Journal of Machine Learning Research 26 (2025) 1-35 Submitted 10/22; Revised 7/25; Published 7/25

EMaP: Explainable AI with Manifold-based Perturbations

Minh Nhat Vu MVU@LANL.GOV
Theoretical Division, Los Alamos National Laboratory,
Los Alamos, NM, 87545, USA

Huy Quang Mai HUYQMAI1@GMAIL.COM
Hanoi, 10000, Vietnam

My T. Thai MYTHAIQCISE.UFL.EDU
Department of Computer and Information Science and Engineering

University of Florida

Gainesville, FL 32611, USA

Editor: Florence d’Alche-Buc

Abstract

In the last few years, many explanation methods based on the perturbations of input data
have been introduced to shed light on the predictions generated by black-box models. The
goal of this work is to introduce a novel perturbation scheme so that more faithful and
robust explanations can be obtained. Our study focuses on the impact of perturbing direc-
tions on the data topology. We show that perturbing along the orthogonal directions of the
input manifold better preserves the data topology, both in the worst-case analysis of the dis-
crete Gromov-Hausdorfl distance and in the average-case analysis via persistent homology.
From those results, we introduce EMaP algorithm, realizing the orthogonal perturbation
scheme. Our experiments show that EMaP not only improves the explainers’ performance
but also helps them overcome a recently developed attack against perturbation-based ex-
planation methods.

Keywords: black-box explanations, explainability, topological data analysis, adversarial
robustness

1. Introduction

In recent years, many attempts to explain predictions of deep learning models have been
conducted, which resulted in various explanation methods called ezplainers (Lipton, 2018;
Murdoch et al., 2019). A common technique used by many explainers (Strumbelj and
Kononenko, 2013; Ribeiro et al., 2016; Lundberg and Lee, 2017) is first to generate some
perturbations in the input space, then forward them through the model, and later provide
an explanation based on the captured outputs. For that reason, these methods are also
known as perturbation-based explainers.

Even though the perturbation-generating step has a strong influence on the performance
of explainers (Ribeiro et al., 2016; Lundberg and Lee, 2017), very few works closely exam-
ined this step. Current perturbation schemes often ignore the data topology and distort
it significantly as a result. These distortions may considerably degrade explainers’ perfor-
mance since models are not trained to operate on the deformed topology. Additionally, the
difference between the perturbations and the original data creates opportunities for mali-

(©2025 Minh Nhat Vu, Huy Quang Mai, and My Tra Thai.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v26/22-1157 .html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v26/22-1157.html

Vu, Ma1, AND THAI

cious intent. For example, the work (Slack et al., 2020) demonstrates that a discriminator
trained to recognize the explainer’s perturbations can be exploited to fool the explainer.

H0: 0.1822 | H1: 0.1801 H0: 0.1790 | H1: 0.1801 HO: 0.1493 | H1: 0.1248

‘-“4;..._‘;.‘-

Data Gauss Projection Orthogonal

Figure 1: Visualization of perturbations with the same magnitude generated from a point
cloud of a 2-dimensional spiral. Perturbations along the orthogonal directions of
the data subspace (far-right) result in lower topological distortion, i.e. smaller
Bottleneck distances Hy and H; (the Bottleneck distance is discussed in Sec-
tion 5).

Motivated by that lack of study, our work aims to redesign the perturbation step in the
explanation process. We begin with the observation that there exists important topological
information of the data having strong influences on the model trained on that data. For
example, training a neural network to distinguish points from two separated point clouds is
generally easier than on two overlapping/connected point clouds. Since perturbing the data
can significantly change the topological information, perturbation methods can significantly
change the model’s behavior and influence the subsequent explaining tasks. As such, we
alm to generate perturbations so that the topological structure of the original data is better
preserved. Our key result is that, assuming the input data is embedded in an affine subspace
whose dimension is significantly smaller than that of the data dimension, eliminating the
perturbations’ components along that affine subspace would better preserve the topological
integrity of the original manifold. An illustration of that result is provided in Fig. 1, which
shows that perturbing along the orthogonal directions (i.e., no subspace’s directions) results
in smaller distortion in the topological structure of the original data. This phenomenon is
also reflected in the smaller Bottleneck distances in dimensions 0 and 1, denoted by Hy and
H,.

Based on that result, we further propose a novel manifold-based perturbation method
aiming to preserve the topological structure of the original data, called EMaP. The high-
level operations of EMaP are shown in Fig. 2. Given some sampled data, EMaP first learns a
function mapping the samples to their low-dimensional representations in the data subspace.
Then, that function is used to approximate a local affine subspace, shortened to local-
subspace, containing the data in the neighborhood of the input to be explained. Finally,
the EMaP perturbations are generated by adding the noise vectors that are orthogonal to
that local-subspace to the data.

Contributions. (a) We provide theoretical results showing that the worst-case discrete
Gromov-Hausdorff distance between the data and the perturbations along the manifold’s
directions is larger than that along the orthogonal directions. (b) The worst-case analysis
suggests that eliminating perturbation’s components along the manifold’s directions can

EMAP: EXPLAINABLE AI WITH MANIFOLD-BASED PERTURBATIONS

Data

Low-dimensional Manifold’sdirections
representations ¢

s . X4 A
g e’ ﬂ- -..
N 4 ;8
s : e —— L
.? [Manifold j Local-subspace —_— Local-subspace A
M learning e approximation - . . iy
ot -
gt e

EMaP

Orthogonal direction 10
perturbation

Affine subspace

Figure 2: EMaP’s perturbation: Assume the data is embedded in a low-dimensional affine
subspace (middle figure), EMaP approximates that subspace locally at some given
data points and performs perturbation along orthogonal directions of that sub-
space (right figure).

generally better maintain the topological integrity of the original manifold, i.e. the average
case. We then provide synthetic and real-world experiments based on persistent homology
and Bottleneck distance to support that hypothesis. (c¢) We propose EMaP, an algorithm
generating perturbations along the manifold’s orthogonal directions for explainers. EMaP
first approximates the input’s manifold locally at some given data points, called pivots,
and the explained data point. The perturbations are then generated along the orthogonal
directions of these local subspaces. EMaP also computes the low-dimensional distances from
the perturbations to the explained data point so that the explainers can better explain the
model. (d) Finally, we provide experiments on four text data sets, two tabular data sets,
and two image data sets, showing that EMaP can improve the explainer’s performance and
protect explainers from adversarial discriminators.

Organization. The remainder of the paper is structured as follows. Sections 2 and 3
briefly discuss related work and preliminaries. Section 4 presents our analysis of the discrete
Gromov-Hausdorff distances of different perturbation directions, which suggests orthogonal
directions are preferable. We strengthen that result with a persistent homology analysis in
Section 5. Sections 6 and 7 describes our proposed EMaP algorithm and its experimental
results. Section 8 concludes the paper.

2. Related work

This work intersects several emerging research fields, including explainers and their at-
tack/defense techniques. Our approach also uses recent results in topological data analysis.
We provide an overview of the related work below.

Perturbation-based explanation methods. Perturbation-based explainers are be-
coming more popular among explanation methods for black-box models since they hardly
require any knowledge of the explained model. Notable ones are LIME (Ribeiro et al., 2016),
SHAP (Lundberg and Lee, 2017), and some others (Strumbelj and Kononenko, 2013; Zeiler
and Fergus, 2014; Sundararajan et al., 2017; Chang et al., 2018; Schwab and Karlen, 2019;
Lundberg et al., 2020; Ying et al., 2019; Vu and Thai, 2020). While they share the same

goal to explain the model’s predictions, they are not only different in the objectives but also

Vu, Ma1, AND THAI

in their perturbation schemes: some zero out features (Zeiler and Fergus, 2014; Schwab and
Karlen, 2019) or replace features with neutral values (Ribeiro et al., 2016; Sundararajan
et al., 2017), others marginalize over some distributions on the data (Ribeiro et al., 2016;
Lundberg and Lee, 2017; Lundberg et al., 2020). There also exist methods relying on sepa-
rate models to generate perturbations (Strumbelj and Kononenko, 2013; Chang et al., 2018).
The work (Covert et al., 2021) provides a comprehensive survey on those perturbation-based
explanation methods and how they perturb the data.

Adversarial attack on explainers. We focus on the attack framework (Slack et al.,
2020), in which the adversary intentionally hides a biased model from the explainer by
training a discriminator to recognize its query. The framework will be discussed in detail
in Section 3. There are other emerging attacks on explainers focusing on modifying the
model’s weights and tampering with the input data (Ghorbani et al., 2019; Dombrowski
et al., 2019; Heo et al., 2019; Dimanov et al., 2020).

Defense techniques for perturbation-based explainers. Since most attacks on
perturbation-based explainers were only developed recently, defense techniques against them
are quite limited. Existing defenses generate perturbations either from carefully sampling
the training data (Chakraborty et al., 2020) or from learning some generative models (Saito
et al., 2020; Vres and Robnik-Sikonja, 2021). The advantage of EMaP is that it does not
require any generative model, which not only reduces the attack surface but also allows
theoretical study of the perturbations.

Topological Data Analysis. Topological data analysis (TDA) is an emerging field in
mathematics, applying the techniques of topology (which was traditionally very theoretical)
to real-world problems. Notable applications are data science, robotics, and neuroscience.
TDA uses deep and powerful mathematical tools in algebraic topology to explore topo-
logical structures in data and to provide insights that normal metric-based methods fail
to discern. The most common tool in the TDA arsenal is persistent homology, developed
in the early 2000s by Gunnar Carlsson and his collaborators. We refer readers to Ghrist
(2014); Edelsbrunner and Harer (2010) for an overview of both persistent homology and
TDA as a whole.

