quality of bug reports, and analyzing large-

scale repositories incurs substantial time and to-

ken costs, hindering efficiency and scalability.

This work introduces an LLM-based agent, RE-

POAUDIT, designed to perform autonomous

repository-level code auditing. Equipped with

agent memory, REPOAUDIT explores the code-

base on demand by analyzing data-flow facts

along feasible program paths within individual

functions. It further incorporates a validator mod-

ule to mitigate hallucinations by verifying data-

flow facts and checking the satisfiability of path

conditions associated with potential bugs, thereby

reducing false positives. REPOAUDIT detects 40

true bugs across 15 real-world benchmark projects

with a precision of 78.43%, requiring on aver-

age only 0.44 hours and $2.54 per project.Also,

it detects 185 new bugs in high-profile projects,

among which 174 have been confirmed or fixed.

We have open-sourced REPOAUDIT at https:

//github.com/PurCL/RepoAudit.

1. Introduction

The rapid innovation of large language models (LLMs) has

remarkably enhanced the productivity of software develop-

ers (Wang et al., 2021; Rozière et al., 2023; Guo et al., 2024).

*Equal contribution 1Department of Computer Science, Pur-
due University, West Lafayette, IN, USA. Correspondence
to: Jinyao Guo <guo846@purdue.edu>, Chengpeng Wang
<wang6590@purdue.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

LLM-powered IDE plugins, such as Copilot, enable agile

code generation by facilitating flexible interactions with

LLMs (Barke et al., 2023). However, in the era of LLMs,

auditing the rapidly expanding codebase presents a more

formidable challenge than writing code. Traditional pro-

gram analysis techniques, such as dynamic and static analy-

sis, focus primarily on observing runtime behaviors or sym-

bolically reasoning about intermediate code generated dur-

ing compilation (King, 1976; Cadar et al., 2008; Calcagno

et al., 2009; Sui and Xue, 2016; Shi et al., 2018a). Un-

fortunately, software systems are often non-executable and

even uncompilable during the human-LLM collaborative

development phase. Moreover, existing analysis techniques

demand substantial expertise, such as a deep understanding

of compiler internals (Zhang et al., 2024; Zhou et al., 2024).

Therefore, current program analysis approaches often fall

short in meeting the practical requirements of code auditing

in real-world contexts (Johnson et al., 2013).

In recent years, extensive research has focused on leverag-

ing LLMs for code auditing via prompt engineering (Fang

et al., 2024; Hao et al., 2023; Ding et al., 2024). Unlike

traditional analysis techniques, LLM-driven code auditing

directly analyzes source code without program compilation

or execution. By describing analysis requirements through

natural language and few-shot examples in prompts, the cus-

tomization of analysis is also significantly simplified. How-

ever, many existing LLM-driven code auditing techniques

are largely restricted to small-scale codebases, such as smart

contracts (Sun et al., 2024; Zhang and Zhang, 2024), and

lack the capability to support repository-level code auditing

in complex, real-world scenarios.

Direct Prompting Hardly Works. A straightforward solu-

tion is to break down a repository into smaller pieces and

prompt the model with individual pieces. This approach

often falls short for non-local bugs, which may require rea-

soning across a large number of interconnected code snip-

pets spanning multiple functions, classes, and files. Even

with significant future advancements in model reasoning

capacity, the fundamental differences between programs

and natural language texts for which transformer models

were designed make LLMs insufficient for comprehensive

repository analysis. In particular, a code repository can be

conceptualized as an enormous graph, with nodes repre-

senting individual statements and edges capturing intricate

1

REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

relationships such as control flow, data flow, and other in-

terdependencies between statements. These relationships

are precisely defined and immensely complex at the reposi-

tory level. For instance, the number of data-flow edges in

the project shadowsocks-libev exceeds one million,

significantly surpassing the complexity of the implicit graph-

ical structure present in any LLM’s pre-training data sample.

Such distribution differences render direct prompting inef-

fective as shown by our experiments in Section 2.2.

In addition, detecting many types of bugs requires reasoning

about properties along specific program paths. For instance,

a memory leak occurs when allocated memory is not freed

along some program path. Detecting such so-called path-

sensitive bugs (Shi et al., 2018a) necessitates unfolding the

program’s graph structure into individual paths and ana-

lyzing these paths one by one. However, this leads to the

well-known path explosion problem, as the number of paths

grows exponentially with the number of statements. Hence,

direct prompting is akin to presenting a large project on an

enormous screen and expecting a human auditor to identify

bugs along complex and lengthy paths solely by reading and

interpreting the code—a task highly unlikely to succeed.

Human Auditing. In practice, human auditors do not op-

erate in such a manner. As revealed by existing cognitive

science literature (Anicic et al., 2012), humans are highly

effective at reasoning about events that occur in order, e.g.,

in temporal or spatial order. Human auditors hence tend to

explore complex graphical structures in code by following

paths that denote the execution order. To avoid excessive

exploration, they traverse only a subset of paths most rele-

vant to the targeted property, leveraging implicit abstraction

to preclude irrelevant paths. An example of detecting null

pointer dereference can be found in Section 2.1.

Our Solution. It is widely believed that LLMs operate sim-

ilarly to humans but with significantly greater “endurance”

and access to a broader spectrum of knowledge (Li et al.,

2023; Long et al., 2024; Qian et al., 2024). Building on

this perspective, we propose a novel LLM-based repository

auditing agent, named REPOAUDIT, inspired by human au-

diting practices. REPOAUDIT addresses the fundamental

misalignment between LLMs’ tendency to reason sequen-

tially and the inherently complex graphical structures of soft-

ware repositories through path-sensitive and demand-driven

graph traversal. By leveraging LLMs’ abstraction capabil-

ities, REPOAUDIT mitigates path explosion by excluding

irrelevant code regions and sub-paths. Also, it minimizes

inherent hallucinations by sanitizing final outputs through

the validation of several well-formed properties.

More specifically, the agent REPOAUDIT consists of three

components, including the initiator, the explorer, and the

validator. First, the initiator identifies starting points based

on the properties under investigation, such as NULL values

when scanning for null pointer dereference bugs. Second,

the explorer traverses the relevant functions on demand.

Similar to how human auditors analyze code function by

function, the explorer starts by querying the LLMs with the

functions containing these starting points. Instead of ex-

plicitly and programmatically enumerating individual paths

inside a function, as in traditional compiler-based automated

scanners, the explorer leverages LLMs’ inherent ability to

implicitly distinguish relevant paths from irrelevant ones

and only reasons about the former. If invocations to other

functions and returns within a function are considered rele-

vant after analyzing paths within the function—for instance,

when null pointer values propagate through these function

boundaries—the system synthesizes follow-up prompts to

extend the scanning into callee or caller functions as needed.

Third, REPOAUDIT checks the output of the explorer before

storing it in the agent memory and also examines the bug

report candidates by examining the path conditions of the

buggy program paths. This validation design can signifi-

cantly improve the precision of REPOAUDIT.

We implement REPOAUDIT powered with Claude 3.5 Son-

net and test it on three typical bug types of memory con-

curruption. We first evaluate REPOAUDIT upon fifteen real-

world projects used in existing studies, with an average

size of 251 KLoC. It is shown that REPOAUDIT effectively

reproduces 21 previously reported bugs and uncovers 19

newly discovered bugs, 14 of which have already been fixed

in the latest commit, achieving a precision of 78.43%. In

contrast, the industrial static bug detector Amazon CODE-

GURU reports 18 false positives (FPs) with no true positives

(TPs), while Meta INFER also only reports seven TPs along

with two FPs. Besides, REPOAUDIT exhibits high efficiency

and incurs low token costs, averaging 0.44 hours and $2.54

per project. Powered by Deepseek R1, Claude 3.7 Sonnet,

and OpenAI o3-mini, it achieves the precision of 88.46%,

86.79%, and 82.35%, respectively. To demonstrate its real-

world impact, we further scan ten actively maintained repos-

itories and detect 185 new bugs in two months, 95 and

79 of which have been confirmed and fixed by developers,

respectively. Notably, REPOAUDIT facilitates development-

time code auditing, which cannot be supported by Meta

INFER and other compilation-dependent bug detectors. To

the best of our knowledge, REPOAUDIT is the first purely

LLM-driven code auditor for real-world code repositories.

2. Preliminaries

In this section, we first discuss the essence of repository-

level code auditing. Next, we illustrate the limitations of

the LLMs in this task. Finally, we highlight several intrinsic

strengths of LLMs in tackling primitive tasks that can be

leveraged to build our repository-level auditing tool.

2

REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

1. Type GetType(){ return static_cast<Type>(flags_ & kTypeMask); }

1. Value* field2json(FieldDescriptor *field, Value* default){
2. ...
3. bool repeated = field->is_repeated();
4. Value* json = NULL;
5. if (repeated) {
6. json = new Value(kArrayType);
7. }
8. switch (field->cpp_type()){
9. case CPPTYPE_DOUBLE:
10. ...
11. default: break;
12. }
13. if (!repeated || field->value.GetType() != kArrayType)
14. return json;
15. return default;
16. }

src/sofa/pbrpc/pbjson.cc

1. Value* parse_msg(const Message *msg, Value::AllocatorType& allocator){
2. ...
3. for (size_t i = 0; i != count; ++i){
4. ...
5. if (field->is_optional()){...}
6. else {
7. Value* field_json = field2json(msg, field, allocator) ;
8. root->AddMember(name, *field_json, allocator);
9. ...
10. }
11. }
12. return root;
13. }

src/sofa/pbrpc/pbjson.cc

src/rapidjson/document.h

1. bool is_repeated() const {&}

google/protobuf/descriptor.c

1. bool is_optional(u32 member_offset) {&}

google/protobuf/descriptor.c

1. bool is_optional(u32 capacity) {&}

1. AddMember(Ch* name, GenericValue& value, Allocator& allocator) {&}

src/rapidjson/document.h

Null Pointer Dereference

d

ef

g

Figure 1. A simplified code snippet from the project sofa-pbrpc contains a real NPD bug found by REPOAUDIT. The blue dashed

arrows indicate the edges in the call graph. The red solid arrows show the data-flow facts indicating the null value propagation. The call

graph of the project contains 1,508 nodes and 6,196 edges, while its data dependence graph contains 160,875 nodes and 360,096 edges.

