
Control Theoretic Approach to Fine-Tuning and

Transfer Learning

Erkan Bayram1, Shenyu Liu2, Mohamed-Ali Belabbas1, and Tamer Başar1

1 Coordinated Science Laboratory, University of Illinois at Urbana-Champaign
Urbana, IL 61801

(ebayram2,belabbas,basar1)@illinois.edu, ω

2 The School of Automation, Beijing Institute of Technology, Beijing 100089, China
shenyuliu@bit.edu.cn

Abstract. Given a training set in the form of a paired (X ,Y), we say
that the control system ẋ = f(x, u) has learned the paired set via the
control u→ if the system steers each point of X to its corresponding
target in Y. If the training set is expanded, most existing methods for
finding a new control u→ require starting from scratch, resulting in a
quadratic increase in complexity with the number of points. To overcome
this limitation, we introduce the concept of tuning without forgetting. We
develop an iterative algorithm to tune the control u→ when the training
set expands, whereby points already in the paired set are still matched,
and new training samples are learned. At each update of our method,
the control u→ is projected onto the kernel of the end-point mapping
generated by the controlled dynamics at the learned samples. It ensures
keeping the end-points for the previously learned samples constant while
iteratively learning additional samples.

Keywords: Control of ensemble of points, geometric control, fine-tuning,
control for learning

1 Introduction

In recent years, neural networks and other data-driven models have grown signif-
icantly in size and capability, often requiring extensive computation for training.
To address the challenge of retraining models for additional tasks or new data,
methods like transfer learning and fine-tuning have become popular. These meth-
ods allow models to be adapted for new tasks or updated with new examples
without complete retraining.

In this paper, we show that control theory provides a natural framework, as
well as e!cient algorithms, to perform these tasks. Mathematically, fine-tuning
and transfer learning are often treated similarly, as these methods are blind to
the nature of the examples they are fed [1]. This also applies to the algorithms
we propose here, but we focus on fine-tuning for the sake of exposition.

ω Research of UIUC authors was supported in part by the ARO Grant W911NF-24-1-
0085, NSF-CCF 2106358, ARO W911NF-24-1-0105 and AFOSR FA9550-20-1-0333.

2 Bayram et al.

The models we consider are controlled di”erential equations of the type

ẋ = f(x, u) (1)

(see Section 2 for their use in learning and the proper definitions). For a given
paired training set (X ,Y) with finite cardinality q, the learning task is to find a
control u→ so that the flow ωt(u→, ·) generated by (1) satisfies

R(ωT (u
→, xi)) = yi, for all (xi, yi) → (X ,Y)

for some finite T ↑ 0 and a given fixed readout map R. This task is also known
as the control of an ensemble of points [2]. Thus, we interchangeably refer to the
training sample set X as the input ensemble and the training label set Y as the
output ensemble in line with the usage in the control theory literature.

In this work, our goal is to adapt a control function u→, trained on the original
set, to an expanded training set. This aligns with the main goal of fine-tuning,
where parameters u→ are adapted by further training on an expanded dataset.

One of the main issues addressed by fine-tuning is to avoid a loss of per-
formance on previous tasks while specializing the model to a new dataset. This
problem is also known as catastrophic forgetting in the continual learning (incre-
mental learning) literature.

Common approaches involve learning a sequence of tasks one by one and
aiming to match the performance as if they were observed simultaneously [3].
However, in continual learning, access to previously observed data points is typ-
ically not available. When such access exists, it is usually discussed in the lit-
erature on robust fine-tuning. Similar approaches to our work can be found in
optimization-based continual learning methods that incorporate memory [4].

In the control theory literature, finding a control u that steers each point in
X with the cardinality q to the associated labels in Y is done by concatenating all
points in X in a state of higher dimension, and replicate the controlled dynamics
q times [2]. Then, this approach requires solving a controlled ordinary di”eren-
tial equation (CODE) for the q-tuple system. We call this method the q-folded
method, details of which will be discussed later in the paper. This approach has
two practical shortcomings:

– Tuning Ability: If the training set is augmented with additional samples,
it is necessary to apply the q-folded method on the new set from scratch.

– Scalability: The q-folded method has a complexity of O(n2q2N) per itera-
tion with N time-step discretization. However, our method has a complexity
of O(n2qN) per iteration with N time-step discretization. Therefore, as the
size of the training set, q, grows, the complexity of the q-folded method in-
creases quadratically, leading to scalability issues while the complexity of
our method increases linearly.

We introduce here a novel fine-tuning method. It is based on the hereby
introduced concept of tuning without forgetting X . The method consists of an
iterative algorithm in which each update on the control function u, denoted by
εu, is selected as a projection of the gradient of the given cost functional onto the

Control Theoretic Approach to Fine-Tuning and Transfer Learning 3

kernel of end-point mapping generated by the controlled dynamics. It ensures
keeping the end-points for the previously steered points constant up to the first
order while simultaneously steering the new points of the training set to their
associated labels.

Our work thus contributes to the tuning ability and scalability of the methods
using controlled dynamical systems for supervised learning and addresses the
challenges stemming from training set updates. We will compare our proposed
method to an existing fine-tuning method in a computational example.