3. Preliminaries

This section discusses the notations and some preliminaries for this work. In particular, we
use the standard setting of the learning tasks where the set of input X is sampled from a
distribution on RY. X is also assumed to be in a manifold embedded in an affine subspace
RY, where V is much smaller than N. We also consider a black-box classifier f mapping
each input x € X to a prediction y, a local explainer g, a (adversarial) discriminator D,
and a masking-model f’.

In the following, we describe how explainers and the explanation process are formulated.
After that, we provide two examples demonstrating how perturbations along different di-
rections can have significant impacts on the explaining process. We end this section with
an attacking framework on perturbation-based explainers and describe how better pertur-
bations can help defend against that class of attacks.

Explainers. An explanation of the prediction y = f(x) can be obtained by running
an explainer g on = and f. We denote such an explanation by g(x). In additive feature

EMAP: EXPLAINABLE AI WITH MANIFOLD-BASED PERTURBATIONS

attribution methods, the range of g(x) is a set of features’ importance scores. We focus
our analysis on the class of perturbation-based explanation, i.e., the importance scores
are computed based on the model’s predictions of some perturbations of the input data.
Typically, the perturbations are generated by perturbing = or/and some samples in X. We
denote the perturbations by X,., where r > 0 specifies the amount of perturbation. A more
rigorous definition for this notation will be provided in Section 4.

Given the perturbations, the explainer typically finds the explanation g such that its
behavior on the perturbations is similar to that of the explained function f. That is the
reason why they are also known as surrogate methods. For example, the LIME explanation
is a linear model whose coefficients are the importance score of the features:

arg min L(f, g, mz) + Q(9g), (1)
geg

where L is a loss between the explained function f and the explanation function g, G is the
class of linear models and m, is an exponential kernel defined on some distance function
and €2(g) is a function measuring the complexity of g. For the SHAP explainer, the main
differences are the choices of the kernel 7, and the complexity measure Q(g) so that the
explanations satisfy certain desired properties of Game Theory. For details of the two
methods, we refer readers to the original papers (Ribeiro et al., 2016; Lundberg and Lee,
2017).

Topological-awareness perturbations for explaining tasks. We now provide two
examples demonstrating how leveraging topological information of the data can be beneficial
for the explanation tasks. The examples aim to demonstrate two key observations. The
first is that the usage of only projecting perturbations, i.e., perturbations in the manifold,
might lead to high explaining errors. The second example heuristically shows orthogonal
perturbations resulting in a more desirable model response for the explaining task.

Decision boundary Explanation Decision boundary
\ . 3
N kS
\ o 1
A 8\\ 8
\\ :" H S g
N Data manifold I ‘\'\.x Data manifold
SN .
\ -
. A Y™ Explanation
® Original data ® Original data
% Projection perturbation # Orthogonal perturbation
(a) Explaining using projecting perturbation. (b) Explaining using orthogonal perturbation.

Figure 3: A 1-D example showing the impact of the perturbation’s direction.

In the first example, we consider 2-dimensional data lying in a 1-dimensional manifold
(Fig. 3). The task of the model is to differentiate the blue data from the green data.
The decision boundary of the model is a line intersecting the manifold (the red dashed
line). The goal of perturbation-based explainers is to determine that decision boundary.
Fig. 3a demonstrates the scenario when only projecting perturbations are used. Since the
perturbations and the data lie in a 1-dimensional manifold, they cannot help the explainer
differentiate the decision boundary from any other lines going through the intersection.

Vu, Ma1, AND THAI

Thus, the resulting explanation (purple dot line) might have high errors. On the other hand,
as depicted in Fig. 3b, orthogonal perturbations can differentiate lines in the 2-dimensional
space and help the explainer learn solutions with lower errors.

The change of predictions caused by perturbations

0.5
0.0
-0.5

-1.0

Orthogonal
perturbation

-1.5

Output's difference

—e— Projection
Orthogonal
-2.5 -=-=In distribution

06 i
o

. 2.0
N N'“-—k(-;'\m‘nf"

Input data

L) N SR
o \"'i;"‘"é."’ 0 1 2 3 4 5 6
: Theta
Projection
perturbation

. . (b) The figure reports the normalized change
(a) A C-shaped data in a regression task (left) |t(z4s)—f(a)| ; 1 the C-shaped data (1
and its perturbations (right). The projection (RIS Or & a‘ong the L-shaped data fo-

perturbation of the data is more likely to de- ~ cated by the angle 0). The perturbation x + ¢

stroy the gap at the two ends of the original belongs to the projection point cloud, the or-
C-shaped data. thogonal point cloud, and the original data as

indicated in the legend.

Figure 4: An example showing how leveraging topological information can be beneficial for
the explanation task.

Our second example is the experiment shown in Fig. 4. The experiment consists of a C-
shaped data set and a regression model f mapping the data set uniformly to the range (0, 1),
ie., f(x) =0,/(2r—0.5) for 6, € [0,27—0.5], where 6, is the angular coordinate of the point
x on the shape. That angle 6,, the mapping f, and the data set are illustrated in Fig. 4a.
The first observation is that the optimal linear local explanation (1) of this regression model
is the tangent line at the point of prediction. To obtain that explanation, one necessary
condition of the perturbations is that the following quantity f(x + J) — f(z) = 05;2 8_?
should depend only on § but not x. In other words, the change f(xz + 0) — f(z) should
be almost constant when x moves along the shape. Particularly, Fig. 4b demonstrates the
low variance of that quantity (black line) when the perturbation = + § is sampled from the
original C-shaped data, i.e., in distribution®.

For projection and orthogonal perturbations, we can observe that f(z+4)— f(x) matches
that of in-distribution perturbation, except for data at the two ends of the C-shape. The
reason is that the two ends have important topological information on the data, and that
information also has a strong impact on the model: if the data is slightly perturbed at
those ends, the data might become connected (a circle appears,) and the two extreme
values of the regression model will also be connected. Thus, the evaluations of the model
on the perturbations connecting the two ends, i.e,. on those that destroy the associated

1. To sample the perturbation x 4 §, we first fix a perturbation magnitude A, then randomly select the
point 2’ in the specified point cloud (in-data, projection or orthogonal perturbations) such that the Lo
distance between z’ and x equal to A, i.e., ||6||L, = A. The value of A for this experiment is 0.25.

EMAP: EXPLAINABLE AI WITH MANIFOLD-BASED PERTURBATIONS

topological feature, will result in unstable responses. Consequently, explaining the model
based on those perturbations is not desirable. In fact, the distortion f(z+d)— f(x) caused
by projection perturbations has significantly higher fluctuation than that of the orthogonal.
The reason is that projection perturbations near the two ends of the C-shaped have a higher
chance of connecting the ends and destroying the shape.

Attack framework. We study the discriminator-based attack framework introduced
by Slack et al. (2020), which is illustrated in Fig. 5. The framework focuses on an adversary
with an incentive to deploy a biased-model f. This adversary can bypass the detection of
the explainer by forwarding the explainer’s perturbations X, to a masking model f’. The
decision whether to forward an input to the masking model is made by a discriminator
D. Thus, the success of the attack is dictated by the capability of the discriminator D to
distinguish the perturbations X, from the actual data X. Intuitively, if the explainer can
craft an X, similar to X, it not only improves the explainer’s performance but also prevents
the adversary from hiding its bias.

Guessz € X . f(2)
Biased model .
/ flx)ifxe X
cexox O
Masking model p
Guess z € X, f'(z)
Adversary

Figure 5: The discriminator-based attack framework: By recognizing and forwarding the
perturbations X, generated by an explainer to the masking model f’, the biased
model f can be deployed without detection.

4. Analysis of Discrete Gromov-Hausdorff distances of perturbations

We consider the following perturbation problem: Given a manifold embedded in RY, how
do we perturb it so that we preserve as much topological information as possible? More
concretely, given a finite set of points sampled from such a manifold, is there a consistent
method to perturb the original data set while preserving some notion of topology?

To begin talking about differences between (metric) spaces, we need to introduce a notion
of distance between them. One such commonly used distance is the Gromov-Hausdorff
distance, which is derived from the Hausdorff distance. Intuitively, a small Gromov-
Hausdorff distance means that the two spaces are very similar as metric spaces. Thus,
we can focus our study on the Gromov-Hausdorff distances between the data and different
perturbation schemes. However, as it is infeasible to compute the distance in practice, we
instead study an approximation of it, which is the discrete Gromov-Hausdorff distance.
Specifically, we show that, when the perturbation is significantly small, the worst-case
discrete Gromov-Hausdorff distance resulting from orthogonal perturbation is smaller than
that of projection perturbation, i.e., perturbation along the manifold (Theorem 3). The
proof of that claim relies on Lemma 4, which states that, with a small perturbation, the

Vu, Ma1, AND THAI

discrete Gromov-Hausdorff distance between the original point cloud and the perturbation
point cloud equals the largest change in the distances of any pair of points in the original
point cloud. With the Lemma, the problem of comparing point clouds is further reduced
to the problem of comparing the change in distances.

The structure of this section is as follows: first, we recall the definition of the Hausdorff
distance and the Gromov-Hausdorff distance. We then introduce the discrete Gromov-
Hausdorff distance, which will be the main focus for computational purposes. Finally, using
such a discrete distance, we prove Lemma 4 and Theorem 3.

We now state the formal definitions. Let (M, d) be a metric space. For a subset S C M
and a point y € M, the distance between S and y is given by d(S,y) := inf,cs d(z,y).