2.1. Auditing Entails Path-Sensitive Reasoning on

Complex Graphs

While several bug types, such as API misuse (Li et al., 2021),

require only localized reasoning upon abstract syntax trees

(ASTs) and are relatively easy to detect with highly effec-

tive scanners, many critical bug types demand modeling the

entire project as a massive graph and reasoning about prop-

erties along and across individual paths in that graph. For

example, detecting Null Pointer Dereference (NPD) bugs

relies on constructing and analyzing a specialized graph

structure called the data dependence graph (DDG) (Fer-

rante et al., 1984), where the nodes represent statements,

and the edges indicate data-flow facts between different pro-

gram values at specific statements. Specifically, a data-flow

fact exists from the variable u at the statement sta to the

variable v at the statement stb, denoted as u@sta ↪→ v@stb,

if the value of the variable u at the statement sta may affect

the value of the variable v at the statement stb following

some program path. A program path is a sequence of state-

ments that follow the execution order. Also, it is feasible if

there exists an input that satisfies all the conditional checks

along the path. Hence, a data-flow fact can occur between

two statements that are far apart, such as when a global

variable is read and written across different directories.

Determining whether a data-flow fact may hold in the pro-

gram requires collecting feasible program paths and analyz-

ing data-flow facts along them. Consider the detection of

Null Pointer Dereference (NPD) as an example. Given the

DDG, the code auditor ought to find a chain of data-flow

facts leading from a null value (as a source value) to a deref-

erenced pointer (as a sink value) along a feasible program

path. In Figure 1, for instance, the function field2json

initializes a null value at the line 4 of the function, induc-

ing the data-flow fact NULL@s4 ↪→ json@s4, which is

labeled with 1 in Figure 1. When repeated is false, the

value of json at line 4 propagates to the return statement

at line 14. This data-flow fact, denoted by json@s4 ↪→
json@s14, is labeled with 2 . Subsequently, in the func-

tion parse_msg, the return value of field2json is as-

signed to the pointer field_json at line 7 and further

dereferenced at line 8 of the function parse_msg, which

eventually causes an NPD bug.

Furthermore, we study the 2024 CWE Top 25 Most Dan-

gerous Software Weaknesses, a curated list of the most

critical and prevalent vulnerabilities underlying the 31,770

Common Vulnerabilities and Exposures (CVE) records re-

ported in 2024. Our investigation reveals that 19 out of

the 25 weakness (76%) categories necessitate global, path-

sensitive reasoning of source-sink reachability upon call

graphs, DDGs, and control-flow graphs (CFGs), whereas

only 6 categories can be effectively identified through local-

ized analysis based on ASTs.

2.2. LLMs’ Inadequacy

According to (Rozière et al., 2023; OpenAI, 2023), many

foundation models are initially pre-trained on relatively

short text or code snippets. For long contexts, models

like DeepSeek-V3 (Liu et al., 2024), Llama3 series (Dubey

et al., 2024), and QWen2.5-Coder (Hui et al., 2024) typically

adopt NTK-aware length interpolation such as YaRN (Peng

et al., 2024) to progressively extend context window from

the initial 4K/8K to 128K tokens. Although these models

perform well in “Needle in a Haystack” (Kamradt, 2023)

evaluation, the task is intended for RAG-and does not align

well with the path-sensitive program understanding ability

needed in our application.

3

REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

Please analyze the function field2json in Figure 1.
We only care about the statements that affect the

propagation of the NULL value at line 3. Please simplify the
function field2json for program abstraction.

(a) An example of program abstraction

1. Value* field2json(FieldDescriptor *field,
Value* default){

2. bool repeated = field->is_repeated();
3. Value* json = NULL;
4. if (repeated) {
5. json = new Value(rapidjson::kArrayType);
6. }
7. if (!repeated || field->value.GetType() != kArrayType)
8. return json;
9. }

Here is the program after abstraction.

What are the points-to facts of the variable json at
line 8 in the function field2json shown in Figure 1?

Collect the feasible program paths from the function
field2json in Figure 1.

The branch conditions at lines 5 and 13 contradict.

(b) An example of pointer handling

(c) An example of feasible program path exploration

The pointer variable json is initialized to NULL value
at line 4 and then points to the newly allocated memory at

line 6 if repeated is true. Hence, we have:
(1) repeated = true: The pointer variable json points to the

object allocated at line 6;
(2) repeated = false: the pointer variable json is NULL

Feasible path 1: Lines 1-5, 8-12, 13-14
Feasible path 2: Lines 1-5, 8-12, 13, 15
Feasible path 3: Lines 1-7, 8-12, 13-14

Figure 2. Three examples of showing intrinsic strengths of LLMs

To validate our speculation, we conducted a controlled ex-

periment where we prompt Claude 3.5 Sonnet with all the

five functions shown in Figure 1 to identify the NPD bug,

following a methodology similar to a recent study (Fang

et al., 2024). This is a controlled experiment because, in

practice, we cannot guarantee knowledge of the compre-

hensive set of functions associated with a bug. The model

exhibited substantial hallucinations, reporting that almost

all the dereferenced pointers have null values. Even if we

improve the prompts by offering several few-shot examples

and explanations on how a null pointer dereference bug oc-

curs, the model still hallucinates, producing false positives

and incorrect explanations. More numerical results can be

found in Appendix A.

2.3. Intrinsic Strengths of LLMs

On the bright side, we observe that LLMs can effectively

perform basic analyses when the scope is limited. This ca-

pability enables us to surpass traditional program analysis

methods, which require compilation and struggle to scale ef-

ficiently. Specifically, we identify several primitive abilities

critical for auditing: program abstraction, pointer handling,

and feasible program path exploration. While traditional au-

diting tools rely on heavy-weight yet rigorous techniques to

achieve these capabilities, skilled human auditors often rely

on intuition to handle such challenges within a constrained

analysis scope. We observe similar traits in LLMs.

2.3.1. PROGRAM ABSTRACTION

Abstraction is essential for scalability in program analy-

sis. Given a property, a set of initial program points, and

a defined scope (e.g., a function), abstraction identifies the

subset of statements relevant to the property within the

scope. These statements form a self-contained, smaller pro-

gram, significantly reducing the number of paths to analyze.

For instance, in the NPD detection (as illustrated in Sec-

tion 2.1), abstraction targets how null values are propagated

in the program and focuses on key statements such as null

pointer assignments, value propagations, conditional checks

guarding the propagations, and cross-function propagations

(e.g., passing the pointer to a callee function via a parameter,

returning it to a caller function, or writing it to a global vari-

able). In a preliminary experiment shown in Figure 2(a), for

example, we feed the function field2json in Figure 1

to Claude 3.5 Sonnet and ask it to abstract the program. Ob-

serve that the program returned by the LLM only contains

critical statements relating to the null value propagation,

while irrelevant ones are removed, such as the switch state-

ment from line 8 to line 12 in the function field2json

in Figure 1. Notably, human auditors often perform such

abstraction implicitly, enabling them to analyze complex

code without the excessive path exploration that hampers

classic tools like symbolic execution (Cadar et al., 2008)

and software model checking (Clarke, 1997).

2.3.2. POINTER HANDLING

Pointer variables in C and reference variables in Java may

point to different memory objects depending on their run-

time values. Consequently, reads and writes via pointer

dereferences create data-flow facts that dynamically vary

based on pointer values. Determining the set of memory

objects a pointer variable may point to is known as points-to

analysis (Smaragdakis et al., 2015), one of the most chal-

lenging problems for downstream static analysis, such as

DDG construction. Traditional points-to analysis techniques

often rely on conservative and relational methods, which

tend to significantly over-approximate the set of possible

memory objects, complicating downstream analysis tasks.

In contrast, human auditors can often intuitively and ac-

curately determine the points-to facts of a specific pointer

variable through their understanding of program semantics.

Advanced LLMs exhibit similar capabilities, particularly

within the scope of individual functions. As shown in Fig-

ure 2(b), for example, we prompt Claude 3.5 Sonnet with the

function field2json in Figure 1 and query the points-to

4

REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

MemoryExplorer

Initiator

Validator Bug Reports
Program

Parser LLM

Bug
Definition

Figure 3. The architecture of REPOAUDIT

facts of the return value of the function. The model accu-

rately identifies the two possible points-to facts within the

function. It even identifies the path constraints that make

the corresponding points-to facts hold. In contrast, the sym-

bolic static analyzer SVF (Sui and Xue, 2016) computes the

points-to facts without path conditions by default due to its

inherent limitations in semantic analysis.

2.3.3. FEASIBLE PROGRAM PATH EXPLORATION

A bug report is often considered valid only if it provides

a feasible program path (from the root cause to the symp-

tom) as evidence. To determine feasibility, traditional tools

rely on modeling conditional checks along a path as sym-

bolic constraints (e.g., in the form of first-order logic for-

mulas) and querying a theorem prover (e.g., SMT solver

Z3 (de Moura and Bjørner, 2008)) to check if an input can

satisfy the constraints. This process is computationally ex-

pensive and prone to failure, as converting program paths

to logic formulas requires exploring an explosively large

number of program paths and modeling a wide range of

program behaviors that lack direct representation in logi-

cal term, such as loops, array indexing, aliasing, pointer

arithmetic, and unbounded string operations. In contrast, hu-

mans, as well as the LLMs, rely on abstraction and intuitive

logical reasoning to assess feasibility, which is highly effec-

tive within a limited scope. In Figure 2(c), we demonstrate

an example of feasible program path exploration upon the

function field2json using Claude 3.5 Sonnet. Observe

that the model can skip the irrelevant statements, such as

the switch statement, avoiding exploring a huge number of

program paths. It also discovers the contradiction between

the branch conditions at lines 5 and 13, which refutes pro-

gram paths covering both lines 6 and 14, thereby reporting

the three feasible program paths in Figure 2(c).

3. REPOAUDIT

Building on the findings of the previous section, the core

design rationale of REPOAUDIT is as follows: Since LLMs

struggle to reason about path-sensitive properties in large-

scale program graphs, REPOAUDIT employs an agent-

centric approach to navigate these graphs externally, prompt-

ing the model with one unit (e.g., a function) at a time. This

demand-driven navigation adapts based on the model’s re-

sponses for each function, and a dedicated agent memory

ensures that analysis results across functions are seamlessly

shared. To achieve cost-effective and path-sensitive analysis

at the function level, REPOAUDIT leverages LLMs’ intrin-

sic capabilities by providing explicit prompts for program

abstraction, pointer handling, and feasible program path

exploration, fully capitalizing on the model’s strengths.

Figure 3 depicts the architecture of our agent. The initia-

tor tool (1) takes a specified bug definition and the target

repository as inputs, identifying the source values for anal-

ysis, such as the null values for the NPD detection. Each

source value triggers a scanning procedure. The explorer

tool (2) conducts iterative, demand-driven exploration of

the repository by prompting the model to analyze one func-

tion at a time. The results of each analysis are stored in

the agent memory, guiding further exploration. The anal-

ysis prompts are dynamically generated for each function,

providing detailed instructions for abstraction tailored to

the specific function and adjusted based on the results of

prior analyses. While the agent may still hallucinate in the

analysis of single functions and produce false positive bug

reports, a set of validator tools (3) verify the result of the

explorer from multiple perspectives, including the validity

of the control flow order and the satisfiability of the path

conditions across functions.

