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Abstract. Given a training set in the form of a paired (X,)), we say
that the control system & = f(x,u) has learned the paired set via the
control u* if the system steers each point of X to its corresponding
target in ). If the training set is expanded, most existing methods for
finding a new control u* require starting from scratch, resulting in a
quadratic increase in complexity with the number of points. To overcome
this limitation, we introduce the concept of tuning without forgetting. We
develop an iterative algorithm to tune the control ™ when the training
set expands, whereby points already in the paired set are still matched,
and new training samples are learned. At each update of our method,
the control u* is projected onto the kernel of the end-point mapping
generated by the controlled dynamics at the learned samples. It ensures
keeping the end-points for the previously learned samples constant while
iteratively learning additional samples.

Keywords: Control of ensemble of points, geometric control, fine-tuning,
control for learning

1 Introduction

In recent years, neural networks and other data-driven models have grown signif-
icantly in size and capability, often requiring extensive computation for training.
To address the challenge of retraining models for additional tasks or new data,
methods like transfer learning and fine-tuning have become popular. These meth-
ods allow models to be adapted for new tasks or updated with new examples
without complete retraining.

In this paper, we show that control theory provides a natural framework, as
well as efficient algorithms, to perform these tasks. Mathematically, fine-tuning
and transfer learning are often treated similarly, as these methods are blind to
the nature of the examples they are fed [1]. This also applies to the algorithms
we propose here, but we focus on fine-tuning for the sake of exposition.

* Research of UTUC authors was supported in part by the ARO Grant W911NF-24-1-
0085, NSF-CCF 2106358, ARO W911NF-24-1-0105 and AFOSR FA9550-20-1-0333.
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The models we consider are controlled differential equations of the type

&= f(x,u) (1)

(see Section 2 for their use in learning and the proper definitions). For a given
paired training set (X,)) with finite cardinality g, the learning task is to find a
control u* so that the flow p;(u*,-) generated by (1) satisfies

R(pr(u*,a")) = y', for all (2',y") € (X,))

for some finite 7' > 0 and a given fixed readout map R. This task is also known
as the control of an ensemble of points [2]. Thus, we interchangeably refer to the
training sample set X as the input ensemble and the training label set ) as the
output ensemble in line with the usage in the control theory literature.

In this work, our goal is to adapt a control function u*, trained on the original
set, to an expanded training set. This aligns with the main goal of fine-tuning,
where parameters u* are adapted by further training on an expanded dataset.

One of the main issues addressed by fine-tuning is to avoid a loss of per-
formance on previous tasks while specializing the model to a new dataset. This
problem is also known as catastrophic forgetting in the continual learning (incre-
mental learning) literature.

Common approaches involve learning a sequence of tasks one by one and
aiming to match the performance as if they were observed simultaneously [3].
However, in continual learning, access to previously observed data points is typ-
ically not available. When such access exists, it is usually discussed in the lit-
erature on robust fine-tuning. Similar approaches to our work can be found in
optimization-based continual learning methods that incorporate memory [4].

In the control theory literature, finding a control u that steers each point in
X with the cardinality ¢ to the associated labels in ) is done by concatenating all
points in X in a state of higher dimension, and replicate the controlled dynamics
¢ times [2]. Then, this approach requires solving a controlled ordinary differen-
tial equation (CODE) for the g-tuple system. We call this method the g-folded
method, details of which will be discussed later in the paper. This approach has
two practical shortcomings:

— Tuning Ability: If the training set is augmented with additional samples,
it is necessary to apply the g-folded method on the new set from scratch.

— Scalability: The ¢-folded method has a complexity of O(n?¢>N) per itera-
tion with IV time-step discretization. However, our method has a complexity
of O(n?qN) per iteration with N time-step discretization. Therefore, as the
size of the training set, ¢, grows, the complexity of the g-folded method in-
creases quadratically, leading to scalability issues while the complexity of
our method increases linearly.

We introduce here a novel fine-tuning method. It is based on the hereby
introduced concept of tuning without forgetting X. The method consists of an
iterative algorithm in which each update on the control function u, denoted by
du, is selected as a projection of the gradient of the given cost functional onto the
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kernel of end-point mapping generated by the controlled dynamics. It ensures
keeping the end-points for the previously steered points constant up to the first
order while simultaneously steering the new points of the training set to their
associated labels.