Definition 1 (Hausdorff distance) (Gromov, 1981) Let S and S’ be two non-empty sub-
sets of a metric space (M, d). The Hausdorff distance between S and S’, denoted by dg (S, S")
18:

du (S, 5") := max (supd(S', z), sup d(S,y)).
z€S yes’

Definition 2 (Gromov-Hausdorff distance) (Gromov, 1981) Let X,Y be two compact
metric spaces. The Gromov-Hausdorff distance between X and Y is given by:

don(X,Y) = ifn{de(f(X),g(Y)),
where the infimum is taken over all metric spaces M and all isometric embeddings f : X —
M,qg:Y —> M.

Even though the Gromov-Hausdorff distance is mathematically desirable, it is practi-
cally non-computable since the above infimum is taken over all possible metric spaces. In
particular, this includes the computation of the Gromov-Hausdorff distance between any
two point clouds. In 2004, Mémoli and Sapiro (2004) addressed this problem by using a
discrete approximation of Gromov-Hausdorff, which looks at the distortion of pairwise dis-
tances over all possible matchings between the two point clouds. Formally, given two finite
sets of points X = {x1,...,z,} and Y = {y1,...,yn} in a metric space (M, d), the discrete
Gromov-Hausdorff distance between X and Y is given by

dJ(X7 Y) = 711_2{52 IH:;X % }d(xh xj) - d(yﬂ'(’b)) yw(j)) {’ (2)
where S, is the set of all n-permutations.

Let X = {x1,...,2;} € RV C R¥ be a point cloud contained in some affine subspace RY
of RN. We say X is generic if the pairwise distances between the points in X are not all
equal, i.e. there exist some points x;,, T;,, Tisy, x;, € X such that d(z;,, zi,) # d(xiy, 4,).

Let X, be a finite set of points in RN s.t. for every x; € X, there exists a unique &; € X,
such that d(z;,%;) = r. X, realizes a perturbation of X with the radius of perturbation
being equal to 7. We also denote X;- (resp. x5 ™)) as a finite set of points in R" such that
for every x; € X, there exists a unique #; € X such that d(z;,#;) = r and 2;2; L RY
(resp. z;&; C RY), where z;%; denotes the line connecting the points z; and ;. We are
now ready to state the following key theorem:

EMAP: EXPLAINABLE AI WITH MANIFOLD-BASED PERTURBATIONS

Theorem 3 Given a generic point-cloud X = {x1,...,x} € RY ¢ RN, there exists an
ro > 0 such that for any r < ro and for any instances of X-, there exists an XF3 such
that:

(X, X}F) < dg(X, XFroi).
We prove Theorem 3 is based on the following lemma:

Lemma 4 There exists an € > 0 such that for any r < €, we have

1
dy(X,X,) = 5 max (s, 75) — d(Z;, Tj)]-

for any X,

To prove Lemma 4, we show that, for a small enough €, the optimal permutation in
Eq. (2) is the identity m(i) = i. Thus, the minimization in the computation of d; can be
eliminated. The detail is shown in the following.

Proof of Lemma 4. Given a permutation m € S,, and two point clouds X, Y of the same
cardinality, denote:

1 - -
Dr(X, Xr) = 5 max (i, 75) — d(Zr(iys Tr())|-
Let Ny be the set of permutations m € S,, such that D, (X, X) = 0. Let N = S,,\ Ny. Since
X is generic, Ny does not include all of S,, and Ny # ().

Let 6 = mingen, Dr(X,X) > 0. We claim that choosing € = g proves the lemma. To

0 je. 4r < 4.

be more precise, the radius of perturbation r is chosen such that r» < e = g,

Given an X,., for any w € S,,, we consider two cases:

L. If 7 € No, then d(z;, zj) = d(Tr(), Tr(j)) V¥ (i,). Note that the identity permutation
belongs to Ny as:

1 - -
D (X, X;) = 5 max |d(wi, 25) — d(Tr(s), Tr(s))]
1 N - 1 I

=5 max|d(Tr(), n(j)) = d(Tnii), Tn(y))| = 5 max|d(wi, zj) — d(@i, Z)|. - (3)

Since d(x;, ;) = d(xj, &) = r, from Triangle inequality, we have:

d(Z, Z5) < d(z, x5) + d(z4, T3) + d(z4,Z5) = d(z4, x5) + 2,
d(Zi, T5) > d(zs, x5) — d(4, T5) — d(zj,T5) = d(z4,25) — 2r
Therefore, for all i, j, we have:
|d(&i, 25) — d(ws, z5)| < 2r. (4)

This implies D, (X, X,) < r for m € Np.

Vu, Ma1, AND THAI

2. If 7 € Ny, without loss of generality, we assume the pair (z1, x2) maximizes |d(x;, x;)—
d(Tr(i); Tx(j))|- For convenience, we denote 7(1) = 3 and 7(2) = 4. From the fact
that # € Ny, we have |d(z1,z2) — d(x3,24)] > 5. On the other hand, from (4),
|d(Z3,Z4) — d(x3,x4)| < 2r. Thus, from the Triangle inequality, we obtain:

|d(Z3,T4) — d(21,22)| >|d(21, 22) — (23, 24)| — |d(Z3, T4) — d(23,24)|
>§ —2r > 2r,

Since D (X, X,) > %|d(:c1,x2) — d(Z3,Z4)|, we establish D (X, X,) > r for m € Ny.

From the above analysis, we can conclude D, (X, X,) < D,(X,X,) for all # € Ny and
7 € Ni. Combining this with (3), we have that the identity permutation is the solution of
(2), which proves the Lemma. |

With the Lemma, Theorem 3 can be proved by choosing a specific projection pertur-
bation such that its discrete Gromov-Hausdorff distance is always bigger than the upper
bound for such distance of any orthogonal perturbations. The proof of the Theorem is
shown below:

Proof of Theorem 3. Applying Lemma 4 to the orthogonal perturbation Y = X1 and
projection perturbation Z = xr ') and for any r less than or equal to the minimum of the

€ corresponding to each perturbation specified in Lemma 4, we obtain:

1 1
d;(X,Y) =5 max |d(@i, z5) = d(yi)] and dy(X,2) = H}E;L.XW(J%,JE;') — d(zi,)]

From the triangle inequality (similar to how we show Eq. (4) in the proof of Lemma 4),

we have:

1 1
5 max (x4, 25) — d(ysi,y;)| <7 and 5 max |d(xs, 25) — d(zi, 25)| <7,
,L?] 17]

where the first inequality is strict due to the orthogonality of the perturbation.

Given such r, consider the following perturbation Z = Xf) where xT1,xo, 21,29 are
collinear and |d(x1,x2) — d(z1,22)] = 2r, and z; = z; for i = 3,...,n. The d; distance
between such Z and X is greater than or equal to r, which proves our claim. |

This theoretical result suggests the following perturbation scheme: Given a manifold
embedded in an affine subspace of R and a fixed amplitude r of perturbation, perturbing
the manifold in the orthogonal directions with respect to the affine subspace is preferable
to random perturbation, as it minimizes the topological difference between the perturbed
manifold and the original.

5. Persistent homology analysis with the Bottleneck distance

The results from the previous section show that on the worst-case basis, the orthogonal
perturbation is preferable to the projection perturbation. However, when we apply them to

10

EMAP: EXPLAINABLE AI WITH MANIFOLD-BASED PERTURBATIONS

actual data sets, how do they compare on average? Since the discrete Gromov-Hausdorff
distance is still computationally intractable for a Monte-Carlo analysis, we choose a different
approach: persistent homology.

For the last 30 years, there have been new developments in the field of algebraic topology,
which was classically very abstract and theoretical, toward real-world applications. The
newly discovered field, commonly referred to as applied topology or topological data analysis,
is centered around a concept called persistent homology. Interested readers can refer to
(Ghrist, 2014; Edelsbrunner and Harer, 2010; Ghrist, 2008) for an overview of the subject.

For any topological space, homology is a topological invariant that counts the number
of holes or voids in the space. Intuitively, given any space, the 0'-homology counts the
number of connected components, the 15-homology counts the number of loops, the 2"9-
homology counts the number of 2-dimensional voids, and so on. The homology groups of
dimension % are denoted by H;.

Given a point cloud sampled from a manifold, we want to recapture the homological fea-
tures of the original manifold from these discrete points. The idea is to construct a sequence
of topological spaces along some timeline and track the evolution of the topological features
across time. The longer the features persist (and hence the name persistent homology), the
more likely they are the actual features of the original manifold. Given a point cloud X and
a dimension 4, the persistence diagram D;(X) is the set of points (b,d) € R? corresponding
to the birth and death time of these features in the aforementioned timeline.

For two point clouds, and also for their two persistence diagrams, there are several
notions of distances between them, representing how similar they are as topological spaces.
The most commonly used distance in practice is the Bottleneck distance.

Definition 5 (Bottleneck distance) Let X and Y be two persistence diagrams. The
Bottleneck distance Woo(X,Y') is given by

Wo(X,Y) = w;pingg [z — ¢(2)]o,

where the infimum is taken over all matchings ¢ : X — 'Y (which allows matchings to points
with equal birth and death time).

For simplicity, we shorthand the Bottleneck distance between persistence diagrams of X
and Y in dimension i to H;(X,Y) instead of Woo(D;(X), D;(Y)). As the notation takes in 2
parameters in X and Y, this is not to be confused with the homology group of the specified
spaces. Note that two point clouds with small Bottleneck distances can be considered
topologically similar.