3.1. Initiator

The initiator identifies the starting points of scanning (i.e.,

the sources). In our implementation, we employ the

tree-sitter parsing library to create a suite of tailored

pattern matchers for the sources of the bug types supported

by REPOAUDIT. These matchers are concise, often con-

sisting of just a few lines of code, and require a one-time

implementation effort. Alternatively, recent advancements

offer a promising avenue of synthesizing such matchers

using LLMs (Wang et al., 2024a).

3.2. Explorer

For each source value identified by the initiator, the explorer

conducts a round of scanning over the repository. During

each round, the explorer traverses a subset of functions on

demand, beginning with the identified sources. It queries the

LLM to analyze one function at a time, storing the results

5

REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

Task: Determine data-flow facts starting from a given value along

different program paths in a single function.

Hints: You can collect the feasible program paths into 3 steps:

(1) Identify the aliased pointers in the program.

(2) Extract the critical statements relating to the value propagation,

like function call statements, return statements, and assignments.

(3) Collect the feasible program paths covering critical statements.

For each feasible program path, simulate the program execution and

determine the data-flow facts starting from the given value.

Examples: Here are several examples.

Example 1: User: [Program] [Question]

System: <Path information: Lines 4-7, 11> <Explanation>

<Data-flow facts: ���@3 	« ���@3 , ���@3 	« ���@3 	>

[Other examples]

Question: Given [FUNCTION], what are the data-flow facts from

[VAL_NAME] at line [VAL_LINE] along different program paths?

Figure 4. The prompt template for analyzing individual functions

in the agent memory. The explorer performs several actions,

each guided by corresponding prompts. These actions in-

clude: analyzing individual functions, selecting functions

for exploration, and generating bug report candidates. We

will introduce the details of the three actions as follows.

3.2.1. ANALYZING INDIVIDUAL FUNCTIONS

As discussed in Section 2.1, scanning for most bug types

can be reduced to traversing a limited set of graphs, such

as the DDG and the CFG. This enables the use of general

analysis prompts for these graph types, eliminating the need

for bug-specific prompts. Moreover, instead of explicitly

enumerating and analyzing individual paths, we leverage the

intrinsic capabilities of LLMs to distinguish paths and per-

form path-sensitive reasoning. The key of this approach lies

in pointer handling and program abstraction demonstrated

in Section 2.3.2 and Section 2.3.1, respectively, which im-

plicitly reduces the function to a significantly smaller code

snippet with far fewer paths. This can eventually facilitate

the efficient exploration of feasible program paths demon-

strated in Section 2.3.3. We design the prompt template

used for analyzing individual functions in Figure 4. After

describing the task at the beginning, we offer the three-step

hints to the LLM, enforcing the LLM to unleash its power

step-by-step in pointer handling, abstraction, and feasible

program path exploration. By offering several few-shot ex-

amples, we pose the question at the end and ask the LLM to

identify the data-flow facts starting from the initial value(s)

of interest along different feasible program paths.

Consider the function filed2json and the initial null

value at the line 4 as an example. Utilizing the instrinsic

strengths of LLMs, REPOAUDIT collects three feasible pro-

gram paths shown in Figure 2(c). By simulating the program

execution along the first program path, denoted by p1, the

LLM identifies the data-flow facts NULL@s4 ↪→ json@s4
and json@s4 ↪→ json@s14. For the second and third pro-

gram paths, denoted by p2 and p3, the LLM only identifies

the data-flow fact NULL@s4 ↪→ json@s4.

Agent Memory. After analyzing a function, the explorer

obtains a set of data-flow facts for each feasible program

path and stores them into the memory of the agent. Specif-

ically, the agent memory is a function M relating to the

function f and a program value v@s. Each element in

M(f, v@s) is a pair of a program path and a set of data-

flow facts. After analyzing the function field2json and

the null value at the line 4, for instance, the memory maps

(field2json,NULL@s4) as follows:

M
(

field2json,NULL@s4

)

=
{

(

p1, {NULL@s4 ↪→ json@s4,json@s4 ↪→ json@s14}
)

,

(

p2, {NULL@s4 ↪→ json@s4}
)

,

(

p3, {NULL@s4 ↪→ json@s4}
)

}

3.2.2. SELECTING FUNCTIONS FOR EXPLORATION

After analyzing a function, if the targeted program value

propagates across function boundaries, the explorer queries

the underlying call graph to identify the relevant functions

for further exploration. This follow-up exploration is guided

by the program values escaping the current function bound-

aries. For example, in Figure 1, the null value at the line 4

of field2json is propagated to the return value. Hence,

in the next step, the explorer analyzes the caller function

of field2json, i.e., parse msg, and examines how the

return value is propagated.

Note that if the program value does not escape, the analysis

does not lead to the explorations of other functions. For

example, if we consider the second and third program paths,

i.e., p2 and p3 in the example shown in Section 3.2.1, the

value of json at the line 4 of the function field2json

does not propagate. Hence, the explorer does not enter any

other functions. Furthermore, we leverage the existing data-

flow facts stored in the memory as caches to avoid redundant

analysis. Specifically, before analyzing the propagation of

a specific program value in a function, the explorer first

checks the agent memory and determines whether this has

been done before. In our evaluation, we will quantify how

the caching strategy reduces computational costs.

3.2.3. GENERATING BUG REPORT CANDIDATES

After analyzing a function, the explorer evaluates whether

any new bug candidates can be identified. Consider the NPD

detection as an example. The explorer examines whether

it identifies any new data-flow facts reaching a sink value,

i.e., a dereferenced pointer. If so, a bug report is generated

by assembling the complete trail of data-flow facts across

functions along with the corresponding inter-procedural

program path. For example, the explorer enters the func-

tion parse msg and examines how the return value of

field2json propagates. Based on the two discovered

data-flow facts labeled as 3 and 4 in Figure 1, the explorer

6

REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

Task: Determine whether a given path is feasible or not.

Hint: If branch conditions conflict or variable values contradict the

required conditions, the path is infeasible.

Examples: Here are several examples.

Example 1: User: [Program] [Question]

System: <Explanation> <Answer: Yes or No>

[Other examples]

Question: Given the functions [FUNCTION], is the following

program path feasible? [PATH]

Figure 5. The prompt template for feasibility validation

reaches a sink value, i.e., the dereferenced pointer at line

8. Hence, the explorer identifies a potential bug and report

it by concatenation the data-flow facts 1 , 2 , 3 , and 4 .

For several bug types, such as MLK, the explorer reports a

potential bug if it fails to reach any sink point along feasible

paths, e.g., the argument of free function.

3.3. Validator

To improve the quality of bug reports, we introduce two

kinds of validation mechanism for the explorer.

Alignment Validation of Data-flow Facts and Control

Flow. When dealing with complex code, the LLM may

hallucinate and incorrectly infer a data-flow fact u@s1 ↪→
v@s2 along some program path p that violates the control-

flow order. Specifically, this implies that a statement s2 must

appear after another statement s1 in the program path p, yet

the model concludes that a variable defined at s2 can be

used by s1. To detect such misalignments, a parsing-based

analyzer is employed to verify the control-flow order. Only

the data-flow facts that conform to the control-flow order

will be stored in the agent memory.

Path Feasibility Validation. While path feasibility within

individual functions is inherently checked by the explorer,

contradictions can arise in conditional checks across func-

tions, resulting in infeasible inter-procedural program paths.

Recall that each bug report is the concatenation of multiple

data-flow facts, such as 1 , 2 , 3 , and 4 in Figure 1. The

data-flow facts in different functions may hold under the

specific conditions along the corresponding program paths.

A bug report candidate is valid only if the path conditions in

different functions do not contradict, implying their logical

conjunction satisfiable. To check the validity, we prompt

the LLM with the inter-procedural path and task it with

identifying any contradictions in the path conditions. If a

contradiction is found, the bug report is discarded. The

prompt template is shown in Figure 5.

4. Evaluation

We utilize the tree-sitter parsing library to provide

a set of primitive tools for REPOAUDIT, e.g., call graph

constructor and control flow order validator. We select LLM

Claude 3.5 Sonnet to power REPOAUDIT. Following the

Table 1. The statistics of evaluation subjects
Bug Type ID Repository Name Size (LoC) Stars

NPD

N1 sofa-pbrpc 40,723 2.1K

N2 ImageMagick/MagickCore 242,555 12.6K

N3 coturn/src/server 8,976 11.7K

N4 libfreenect 37,582 3.6K

N5 openldap 442,955 486

MLK

M1 libsass 40,934 4.3K

M2 memcached 14,654 13.7K

M3 linux/driver/net 914,025 186K

M4 linux/sound 1,378,262 186K

M5 linux/mm 171,721 186K

UAF

U1 Redis 179,723 67.7K

U2 linux/drivers/peci 2,130 186K

U3 shadowsocks-libev 71,080 186K

U4 wabt-tool 3,214 7K

U5 icu/icu4c/source/i18n 220,359 2.9K

common practice in evaluating reasoning tasks (Ye et al.,

2023), we set the temperature to 0.0 to reduce the random-

ness. Similar to existing code auditing works (Heo et al.,

2017), we introduce an upper bound K on the calling con-

text and set it to 4, i.e., REPOAUDIT investigates data-flow

facts across a maximum of four functions.

4.1. Bug Types and Dataset

We focus on three bug types, namely NPD, MLK, and UAF,

which are among the CWE Top 25 most dangerous weak-

nesses. Our evaluation first aims to reproduce bugs reported

in previous works. Specifically, we investigate recent works

in the venues of computer security and software engineering

and collect the bug reports published by the authors (Huang

et al., 2024; Shi et al., 2021; 2018b). Also, we attempt to

detect new bugs within the targeted code repositories. As

shown by Table 1, we choose five well-maintained projects

for each bug type from the bug reports of previous works,

which mostly have thousands of stars on GitHub with 251

KLoC and thousands of functions on average.

4.2. Evaluation Results

Main Result. As shown in Table 2, REPOAUDIT success-

fully detects all the previously reported bugs, and mean-

while, reports 19 new bugs in historic versions, 14 of which

have already been fixed in the latest commit. In total, it re-

ports 40 TPs and 11 FPs, resulting in a precision of 78.43%.

Notably, 21 TPs are inter-procedural bugs. REPOAUDIT

also demonstrates both efficiency and cost-effectiveness.