Furthermore, as our method iteratively learns from samples (X ,Y), we do
not need to have a control system of dimension scaling with q. This is particu-
larly important since, as we mentioned earlier, this scaling causes computational
issues, but it can additionally run into memory capacity issues as well. These fea-
tures make our approach a preferred alternative to the existing q-folded method
in the control of an ensemble of points.

Related Works: A popular idea is to restrict the distance between the
updated parameters and the original parameters [1] to avoid a loss of perfor-
mance on the previous task while specializing the model to a new dataset. The
works [5,6] propose to use Euclidean norm and the matrix absolute row sum
matrix norm (MARS) regularization to restrict the distance of tuned parame-
ters from the reference parameters. The work [7] proposes a trainable projected
gradient method (TPGM) for fine-tuning to automatically learn the distance
constraints for each layer.

Other optimization-based approaches in the continual learning literature in-
clude [4], which proposes the so-called “gradient episodic memory (GEM)”, that
performs an update in weight in the direction of gradient of loss function if it
has negative inner product with the gradient of loss for the previous samples.
Furthermore, the works [8] proposes Orthogonal Gradient Descent (OGD) that
stores the gradients for the initially observed points and rectifies the current
gradient to be orthogonal to them. The study [9] introduces an algorithm called
Adam-NSCL, which sequentially optimizes network parameters in the null space
of previous tasks. This null space is approximated by applying singular value
decomposition to the covariance matrix of all input features of previous tasks
for each linear layer.

The dynamical system approach, which we adopt here, has been used in the
past in the learning literature. For example, the studies [10,11,12] consider a
continuous flow and introduce neural ordinary di”erential equations (NODE).
The works presented in [13,14] focus on the universal approximation capabilities
of deep residual neural networks from a geometric control viewpoint. Our work
falls within the scope of these two pieces of literature.

2 Preliminaries

In this section, we introduce the problem and provide the preliminaries for the
iterative algorithm. Consider the paired sets (X ,Y) = {(xi, yi)}qi=1, where the
xi

→ Rn’s are called initial points so that they are in a connected Riemannian

4 Bayram et al.

manifold M. and the associated yi → Rno ’s are target points (labels). We assume
that the elements of the input ensemble (training sample set) X are pairwise
distinct, i.e., xi

↓= xj for i ↓= j and Let I be an index set labelling the entries of
the ensembles. We take the system:

ẋ(t) = f(u(t)x(t)), u → L↑([0, T],Rn̄↓n̄), (2)

where x(t) → Rn̄ is the state vector at time t and f(·) is a smooth vector field
on Rn̄. Let E : x → Rn

↔↗ x̄ → Rn̄ be an injective function with n̄ ↑ n, called the
uplift function. Let R : Rn̄

↗ Rno be a given function, called the readout map
so that the Jacobian of R is of full row rank. Note that both functions E(·) and
R(·) are independent of the control u.

We note that we have adopted a model that is continuous in time for the-
oretical analysis. However, controlled dynamical systems can be viewed in the
context of neural networks with residual connections. When using a model with
residual connections, such as a neural network with infinitely many layers, it can
be represented by a controlled dynamical system in the form of (2) [10,15]. For
example, if we select f(·) = tanh(·), the function is applied elementwise to the
product u(t)x(t), resulting in ẋ(t) = tanh(u(t)x(t)). If our numerical approach
uses a discretization of 10 time steps, it is equivalent to a 10-layer deep residual
network with a tanh(·) activation function. However, the depth of the network
a”ects the discretization error. We next define the memorization property for a
dynamical system.

Definition 1 (Memorization Property). Assume that a paired set (X ,Y), a
fixed readout map R and an up-lift function E are given. The control u is said
to have memorized the ensemble (X ,Y) for the model ẋ(t) = f(x(t), u(t)) if the
following holds for a finite T ↑ 0:

R(ωT (u,E(xi))) = yi, ↘xi
→ X ,

where the flow ωt(u, ·) is generated by the system at the control function u.

We suppress the subscript T in the notation at t = T for simplicity. We call
R(ω(u,E(·))) the end-point mapping. that is, we have the following end-point
mapping for a given u at xi:

xi
→ Rn E

≃↗ x̄i
→ Rn̄ ωT (u,·)

≃≃≃≃≃↗ ȳi → Rn̄ R
≃↗ yi → Rno

In other words, the dynamical system has memorized the ensemble if the end-
point mapping maps each xi

→ Rn to the corresponding yi → Rno . The learning
problem turns into a “multi-motion planning” problem (in which we look for
a control function u that steers all x̄i in X to the corresponding ȳi). One can
also see that, from the deep learning perspective, the memorization property is
equivalent to the universal interpolation property of neural networks [14].