Notably, the bottleneck distance is highly correlated to the Gromov-Hausdorff distance
(Section 4), as the bottleneck distance of two persistence diagrams of the same dimension
is bounded above by their Gromov-Hausdorff distance (Chazal et al., 2009):

for every dimension 1.
Monte-Carlo simulations. The Bottleneck distance is much more calculable than the
Gromov-Hausdorff distance, and there are available software packages depending on the use

11

Vu, Ma1, AND THAI

cases. As such, we run Monte-Carlo simulations to compute the Bottleneck distances on
5 synthetic data sets, 3 real-world tabular data sets, and 2 real-world image data sets to
confirm our hypothesis that the orthogonal perturbation preserves the topology better than
the projection perturbation on average. The synthetic data sets are some noisy point clouds
of certain 2-dimensional shapes in 3-dimensional space. The tabular data sets are the COM-
PAS (Jeff Larson and Angwin, 2016), German Credit (Hofmann, 1994), and Communities
and Crime (Redmond, 2011). The image data sets are MNIST (LeCun and Cortes, 2010)
and Fashion-MNIST (Xiao et al., 2017). Table 1 and 2 provide more details about those
data sets. We use the Ripser Python library (Tralie et al., 2018) to compute the Bottleneck
distances in our experiments. All reported Bottleneck distances are normalized with the
noise added to the point clouds for more intuitive visualization.

Table 3 reports the means Hy and H; Bottleneck distances of the perturbations on the
synthetic data sets. The number of data points and the noise level are chosen mainly for
nice visualizations (shown in Appendix A). The results show that orthogonal perturbation
consistently results in lower Hy distances for line-shaped data and lower H; distances for
cycle-shaped data. Note that in general, H; is the better topological indicator for cycle-
shaped data sets compared to Hy, since cycles or holes (detected by Hj) are harder to
replicate than connected components (detected by Hy).

For the real-world data set, we conduct the experiments with perturbations of different
noise levels and report results in Fig. 6 and 7. It can be observed that both Hy and
H, Bottleneck distances of the persistence diagrams of the orthogonal perturbation are
significantly smaller than those of the projection perturbation on all experiments.

6. EMaP Algorithm

We now discuss our perturbation-generating algorithm, called EMaP, leveraging the topo-
logical information of the input data. To generate better perturbations for the explaining
task, EMaP not only exploits the perturbation direction but also uses low-dimensional
distances to better capture the notion of locality.

In particular, predictions on the perturbations do not necessarily hold local information
about the explained inputs, which is one main reason for the usage of some distance or
kernel functions measuring how similar the perturbations are to the explained input. Note
that those distances and kernels are normally functions of other distances, such as L; and
Ly in the input space RY, which might not correctly capture the notion of similarity. By
operating in the low-dimensional manifold, EMaP can overcome those issues. First, if topo-
logical similarity implies similarity in the model’s predictions, maintaining the topological
structure of the original data should improve the relevance of the model’s predictions on
the perturbations. Therefore, explaining the model with orthogonal perturbations, which
helps preserve the topology better, should be more beneficial. Furthermore, the manifold
provides a natural way to improve the similarity measurement among data points. Fig. 8
shows the issue of similarity measurement based on Euclidean distance in the input space
RY. As the distance ignores the layout of the data, further points on the manifold might
result in the same similarity measure. On the other hand, the low-dimensional distances
computed on the manifold take into account the layout and can overcome that issue.

12

EMAP: EXPLAINABLE AI WITH MANIFOLD-BASED PERTURBATIONS

Compass German Communities and Crime
0.16
_____________ .
022 SN g ..
_____ v 0.12 e 0.14
() [S = v
£020 2011 i e © 2010
T s So.
P e = E
@ SR} o
Mt Co10 s 0010
S S S
g g 2
016 © 0.09 Goos
= -] =]
a a a -
0.14 0.08 . 0.06
___________________________________ 0.04 \
0.12 0.07 i ———— T
107° 1074 1073 1072 107! 107° 1074 1073 1072 107t 107° 1074 1073 1072 107t
Noise level Noise level Noise level
Ho Orthogonal ===+ H; Orthogonal =ss== Ho Projection === H, Projection

Figure 6: The normalized Hy and H; Bottleneck distances for orthogonal and projection
perturbations on 3 real-world data sets at different noise levels. The x-axis shows
the average perturbations’ radius applied to each data point (log-scale).

MNIST (D=2) MNIST (D=3) Fashion MNIST (D=2) Fashion MNIST (D=3)

0.07 0.07 0.07 0.07

0.06 0.06 0.06
]]] o
= = = e
& & 0.05 & 0.05 &
k7] k7] @ @
© © © ©
™ Joo04 Jo.o04 M
]]]]
g g e e
5 §003 §0.03 5
g 8 8 g
3 &3 0.02 3 0.02 R 0.02

0.01 0.01 0.01 0.01

0.00 0.00 0.00 0.00

1073 1072 107t 10° 1073 1072 107t 10° 1073 1072 107t 10° 1072 1072 107t 10°
Noise level Noise level Noise level Noise level
Hg Orthogonal ===+ Hj Orthogonal =====: Hg Projection === H, Projection

Figure 7: The normalized Hy and H; Bottleneck distances for orthogonal and projection
perturbations on 2 image data sets at different noise levels. The x-axis shows the

average perturbations’ radius applied on each data point (log-scale).

13

Vu, MA1, AND THAI

data set Parameter No. points Data’s noise Perturbation No. runs EMaP’s dim
Line Length: 10 100 0.1 ~0.15 100 1
Circle Radius: 1 400 0.1 ~ 0.1 100 2
2 intersecting circles ~ Radius: 1 400 0.01 ~0.1 100 2
2 concentric circles Radius: 1 400 0.01 ~ 0.1 100 2
Spiral Radius: [0,2] 1000 0.02 ~ 0.05 100 2

Table 1: The parameters of the Bottleneck distance’s experiments on the synthetic data.
The perturbation column shows the average magnitude of the perturbation on the
data.

Experiment No. data points No. feats Feature’s values No. runs EMaP’s dim

COMPAS 7214 100 {0,1} 100 2

German Credit 1000 28 {0,1} 100 2

cc 2215 100 {0,1} 100 2
MNIST 60000 28 x 28 [0,1] 100 2 and 3
Fashion-MNIST 60000 28 x 28 [0,1] 100 2 and 3

Table 2: The parameters of the Bottleneck distance’s experiments on the real-world data.

1
/ 4 \/ | fl/
Data /
y i 7
/ A
0.20 } | |
0.20 s 0.125 03 0.100
- 0.100
015 I 0.075
0.075 0.2
0.10
0.10 0.050
I 0.050 o1
0 0.05 0.05 0,025 - 0.025
0.00 0.00 0.000 0.0 0.000
HoG HoP HoO HoG HoP Ho O HoG HoP HoO HoG HoP HoO Ho G HoP HoO
0.4 .
0.25 0.25 0-20
03 0.20 0.20 0.15
02 015 015 0.10
0.10 " 0.10
H, 0.1
’ + 0.05 0.05 0.05 0
0.0 0.00 0.00 0.00
HiG H,P HO HiG H.P H, 0 H G H.P H, 0 HiG H.P H: 0

Table 3: The normalized Hy and H; Bottleneck distances for Gaussian (G), projection (P),
and orthogonal (O) perturbations on synthetic data. Visualizations of the actual
perturbations are provided in Appendix A.

Algorithm overview. Given an input to be explained, the outputs of EMaP are
the perturbations along the manifold’s orthogonal directions X, and their low-dimensional
distances D, to that input. The pseudo-code of EMaP is shown in Alg. 1. The first
step is to learn an embedding function, i.e., a mapper, transforming the data to a low
dimension (line 2). Then, p samples from each label are selected and combined with the

14

EMAP: EXPLAINABLE AI WITH MANIFOLD-BASED PERTURBATIONS

‘. Low-Dimensional
distances

Different Geodesic
distances

Similar Euclidean
distances

.
Data Low-Dimensional representations

Figure 8: Euclidean distances computing in the input space might not capture the actual
distances between the data points (left). Distances in low-dimensional space can
help with the issue (right).

explained input xg into a set, called the pivots (lines 3 to 7). After that, EMaP generates
perturbations along the orthogonal directions of the manifold from each pivot (line 10).
Pivots are used to provide the explainer with a broader range of perturbations, leading
to improved performance. Specifically, since the manifold learned by UMAP is optimized
for capturing global structure, orthogonal directions computed directly on this manifold
can be highly inaccurate. By introducing pivots, EMaP can learn multiple local subspaces,
enabling the generation of more accurate orthogonal perturbations. In the next paragraphs,
we will describe those key steps in more detail.

Algorithm 1 EMaP

Input: Data to explain xg, a subset of training data (X, y), number of pivots per labels p,
number of perturbations per pivot k, lower dimension V' and noise level r.

Output: X, and D,. X, contains k(pl + 1) orthogonal perturbations locally around xzg
and points in X. D, contains the low-dimensional distances of points in X, to g (I is the
number of unique labels in y).

1: Initialized an EMaP sampler object M.

M .mapper <~ Mapper to the manifold of dimension V' of X

M .pivots < ()

Include zg to M.pivots

for each class [in y do
Include p samples of class [to M.pivots

end for

X, <0, D, 0

for each data point x in M.pivots do
X.D+ M.gen_perturbation(z, k, r)
Include X to X, and include D to D,

: end for

: return X, and D,..

e e e

15

Vu, Ma1, AND THAI

The mapper. In our implementation of EMaP, the mapper is learned from a manifold
approximated by UMAP (Mclnnes et al., 2018). Since the manifold learned by UMAP
is optimized for global information, the orthogonal directions computed on top of that
manifold at local data points are prone to high error. This can degrade the correctness
of orthogonal perturbations significantly. To overcome this issue, EMaP learns a local
subspace for each pivot and generates the orthogonal perturbations on top of that subspace.
Intuitively, the local subspace is a local affine approximation of the manifold. Therefore, the
resulting orthogonal directions are more finely tuned for the local points. We denote G, as
the N x V matrix characterizing the local subspace at x. Since G, is a linear approximation
of data points near z, by denoting w : RY — RY as the function embedding input data to
the manifold, we have 2'°% := w(z) ~ G 2z and z ~ G, 2'°%, where z € RY are points near
x and 2'°% are their embedding in RY. In our current implementations, the set of pivots
contains the explained data point and p data points sampled from each class label [(see
Algorithm 1).