On average, it takes only 0.44 hours (i.e., 1,577.22 secs)

to analyze a project, completing the code auditing within

100.67 prompting rounds. The average cost per project audit

is $2.54, with each true bug detection costing $0.95. Hence,

REPOAUDIT can effectively detect the bugs upon real-world

programs with low time cost and financial cost.

Comparison with LLM-driven Bug Detectors. We com-

pare REPOAUDIT with two kinds of LLM-driven tech-

niques, namely end-to-end few-shot CoT prompting-based

approaches (Chen et al., 2023; Ding et al., 2024) and agent-

7

REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

Table 2. The statistics of REPOAUDIT powered by Claude 3.5 Sonnet. The column “Old” denotes the bugs reported by existing works. A

pair (m,n) in the column New indicates m new bugs detected in the versions used by existing works, n of which still exist in the latest

versions. The columns “Intra” and “Inter” show the numbers of intra-procedural and inter-procedural bugs, respectively.

Bug Type ID
TP

FP
Feature

Prompts
Tokens

Financial ($) Time (s)
Old New # Intra # Inter Input Output

NPD

N1 1 (3,3) 2 0 4 145 709,919 55,863 2.97 2026.13

N2 7 (1,0) 0 4 4 17 97,717 8,518 0.42 283.84

N3 1 (1,0) 3 1 1 109 599,674 52,936 2.59 1747.90

N4 1 (0,0) 1 0 1 29 126,852 13,654 0.59 435.09

N5 1 (5,4) 1 0 6 63 420,710 31,375 1.73 1059.57

MLK

M1 1 (2,1) 1 2 1 205 1,132,763 85,279 4.68 2,917.91

M2 1 (6,6) 2 4 3 146 845,148 71,243 3.60 2282.31

M3 1 (0,0) 0 1 0 2 10,481 1,019 0.05 34.34

M4 1 (0,0) 0 1 0 1 5691 619 0.03 17.94

M5 1 (0,0) 0 1 0 35 181,348 20,779 0.86 599.92

UAF

U1 1 (0,0) 0 1 0 36 179,939 17,547 0.80 582.23

U2 1 (0,0) 0 1 0 2 8900 869 0.04 31.95

U3 1 (0,0) 0 1 0 48 317,713 23,067 1.30 791.98

U4 1 (0,0) 0 1 0 10 48,087 5,883 0.23 185.22

U5 1 (1,0) 1 1 1 662 4,534,444 303,645 18.15 10,661.98

Average 100.67 614,625.73 46,153.07 2.54 1,577.22

Table 3. The statistics of Meta INFER and Amazon CODEGURU

Bug Type ID Build
INFER CODEGURU

TP FP TP FP

NPD

N1 : N/A N/A 0 0

N2 6 1 0 0 0

N3 6 N/A N/A 0 0

N4 6 5 0 0 2

N5 6 1 2 0 3

MLK

M1 6 0 0

N/A N/A

M2 6 0 0

M3 6 N/A N/A

M4 6 0 0

M5 6 N/A N/A

UAF

U1 6 N/A N/A 0 0

U2 6 N/A N/A 0 0

U3 : N/A N/A 0 0

U4 6 0 0 0 0

U5 6 0 0 0 13

Total 7 2 0 18

centric approaches (Wang et al., 2024a; Li et al., 2024a;b).

It is shown that CoT prompting can only detect one true

bug in the single function-level bug detection and 10 true

bugs in the multiple-level bug detection when analyzing the

functions relating to the true bugs detected by REPOAUDIT.

For the agent-centric solution LLMDFA, the numbers of its

prompting rounds and token costs are 165.23 and 123.18

times with the ones of REPOAUDIT on average when it ana-

lyzes relevant functions relating to the buggy program paths,

showing its high computation costs in analyzing real-world

programs. More details can be found in Appendix A.

Comparison with Industrial Tools. We compare REPOAU-

DIT with two representative industrial tools, namely Meta

INFER (Meta, 2025) and Amazon CODEGURU (Amazon,

2025). As shown in Table 3, two projects (labeled by :) can-

not be successfully built in our environment. Another five

projects (labeled with NA) cannot be handled by INFER due

to incompatibilities, a prominent limitation of build/compi-

lation dependent tools. In total, Meta INFER reports seven

true bugs and two false positives. Amazon CODEGURU sup-

ports the detection of NPD and UAF bugs, while it reports

18 false positives with no true positives. Compared with

Meta INFER, REPOAUDIT obtains comparable precision

while detecting more true bugs. More detailed illustrations

on the comparison results are provided in Appendix B.

Ablation Study. We introduce three ablation variants of

REPOAUDIT, without abstraction, without validators, and

without caching. We observe that without abstraction, the

number of TPs is decreased by 47.50% and the number

of FPs is increased by 181.82%. Without validators, the

number of FPs increases by 245.45%. Without caching, the

costs become 3-4 times higher on average, and in the worst

case, 30 times higher. Details can be found in Appendix C.

Different Model Choices and Temperature Settings.

We also evaluate REPOAUDIT with Deepseek R1, Claude

3.7 Sonnet, and OpenAI o3-mini, achieving precisions of

88.46%, 86.79%, and 82.35%, respectively. In addition, we

assess REPOAUDIT powered by Claude 3.5 Sonnet under

the temperatures of 0.25, 0.5, 0.75, and 1.0, achieving con-

sistently high precision (≥ 72.92%) and recall (≥ 85.71%).

More details are provided in Appendix D and Appendix E.

Real-World Impact. We further scan nine open-source

GitHub projects spanning diverse domains and sizes rang-

ing from 14K to 1.7M LoC. On average, they have 420K

LoC and 8.8K GitHub stars, reflecting their complexity and

popularity. Table 4 shows the detailed statistics. Specifically,

the columns TP and FP show the numbers of TPs and FPs

reported by REPOAUDIT, respectively, while the columns

Con and Fix denotes the numbers of confirmed bugs and

fixed bugs, respectively. Overall, REPOAUDIT detects 185

true bugs with the precision of 85.71%. Notably, 95 and 79

bugs confirmed and fixed by developers, respectively.

8

REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

Table 4. The statistics of REPOAUDIT in nine additional real-world projects

Project Size (LoC) Stars
NPD MLK UAF

TP FP Con Fix TP FP Con Fix TP FP Con Fix

clickhouse-odbc 209,197 258 0 0 0 0 2 0 0 2 0 1 0 0

htop 35,910 6.9K 1 3 0 1 0 2 0 0 0 0 0 0

TrinityEmulator 1,767,100 292 2 2 0 2 4 0 0 4 0 0 0 0

rtl 433 66,253 6.5K 0 0 0 0 1 1 0 1 0 0 0 0

frr 1,050,020 3.6K 4 5 4 0 0 1 0 0 0 0 0 0

libuv 80,360 25K 86 2 84 2 1 2 0 1 0 0 0 0

openldap 442,955 486 8 2 0 8 0 0 0 0 3 0 0 0

nginx 505,513 26.4K 5 2 0 0 0 0 0 0 0 0 0 0

memcached 14,654 13.7K 1 3 1 0 67 4 6 58 0 0 0 0

Total 107 19 89 13 76 10 6 66 3 2 0 0

4.3. Limitations and Future Works

Apart from the false positives and negatives caused by LLM

hallucinations, REPOAUDIT faces several limitations. First,

the analysis overhead of REPOAUDIT is highly sensitive

to the number of source elements within a repository. In

cases where a large number of sources exist, the tool may

incur substantial time and token costs. Second, REPOAUDIT

is not sound in detecting inter-procedural data-flow facts,

as it currently limits flow analysis to a maximum of four

functions. This constraint may cause it to miss complex bugs

involving longer call chains. To address these limitations,

we outline several directions for future improvement:

Enhancing Model Reasoning Capabilities: We can im-

prove the LLM’s ability to reason by either adopting more

advanced models or fine-tuning the current models for

specific tasks. Fine-tuning can be tailored to particular

sub-tasks like exploring feasible program paths in single

functions. Additionally, incorporating specialized training

datasets focused on programming languages, debugging,

and code analysis could further enhance the model’s accu-

racy in these contexts.

Expanding the Tool Suite for Better Retrieval: Develop-

ing a more comprehensive tool suite that facilitates the re-

trieval across the entire codebase is crucial. A significant en-

hancement would involve integrating existing compilation-

free analysis tools to identify all potential branches and

loops within a program. This integration would offer a

clearer representation of the program’s control flow struc-

ture to the model. Such an improved RAG design has the

potential to significantly reduce the false positives and false

negatives produced by RepoAudit.

5. Related Work

A considerable volume of literature has focused on utilizing

LLMs for code auditing (Zheng et al., 2025; Zheng et al.; Li

et al., 2024b;a; Wang et al., 2024a). In recent years, various

benchmarks like BigVul (Fan et al., 2020), PrimeVul (Ding

et al., 2024), and DiverseVul (Chen et al., 2023) have been

established. Nevertheless, these benchmarks lack calling

context for the buggy functions, thereby degrading the va-

lidity of such function-level code auditing techniques (Risse

and Böhme, 2024). As for repository-level code auditing,

existing techniques can generally be categorized into two

groups. The first group harnesses LLMs to provide special-

ized pre-knowledge to symbolic code analyzers or examine

initial bug reports, while the main body of the code base is

scanned by conventional symbolic analyzers (Wang et al.,

2024b; Li et al., 2024b;a). Typically, IRIS employs LLMs to

pinpoint sensitive values within programs (Li et al., 2024b),

aiding traditional analyzers like CODEQL (Avgustinov et al.,

2016) in taint-style bug detection. However, due to the com-

pilation reliance on symbolic analysis, these techniques lack

the capacity for IDE-time analysis. The second category

utilizes LLMs as code interpreters, extracting semantic prop-

erties via prompt engineering (Fang et al., 2024; Wang et al.,

2024c;a; Sun et al., 2024). Typically, LLMDFA (Wang

et al., 2024a) and LLMSAN (Wang et al., 2024c) incorpo-

rate few-shot CoT prompting to discover data-flow paths for

bug detection. REPOAUDIT belongs to the latter category.

Unlike LLMDFA, REPOAUDIT adopts a demand-driven

strategy for codebase exploration, which avoids exhaustive

data-flow summary generation for all functions, thereby

enhancing analysis scalability. Additionally, REPOAUDIT

outperforms LLMSAN in terms of recall by employing

individual function analysis instead of repository-level end-

to-end prompting, effectively mitigating hallucinations in

the overall analysis.