For convenience, we assume that E is the identity function, meaning n = n,
but our result holds for any injective up-lift function. Thus, we interchangeably
use xi and E(xi) for any xi

→ X . If n = no and R is the identity map, we call the

Control Theoretic Approach to Fine-Tuning and Transfer Learning 5

problem the control of an ensemble of points with fixed end-points. Otherwise, we
call the problem the control of an ensemble of points with partially constrained
end-points. In this work, we consider the latter. For the sake of simplicity, we
let the map R be the orthogonal projection of a point in Rn onto the subspace
Rno ; precisely, R : x → Rn

↔↗ Cx → Rno where C = [0no↓n↔no Ino↓no] → Rno↓n.
We define per-sample cost functional J i(u) for a given point xi as follows:

J
i(u) =

1

2
⇐Cω(u, xi)≃ yi⇐2

Then, the cost-functional for the control of an ensemble of points with partially
constrained end-points including regularization is defined as follows:

(3)
J (u,X) :=

q∑

i=1

⇐Cω(u, xi)≃ yi⇐2 + ϑ

∫ T

0
⇐u(ϖ)⇐2dϖ

where ϑ is some regularization coe!cient. If we had a single initial point, the
minimization of the functional (3) subject to the dynamic (2) would be the Bolza
optimal control problem with a fixed time [16]. However, we have an ensemble
of points X , which might be a finite set of points or a continuum.

q-Folded Method: The authors in [15] discuss the following method, known as
the q-folded method, to find the control function u. This turns the problem into a
Bolza problem with the following steps: Copy all the points in X into an q-tuple,
denoted by X0.

Similarly, stack all the output points into a vector of dimension noq, de-
noted by Y , and copy n-dimensional dynamics in (2) q-times, creating an nq-
dimensional vectors F (u(t), X(t)). Then, they find the flow ϱωt(u, ·) : Rnq

⇒R ↗

Rnq, by solving the minimization problem associated with the following func-
tional for a finite time T :

J (u,X0) := ⇐ς(C)ϱωT (u,X0)≃ Y ⇐
2 +

∫ T

0
⇐u(ϖ)⇐2dϖ

where ς(C) :=diag(C,· · ·, C) → Rn0q↓nq subject to Ẋ(t) = F (u(t), X(t)),X(0) =
X0. The stacked structure of Ẋ(t) and the definition of ς(C) ensure that the
flow ϱωt(u, ·) is constructed by concatenating q instances of the flow ωt(u, ·).

One can easily see that q-folded method requires solving a boundary value
problem on qn dimension. Solving a boundary value problem by using the
shooting method requires solving backward-forward initial value problem for
CODE [17] at each iteration. An explicit solver of an initial value problem for
CODE on Rn has the complexity of O(n2N) per iteration with N time-step
discretization. Consequently, the q-folded method has complexity of O(n2q2N)
per iteration. Therefore, as the size of the training set, q, grows, the complexity
of the q-folded method increases quadratically.

3 Main Results

Controllability on Partially Constrained Ensembles: We first state a simple con-
dition for the existence of a control function u that memorizes a given ensemble

6 Bayram et al.

(X ,Y). To be more precise, we introduce the following subspaces of our control
space:

U(xi, yi) := {u → L↑([0, T],Rn↓n)|R(ω(u, xi)) = yi}

Then, we need to show that there exists a control function u →
⋂q

i=i U(xi, yi) to
prove that the model has memorization property.

Let g1 and g2 be di”erentiable vector fields in M ⇑ Rn. We call the Lie
bracket of g1 and g2 [18], denoted by [g1, g2](x) , the vector field:

[g1, g2](x) :=
φg2(x)

φx
g1(x)≃

φg1(x)

φx
g2(x), for x → M

Definition 2 (Control distributions). Let ẋ = f(x, u), u → L↑([0, T],Rn↓n),
we associate it with the sets of vector fields defined recursively

F
k = F

k↔1
⇓
{
[gi, gj](x) | gi, gj → F

k↔1
}

for k ↑ 1 with the set of control vectors F
0 = {f(x, u)|u → L↑([0, T],Rn↓n)}.

The corresponding distributions at point x → Rn are then

D
k
x(F) = span

{
g(x) | g → F

k
}

One can see that the distributions are nested D
k
x(F) ⇑ D

k+1
x (F). The control

distribution D
k
x(F) is said to be involutive if Dk

x(F) = D
k+1
x (F) [18]. We call F

bracket-generating if D↑
x (F) spans TxE(M) for all x→E(M).

We denote q times Cartesian product of E(M) by E(M)q := E(M)⇒ · · ·⇒

E(M). A finite ensemble of points is a q-tuple X =
[
E(x1)↗, · · · , E(xq)↗

]↗
→

E(M)q ⇑ Rnq. We define the set ↼q := {[E(x1)↗, · · · , E(xq)↗]↗ → E(M)q|
E(xi) = E(xj) for i ↓= j}. Let E(M)(q) := E(M)q \ ↼q be the complement of
↼q on E(M)q. Please note that if dimE(M) > 1, then E(M)(q) is an open
connected subset and submanifold of E(M)q [15].

The set of control vectors of the q-folded system, denoted by F̃
0, is then

F̃
0 = {[f(x1, u)↗, f(x2, u)↗, · · · , f(xq, u)↗]↗ → Rnq

|u → L↑([0, T],Rn↓n)}.