EMaP orthogonal perturbations. The key step of EMaP is the generation of or-
thogonal perturbations & from z (line 10, Alg. 1), which can be expressed as:

T = x + noise — Projg_ (noise), (5)

where the noise is sampled from a multivariate normal distribution and Projs, (noise) is
the projection of the noise on the local subspace characterized by G,. Upon obtaining
the orthogonal perturbations, we can compute their low-dimensional embedding using the
mapper transform function w. The pseudo-code for this computation is in Algorithm 2.

Algorithm 2 gen_perturbation
Input: Input z, number of perturbation k& and noise level r.
Output: k orthogonal perturbations of z and their low-dimension distances to x.

. Gy « self.get_local_subspace(x)
: X <— Q)
:for 1 <i<k:do
noise < N (0, X,)
T + x + noise — Proj_(noise)
Include Z into X
end for
. X19% self. mapper.transform(X)
. 2!V « self.mapper.transform(z)
. D « distances of each member in X% to z'o"
. return X and D

© XD T W

— =
= O

Local-subspace approximation. The correctness of the orthogonal perturbations,
i.e. whether the perturbations are actually lying in the orthogonal subspace, is heavily
dependent on the correctness of the computation of G,. We now discuss how EMaP learns
the local-subspace matrix G.

16

EMAP: EXPLAINABLE AI WITH MANIFOLD-BASED PERTURBATIONS

Ideally, given a set of data Z near z in the manifold, we can solve the following opti-
mization for G :

G, = arg ménz |Gw(z) — =, (6)

z2€Z

where w is the transform function embedding input data to the manifold learned in the
previous step. An intuition is that, for all z in the manifold and near x, we are searching
for a matrix G such that the inverse mapping Gw(z) ~ Gz'°% approximately equals its
original value z. Note that if the embedding w is exactly on Z and the manifold is affine,
the optimization (6) can achieve its optimal value 0 for some G. Since it is not trivial to
obtain the set Z belonging to the manifold, EMaP perturbs around x with some random
noise and solves the following optimization instead:

Gy Ial"gméH;HGw(x—i-r) —(z+7)], (7)

where B is a ball centering at 0 with noise radius . EMaP solves (7) for an approximation
of the local subspace. Further details of this step are provided in Algorithm 3.

Algorithm 3 get_local_subspace
Input: Data point z.
Hyper-parameters: Number of training samples k7 and noise level for training rp.
Output: Matrix G characterize the local-subspace at z

1: Z 0
2: for 1 <i < kp: do
3: mnoise + N(0,%,,)
4 Z < z + noise
5. Include % into Z
6
7
8
9

: end for

. Z'9% « self.mapper.transform(Z)
. G« argminy ||Z — WZ%|

: return G

We now discuss the gap between the ideal solution G, and the approximation Gy used
by EMaP; i.e., the solution of (6) and (7). This can be characterized by bounding the error
between {Gyw(z)} and {G,w(z)}, i.e. the reconstructed signals in RV by using G, and
C;’m, respectively. Lemma 6 provides a bound on that reconstruction error where the set Z
in (6) is the projection of a ball B on the data manifold. The bound holds under a mild
assumption that the optimal objective of (6) is not larger than that of (7). We find this
assumption reasonable and intuitive: as the set Z is in a subspace of dimension V' and the
set of + 7 is a ball in RY, finding a subspace of dimension V approximating the subspace
containing Z should give a much lower error.

Lemma 6 Assume that all data points x belong to the same affine space RV . Let Proj be
the projection onto RV, then under the above assumption on the optimization (6) and (7),

17

Vu, Ma1, AND THAI

the reconstruction error on perturbed data points is upper bounded by:
|Gow(@ + 1) — Gow(Proj(z +1))|| < Fp(w) + [Ir|l,
where r* is the orthogonal components of r and Fp(w) :=ming Y., g |Gw(z+7) — (z+7)|.

Proof For simplicity, we rewrite:

G = argmGan |Gw(z +71) — (x +7)]],

reB

Gy = arg ménrgg |Gw(Proj(x + 7)) — Proj(x +)|

The assumption regarding the objectives (6) and (7) mentioned in the Lemma can be
rewritten as:

> IGaw(Proj(x + 1)) = Proj(z +)| < Y |Grw(z +7) = (z + 7).

reB reB

We find this assumption reasonable since its left-hand side is equal to 0 in the ideal scenario,
i.e., x € RV for all z in our data set. With that, we have:

2||Grw(z+ 1) — (z+71)||
>||Giw(z + 1) — 96+7")H + [|Gaw(Proj(z + 7)) — Proj(z +)|l

(
>||Giw(x 4+ r) — Gow(Proj(z + 1)) — (x + 7 — Proj(z + 1))
>||Giw(z + 1) — G2w(Pr0J(96 +)|l = |[(z +r) — Proj(z +)|l
=||Giw(z + 1) — Gaw(Proj(z + 1))|| — ||lr — Proj(r)],

where the last two inequalities are from the Triangle Inequality. The last equality is due to
the fact that (z +) — Proj(x +r) is the orthogonal components of = + r and that = has no
orthogonal components. |

Note that F (w) is small if the manifold is affine in the neighborhood B of z and w is
good, i.e. G is a good estimator for GG, under the above assumption.

7. Experiments

We evaluate EMaP on two main objectives: the explainer’s performance and the pertur-
bations’ robustness. Our experiments are conducted on 3 tabular data sets, 2 image data
sets, and 4 text data sets of reviews in multiple domains. They are COMPAS (Jeff Larson
and Angwin, 2016), Communities and Crime (Redmond, 2011), German Credit (Hofmann,
1994), MNIST (LeCun and Cortes, 2010), Fashion-MNIST (Xiao et al., 2017), and 4 reviews
data sets in the Multi-Domain Sentiment (Blitzer et al., 2007).

18

EMAP: EXPLAINABLE AI WITH MANIFOLD-BASED PERTURBATIONS

7.1 Experimental settings

We first describe how the data sets and the testing models are processed in our experiments.
Then, we provide some details of the implementation of EMaP along with the baselines.

Data sets and Models’ hyperparameters. All reported results for real-world data
sets include at least 2000 data points and 100 runs, except for those of German Credit where
the data only consists of 1000 samples. The text data sets are tokenized into vectors of 1000
input features while the MNIST and Fashion-MNIST data sets are of dimension 1 x 28 x 28
and 3 x 32 x 32, respectively. The model’s inputs of all experiments are normalized between
0 and 1. The experimental model for the text data set is the L1 logistic regression as used
by LIME (Ribeiro et al., 2016). The models of testing for the two image data sets are
2-layer convolutional networks implemented in Pytorch (Paszke et al., 2019) with test set
accuracy of 98% for MNIST and 93% for Fashion-MNIST.

Technical implementation of EMaP and baselines. Generally, EMaP perturba-
tions can be used to leverage any model-agnostic perturbation-based methods; however, the
modification may require significant changes to the existing implementations of the meth-
ods. In our experiments, we use EMaP to leverage LIME (Ribeiro et al., 2016) as a proof
of work, i.e., we show that EMaP can improve LIME in terms of performance. We chose
LIME to demonstrate the usage of EMaP since it requires a few modifications to integrate
EMaP’s perturbations into LIME. This helps demonstrate fairly the gain of applying EMaP
on explanation methods. We use the notation EMaP-LIME (or EMaP for short) to indicate
LIME with EMaP’s perturbations in our following experimental results.

To apply EMaP into LIME, we simply choose the loss function (defined in Eq.(1)) as:

L(f.g:m) = Y m(@)(f(@) - g(@)),

zeX,

where 7, (%) = exp(—D(z, #)?/0?) with the distance D computed as in Algorithm 2 and g
is the linear function of the features of the perturbation.

Besides LIME, we also heuristically compare EMaP-LIME to some other black-box and
white-box explanation methods. The following are brief descriptions of those methods:

e LIME zero: LIME with perturbations whose perturbed features are set to zero. This
method is used by LIME in explaining text data.

e LIME+: LIME with perturbations whose perturbed features are added with Gaussian
noise. This method is used by LIME in explaining image data.

e LIME*: LIME with perturbed whose perturbed features that are multiplied with
uniform noise between 0 and 1. This can be considered a smoother version of LIME
zero. We include this variant of LIME because it provides nice explanations in some
specific experiments (see Appendix A for some examples).

e KernelSHAP: a black-box method based on Shapley value (Lundberg and Lee, 2017),
whose perturbed features are set to the average of some background data.

e GradientSHAP: a white-box method based on Shapley value (Lundberg and Lee,
2017), which relies on the gradient of the model.

19

Vu, Ma1, AND THAI

e DeepLIFT: a white-box method based on back-propagating the model (Shrikumar
et al., 2017).

e Parzen (Baehrens et al., 2010): an explanation method that approximates the model
globally and uses the gradients of that approximating model to explain the predictions.

e Greedy: the features contributing the most to the predicted class are removed and
selected until the prediction changes. The implementation is taken from (Ribeiro
et al., 2016).