Our work thus contributes to the tuning ability and scalability of the methods
using controlled dynamical systems for supervised learning and addresses the
challenges stemming from training set updates. We will compare our proposed
method to an existing fine-tuning method in a computational example.

Furthermore, as our method iteratively learns from samples (X,)), we do
not need to have a control system of dimension scaling with ¢. This is particu-
larly important since, as we mentioned earlier, this scaling causes computational
issues, but it can additionally run into memory capacity issues as well. These fea-
tures make our approach a preferred alternative to the existing g-folded method
in the control of an ensemble of points.

Related Works: A popular idea is to restrict the distance between the
updated parameters and the original parameters [1] to avoid a loss of perfor-
mance on the previous task while specializing the model to a new dataset. The
works [5,6] propose to use Euclidean norm and the matrix absolute row sum
matrix norm (MARS) regularization to restrict the distance of tuned parame-
ters from the reference parameters. The work [7] proposes a trainable projected
gradient method (TPGM) for fine-tuning to automatically learn the distance
constraints for each layer.

Other optimization-based approaches in the continual learning literature in-
clude [4], which proposes the so-called “gradient episodic memory (GEM)”, that
performs an update in weight in the direction of gradient of loss function if it
has negative inner product with the gradient of loss for the previous samples.
Furthermore, the works [8] proposes Orthogonal Gradient Descent (OGD) that
stores the gradients for the initially observed points and rectifies the current
gradient to be orthogonal to them. The study [9] introduces an algorithm called
Adam-NSCL, which sequentially optimizes network parameters in the null space
of previous tasks. This null space is approximated by applying singular value
decomposition to the covariance matrix of all input features of previous tasks
for each linear layer.

The dynamical system approach, which we adopt here, has been used in the
past in the learning literature. For example, the studies [10,11,12] consider a
continuous flow and introduce neural ordinary differential equations (NODE).
The works presented in [13,14] focus on the universal approximation capabilities
of deep residual neural networks from a geometric control viewpoint. Our work
falls within the scope of these two pieces of literature.

2 Preliminaries

In this section, we introduce the problem and provide the preliminaries for the
iterative algorithm. Consider the paired sets (X,Y) = {(z",y")}{_,, where the
z" € R™’s are called initial points so that they are in a connected Riemannian
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manifold M. and the associated y* € R™*’s are target points (labels). We assume
that the elements of the input ensemble (training sample set) X are pairwise
distinct, i.e., 2° # 27 for i # j and Let Z be an index set labelling the entries of
the ensembles. We take the system:

@(t) = f(u(t)z(t)),u € Loo([0, T, R™™), (2)

where z(t) € R™ is the state vector at time ¢ and f(-) is a smooth vector field
on R™. Let E : x € R” — Z € R” be an injective function with i > n, called the
uplift function. Let R : R® — R" be a given function, called the readout map
so that the Jacobian of R is of full row rank. Note that both functions E(-) and
R(-) are independent of the control u.

We note that we have adopted a model that is continuous in time for the-
oretical analysis. However, controlled dynamical systems can be viewed in the
context of neural networks with residual connections. When using a model with
residual connections, such as a neural network with infinitely many layers, it can
be represented by a controlled dynamical system in the form of (2) [10,15]. For
example, if we select f(-) = tanh(-), the function is applied elementwise to the
product u(t)x(t), resulting in @(t) = tanh(u(t)z(t)). If our numerical approach
uses a discretization of 10 time steps, it is equivalent to a 10-layer deep residual
network with a tanh(-) activation function. However, the depth of the network
affects the discretization error. We next define the memorization property for a
dynamical system.

Definition 1 (Memorization Property). Assume that a paired set (X,Y), a
fized readout map R and an up-lift function E are given. The control u is said
to have memorized the ensemble (X,)) for the model z(t) = f(x(t),u(t)) if the
following holds for a finite T > 0:

R(pr(u, B(z))) = y',Va' € X,
where the flow @¢(u,-) is generated by the system at the control function u.