We note that the control function u still belongs to L↑([0, T],Rn↓n), and not
L↑([0, T],Rnq↓nq). Therefore, having D

↑
X (F̃) = TXE(M)(q)(= ⇔

q
i=1TxiE(M))

for all X → E(M)(q) is stronger requirement than having D
↑
x (F) = TxE(M)

for all x → E(M).

Lemma 1. Assume that the ensemble X consists of finite pairwise distinct points
and n > no. For the readout map R(x) = Cx, if the set of control vector fields
of q-folded system is bracket-generating in E(M)(q)(= E(M)q \↼q), then there
exists a control function u and a finite time T ↑ 0 such that the system (2)
memorizes the ensemble (X ,Y) by the control function u.

Proof. First consider that i ↓= j ↖ yi ↓= yj . In this case, the result trivially
follows from [2, Prop 6.1]. Now assume that it is not the case; then, since the
cardinality of Y is finite, we can always construct a set Y ↘

↙ Rn, with elements
ỹi having the property that i ↓= j ↖ ỹi ↓= ỹj and R(ỹi) = yi for all i. We can
then appeal to [2, Prop 6.1] to conclude. ∝′

Control Theoretic Approach to Fine-Tuning and Transfer Learning 7

Tuning without forgetting: We describe here the core of our approach to devel-
oping numerical methods. Let X j = {xi

→ X|i = 1, 2, · · · , j} be a subset of the
ensemble X (called batch or sub-ensemble). Let Yj be the corresponding batch of
labels. We denote by a superscript the value of the control at a given iteration,
i.e., uk is the control function at the kth iteration of the algorithm. Assume that
uk has memorized the ensemble (X j ,Yj) for the model (2). Expand the ensemble
by adding the point xj+1 with its corresponding label yj+1. Clearly, it does not
necessarily hold that Cω(uk, xj+1) = yj+1. We propose an iterative method to
find a control u→ such that Cω(u→, xi) = yi for all xi

→ X
j+1(= X

j
⇓ {xj+1

}).

Definition 3. Consider an ensemble (X ,Y). Assume that the control uk has
memorized the sub-ensemble (X j ,Yj) for (2) for some j < |I|. If the update εuk

satisfies the following:

1. J
j+1(uk + εuk) ∞ J

j+1(uk)
2. R

(
ω(uk + εuk, xi)

)
= yi + o(εuk), ↘xi

→ X
j

then the control function uk+1(:= uk + εuk) has been tuned for X
j+1 without

forgetting X
j.

Paraphrasing, the definition says that we need to select an update εuk satis-
fying the following two conditions: (i) it decreases the per-sample cost functional
for the additional point xj+1, equivalently, the control system with the updated
control uk+1 steers the point xj+1 to a point whose projection onto the output
subspace Rno gets closer to the label yj+1, and (ii) the points in X

j are mapped
to points whose projection onto the output subspace is within o(εuk) of their
corresponding labels. To be more precise, in tuning without forgetting, we aim
to minimize the per-sample cost for the new point xj+1, denoted by J

j+1(u),
with u →

⋂j
i=1 U(xi, yi).

A projected gradient descent method: Consider the flow ωt(u, ·). It yields the
trajectory t ↔↗ ωt(u, xi) of (2) with control u and initialized at xi at t = 0. The
first-order variation of the trajectory ωt(u, xi) in εu is defined as εωt(u, xi) :=
ωt(u+ εu, xi)≃ωt(u, xi). Under Condition 2 in Definition 3, it should hold that
CεωT (u, xi) = 0 for all xi

→ X
j up to first order in εu.

It is well known that εωt(u, xi) obeys the linear time-varying equation, which
is simply the linearization of the control system (2) about the trajectory ωt(u, xi).
Thus, we define the following property:

Definition 4 (Linearized Controllability Property). We say the system
ẋ(t) = f(x(t), u(t)) has the Linearized Controllability Property (LCP) at xi for
all u → L↑([0, T],Rn↓n) if the linear time varying system:

ż(t) =

(
φf(x, u)

φx
|(x=ωt(u,xi),u)

)
z(t) +

(
φf(x, u)

φu
|(x=ωt(u,xi),u)

)
v(t), (4)

v(t) → L↑([0, T],Rn↓n) is controllable.

Denote by ↽(u,xi)(t, ϖ) the state transition matrix of (4).

8 Bayram et al.

Lemma 2. Suppose that a given control function u has memorized the pair of
points (xi, yi) for the model (2). Then

εωt(u, x
i) =

∫ t

0
↽(u,xi)(t, ϖ)

φf(x, u)

φu
|(x=ωω (u,xi),u)εu(ϖ)dϖ.

up to first order in εu(t).