6. Conclusion

This paper introduces REPOAUDIT, an autonomous LLM-

agent that facilitates precise and efficient repository-level

code auditing. By mimicking manual code auditing, RE-

POAUDIT leverages the intrinsic strength of the LLM, such

as program abstraction, and conducts the path-sensitive rea-

soning. Powered by Claude-3.5-Sonnet, it detects 40 true

bugs in 15 real-world benchmark projects, achieving the pre-

cision of 78.43% and reproducing all the bugs discovered by

existing techniques. It also detects 185 previously unknown

bugs in nine high-profile open-source projects, 174 of which

have been confirmed or fixed by developers.

9

REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

Acknowledgement

We are grateful to the Center for AI Safety for provid-

ing computational resources. This work was funded in

part by the National Science Foundation (NSF) Awards

SHF-1901242, SHF-1910300, Proto-OKN 2333736, IIS-

2416835, DARPA VSPELLS - HR001120S0058, ONR

N00014-23-1-2081, and Amazon. Any opinions, findings

and conclusions or recommendations expressed in this ma-

terial are those of the authors and do not necessarily reflect

the views of the sponsors.

Impact Statement

This paper presents work whose goal is to advance the

field of Machine Learning, targeting a complicated code-

reasoning task, namely repo-level code auditing. We demon-

strate the limitations of our work above. We do not expect

our work to have a negative broader impact, though lever-

aging LLMs for repo-level code auditing may come with

certain risks, e.g., the leakage of source code in private or-

ganizations and potential high token costs. Meanwhile, it

is worth more discussions to highlight that our work has

the potential to dramatically change the field of software

engineering with the power of LLMs. Specifically, LLM-

powered code auditing not only enables the analysis of

incomplete programs with little customization but addresses

other challenges in the code auditing.

First, classical code auditors primarily rely on specific ver-

sions of intermediate representations (IRs) generated by

compilation infrastructures. As compilation infrastructures

evolve, IR formats often change across compiler versions,

necessitating continuous adaptation of the analysis imple-

mentation. For instance, the Clang compiler has experienced

ten major version updates over the past decade, each intro-

ducing variations in the generated IR. These differences

require substantial manual effort to migrate and maintain

compatibility with newer IRs. In contrast, LLM-powered

code auditing operates directly on source code, inherently

supporting multiple language standards and eliminating the

dependency on compiler-specific IRs.

Second, classical code auditing heavily relies on various ab-

straction designs, particularly in pointer analysis, which

serves as a foundational pre-analysis step. Developers

must carefully select and implement specific analysis strate-

gies—such as Andersen-style or Steensgaard’s pointer anal-

ysis—each involving distinct trade-offs in precision and

scalability. This process requires substantial implementa-

tion effort and domain expertise. In contrast, LLMs, which

are inherently aligned with program semantics, can interpret

code behavior directly. As a result, they obviate the need

for manually crafting abstractions or implementing analysis

algorithms tailored to particular precision levels.

Third, classical code auditing requires reasoning about the

semantics of IRs and reimplementing the same algorithm

for different languages. In contrast, LLMs serve as general

code interpreters and have exceptional performance in un-

derstanding short code snippets, no matter which program-

ming languages are used. By following similar prompting

strategies, we can easily extend REPOAUDIT to analyze

programs in other languages, including but not limited to

C/C++, Python, and JavaScript.

References

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven

C. H. Hoi. CodeT5: Identifier-aware unified pre-trained

encoder-decoder models for code understanding and gen-

eration. In Marie-Francine Moens, Xuanjing Huang, Lu-

cia Specia, and Scott Wen-tau Yih, editors, Proceedings

of the 2021 Conference on Empirical Methods in Natu-

ral Language Processing, EMNLP 2021, Virtual Event /

Punta Cana, Dominican Republic, 7-11 November, 2021,

pages 8696–8708. Association for Computational Lin-

guistics, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.

685.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten

Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu

Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov,

Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian

Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexan-

dre Défossez, Jade Copet, Faisal Azhar, Hugo Tou-

vron, Louis Martin, Nicolas Usunier, Thomas Scialom,

and Gabriel Synnaeve. Code llama: Open foundation

models for code. CoRR, abs/2308.12950, 2023. doi:

10.48550/ARXIV.2308.12950.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong,

Wentao Zhang, Guanting Chen, Xiao Bi, Yu Wu, YK Li,

et al. Deepseek-coder: When the large language model

meets programming–the rise of code intelligence. arXiv

preprint arXiv:2401.14196, 2024.

Shraddha Barke, Michael B James, and Nadia Polikarpova.

Grounded copilot: How programmers interact with code-

generating models. Proceedings of the ACM on Program-

ming Languages, 7(OOPSLA1):85–111, 2023.

James C. King. Symbolic execution and program testing.

Commun. ACM, 19(7):385–394, 1976. doi: 10.1145/

360248.360252.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler.

KLEE: unassisted and automatic generation of high-

coverage tests for complex systems programs. In Richard

Draves and Robbert van Renesse, editors, 8th USENIX

Symposium on Operating Systems Design and Implemen-

tation, OSDI 2008, December 8-10, 2008, San Diego,

10

REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

California, USA, Proceedings, pages 209–224. USENIX

Association, 2008.

Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn,

and Hongseok Yang. Compositional shape analysis

by means of bi-abduction. In Zhong Shao and Ben-

jamin C. Pierce, editors, Proceedings of the 36th ACM

SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL 2009, Savannah, GA, USA, Jan-

uary 21-23, 2009, pages 289–300. ACM, 2009. doi:

10.1145/1480881.1480917.

Yulei Sui and Jingling Xue. SVF: interprocedural static

value-flow analysis in LLVM. In Ayal Zaks and Manuel V.

Hermenegildo, editors, Proceedings of the 25th Interna-

tional Conference on Compiler Construction, CC 2016,

Barcelona, Spain, March 12-18, 2016, pages 265–266.

ACM, 2016. doi: 10.1145/2892208.2892235.

Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang

Fan, and Charles Zhang. Pinpoint: Fast and precise sparse

value flow analysis for million lines of code. In Jeffrey S.

Foster and Dan Grossman, editors, Proceedings of the

39th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI 2018, Philadel-

phia, PA, USA, June 18-22, 2018, pages 693–706. ACM,

2018a. doi: 10.1145/3192366.3192418.

Bowen Zhang, Wei Chen, Peisen Yao, Chengpeng Wang,

Wensheng Tang, and Charles Zhang. SIRO: empower-

ing version compatibility in intermediate representations

via program synthesis. In Rajiv Gupta, Nael B. Abu-

Ghazaleh, Madan Musuvathi, and Dan Tsafrir, editors,

Proceedings of the 29th ACM International Conference

on Architectural Support for Programming Languages

and Operating Systems, Volume 3, ASPLOS 2024, La

Jolla, CA, USA, 27 April 2024- 1 May 2024, pages 882–

899. ACM, 2024. doi: 10.1145/3620666.3651366.

Anshunkang Zhou, Chengfeng Ye, Heqing Huang, Yuandao

Cai, and Charles Zhang. Plankton: Reconciling binary

code and debug information. In Rajiv Gupta, Nael B. Abu-

Ghazaleh, Madan Musuvathi, and Dan Tsafrir, editors,

Proceedings of the 29th ACM International Conference

on Architectural Support for Programming Languages

and Operating Systems, Volume 2, ASPLOS 2024, La

Jolla, CA, USA, 27 April 2024- 1 May 2024, pages 912–

928. ACM, 2024. doi: 10.1145/3620665.3640382.

Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill,

and Robert W. Bowdidge. Why don’t software devel-

opers use static analysis tools to find bugs? In David

Notkin, Betty H. C. Cheng, and Klaus Pohl, editors,

35th International Conference on Software Engineering,

ICSE ’13, San Francisco, CA, USA, May 18-26, 2013,

pages 672–681. IEEE Computer Society, 2013. doi:

10.1109/ICSE.2013.6606613.

Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin Liu,

Ruoyu Zhang, Ruijie Fang, Ryan Tsang, Najmeh Nazari,

Han Wang, Houman Homayoun, et al. Large language

models for code analysis: Do {LLMs} really do their

job? In 33rd USENIX Security Symposium (USENIX

Security 24), pages 829–846, 2024.

Yu Hao, Weiteng Chen, Ziqiao Zhou, and Weidong Cui.

E&v: Prompting large language models to perform is by

pseudo-code execution and verification. arXiv preprint

arXiv:2312.08477, 2023.

Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin

Sitawarin, Xinyun Chen, Basel Alomair, David Wagner,

Baishakhi Ray, and Yizheng Chen. Vulnerability detec-

tion with code language models: How far are we? arXiv

preprint arXiv:2403.18624, 2024.

Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun

Wang, Zhengzi Xu, Xiaofei Xie, and Yang Liu. Gptscan:

Detecting logic vulnerabilities in smart contracts by com-

bining gpt with program analysis. In Proceedings of the

IEEE/ACM 46th International Conference on Software

Engineering, pages 1–13, 2024.

Brian Zhang and Zhuo Zhang. Detecting bugs with sub-

stantial monetary consequences by llm and rule-based

reasoning. In The Thirty-eighth Annual Conference on

Neural Information Processing Systems, 2024.

Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad

Stojanovic. Real-time complex event recognition and

reasoning–a logic programming approach. Applied Artifi-

cial Intelligence, 26(1-2):6–57, 2012.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii

Khizbullin, and Bernard Ghanem. Camel: Commu-

nicative agents for” mind” exploration of large language

model society. Advances in Neural Information Process-

ing Systems, 36:51991–52008, 2023.

Xinwei Long, Jiali Zeng, Fandong Meng, Zhiyuan Ma,

Kaiyan Zhang, Bowen Zhou, and Jie Zhou. Genera-

tive multi-modal knowledge retrieval with large language

models. In Proceedings of the AAAI Conference on Artifi-

cial Intelligence, volume 38, pages 18733–18741, 2024.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan

Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng

Su, Xin Cong, et al. Chatdev: Communicative agents for

software development. In Proceedings of the 62nd Annual

Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 15174–15186, 2024.

Ziyang Li, Aravind Machiry, Binghong Chen, Mayur Naik,

Ke Wang, and Le Song. ARBITRAR: user-guided API

misuse detection. In 42nd IEEE Symposium on Security

11

REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

and Privacy, SP 2021, San Francisco, CA, USA, 24-27

May 2021, pages 1400–1415. IEEE, 2021. doi: 10.1109/

SP40001.2021.00090.

Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The

program dependence graph and its use in optimization.