The noise vector used to generate perturbations for all applicable explainers has a radius
1073 for text data and 10~* for image data, which are in the range analyzed in the previous
Bottleneck distance experiments in Fig. 6 and 7. The noise radius r7 used to approxi-
mate the local subspaces of EMaP (Algorithm 3) is chosen equal to the noise radius r for
perturbation. For UMAP’s hyper-parameters, we use n_components € {2,3} and min_dist
= 0.1 (default value). Our source code is attached in the supplementary material of this
submission. Finally, for a fair comparison, the number of perturbations used to generate
the explanation of any reported methods is 1000.

EMaP SHAP LIME zero LIME + LIME *

Figure 9: Examples of explanations for different methods on MNIST and Fashion-MNIST:
altering white pixels to dark or vice versa in the most red (or blue) regions would
weaken (or reinforce) the original prediction.

7.2 Explaining performance of explanation methods

For illustrative purposes, Fig. 9 shows the resulting explanations on MNIST and Fashion-
MNIST generated by EMaP and some other black-box methods (More examples are in
Appendix A). All methods use 1000 perturbations to generate the corresponding explana-
tions. We can see that, while EMaP and SHAP capture relevant features, LIME includes
a lot of noisy features in the background. Note that the reason LIME* does not include

20

EMAP: EXPLAINABLE AI WITH MANIFOLD-BASED PERTURBATIONS

the background is that the background of the original image has a value of 0 and, through
multiplication, the features are not perturbed. This makes their weights 0 in the explaining
model g. Regarding the low quality of LIME zero and LIME+, the main reason is that the
method would require a much larger number of perturbations to generate good results at
the pixel level. We want to point out that the only difference between EMaP and LIME
is in the perturbations and how to compute the distances between the perturbations and
the original data points. This clearly demonstrates that optimizing the perturbations can
greatly improve the explanation’s quality. Another interesting observation is the red areas
on top of the digit 4 and at the bottom of the Trouser (the second and third rows of Fig. 9)
only identified by EMaP. In fact, those areas are essential to the predictions since they
differentiate the samples from other classes, i.e., digit 9 and the Dress, respectively. Those
areas, on the other hand, are neglected by all other examples.

books dvd
1.0 " R - u 1.0 - s ..
0.8 LI "-A,.‘. 08 s .
c ', ’o‘: c . %o ta
S 06 "ay '& S 06 .
0 \ K] L B -
304 g 04 Rl [T,
802 Greedy ¢ LIME 802 Greedy ¢ LIME
0.0 s Parzen & EMaP 0.0 s Parzen a4 EMaP
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Recall Recall
kitchen electronics
1.0 1.0 »
- L '] . a [] : “ -
0.8 * a 0.8] e
- om - .‘ c - “A a,
206 o, "u s, 206 LI - o 4,
{7 " \ @ "., .
204 .\-‘\ S04 Sungy
& 02 Greedy s LIME 802 Greedy ¢ LIME
0.0 s Parzen & EMaP 0.0 s Parzen a4 EMaP
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Recall Recall

Figure 10: The precision and recall of explanations returned by Greedy, LIME, Parzen, and
LIME-EMaP (the higher the better). The dots are in the increasing order of the
number of features in explanations (left to right).

Text data sets. We report our experimental results for the sentiment classification task
in the Multi-Domain Sentiment data set (Blitzer et al., 2007). We follow the experimental
setup in (Ribeiro et al., 2016), in which the ground-truth explanatory features of the L1
logistic regression model are known. In particular, a regression model is trained for each
data set, and the ground-truth explanatory features are non-zero coefficients. For each
explanatory budget, i.e., the number of features included in the explanations, the fraction
of these ground-truth features recovered by the explanations is computed. The performance
of an explainer is evaluated by the precision and the recall rate of the features in the
explanations. Intuitively, the more features included in the explanation, the higher the
recall and the lower the precision.

21

Vu, MA1, AND THAI

Fig. 10 shows the scatter plot of precision vs. recall of LIME and LIME with EMaP on 4
review data sets of books, dvds, kitchen, and electronics. Similar to how LIME is evaluated in
these data sets in its original paper, we compare LIME with EMAP to LIME, Greedy, and
Parzen explanation methods (Baehrens et al., 2010). In Greedy, the features contributing
the most to the predicted class are removed until the prediction changes. On the other
hand, Parzen approximates the model globally with Parzen windows, and the explanation
is the gradient of the prediction. The results clearly show that EMaP consistently improves
the faithfulness of LIME.

RDT fidelity score on MNIST (K=40) RDT fidelity score on MNIST (K=80)

070

055
065

0.50
0.60
& 055

045
050

040
045
040

LIME zero LIME + LIME* Kemel-SHAP Gradient-SHAP DeeplLIFT EMaP (d=2) EMaP (d=3) ero LIME + LIME * Ke el-SHAP Gradient-SHAP DeeplIFT EMaP (d=2) EMaP (d=3)

RDT fidelity score
RDT fidelity score

RDT fidelity score on Fashion-MNIST (K=40) RDT fidelity score on Fashion-MNIST (K=80)

0.48 200
T 048

046
044
042
040

0.40
LIME z ME* Kemel-SHAP Gradient-SHAP DeepLIFT EMaP (d=2) EMaP (d=3) ME* Kemel-SHAP GradientSHAP DeepLIFT EMaP (d=2) EMaP (d=3)

RDT fidelity score

RDT fidelity score
e o

Figure 11: RDT fidelity scores of different perturbation-based methods on MNIST and
Fashion-MNIST (the higher the better).

Image data sets. Since there are no ground-truth explanations for the MNIST and
Fashion-MNIST image data sets, we evaluate explanations using the RDT-fidelity Funke
et al. (2023), the infidelity scores (Yeh et al., 2019), and the log-odds scores (Shrikumar
et al., 2017). The RDT-fidelity of an explanation S with respect to a model f is the
probability that the model’s prediction does not change if the features in the explanation
remain unchanged:

RDT(S) =E[1(f(z) = f(zs))],

where zg is x with noise added on features not in S, and the expectation is taken over
the noise. On the other hand, the infidelity score measures the expected error between the
explanation multiplied by a meaningful perturbation and the differences between the pre-
dictions at its input and at the perturbation. The metric can be considered as a generalized
notion of Sensitivity-n (Ancona et al., 2018). Intuitively, explanations with lower infidelity
are more desirable. Finally, given the importance weights on features (i.e., the explanation),
the log-odds score measures the difference between the image and the modified image whose

22

EMAP: EXPLAINABLE AI WITH MANIFOLD-BASED PERTURBATIONS

Infidelity score on MNIST Infidelity score on Fashion-MNIST
0.010

I 0.004

0.008

0.006
S 0002

0.004
0.002 0.001
0.000 0,000

LMEzero LIME + LIME* Kemel-SHAP Gradient-SHAP DeeplIFT EMaP (d=2) EMaP (d=3) UMEzero LIME + LIME* Kemel-SHAP Gradient-SHAP DeeplIFT EMaP (d=2) EMaP (d=3)

Inf\delity score
Infidelity score

Figure 12: Infidelity scores of different perturbation-based methods on MNIST and Fashion-
MNIST (the lower the better).

Log-odds score on MNIST Log-odds score on Fashion-MNIST

IIIIII 4 IIIIII
ME *

Kernel-SHAP Gradient-SHAP DeepLIFT EMaP (d=2) EMaP (d=3) * Kemel-SHAP Gradient-SHAP DeeplIFT EMaP (d=2) EMaP (d=3)

175

4
Log-odds score

Log-odds score

s

0.0

Figure 13: Log-odds scores of different perturbation-based methods on MNIST and Fashion-
MNIST (the higher the better).

pixels are erased based on their importance weights. Intuitively, the higher the log-odds
score, the better the explanation.

The evaluations using the RDT-fidelity are computed on explanations of K = 40 and 80
features of the explained image (Fig. 11). The results clearly demonstrate the high fidelity
of our EMaP in both image data sets. Fig. 12 shows the infidelity scores. It is clear that
EMaP has the lowest infidelity score among all black-box methods. Even though the white
box methods, KernelSHAP and DeepLIFT, have more information on the explained models
than EMaP, they can only outperform EMaP in Fashion-MNIST. Additionally, Fig. 13
shows the log-odds scores of EMaP with low-dimension d = 2 and d = 3, along with other
explanation methods and other perturbation schemes. In these experiments, the scores
are computed on 20% erased pixels. In MNIST, we can see that EMaP does not degrade
the explainer performance compared to LIME in terms of log-odds (note that the default
setting for LIME for image data is LIME+). For Fashion-MNIST, EMaP improves the log-
odds significantly. More examples of EMaP and other explanation methods are provided in
Appendix A.

7.3 Perturbation’s robustness

We evaluate the robustness of the perturbation scheme based on the discriminator’s perfor-
mance in differentiating perturbations from the original data. Following the setup in (Slack

23

Vu, MAI, AND THAI

et al., 2020), the discriminator is trained with full knowledge of the explainer’s parame-
ters. This discriminator has been shown to be able to recognize perturbations of LIME
and SHAP explainers. Note that, as DeepLIFT and GradientSHAP are white-box methods
and do not use perturbations, we only evaluate the robustness of LIME’s perturbations
and KernelSHAP’s perturbations. Since there is no ambiguity, we use SHAP to denote
KernelSHAP in the following results.