Proof. For a small variation of the control function u(ϖ), denoted by εu(ϖ), we
have the following:

(5)ẋ(t) + εẋ(t) = f (x(t) + εx(t), u(t) + εu(t))

Taking the first order Taylor expansion of (5) around the trajectory x(t) =
ωt(u, xi) and subtracting ωt(u, xi), we get

d εωt(u, xi)

dt
=

φf(x, u)

φx
εωt(u, x

i) +
φf(x, u)

φu
εu (6)

up to first order in εu. To emphasize the linearity of the system above in the
control update εu, we can introduce the notation z(t) = εωt(u, xi).Then, from
the introduced notation, one can easily see that (6) matches with (4). Using the
variation of constants formula [16], we have the following:

z(t) = ↽(u,xi)(t, 0)z(0) +

∫ t

0
↽(u,xi)(t, ϖ)

φf(x, u)

φu
|(x=ωω (u,xi),u)εu(ϖ) dϖ

We have z(0) = 0 since we have ω0(u + εu, xi) = xi and ω0(u, xi) = xi. This
completes the proof. ∝′

Based on Lemma 2, we define an a!ne operator from the space of bounded
functions over the time interval [0, T], εu(t) → L↑([0, T],Rn↓n), to Rno , mapping
a control variation to the resulting variation in the end-point of the trajectory
see through the readout map R. This operator is defined as

L(u,xi)(εu) := R

(∫ T

0
↽(u,xi)(T, ϖ)

φf(x(ϖ), u(ϖ))

φu
εu(ϖ)dϖ

)

for x(ϖ) = ωε (u, xi). Next, we let

K(u, xi) := span{εu → L↑([0, T],Rn↓n) | L(u,xi)(εu) = 0}

be the kernel of the operator L(u,xi)(·). Then, we define the intersection of the
kernel K(u, xi) for all xi

→ X
j as follows:

K(u,X j) := span{εu → L↑([0, T],Rn↓n) | εu →

⋂

xi≃X j

K(u, xi)}

We define the gradient of the given per-sample cost functional for the sample xi

at control u, as the first order variation of J i(u) in εu, precisely, ∈uJ
i(u) :=

J
i(u+ εu)≃ J

i(u). Then, one can see that we have the following:

∈u(t)J
i(u) := εω↗

t (u, x
i)C↗ (

Cω(u, xi)≃ yi
)

Control Theoretic Approach to Fine-Tuning and Transfer Learning 9

Note that it is a function of time t via the first-order variation εωt(u, xi). We
define the projection of ∈u(t)J

j+1(u) on a given subspace of functions K(u,X j)
as the solution of the following optimization problem:

projK(u,X j) ∈u(t)J
j+1(u) := argmind(t)≃K(u,X j)

∫ T

0
⇐d(ϖ)≃∈u(ε)J

j+1(u)⇐2dϖ

Now, we can state the main result:

Theorem 1. Consider model (2) and suppose that the control vector fields of
q-folded system (2) are bracket-generating in E(M)(q), and the control function
uk has memorized the ensemble (X j ,Yj). Assume the space of controls that
memorize (X ,Y) is connected Banach submanifold of L↑([0, T],Rn↓n). If εuk is
selected as projK(u,X j) ∈u(t)J

j+1(u), then the control function uk+1(:= uk+εuk)

for X
j+1 has been tuned without forgetting X

j up to the first order.

We note that Theorem 1 assumes that the space of controls that memo-
rize (X ,Y) is a connected Banach submanifold of L↑([0, T],Rn↓n). This as-
sumption guarantees that gradient descent to minimize J

j+1(u) subject to
u →

⋂j
i=1 U(xi, yi) is a well-founded approach. However, by using LCP, we have

the following Theorem to relax this assumption.

Theorem 2. Assume the system ẋ(t) = f(x(t), u(t)) on a manifold E(M) has
the LCP for each xi, and that the set of control vector fields of q-folded sys-
tem is bracket-generating in E(M)(q). Assume that E(M) is connected and
that the fundamental group ⇀1(E(M)) = 0. Then, the space of controls that
memorize (X ,Y) is connected Banach submanifold of L↑([0, T],Rn↓n) of finite-
codimension.

Due to our focus on algorithms and because of space limitations, we do not
include the proof of Theorem 2 here. We will provide it an extended version.
Now, we can present the proof of Theorem 1.

Proof (Theorem 1). From Lemma 1, we know that there exists a control uk+1

such that
Cω(uk+1,X j+1) = Y

j+1.

From definition of L(uk,xi)(·) and Lemma 2, we have:

Cω(uk + εuk, xi) = Cω(uk, xi) + L(uk,xi)(εu
k), ↘xi

→ X
j

up to first order in εuk. Then, we project∈uJ
j+1(uk) onto K(uk,X j), that is, we

select εuk as εuk = projK(uk,X j) ∈uJ
j+1(uk). The selection satisfies Condition 1

in Definition. 3. By the construction of K(uk,X j) and from the memorization
assumption, we have that L(uk,xi)(εu

k) = 0, ↘xi
→ X

j and Cω(uk, xi) = yi, ↘xi
→

X
j , respectively. Then, we have:

C
(
ω(uk + εuk, xi)

)
= yi + o(εuk), ↘xi

→ X
j

It matches the Condition 2 in Definition 3, and this completes the proof. ∝′

10 Bayram et al.

We emphasize that we only consider the intersection of the kernel K(uk, xi)
for all the points xi

→ X
j because we need to keep the first-order variation of

the end-point mapping C(ω(uk, xi)) zero for all points xi in X
j while we allow

variation on the end-point mapping for the rest of the points.