We suppress the subscript 1" in the notation at ¢ = T for simplicity. We call
R(o(u, E(+))) the end-point mapping. that is, we have the following end-point
mapping for a given u at z:

2 e R B g e R? 22D, pi e g7 By i g R

In other words, the dynamical system has memorized the ensemble if the end-
point mapping maps each z¢ € R™ to the corresponding 3* € R™. The learning
problem turns into a “multi-motion planning” problem (in which we look for
a control function u that steers all Z' in X to the corresponding %%). One can
also see that, from the deep learning perspective, the memorization property is
equivalent to the universal interpolation property of neural networks [14].

For convenience, we assume that E is the identity function, meaning m = n,
but our result holds for any injective up-lift function. Thus, we interchangeably
use x' and E(z?) for any 2° € X. If n = n, and R is the identity map, we call the
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problem the control of an ensemble of points with fized end-points. Otherwise, we
call the problem the control of an ensemble of points with partially constrained
end-points. In this work, we consider the latter. For the sake of simplicity, we
let the map R be the orthogonal projection of a point in R™ onto the subspace
R™; precisely, R: x € R" — Cx € R™ where C = [0, xn—n, In,xn,] € R"*".
We define per-sample cost functional J*(u) for a given point x% as follows:

. 1 . )
J' () = 5lICp(u,2") - y'[1”
Then, the cost-functional for the control of an ensemble of points with partially
constrained end-points including regularization is defined as follows:

a T
T, )= 3 [Cplua’) ~ g1+ A [ utr)|Par ®)
i=1 0
where A is some regularization coefficient. If we had a single initial point, the
minimization of the functional (3) subject to the dynamic (2) would be the Bolza
optimal control problem with a fixed time [16]. However, we have an ensemble
of points X', which might be a finite set of points or a continuum.

g-Folded Method: The authors in [15] discuss the following method, known as
the q-folded method, to find the control function u. This turns the problem into a
Bolza problem with the following steps: Copy all the points in X into an g-tuple,
denoted by Xp.

Similarly, stack all the output points into a vector of dimension n,q, de-
noted by Y, and copy n-dimensional dynamics in (2) g-times, creating an ng-
dimensional vectors F'(u(t), X (t)). Then, they find the flow &,(u,-) : R" xR —
R™ by solving the minimization problem associated with the following func-
tional for a finite time T"

J (u, Xo) := [ A(C)r (u, Xo) = Y? +/ lu(r)|*dr

where A(C):=diag(C,- - -, C) € R™9*" subject to X(?) = F(u(t), X(t)), X(0) =
Xo. The stacked structure of X (¢) and the definition of A(C) ensure that the
flow @(u,-) is constructed by concatenating g instances of the flow oy (u, -).

One can easily see that g-folded method requires solving a boundary value
problem on ¢gn dimension. Solving a boundary value problem by using the
shooting method requires solving backward-forward initial value problem for
CODE [17] at each iteration. An explicit solver of an initial value problem for
CODE on R™ has the complexity of O(n?N) per iteration with N time-step
discretization. Consequently, the g-folded method has complexity of O(n?¢%2N)
per iteration. Therefore, as the size of the training set, g, grows, the complexity
of the g-folded method increases quadratically.

3 Main Results

Controllability on Partially Constrained Ensembles: We first state a simple con-
dition for the existence of a control function u that memorizes a given ensemble
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(X,Y). To be more precise, we introduce the following subspaces of our control
space:
Uz"y') == {u € LOO([O’T}’Rnxn)lR(QD(uvxl)) = yl}
Then, we need to show that there exists a control function u € N{_, U(z*,y") to
prove that the model has memorization property.
Let g1 and go be differentiable vector fields in M C R™. We call the Lie
bracket of g1 and gs [18], denoted by [g1, g2](x) , the vector field:

_ 0ga2(x) ~ Ogi(z)

(91, 92] () = oz g1(x) ng(x),for reM

Definition 2 (Control distributions). Let & = f(z,u),u € L ([0, T],R**"™),
we associate it with the sets of vector fields defined recursively

Fr=Fu{lgi, 9)(x) | 9,95 € FF1Y

for k > 1 with the set of control vectors F° = {f(z,u)|u € Loo([0,T], R"*™)}.
The corresponding distributions at point x € R™ are then
D} (F) = span {g(z) | g € F*}

One can see that the distributions are nested D¥(F) C D *+1(F). The control
distribution D¥(F) is said to be involutive if DF(F) = DF+1(F) [18]. We call F
bracket-generating if D°(F) spans T, E(M) for all x € E(M).