Our experimental results show that EMaP’s perturbation is more robust to the discrim-
inator. Specifically, Figs. 14, 15, 16, and 17 show the True-Positive (TP) and True-Negative
(TN) rates of discriminators on perturbations of 2 image data sets and 2 tabular data sets.
For image data sets, the discriminators can easily recognize perturbations generated by
LIME and SHAP. On the other hand, EMaP perturbations significantly lower the success
rates of discriminators in recognizing the perturbations. While the explainers’ perturbation
schemes prove to be slightly more robust in the tabular data sets compared to the image
data sets, EMaP still improves the perturbations’ robustness remarkably.

7.4 Computational resource and run time

Our experiments are conducted on a single GPU-assisted compute node that is installed
with a Linux 64-bit operating system. The allocated resources include 32 CPU cores (AMD
EPYC 7742 model) with 2 threads per core and 100GB of RAM. The node is also equipped
with 8 GPUs (NVIDIA DGX A100 SuperPod model), with 80GB of memory per GPU.

EMaP Initialization LIME EMaP (d=2) EMaP (d=3)

MNIST 240-260 0.763 1.311 1.493
Fashion-MNIST 240-260 0.726 1.502 1.467

Table 4: Run time (in seconds) of EMaP and LIME in generating explanations using 1000
perturbations per explanation. The reported numbers are seconds (for initializa-
tion column) and seconds per explanation (for other columns).

The run time of EMaP is mostly dictated by the learning of the embedding function
(line 2 of Algorithm 1). That initialization step in the tabular data set for about 2000 data
points takes less than 2 minutes. It takes between 240 and 260 seconds for all images of
60000 MNIST /Fashion-MNIST images. Note that the manifold and local subspaces can be
computed before deployment since it does not depend on the explained inputs. Thus, this
overhead of EMaP can be mitigated at deployment. Table 4 reports the actual run time of
EMaP and LIME in the image data sets.

8. Conclusion, limitations and future research

From our theoretical and experimental results, we exploit the data manifold to preserve
the topology information of its perturbation. We implement the EMaP to realize the idea
and demonstrate its benefits in the explanation task. We recognize the main limitation of
EMaP is in its requirement for low-dimensional representations of the data and the local
affine subspaces. For more complex data, computing it correctly can be very challenging.

24

EMAP: EXPLAINABLE AI WITH MANIFOLD-BASED PERTURBATIONS

There are several interesting open questions of EMaP that we leave for our future work. For
instance, it is important to study the impact of the underlying manifold-learning algorithm,
i.e., the UMAP, on the perturbations and the explanations. It is also interesting to examine
the behavior of EMaP in a wider range of explainers and applications.

Acknowledgement

This work is partially supported by the National Science Foundation under Grant No. FAI-
1939725 and SCH-2123809.

25

Vu, MA1, AND THAI

0.0 II.. aoIIIII

LIME + LIME zero SHAP EMaP (d=2)EMaP (d=3) LIME + LIME zero SHAP EMaP (d=2)EMaP (d=3)

Iy
=)
=
=]

©
@
o
@

o
o
o
o

o
IS

True negative
o
kS

True positive

o
o
=]
N

Figure 14: True-Positive and True-Negative rates of the discriminators on perturbations of
different methods on the MNIST data set (the lower the better).

1.0 10

0.0 II.. aoIIIII

LIME + LIME zero SHAP EMaP (d=2)EMaP (d=3) LIME + LIME zero SHAP EMaP (d=2)EMaP (d=3)

o
=3
=]
)

o
o
=
o

o
IS

True positive
o
IS

True negative

=)
o
=]
)

Figure 15: True-Positive and True-Negative rates of the discriminators on perturbations of
different methods on the Fashion-MNIST data set (the lower the better).

1.0 1.0

. III
IIII 0.0 II

LIME + LIME zero SHAP EMaP (d=2)EMaP (d=3) LIME + LIME zero SHAP EMaP (d=2)EMaP (d=3)

o
=3
=]
@

o
o
=]
o

I
»

True negative
o
IS

True positive

o
N
o
[N}

°
S}

Figure 16: True-Positive and True-Negative rates of the discriminators on perturbations of
different methods on Communities and Crime data set (the lower the better).

1.0 1.0

0.0

LIME + LIME zero SHAP EMaP (d=2)EMaP (d=3) LIME + LIME zero SHAP EMaP (d=2)EMaP (d=3)

o
=3
=]
@

o
o
=]
o

I
»

True negative
o
IS

True positive

o
N
o
[N}

°
S}

Figure 17: True-Positive and True-Negative rates of the discriminators on perturbations of
different methods on the German Credit data set (the lower the better).

26

EMAP: EXPLAINABLE AI WITH MANIFOLD-BASED PERTURBATIONS

Appendix A. Visualizations of synthetic data and explanations generated
with EMaP
This Appendix provides some visualizations of our synthetic data (in experiments of Table 3)

and explanations generated with or without EMaP. The explanations of EMaP shown in
this Appendix are those that appeared in the experiments reported in Section 7 of the main

manuscript.
HO: 0.3097 HO: 0.3672 HO: 0.1071
, . p
" ¢ - g
P :‘,,:' ".(x e
s ot i o
'.-'" A% ..\" el
-
HO: 0.1572 | H1: 0.2651 H0: 0.1876 | H1: 0.3567 HO: 0.1496 | H1: 0.0519

HO: 0.0968 | H1: 0.1947 HO: 0.0860 | H1: 0.2571 HO: 0.1040 | H1: 0.0925

A i i
s) § i
3 i

HO: 0.1822 | H1: 0.1801 HO0: 0.1790 | H1: 0.1801 HO: 0.1493 | H1: 0.1248

HO: 0.2687 | H1: 0.2060 H0: 0.1393 | H1: 0.1633

Data Gauss perturbations Projection-perturbations Orthogonal-perturbations

Figure 18: The visualization of some synthetic data in experiments of Table 3.

In Fig. 18, we visualize the synthetic data of different shapes and their perturbations in
three dimensions. We also report Hy and H; Bottleneck distances between the perturbations

and the original data in that figure.

27

Vu, MA1, AND THAI
o — o R Ny Ny
|y o — o — o
o
o — o — o oo —
W

o — oo - o — N

. LIME - LIME . LIME . LIME
o° —— e EMaP & - = EMaP @ _— = EMaP w“‘\g — = EMaP

0.00 0.05 0.10 0.15 0.00 0.02 0.04 0.06 0.00 0.05 0.10 0.00 0.05 0.10 0.15
Positive Positive Negative Negative

Figure 19: Visualization of EMaP-LIME explanations of the Multi-polarity-books review
data sets (Blitzer et al., 2007).

oo I —— - o I — o
oo o oo — &
*® R ‘e\“‘
« r © — o« F 00\@\ —
<
| |
® o oo R o -
o e
. LIME . LIME . LIME . LIME
« & — - EMaP o° . EMaP & " w— EMaP ‘0&\6 - - EMaP
K
0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.00 0.05 0.10
Positive Positive Negative Negative

Figure 20: Visualization of EMaP-LIME explanations of the Multi-polarity-kitchen review
data sets (Blitzer et al., 2007).

Fig. 19 and 20 compare the actual explanations returned by LIME and EMaP-LIME
(EMaP) in the books’ reviews in the Multi-Domain Sentiment data sets. We can see that the
weights of features included in the explanations are quite similar between the two methods.

Fig 21 shows the explanations of LIME with EMaP for all classes in the MNIST data
set. The red (blue) areas mean, if the features in those areas are unchanged (changed), the
prediction for that class will be stronger (weaker).

Finally, Fig. 22 and 23 provide some explanations of EMaP along with explanations
of other methods in MNIST and Fashion-MNIST, respectively. The color code also has a
similar meaning to that of Fig 21.

28

EMAP: EXPLAINABLE AI WITH MANIFOLD-BASED PERTURBATIONS

4 |
4 | L]
-AlENEEEEEN
ey | Pt
H HINENEEEEE
sHEEEEEEENEN
4 [
7 HHNEEEEEENE
71 5 I A
g L]

Figure 21: Visualization of EMaP-LIME explanations of the MNIST data set. The column
indicates the class label to be explained.

29

Vu, MA1, AND THAIL

LIME zero LIME + LIME *

0B owiE =
/BEEREE
A A gy
FEETEE
S B
SHEZEEY
6 & &R &
7% 28
S ns - K
& bd |k

Figure 22: Examples of explanations in MNIST. Modifying the red-est (blue-est) area would
negate (strengthen) the original prediction.

30

EMAP: EXPLAINABLE AI WITH MANIFOLD-BASED PERTURBATIONS

EMaP SHAP LIME *
L J.'
d | | g
R
B
[% - .
: [
L - |
M i
il
ﬁ i .l-\-\- -ll. | :
.
-
-
| i il
. i —
| iy =
ﬁ ﬁ 4 = |
-
ST e
:_br_ | 1 b eyl =t '_‘-. & L et |
g el - o
. il o i |
II jll Tae .-.Il.:;' o -I' e
pLT T, Ly e L A |

Figure 23: Examples of explanations in Fashion-MNIST. Modifying the red-est (blue-est)
area would negate (strengthen) the original prediction.

31

Vu, Ma1, AND THAI

References

M. Ancona, E. Ceolini, C. Oztireli, and M. Gross. Towards better understanding of gradient-
based attribution methods for deep neural networks. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=Sy21R9JAW.

D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K.-R. Miiller. How
to explain individual classification decisions. Journal of Machine Learning Research, 11
(61):1803-1831, 2010. URL http://jmlr.org/papers/vil/baehrensiOa.html.

J. Blitzer, M. Dredze, and F. Pereira. Biographies, Bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In Proceedings of the 45th Annual Meeting
of the Association of Computational Linguistics, pages 440-447, Prague, Czech Republic,
June 2007. Association for Computational Linguistics. URL https://aclanthology.
org/P0O7-1056.