4 Numerical Method for Tuning without Forgetting

Building on the results of the previous section, we describe in this section a
numerical algorithm to tune a control function without forgetting X

j up to the
first order. The algorithm comprises three main phases, on which we elaborate
below. Assume that a control u0 has memorized (X j ,Yj) for a given control a!ne
system. Consider an expansion of the ensemble, {xi

}
q
i=j+1. For the iteration

k = 1, we let u1 = u0. We assume that T = 1 without loss of generality. For the
sake of exposition, we also rely on an explicit Euler method to solve the ODEs
involved; using di”erent solvers would entail a trivial modification. We let N be
the number of discretization points.

For the sake of notation simplicity, we assume that the control system is a!ne
in the control: ẋ(t) =

∑p
d=1 ud(t)fd(x(t)), ud(t) → R, u → L↑([0, T],Rp) for some

smooth functions fd(·) → Vect(E(M)), d = 1, · · · , p. However, one can easily
apply the algorithm by vectorizing the control function in the matrix form (2).

We let uk
→ RpN be the discretization of a time-varying control function and

denote the corresponding discretized trajectory by ω[1:N](u
k, xi) → Rn↓N . We

let εuk
→ RpN be the discretization of a time-varying control variation.

Approximation of L(u,xi)(·): We first provide a method to compute a numerical
approximation of L(u1,xi)(·) for all xi

→ X
j . This is Algorithm 1 below, which

computes the numerical approximation of duω(uk, xi). The algorithm iteratively

Algorithm 1 Approximation of L(u,xi)(·)

1: Input: u, xi

2: z → ω[1:N](u, x
i),εN+1 → In↑n

3: for ϑ = N to 1 do
4: F [ϑ] → f(z[ϑ], u[ϑ])

5: εε → εε+1(I + ϑF [ε]
ϑx)

6: end for
7: return C[ε1F [1],ε2F [2], · · · ,εNF [N]]

computes the state transition matrix ↽(uk,xi)(T, ϖ) of the system in (4) for a given
initial point xi and a control function uk. Then, ↽(uk,xi)(T, ϖ) is multiplied with
the matrix of vector fields in (2) and the product is stored in a matrix, which
is the numerical approximation of duω(uk, xi). Let Li → Rno↓pN be the output
of Algorithm 1 for a given uk and an initial point xi. We have L(uk,xi)(εu

k) ∋
Liεuk. Then, the right kernel of the matrix Li is the numerical approximation
of K(uk, xi).

Control Theoretic Approach to Fine-Tuning and Transfer Learning 11

Phase I: We now implement the statement of Theorem 1. We state the Phase
I in Algorithm 2. We first compute Li for all xi

→ X
j by using Algorithm 1

to construct K(uk,X j) for a given j. Then, we column-wise concatenate them
and place the concatenated matrix into the first block of L → Rnoq↓pN and fill
the remaining entries with zeros. One can easily see that the right kernel of the
matrix L, denoted by N (L), is a numerical approximation of K(u1,X j) for a
given j. Following Theorem 1, we project ∈uJ

j+1(uk) → RpN onto N (L), which
is a linear operation. We have the following for the update control uk+1:

uk+1 = uk
≃ ⇁k projN (L) ∈uJ

j+1(uk) (7)

where ⇁k
→ R+ is a step size. We repeat the iteration in (7), and we compute

the matrix Li for i = 1, · · · , j for the control uk to replace corresponding blocks
in the matrix L until the per-sample loss converges. Once it converges, we pick
the next point xj+2 and compute the matrix Li for i = 1, · · · , j + 1 to replace
corresponding blocks in the matrix L. We then continue picking new points.

Algorithm 2 Phase I: Kernel Projected Gradient Descent

1: Li → Algorithm1(u0, xi), ↑i ↓ Ij

2: u → u0

3: L → [L1;L2; · · · ;Lj ; 0; · · · ; 0]
4: for i = j + 1 to q do
5: repeat
6: u → u↔ ϖ projN (L) ↗uJ i(u)

7: Lε → Algorithm1(u, xε), for ϑ = 1, · · · , i↔ 1
8: Update the corresponding block Lε in L, ↑ϑ ↓ Ii↓1

9: until convergence
10: end for
11: return L, uk

Remark 1. If we consider X 0 as an empty set and u0 = ϱ0, it results in L to be a
zero matrix. Thus, one can use the proposed algorithm to design a control func-
tion u that sends given initial states to desired final ones. This is an alternative
to the q-folded method.

In the next two phases, we focus on minimizing the cost-functional J (u,X)
in (3), which comprises two sub-cost functionals: the sum of per-sample costs and
the L2 norm of the control u. First, we minimize the L2 norm of the control u, and
then we minimize the sum of per-sample costs. We call the consecutive execution
of Phase II and III refinement rounds. One can employ multiple refinement
rounds to reduce the cost.