In International Symposium on Programming, pages 125–

132. Springer, 1984.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774,

2023. doi: 10.48550/ARXIV.2303.08774.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao

Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng,

Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical

report. arXiv preprint arXiv:2412.19437, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-

hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil

Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The

llama 3 herd of models. arXiv preprint arXiv:2407.21783,

2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng

Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen Yu,

Keming Lu, et al. Qwen2.5-coder technical report. arXiv

preprint arXiv:2409.12186, 2024.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico

Shippole. Yarn: Efficient context window extension of

large language models. In The Twelfth International

Conference on Learning Representations, 2024.

Greg Kamradt. Needle in a haystack - pressure test-

ing LLMs, 2023. URL https://github.com/

gkamradt/LLMTest_NeedleInAHaystack.

Edmund M Clarke. Model checking. In Foundations of

Software Technology and Theoretical Computer Science:

17th Conference Kharagpur, India, December 18–20,

1997 Proceedings 17, pages 54–56. Springer, 1997.

Yannis Smaragdakis, George Balatsouras, et al. Pointer

analysis. Foundations and Trends® in Programming

Languages, 2(1):1–69, 2015.

Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3:

an efficient SMT solver. In C. R. Ramakrishnan and

Jakob Rehof, editors, Tools and Algorithms for the Con-

struction and Analysis of Systems, 14th International

Conference, TACAS 2008, Held as Part of the Joint Eu-

ropean Conferences on Theory and Practice of Software,

ETAPS 2008, Budapest, Hungary, March 29-April 6,

2008. Proceedings, volume 4963 of Lecture Notes in

Computer Science, pages 337–340. Springer, 2008. doi:

10.1007/978-3-540-78800-3\ 24.

Chengpeng Wang, Wuqi Zhang, Zian Su, Xiangzhe Xu,

Xiaoheng Xie, and Xiangyu Zhang. LLMDFA: Analyzing

dataflow in code with large language models. In The

Thirty-eighth Annual Conference on Neural Information

Processing Systems, 2024a.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. SatLM:

Satisfiability-aided language models using declarative

prompting. In Alice Oh, Tristan Naumann, Amir Glober-

son, Kate Saenko, Moritz Hardt, and Sergey Levine, edi-

tors, Advances in Neural Information Processing Systems

36: Annual Conference on Neural Information Process-

ing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,

December 10 - 16, 2023, 2023.

Kihong Heo, Hakjoo Oh, and Kwangkeun Yi. Machine-

learning-guided selectively unsound static analysis. In

2017 IEEE/ACM 39th International Conference on Soft-

ware Engineering (ICSE), pages 519–529. IEEE, 2017.

Jianjun Huang, Jianglei Nie, Yuanjun Gong, Wei You, Bin

Liang, and Pan Bian. Raisin: Identifying rare sensi-

tive functions for bug detection. In Proceedings of the

IEEE/ACM 46th International Conference on Software

Engineering, pages 1–12, 2024.

Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles Zhang.

Path-sensitive sparse analysis without path conditions. In

Proceedings of the 42nd ACM SIGPLAN International

Conference on Programming Language Design and Im-

plementation, pages 930–943, 2021.

Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang

Fan, and Charles Zhang. Pinpoint: Fast and precise sparse

value flow analysis for million lines of code. In Pro-

ceedings of the 39th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, pages

693–706, 2018b.

Yizheng Chen, Zhoujie Ding, Lamya Alowain, Xinyun

Chen, and David Wagner. Diversevul: A new vulner-

able source code dataset for deep learning based vulner-

ability detection. RAID ’23, page 654–668, New York,

NY, USA, 2023. Association for Computing Machinery.

ISBN 9798400707650. doi: 10.1145/3607199.3607242.

Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. En-

hancing static analysis for practical bug detection: An

llm-integrated approach. Proc. ACM Program. Lang., 8

(OOPSLA1):474–499, 2024a. doi: 10.1145/3649828.

Ziyang Li, Saikat Dutta, and Mayur Naik. LLM-assisted

static analysis for detecting security vulnerabilities.

CoRR, abs/2405.17238, 2024b. doi: 10.48550/ARXIV.

2405.17238.

Meta. Infer Static Analyzer. https://fbinfer.com/,

2025. [Online; accessed 29-Jan-2025].

12

REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

Amazon. Code Review Tool: Amazon CodeGuru Se-

curity. https://aws.amazon.com/codeguru/,

2025. [Online; accessed 29-Jan-2025].

Mingwei Zheng, Danning Xie, and Xiangyu Zhang.

Large language models for validating network proto-

col parsers, 2025. URL https://arxiv.org/abs/

2504.13515.

Mingwei Zheng, Danning Xie, Qingkai Shi, Chengpeng

Wang, and Xiangyu Zhang. Validating network protocol

parsers with traceable rfc document interpretation. In

Proceedings of the 34th ACM SIGSOFT International

Symposium on Software Testing and Analysis, ISSTA

2025.

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. A

C/C++ code vulnerability dataset with code changes and

cve summaries. In Proceedings of the 17th International

Conference on Mining Software Repositories, pages 508–

512, 2020.

Niklas Risse and Marcel Böhme. Top score on the wrong

exam: On benchmarking in machine learning for vul-

nerability detection. arXiv preprint arXiv:2408.12986,

2024.

Chengpeng Wang, Jipeng Zhang, Rongxin Wu, and Charles

Zhang. DAInfer: Inferring API aliasing specifications

from library documentation via neurosymbolic optimiza-

tion. Proc. ACM Softw. Eng., 1(FSE):2469–2492, 2024b.

doi: 10.1145/3660816.

Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and

Max Schäfer. QL: object-oriented queries on relational

data. In Shriram Krishnamurthi and Benjamin S. Lerner,

editors, 30th European Conference on Object-Oriented

Programming, ECOOP 2016, July 18-22, 2016, Rome,

Italy, volume 56 of LIPIcs, pages 2:1–2:25. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:

10.4230/LIPIcs.ECOOP.2016.2.

Chengpeng Wang, Wuqi Zhang, Zian Su, Xiangzhe Xu, and

Xiangyu Zhang. Sanitizing large language models in

bug detection with data-flow. In Findings of the Associa-

tion for Computational Linguistics: EMNLP 2024, pages

3790–3805, 2024c.

A. Comparison with LLM-driven Detectors

Setup and Metrics. To the best of our knowledge, there are

two kinds of LLM-driven code auditing techniques, namely

end-to-end few-shot chain-of-thought (CoT) prompting-

based approaches and agent-centric approaches. Specif-

ically, the former can be divided into two categories, in-

cluding single-function level bug detection and multiple-

function level bug detection. First, the single-function level

B
ug

 N
um

be
r

0

5

10

15

20

25

Single-function Multiple-function RepoAudit

NPD MLK UAF

Figure 6. The comparison results with single-function level and

multiple-function level bug detectors

bug detection is widely adopted and evaluated by many re-

cent studies (Chen et al., 2023; Ding et al., 2024). These

techniques are applicable for models with a limited context

length. To compare with single-function level bug detection,

we collect all the functions that contain the sink values yield-

ing TPs to the LLM along with few-shot examples, asking

the LLM to determine whether the function can introduce

specific types of bugs. Second, multiple-function level bug

detectors attempt to feed the whole program to the LLM

so that the calling contexts of buggy functions can be in-

cluded (Wang et al., 2024c). Unfortunately, the huge size

of a real-world software system often makes the prompts

exceed the context limit of LLM. Hence, we only feed the

relevant functions covered by the buggy program paths to

the LLM in our evaluation.

Among agent-centric approaches (Wang et al., 2024a; Li

et al., 2024a;b), we select LLMDFA (Wang et al., 2024a) as

a baseline for comparison, as it supports compilation-free

and customizable analysis. Since LLMDFA cannot support

the MLK detection, we focus our comparison between RE-

POAUDIT and LLMDFA specifically on NPD and UAF bugs.

LLMDFA works by summarizing all data-flow facts for each

function and then correlating these facts. Its overall compu-

tational costs—time and token costs—can be substantial. To

avoid the excessive computation costs, we conduct a group

of controlled experiments under two settings. In the first

setting, LLMDFA is only applied to functions covered by

buggy program paths, generating data-flow summaries for

these functions. In the second setting, LLMDFA is tasked

with generating data-flow summaries for functions reach-

able from each source value. We refer to these settings as

LLMDFA-PATHSCAN and LLMDFA-SRCSCAN, respec-

tively. Notably, the number of prompting rounds and com-

putational costs of LLMDFA-PATHSCAN and LLMDFA-

SRCSCAN are lower than those of LLMDFA, as the latter

two only reason a subset of the functions in the repository.

Result. Figure 6 shows the comparison results between the

single-function level bug detector, multiple-function level

bug detector, and REPOAUDIT. The single-function level

bug detector can detect only one intra-procedural NPD bug.

The key reasons are twofold. First, it only accesses the

13

REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

Listing 1. An example of control flow facts ignored by single-function level bug detectors
1. static int __init damon_reclaim_init(void){

2. ctx = damon_new_ctx();

3. if (!ctx)

4. return -ENOMEM;

5. if (damon_select_ops(ctx, DAMON_OPS_PADDR))

6. return -EINVAL;

7. ctx->callback.after_wmarks_check = damon_reclaim_after_wmarks_check;

8. ctx->callback.after_aggregation = damon_reclaim_after_aggregation;

9. target = damon_new_target();

10. if (!target) {

11. damon_destroy_ctx(ctx);

12. return -ENOMEM;

13. }

14. damon_add_target(ctx, target);

15. schedule_delayed_work(&damon_reclaim_timer, 0);

16. damon_reclaim_initialized = true;

17. return 0;

18. }

Table 5. The ratios of the prompting rounds (Prompt) and input

token costs (In token) of LLMDFA under two settings

Bug Type ID
LLMDFA-PATHSCAN LLMDFA-SRCSCAN

Prompt In Token Prompt In Token

NPD

N1 115.39 81.23 871.61 522.40

N2 217.00 120.23 2,839.00 2,087.27

N3 6.83 3.13 255.57 224.82

N4 115.76 74.91 778.17 715.23

N5 199.43 125.53 7,121.86 5,350.62

UAF

U1 41.89 23.08 4,536.75 2,530.74

U2 24.00 12.29 50.00 26.26

U3 759.48 693.73 17.63 6.17

U4 167.50 95.58 46.60 25.42

U5 4.98 2.09 853.20 447.36

Average 165.23 123.18 1737.04 1193.63

last function in the buggy path and lacks the calling con-

text of the function. In NPD detection, for example, the

single-function level detector cannot determine whether the

parameter is null or not, which makes it fail to detect inter-

procedural bugs. Second, the model may overlook essential

control flows within a function, which results in its inabil-

ity to accurately identify the data-flow facts of a specific

value, thereby achieving low recall in intra-procedural bug

detection. For instance, as shown by Listing 1, the LLM

ignores the error handling branch at line 6, which causes

the function to return without releasing the memory object

allocated by the function damon_new_ctx(), leading to

its failure to detect this memory leak bug. With access to the

full calling context, the multiple-function level bug detector

is able to detect 10 bugs. This demonstrates that providing

additional calling context can improve the bug detection

capabilities of the LLM. However, the improvement is still

limited. Due to hallucinations, the LLM may still wrongly

analyze certain intra-procedural and inter-procedural data-

flow facts, resulting in a significant number of FNs. In

contrast, REPOAUDIT performs the path-sensitive reason-

ing by employing the program abstraction, which facilitates

precisely discovering data-flow facts for code auditing.