J. Chakraborty, K. Peng, and T. Menzies. Making fair ML software using trustworthy
explanation. CoRR, abs/2007.02893, 2020. URL https://arxiv.org/abs/2007.02893.

C.-H. Chang, E. Creager, A. Goldenberg, , and D. Duvenaud. Explaining image classifiers
by adaptive dropout and generative in-filling. arXiv preprint arXiv:1807.08024, 2018.

F. Chazal, D. Cohen-Steiner, L. Guibas, F. Mémoli, and S. Oudot. Gromov-hausdorff stable
signatures for shapes using persistence. Comput. Graph. Forum, 28:1393-1403, 07 2009.
doi: 10.1111/j.1467-8659.2009.01516.x.

I. C. Covert, S. Lundberg, and S.-I1. Lee. Explaining by removing: A unified framework for
model explanation. J. Mach. Learn. Res., 22(1), jan 2021. ISSN 1532-4435.

B. Dimanov, U. Bhatt, M. Jamnik, and A. Weller. You shouldn’t trust me: Learning models
which conceal unfairness from multiple explanation methods. In SafeAI@AAAIL 2020.

A .-K. Dombrowski, M. Alber, C. J. Anders, M. Ackermann, K.-R. Miiller, and P. Kessel. Ex-
planations can be manipulated and geometry is to blame. In H. M. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché Buc, E. B. Fox, and R. Garnett, editors, NeurIPS, pages
13567-13578, 2019. URL http://dblp.uni-trier.de/db/conf/nips/nips2019.html#
DombrowskiAAAMK19.

H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. Applied Math-
ematics. American Mathematical Society, 2010. ISBN 9780821849255. URL https:
//books.google.com.vn/books?id=MDXa6gFRZuIC.

T. Funke, M. Khosla, M. Rathee, and A. Anand. Zorro: Valid, sparse, and stable explana-
tions in graph neural networks. IEFE Transactions on Knowledge & Data Engineer-
ing, 35(08):8687-8698, aug 2023. ISSN 1558-2191. doi: 10.1109/TKDE.2022.3201170.

A. Ghorbani, A. Abid, and J. Zou. Interpretation of neural networks is fragile. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 33(01):3681-3688, Jul. 2019.
doi: 10.1609/aaai.v33i01.33013681. URL https://ojs.aaai.org/index.php/AAAT/
article/view/4252.

32

https://openreview.net/forum?id=Sy21R9JAW
http://jmlr.org/papers/v11/baehrens10a.html
https://aclanthology.org/P07-1056
https://aclanthology.org/P07-1056
https://arxiv.org/abs/2007.02893
http://dblp.uni-trier.de/db/conf/nips/nips2019.html#DombrowskiAAAMK19
http://dblp.uni-trier.de/db/conf/nips/nips2019.html#DombrowskiAAAMK19
https://books.google.com.vn/books?id=MDXa6gFRZuIC
https://books.google.com.vn/books?id=MDXa6gFRZuIC
https://ojs.aaai.org/index.php/AAAI/article/view/4252
https://ojs.aaai.org/index.php/AAAI/article/view/4252

EMAP: EXPLAINABLE AI WITH MANIFOLD-BASED PERTURBATIONS

R. Ghrist. Barcodes: The persistent topology of data. BULLETIN (New Series)
OF THE AMERICAN MATHEMATICAL SOCIETY, 45, 02 2008. doi: 10.1090/
S0273-0979-07-01191-3.

R. Ghrist. Elementary Applied Topology. CreateSpace Independent Publishing Plat-
form, 2014. ISBN 9781502880857. URL https://books.google.com.vn/books?id=
Z5ATogEACAAJ.

M. L. Gromov. Groups of polynomial growth and expanding maps. Publ. Math., Inst.
Hautes Ftud. Sci, pages 53-73, 1981.

J. Heo, S. Joo, and T. Moon. Fooling neural network interpretations via adversarial model
manipulation. In NeurIPS, 2019.

H. Hofmann. UCI machine learning repository, 1994. URL http://archive.ics.uci.edu/
ml.

L. K. Jeff Larson, Surya Mattu and J. Angwin. How we analyzed the compas recidivism
algorithm, 2016.

Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

Z. C. Lipton. The mythos of model interpretability. Queue, 16(3):31-57, June 2018. ISSN
1542-7730. doi: 10.1145/3236386.3241340. URL https://doi.org/10.1145/3236386.
3241340.

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In
Advances in Neural Information Processing Systems 30, pages 4765-4774. 2017.

S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz,
J. Himmelfarb, N. Bansal, and S.-I. Lee. From local explanations to global understand-
ing with explainable ai for trees. Nature Machine Intelligence, 2(1):56-67, Jan 2020.
ISSN 2522-5839. doi: 10.1038/s42256-019-0138-9. URL https://doi.org/10.1038/
s42256-019-0138-9.

L. Mclnnes, J. Healy, N. Saul, and L. Grossberger. Umap: Uniform manifold approximation
and projection. The Journal of Open Source Software, 3(29):861, 2018.

W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu. Definitions, methods,
and applications in interpretable machine learning. Proceedings of the National Academy
of Sciences, 116(44):22071-22080, 2019. ISSN 0027-8424. doi: 10.1073/pnas.1900654116.
URL https://www.pnas.org/content/116/44/22071.

F. Mémoli and G. Sapiro. Comparing point clouds. In SGP ’04: Proceedings of the 2004
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, volume 71, pages
3342, 01 2004. doi: 10.1145/1057432.1057436.

33

https://books.google.com.vn/books?id=Z5ATogEACAAJ
https://books.google.com.vn/books?id=Z5ATogEACAAJ
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://www.pnas.org/content/116/44/22071

Vu, Ma1, AND THAI

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch:
An imperative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems 32, pages 8026-8037. 2019.

M. Redmond. UCI machine learning repository, 2011. URL http://archive.ics.uci.
edu/ml.

M. T. Ribeiro, S. Singh, and C. Guestrin. “Why should i trust you?”: Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, page 1135-1144, 2016. ISBN
9781450342322. doi: 10.1145/2939672.2939778.

S. Saito, E. Chua, N. Capel, and R. Hu. Improving lime robustness with smarter locality
sampling. ArXiv, abs/2006.12302, 2020.

P. Schwab and W. Karlen. CXPlain: Causal Explanations for Model Interpretation under
Uncertainty. In Advances in Neural Information Processing Systems (NeurlPS), 2019.

A. Shrikumar, P. Greenside, and A. Kundaje. Learning important features through prop-
agating activation differences. In Proceedings of the 3/th International Conference on
Machine Learning, volume 70, pages 3145-3153, 06-11 Aug 2017.

D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju. Fooling lime and shap: Adversarial
attacks on post hoc explanation methods. In AAAI/ACM Conference on Artificial Intel-
ligence, Ethics, and Society (AIES), 2020. URL https://arxiv.org/pdf/1911.02508.
pdf.

E. Strumbelj and I. Kononenko. Explaining prediction models and individual predictions
with feature contributions. Knowledge and Information Systems, 41:647-665, 2013.

M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In
D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of

Proceedings of Machine Learning Research, pages 3319-3328. PMLR, 2017. URL http:
//proceedings.mlr.press/v70/sundararajani7a.html.

C. Tralie, N. Saul, and R. Bar-On. Ripser.py: A lean persistent homology library for python.
The Journal of Open Source Software, 3(29):925, Sep 2018. doi: 10.21105/joss.00925.
URL https://doi.org/10.21105/joss.00925.

D. Vres and M. Robnik-Sikonja. Better sampling in explanation methods can prevent
dieselgate-like deception. CoRR, abs/2101.11702, 2021. URL https://arxiv.org/abs/
2101.11702.

M. Vu and M. T. Thai. Pgm-explainer: Probabilistic graphical model explanations for
graph neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages

34

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://arxiv.org/pdf/1911.02508.pdf
https://arxiv.org/pdf/1911.02508.pdf
http://proceedings.mlr.press/v70/sundararajan17a.html
http://proceedings.mlr.press/v70/sundararajan17a.html
https://doi.org/10.21105/joss.00925
https://arxiv.org/abs/2101.11702
https://arxiv.org/abs/2101.11702

EMAP: EXPLAINABLE AI WITH MANIFOLD-BASED PERTURBATIONS

12225-12235. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/8fb134f258b1f7865a6ab2d935a897c9-Paper . pdf.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. ArXiv, abs/1708.07747, 2017.

C.-K. Yeh, C.-Y. Hsieh, A. S. Suggala, D. I. Inouye, and P. Ravikumar. On the (in)fidelity
and sensitivity of explanations. In NeurIPS, 2019.

Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. GNNexplainer: Generating
explanations for graph neural networks. In Advances in Neural Information Processing
Systems 32, pages 9244-9255. 2019.

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In
D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer Vision — ECCV
2014, pages 818-833, Cham, 2014. Springer International Publishing. ISBN 978-3-319-
10590-1.

35

https://proceedings.neurips.cc/paper/2020/file/8fb134f258b1f7865a6ab2d935a897c9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8fb134f258b1f7865a6ab2d935a897c9-Paper.pdf

	Introduction
	Related work
	Preliminaries
	Analysis of Discrete Gromov-Hausdorff distances of perturbations
	Persistent homology analysis with the Bottleneck distance
	EMaP Algorithm
	Experiments
	Experimental settings
	Explaining performance of explanation methods
	Perturbation's robustness
	Computational resource and run time

	Conclusion, limitations and future research
	Visualizations of synthetic data and explanations generated with EMaP