Phase II In this phase, we minimize the L2 norm of the control u. We project the
gradient of the L2 norm of the control function onto the subspace of functions
K(uk,X) at each iteration. We state Phase II in Algorithm 3.

12 Bayram et al.

Phase III In this phase, we aim to refine the control u to steer all the points closer
to their associated end-points. Let P be the number of iterations per sample in
the algorithm. For a given point xi, we first call Algorithm 1 to compute Lϑ for
all , → I \{i}. Notably, we do not update the kernel for xi. Then, we update the
matrix L accordingly and compute the projected gradient. Then, we pick the
next point xi+1. We repeat these steps until the last point in the training set.
Then, we again pick x1 and repeat the steps above P times.

Algorithm 3 Phase II: Regularization

1: L, u → Algorithm2()
2: for i = 1 to q do
3: repeat
4: Lε → Algorithm1(u, xε), ↑xε ↓ X
5: Update the corresponding block Lε in L, ↑ϑ ↓ I
6: u → u↔ ϖ projN (L)(u)
7: until convergence
8: end for
9: return L, u

Algorithm 4 Phase III: Refinement

1: L, u → Algorithm3()
2: for m = 1 to P do
3: for i = 1 to q do
4: Lε → Algorithm1(u, xε), ↑xε ↓ X \ {xi}
5: Update the corresponding block Lε in L, ↑ϑ ↓ I \ {i}
6: u → u↔ ϖ projN (L) ↗uJ i(u)
7: end for
8: end for
9: return u

In the tuning without forgetting method, we solve a boundary value problem
on Rn for each sample point. Thus our method has a complexity of O(qn2N)
per iteration in total. The q-folded method has complexity of O(q2n2N) per
iteration.

5 A Computational Example

In this section, we provide computational examples. We consider the model

ẋ(t) = W2(t) tanh (W1(t)x(t) + b1(t)) + b2(t) (8)

where W1(t),W2(t) → L↑([0, T],Rn̄↓n̄) and b1(t), b2(t) → L↑([0, T],Rn̄). We
discretize trajectories with N = 10. For a given xi

→ X → R2, we consider the

Control Theoretic Approach to Fine-Tuning and Transfer Learning 13

following end-point mapping.

xi
→ R2 E

≃↗ [xi↗, 01↓6]
↗
→ R8 ωT (u,·)

≃≃≃≃≃↗ ȳi → R8 C=[0,··· ,0,1]
≃≃≃≃≃≃≃≃↗ yi =


≃1 , ⇐xi

⇐
2
2 ∞ 1

1 , ⇐xi
⇐
2
2 > 1

In words, we consider a unit radius ball in R2 centered at the origin. If a
point is inside the ball, we aim to steer it to the hyperplane x8 = 1, otherwise,
to the hyperplane x8 = ≃1 (a similar example is provided in [11]). One can see
that the set of control vector fields for the (overparametrized) q-folded control
system (8) is bracket-generating in E(M)(q). We define the average error for a
control u on the ensemble X as

E(u,X) :=
1

|X |

∑

xi≃X

⇐Cω(u, xi)≃ yi⇐.

We have a set X of cardinality 64 whose elements are indexed by I. First, we
have that an initial training set (sub-ensemble) X j is given for some j. We apply
the q-folded method in Section 2 to learn these samples and denote the control
function that q-method gives by u0. Then, we expand the training set X j to X

i

by adding samples in the order provided by I. For convenience, we denote the
di”erence of the subensembles X i

j := {xϑ
→ X : j < , ∞ i}(= X

i
\ X

j).
To adapt the control function u0 to new samples while remembering previous

ones, we use the tuning without forgetting X
j method with multiple refinement

rounds to obtain the control function u→. We also compare our results with the
Penalty Method, which encourages the tuned control function ũ to stay close to
u0 using a penalty term in the cost functional [1].

J (ũ,X) :=
M∑

i=1

⇐Cω(ũ, xi)≃ yi⇐2 + ϑ

∫ T

0
⇐ũ(ϖ)≃ u0(ϖ)⇐2dϖ

Figure 1 depicts the average error on di”erent sets as a function of number of
rounds for both algorithms. First, we observe that, in Fig 1, the average error
on the new points E(u0,X i

j) is remarkably higher compared to E(u0,X j) for
any given training set at round 0 (where u→ = u0 and ũ = u0). As expected,
it shows that the control u0 has not learned the additional samples X

i
j for the

given model.
For the learning plasticity [3], we measure the di”erence in the performance of

model on a task between its joint training performance E(u0,X i) and fine-tuning
performance E(·,X i

j). We observe that both E(u→,X i
j) and E(ũ,X i

j) for (i, j) =
(64, 52), (32, 8), (32, 25) are close to E(u0,X i). It shows that the control u→ and
ũ has learned the additional samples satisfactorily. For the memory stability [3],
we compare the error on the previously learned points E(·,X j) as the tuning
continues. We observe that E(u→,X j) for j = 8, 16, 25 is close to E(u0,X j). It
shows that the control u→ keeps the performance on the previously learned points
X

j nearly constants. Comparing our method to the Penalty Method, we observe
that E(ũ,X j) is higher than E(u0,X j) for any given j. It shows that the control
function ũ has learned the additional points but has forgotten the previously
learned points. Thus, the penalty method does not directly address the issue of
catastrophic forgetting.