Table 5 shows the comparison results between LLMDFA

and REPOAUDIT. On average, the number of prompting

rounds for LLMDFA-PATHSCAN is 165 times that of RE-

POAUDIT, and the input token count is 123 times higher.

Similarly, for LLMDFA-SRCSCAN, the number of prompt-

ing rounds is 1,737 times that of REPOAUDIT, with an

input token count 1,193 times higher. It is important to

note that the actual cost of LLMDFA would be even greater

in practical scenarios. This significant performance gap

stems from the fact that LLMDFA follows a desgin similar

to compiler-based scanners that first collect all primitive

data-flow facts and then correlate them to find bugs. For

example, to detect the NPD bugs in the example program

shown in Figure 1, LLMDFA begins with the NULL value

at line 4 in the function field2json, analyzing the de-

pendencies of it with all the arguments, return value, and

dereference pointers (e.g., field at line 8) within this func-

tion. Hence, LLMDFA fails to scale to large-size projects

in the real-world senarios.

B. Comparison with Industrial Bug Detectors

Setup and Metrics. We choose two typical static bug de-

tectors as the representatives of industrial tools, namely

Meta INFER (Meta, 2025) and Amazon CODEGURU (Ama-

zon, 2025). Specifically, Meta INFER is a static analysis

tool from Meta. Benefiting from its sophisticated mem-

ory model (Calcagno et al., 2009), Meta INFER features

its outstanding ability in memory bug detection. All three

bug types in our evaluation are supported by Meta INFER.

Notably, Meta INFER is only applicable to projects that

can be successfully compiled. Amazon CODEGURU, as an

AWS service, combines machine learning and automated

reasoning to identify underlying bugs. Unlike Meta INFER,

Amazon CODEGURU can directly analyze source code with-

out compilation. As Amazon CODEGURU does not support

MLK detection, we only evaluate it for the NPD and UAF

detection. After running the two industrial bug detectors, we

manually check the bug reports, label the TPs and FPs, and

compare with the results by REPOAUDIT shown by Table 2

in Section 4.2.

14

REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

Result. Table 3 presents the results of Meta INFER and

Amazon CODEGURU. As shown by the column Build in

Table 3, 13 projects can be successfully compiled However,

five of them still cause crashes in Meta INFER, namely the

projects with the IDs N3, M3, M5, U1, and U2, even after

we have tried multiple versions of Infer, including v1.2.0

(latest), v1.0.0, and v0.9.0. We have reported these issues

to Meta INFER, but haven’t received any response yet. The

failures of compiling and analyzing successfully compiled

projects demonstrate the restricted applicability and insta-

bility of compilation-dependent bug detectors. Eventually,

we successfully analyze eight projects with Meta INFER,

obtaining a total of seven TPs and two FPs. Notably, for

project libfreenect with the project ID N4, the five

TPs generated by Infer are based on the assumption that

external APIs realloc and malloc can return null point-

ers upon allocation failure. However, this assumption does

not always hold. In our implementation, REPOAUDIT does

not rely on such assumptions and instead begins its analysis

with null literal values or other user-defined APIs. Lastly,

although Meta INFER is known for its powerful memory

model, it still fails to detect any MLK or UAF bugs discov-

ered by REPOAUDIT. In comparison, REPOAUDIT not only

supports non-compilation analysis with greater applicability

but also shows stronger detection capabilities, identifying

40 TPs in total.

As shown by the last two columns in Table 3, Amazon

CODEGURU does not detect any TPs upon the targeted 10

projects, while generating 18 FPs. Due to the limitations of

its inherent formal reasoning techniques and machine learn-

ing models, Amazon CODEGURU can only detect certain

patterns of bugs and is not robust to the various ways of

writing similar buggy code.

C. Ablation Study

Setup and Metrics. To evaluate the effectiveness of each

technical design, we introduce three ablation variants of

REPOAUDIT, namely REPOAUDIT-NOABS, REPOAUDIT-

NOVAL, and REPOAUDIT-NOCACHE. Specifically, RE-

POAUDIT-NOABS skips the program abstraction, i.e., re-

moving the second step in the prompt template shown in

Figure 4. REPOAUDIT-NOVAL removes the validation of

the data-flow facts discovered by the explorer and also skips

examining the bug reports. REPOAUDIT-NOCACHE dis-

ables the caching strategy upon the agent memory when the

explorer analyzes individual functions.

Result. Table 6 presents the results of REPOAUDIT-NOVAL

and REPOAUDIT-NOABS. Without the program abstrac-

tion, REPOAUDIT-NOABS decreases the number of TPs by

47.50%, while increasing the number of FPs by 181.82%,

leading to a precision degradation to 40.38%. This decline is

attributed to the complex control flows and multiple execu-

Table 6. The statistics of REPOAUDIT-NOABS and REPOAUDIT-

NOVAL

Bug Type ID

REPOAUDIT-NOABS REPOAUDIT-NOVAL

TP
FP

TP
FP

Old New Old New

NPD

N1 1 (3,3) 4 1 (3,3) 2

N2 4 (0,0) 5 7 (1,0) 0

N3 0 (0,0) 6 1 (1,0) 10

N4 0 (0,0) 0 1 (0,0) 5

N5 1 (2,2) 2 1 (5,4) 4

MLK

M1 1 (1,1) 2 1 (2,1) 3

M2 1 (1,1) 5 1 (6,6) 5

M3 1 (0,0) 0 1 (0,0) 0

M4 0 (0,0) 0 1 (0,0) 1

M5 0 (0,0) 0 1 (0,0) 2

UAF

U1 1 (0,0) 0 1 (0,0) 0

U2 1 (0,0) 0 1 (0,0) 0

U3 1 (0,0) 1 1 (0,0) 0

U4 1 (0,0) 0 1 (0,0) 0

U5 0 (1,0) 6 1 (1,0) 6

Total 13 8 31 21 19 38

Table 7. The computational costs of REPOAUDIT-NOCACHE.

OOT: the out-of-time, indicating that REPOAUDIT-NOCACHE

does not finish the code auditing in 72 hours.

Bug Type ID
Prompts Financial($) Time(s)

Num Ratio Num Ratio Num Ratio

NPD

N1 436 3.01 8.65 2.91 6,316.37 3.12

N2 18 1.06 0.43 1.03 312.01 1.10

N3 175 1.61 4.12 1.59 3,098.59 1.77

N4 181 6.24 3.06 5.19 2,342.23 5.38

N5 137 2.17 4.09 2.37 2,626.21 2.48

MLK

M1 459 2.24 10.49 2.24 7,070.68 2.42

M2 584 4.00 15.83 4.40 10,852.80 4.76

M3 2 1.00 0.05 0.95 34.34 1.00

M4 1 1.00 0.03 0.87 20.13 1.12

M5 200 5.71 4.88 5.67 3,635.66 6.06

UAF

U1 657 18.25 14.34 17.93 11,528.96 19.80

U2 2 1.00 0.04 1.00 32.78 1.03

U3 67 1.40 2.10 1.62 1,153.46 1.46

U4 10 1.00 0.23 0.99 174.43 0.94

U5 N/A N/A N/A N/A OOT N/A

Average 209.21 3.55 4.88 3.48 3,514.19 3.75

tion paths created by numerous conditional branches, loop

structures, and their nested combinations within functions.

When analyzing such cases, the model becomes more sus-

ceptible to hallucinations, resulting in missed buggy propa-

gation paths or incorrect identification of non-existent ones.

When the validators are disabled, the number of FPs in-

creases to 31, causing a 245.45% increase. This rise

is mainly caused by the presence of various conditional

branches and jump statements, such as if-else and

switch, as well as early exits in certain branches (e.g.,

error handling). Without the validator, the LLM may hal-

lucinate and fail to account for these critical branches, re-

sulting in a large number of spurious data-flow facts that

do not meet feasibility requirements. Besides, the conflicts

between branch conditions discovered by the LLM can also

contribute to the high precision.

15

REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

Table 8. The statistics of REPOAUDIT powered by DeepSeek R1

Bug Type ID
TP

FP # Prompts
Tokens

Financial ($) Time (s)
Old New Input Output

NPD

N1 1 (3,3) 2 136 675,711 46,839 1.20 12,378.10

N2 7 (2,0) 0 14 74,918 6,057 0.14 1,588.65

N3 1 (1,0) 0 97 524,915 38,644 0.95 9,044.85

N4 1 (0,0) 0 7 29,898 2,288 0.05 247.99

N5 1 (7,6) 0 43 270,880 15,689 0.47 2,936.52

MLK

M1 1 (2,2) 2 165 910,153 55,623 1.58 14,633.28

M2 1 (9,9) 1 93 562,470 35,498 0.98 5,583.13

M3 1 (0,0) 0 2 10,481 832 0.02 74.01

M4 1 (0,0) 0 1 5691 214 0.01 93.23

M5 1 (0,0) 0 18 92,573 8,289 0.18 1,572.31

UAF

U1 1 (0,0) 0 50 255,048 19,494 0.46 2,444.72

U2 1 (0,0) 0 2 8900 704 0.02 88.76

U3 1 (0,0) 0 29 227,336 10,269 0.37 2,768.59

U4 1 (0,0) 0 11 53,647 3,617 0.09 1,997.20

U5 1 (1,0) 1 226 1,191,391 78,226 2.10 13,124.44

Average 59.60 326,267.47 21,485.53 0.57 4,571.72

Table 9. The statistics of REPOAUDIT powered by Claude 3.7 Sonnet

Bug Type ID
TP

FP # Prompts
Tokens

Financial ($) Time (s)
Old New Input Output

NPD

N1 1 (3,3) 2 85 371,008 58,822 2.00 1,650.53

N2 7 (1,0) 0 15 98,473 9,015 0.43 264.68

N3 1 (1,0) 0 74 480,786 78,725 2.62 2,076.32

N4 1 (0,0) 0 15 62,634 8,822 0.32 233.96

N5 1 (7,6) 0 27 213,483 21,107 0.96 592.74

MLK

M1 1 (2,2) 2 215 1195594 118735 5.37 3,510.25

M2 1 (10,10) 1 87 537290 61472 2.53 1,842.90

M3 1 (0,0) 0 2 10548 1097 0.05 46.25

M4 1 (0,0) 0 1 5741 1024 0.03 32.86

M5 1 (0,0) 0 16 81,970 9,442 0.39 402.17

UAF

U1 1 (0,0) 0 18 93466 17159 0.54 462.51

U2 1 (0,0) 0 2 8870 1145 0.04 117.50

U3 1 (0,0) 0 82 605597 70,666 2.88 1,936.22

U4 1 (0,0) 0 10 48206 9823 0.29 314.60

U5 1 (1,0) 0 207 1069189 147422 5.42 4,387.80

Average 57.07 325,523.67 40,965.06 1.59 1,191.42

The results of REPOAUDIT-NOCACHE are presented in Ta-

ble 7. For the project icu, the analysis time exceeds 72

hours and the number of prompting rounds exceeds 20,000,

more than 30 times that of REPOAUDIT. For the remaining

projects, on average, the number of prompting rounds in-

creases by 3.55 times, the financial cost by 3.48 times, and

the analysis time by 3.75 times compared to REPOAUDIT.

Moreover, the cache hit rate is closely related to the project’s

size and the density of underlying graphs. In projects with

intricate call graphs and dense DDGs, a single function can

appear in multiple propagation paths of faulty values. For

example, in the icu project, parsing-related functions are

hit in the cache 623 times. In such cases, the caching strat-

egy effectively reduces analysis costs and keeps the analysis

time within an acceptable range.

D. Evaluation with More Reasoning Models

Table 8, Table 9, and Table 10 show the results

of REPOAUDIT with reasoning models DeepSeek R1,

Claude 3.7 Sonnet, and OpenAI o3-mini separately. In gen-

eral, when integrated with reasoning models, REPOAUDIT

demonstrates stronger bug detection capabilities than the

one powered by Claude 3.5 Sonnet. It is able to identify

all known bugs reported by existing works and can further

discover additional previously unreported bugs with higher

precision. This better performance is largely attributed to

the reasoning model’s ability to autonomously construct

logical reasoning pathways, thus facilitating more precise

reasoning of control-flow and data-flow facts of a program.

As shown in Table 8, REPOAUDIT powered by

DeepSeek R1 successfully identifies 46 true positives,

achieving a precision of 88.46%, the highest among all

evaluated models. This indicates a superior capability of

DeepSeek R1 in analyzing program control-flow and data-

flow. In terms of cost efficiency, DeepSeek R1 incurs an

average cost of $0.57 per project. However, it is also the

slowest model, with an average analysis time of 4,571 sec-

onds per project, which may be attributed to factors such as

network latency and limited throughput.

16

REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

Table 10. The statistics of REPOAUDIT powered by OpenAI o3-mini

Bug Type ID
TP

FP # Prompts
Tokens

Financial ($) Time (s)
Old New Input Output

NPD

N1 1 (3,3) 2 49 237,382 26,360 0.38 782.75

N2 7 (1,0) 0 17 104,462 10,286 0.16 321.19

N3 1 (0,0) 0 16 86,930 8,724 0.13 261.61

N4 1 (0,0) 2 17 80,877 8,169 0.12 299.13

N5 1 (6,5) 1 24 170,504 13,115 0.25 598.2588062

MLK

M1 1 (2,2) 0 39 196898 18937 0.30 609.81

M2 1 (7,7) 2 46 303005 24773 0.44 1,005.86

M3 1 (0,0) 0 2 10481 1134 0.02 44.26

M4 1 (0,0) 0 1 5691 811 0.01 36.87

M5 1 (0,0) 0 13 66601 7672 0.11 330.96

UAF

U1 1 (0,0) 0 24 128434 12641 0.20 266.63

U2 1 (0,0) 0 2 9422 958 0.01 24.08

U3 1 (1,0) 1 83 634100 48,528 0.91 1,176.46

U4 1 (0,0) 0 10 50966 4044 0.07 190.54

U5 1 (1,0) 1 178 976191 82933 1.44 3,427.38

Average 34.73 204,129.60 17,939.00 0.30 625.05

As shown in Table 9, REPOAUDIT powered by

Claude 3.7 Sonnet also detects 46 true positives, yielding

the precision of 86.79%, which is marginally below that of

DeepSeek R1. Given the inherent randomness, we consider

Claude 3.7 Sonnet Sonnet’s program analysis capabilities to

be comparable to those of DeepSeek R1. In terms of prompt-

ing rounds and token usage, Claude 3.7 Sonnet induces sim-

ilar prompting rounds and input token numbers per project

as DeepSeek R1. However, its output token count is 1.9

times higher. Based on the pricing policy,Claude 3.7 Sonnet

is the most expensive model, resulting in the highest average

financial cost of $1.59 per project.

As shown in Table 10, REPOAUDIT powered by

OpenAI o3-mini demonstrates slightly lower code analy-

sis performance, detecting 42 true positives with a precision

of 82.35%. This may be due to its relatively weaker ability

to capture complex code semantics, particularly in modeling

data-flow, potentially resulting in both false positives and

missed bugs. In terms of efficiency, OpenAI o3-mini issues

significantly fewer queries per project compared to the other

two models, which may also contribute to its narrower func-

tion coverage and oversight of potential data-flows. Besides,

OpenAI o3-mini incurs the lowest cost per query and of-

fers the fastest analysis speed. On average, REPOAUDIT

powered by OpenAI o3-mini results in the financial cost of

$0.30 and the time cost of 624.05 seconds per project.

The above statistics demonstrate that REPOAUDIT can seam-

lessly benefit from advances in LLM capabilities, leading

to improved precision and recall in code auditing. Also, en-

hancements in LLM inference efficiency can further boost

the overall performance of the auditing process.

E. Evaluation with Different Temperatures

Setup and Metrics. In our evaluation, we set the tem-

perature to 0.0 by default. To assess the impact of the

Table 11. The statistics of REPOAUDIT with different temperature

settings. The column # Reproduce indicates the number of the

reproduced bugs that are previously reported by existing works.

Temperature TP FP # Reproduce Precision (%) Recall (%)

0 40 11 21 78.43 100

0.25 38 12 21 76.00 100

0.5 38 12 20 76.00 95.24

0.75 33 11 18 75.00 85.71

1.0 35 13 19 72.92 90.48

temperatures, we evaluate REPOAUDIT under four addi-

tional temperature settings: 0.25, 0.5, 0.75, and 1.0. For

each setting, we record the number of true positives and

false positives detected by REPOAUDIT, and compute the

corresponding precision. Also, we measure the recall by

investigating the proportion of reproduced bugs.

Results. As shown in Table 11, REPOAUDIT demonstrates

stable performance across varying temperature levels, with

precision remaining above 72% and recall consistently high.

However, as the temperature increases to 1.0, both precision

and recall decline, suggesting that greater randomness in

the model’s output can lead to incorrect reasoning steps,

ultimately resulting in an increased number of false positives

and false negatives.

F. Examples of False Positive/Negative

We present representative a false positive and a false neg-

ative of REPOAUDIT as follows. These cases can reflect

several limitations of our approach, including the model’s

tendency to hallucinate during complex control-flow reason-

ing and its insufficient understanding of implicit semantic

constraints.

In Listing 2, the function vrf_get can return NULL when

name=NULL and vrf_id=VRF_UNKNOWN. In the func-

tion lib_vrf_create, the return value of vrf_get is

17

REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing

Listing 2. An example of a false positive reported by REPOAUDIT due to unawareness of the YANG schema constraints.
1 struct vrf *vrf_get(vrf_id_t vrf_id, const char *name)

2 {

3 struct vrf *vrf = NULL;

4 Nothing to see, move along here

5 if (!name && vrf_id == VRF_UNKNOWN)

6 return NULL;

7 ...

8 }

1 static int lib_vrf_create(struct nb_cb_create_args *args)

2 {

3 const char *vrfname;

4 struct vrf *vrfp;

5 vrfname = yang_dnode_get_string(args->dnode, "name");

6 if (args->event != NB_EV_APPLY)

7 return NB_OK;

8 vrfp = vrf_get(VRF_UNKNOWN, vrfname);

9 SET_FLAG(vrfp->status, VRF_CONFIGURED);

10 ...

11 }

Listing 3. An example of a false negative reported by REPOAUDIT results from Claude 3.5 Sonnet overlooking the error-handling path.
1 struct Sass_Compiler* ADDCALL sass_make_data_compiler (struct Sass_Data_Context* data_ctx) {

2 if (data_ctx == 0) return 0;

3 Context* cpp_ctx = new Data_Context(*data_ctx);

4 return sass_prepare_context(data_ctx, cpp_ctx);

5 }

1 static Sass_Compiler* sass_prepare_context (Sass_Context* c_ctx, Context* cpp_ctx) throw() {

2 void* ctxmem = calloc(1, sizeof(struct Sass_Compiler));

3 if (ctxmem == 0) {

4 std::cerr << "Error allocating memory for context" << std::endl;

5 return 0;

6 }

7 Sass_Compiler* compiler = (struct Sass_Compiler*) ctxmem;

8 compiler->c_ctx = c_ctx;

9 return compiler;

10 }

assigned to the pointer vrfp, which is subsequently deref-

erenced without a null check, seemingly leading to a po-

tential Null-Pointer-Dereference (NPD) bug. REPOAUDIT

reports an NPD bug at line 9, where vrfp->status is

accessed without checking whether vrfp is NULL. How-

ever, this issue is a false positive. Due to YANG schema

validation, the vrfname variable is guaranteed to be non-

NULL. Given that vrf_get only returns NULL when both

name=NULL and vrf_id=VRF_UNKNOWN, it cannot re-

turn NULL when vrfname!=NULL. Hence, the derefer-

ence is safe in practice. The root cause of the false positive

is that the LLMs are not aware of the fact that the return

value of yang_dnode_get_string is never NULL.

In Listing 3, a memory object is allocated by the function

sass_make_data_compiler and passed as the sec-

ond argument to the function sass_prepare_context.

Within sass_prepare_context, if calloc fails at

line 3, ctxmem is set to 0, and the function returns 0

without freeing the allocated memory object cpp_ctx

or assigning it to any other pointer, leading to a memory

leak. This bug was detected by Deepseek R1 but missed by

Claude 3.5 Sonnet. The latter model failed to identify the is-

sue as it did not accurately track all relevant execution paths,

particularly the error-handling path in this case. In contrast,

reasoning-oriented models like Deepseek R1 demonstrated

superior capability in recognizing execution paths precisely,

allowing REPOAUDIT to detect such memory management

issues more effectively.

18