14 Bayram et al.

(a) (b)

(c) (d)

Fig. 1. (a) and (b) average error as a function of number of rounds for |X | = 64 for
j = 16 and j = 52, respectively. (c) and (d) average error as a function of number of
rounds for |X | = 32 for j = 8 and j = 25, respectively. The dark gray region is Phase
I region and the light gray region is Phase III region (each round is followed by Phase
II). Average error on the given set for the control functions u→,ũ, and u0 are marked
by •,↭, and ↘, respectively.

6 Summary and Outlook

In this work, we have considered a controlled dynamical system to learn a task,
focusing on the impact of training set expansion. We have addressed the issue
of model performance loss on the original task while adapting the model to a
new task-specific dataset, known as catastrophic forgetting. We have introduced
a novel fine-tuning method, tuning without forgetting up to first-order. Our work
contributes to the scalability of control methods, o”ering a novel approach to
adaptively handle training set expansions. In our numerical results, we have
observed that the proposed algorithm e”ectively handles changes in ensemble
cardinalities, preserving previously learned points and adopting new points.

The present work can be extended in several directions. Our method has the
disadvantage of storing X

j to compute the set K(u,X j). To address this, one can
keep track of the variation in the kernels to approximate the new kernel. Also,
we will provide the proof for Theorem 2 which relaxes some of the assumptions
for Theorem 1 in an extended version.

Control Theoretic Approach to Fine-Tuning and Transfer Learning 15

References

1. H. Gouk, T. M. Hospedales, and M. Pontil, “Distance-based regularisation of deep
networks for fine-tuning,” in ICLR, ICLR, 2021.

2. A. Agrachev and A. Sarychev, “Control in the spaces of ensembles of points,”
SIAM Journal on Control and Optimization, vol. 58, no. 3, pp. 1579–1596, 2020.

3. L. Wang, X. Zhang, H. Su, and J. Zhu, “A comprehensive survey of continual learn-
ing: Theory, method and application,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2024.
4. D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual learning,”

Advances in neural information processing systems, vol. 30, 2017.
5. L. Xuhong, Y. Grandvalet, and F. Davoine, “Explicit inductive bias for transfer

learning with convolutional networks,” in International Conference on Machine

Learning, pp. 2825–2834, PMLR, 2018.
6. X. Li, H. Xiong, H. Wang, Y. Rao, L. Liu, and J. Huan, “Delta: Deep learning

transfer using feature map with attention for convolutional networks,” in Interna-

tional Conference on Learning Representations, 2018.
7. J. Tian, Z. He, X. Dai, C.-Y. Ma, Y.-C. Liu, and Z. Kira, “Trainable projected gra-

dient method for robust fine-tuning,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 7836–7845, 2023.
8. M. Farajtabar, N. Azizan, A. Mott, and A. Li, “Orthogonal gradient descent

for continual learning,” in International Conference on Artificial Intelligence and

Statistics, pp. 3762–3773, PMLR, 2020.
9. S. Wang, X. Li, J. Sun, and Z. Xu, “Training networks in null space of feature

covariance for continual learning,” in Proceedings of the IEEE/CVF conference on

Computer Vision and Pattern Recognition, pp. 184–193, 2021.
10. R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordi-

nary di!erential equations,” Advances in Neural Information Processing Systems,
vol. 31, 2018.

11. E. Dupont, A. Doucet, and Y. W. Teh, “Augmented neural ODEs,” Advances in

Neural Information Processing Systems, vol. 32, 2019.
12. Y. Lu, A. Zhong, Q. Li, and B. Dong, “Beyond finite layer neural networks: Bridg-

ing deep architectures and numerical di!erential equations,” in International Con-

ference on Machine Learning, pp. 3276–3285, PMLR, 2018.
13. C. Cuchiero, M. Larsson, and J. Teichmann, “Deep neural networks, generic uni-

versal interpolation, and controlled odes,” SIAM Journal on Mathematics of Data

Science, vol. 2, no. 3, pp. 901–919, 2020.
14. P. Tabuada and B. Gharesifard, “Universal approximation power of deep residual

neural networks through the lens of control,” IEEE Transactions on Automatic

Control, vol. 68, pp. 2715–2728, 2023.
15. A. Agrachev and A. Sarychev, “Control on the manifolds of mappings with a view

to the deep learning,” Journal of Dynamical and Control Systems, vol. 28, no. 4,
pp. 989–1008, 2022.

16. D. Liberzon, Calculus of Variations and Optimal Control Theory: A Concise In-

troduction. Princeton university press, 2011.
17. H. B. Keller, Numerical Solution of Two Point Boundary Value Problems. SIAM,

1976.
18. R. Brockett, “The early days of geometric nonlinear control,” Automatica, vol. 50,

no. 9, pp. 2203–2224, 2014.