We denote q times Cartesian product of E(M) by E(M)? := E(M) x --- X
E(M). A finite ensemble of points is a g-tuple X = [E(z!)T,- - ,E(xq)T]T €
E(M)4 C R™. We define the set A? := {[E(z!)",--- | E(29)T]T € E(M)4]
E(2%) = E(27) for i # j}. Let E(M)@ := B(M)7\ A? be the complement of
A% on E(M)?. Please note that if dim E(M) > 1, then E(M)@ is an open
connected subset and submanifold of E(M)? [15].

The set of control vectors of the g-folded system, denoted by F©, is then

./.:.0 = {[f(;ljl,u)—r’f(;pz’u)—r7. .. ,f(xq7u)T}T c an|u c Loo([O,T],Rnxn)}

We note that the control function u still belongs to Lo ([0,T], R™*™), and not
Loo ([0, T], R™%749), Therefore, having DE(F) = Tx E(M)@ (= @%_, T, E(M))
for all X € E(M)@ is stronger requirement than having DX (F) = T, E(M)
for all x € E(M).

Lemma 1. Assume that the ensemble X consists of finite pairwise distinct points
and n > n,. For the readout map R(x) = Cuz, if the set of control vector fields
of q-folded system is bracket-generating in E(M)D (= E(M)?\ A?), then there
exists a control function u and a finite time T > 0 such that the system (2)
memorizes the ensemble (X,)) by the control function u.

Proof. First consider that i # j < y* # y7. In this case, the result trivially
follows from [2, Prop 6.1]. Now assume that it is not the case; then, since the
cardinality of ) is finite, we can always construct a set ' C R", with elements
7' having the property that i # j < 7 # 7’ and R(j') = y* for all i. We can
then appeal to [2, Prop 6.1] to conclude. O
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Tuning without forgetting: We describe here the core of our approach to devel-
oping numerical methods. Let X7 = {z° € X]i = 1,2,---,j} be a subset of the
ensemble X (called batch or sub-ensemble). Let Y7 be the corresponding batch of
labels. We denote by a superscript the value of the control at a given iteration,
i.e., u* is the control function at the kth iteration of the algorithm. Assume that
u* has memorized the ensemble (X7, )7) for the model (2). Expand the ensemble
by adding the point 27! with its corresponding label y7*!. Clearly, it does not
necessarily hold that Cip(u”, 2771) = y/*1. We propose an iterative method to
find a control u* such that Co(u*, z%) = y* for all 2* € X7 (= X9 U {a9+1}).

Definition 3. Consider an ensemble (X,)). Assume that the control u* has
memorized the sub-ensemble (X7,Y7) for (2) for some j < |Z|. If the update Su®
satisfies the following:

1. Ik + 6uF) < JIH (ub)
2. R (cp(uk + §uk,xi)) =y’ + o(6uF), Vo' € X7

then the control function u*+1(:= u¥ + §u*) has been tuned for X7*! without
forgetting X7.

Paraphrasing, the definition says that we need to select an update du” satis-
fying the following two conditions: (¢) it decreases the per-sample cost functional
for the additional point z7*!, equivalently, the control system with the updated
control u**1 steers the point 277! to a point whose projection onto the output
subspace R™ gets closer to the label /! and (i7) the points in X7 are mapped
to points whose projection onto the output subspace is within o(6u*) of their
corresponding labels. To be more precise, in tuning without forgetting, we aim
to minimize the per-sample cost for the new point 27+, denoted by J71(u),
with w € N_, U(a", y").

A projected gradient descent method: Consider the flow ¢¢(u,-). It yields the
trajectory t — ¢ (u, %) of (2) with control u and initialized at z* at t = 0. The
first-order variation of the trajectory o;(u,x?) in du is defined as dp;(u, zt) :=
o1 (u+ du, x) — 4 (u, 2*). Under Condition 2 in Definition 3, it should hold that
Cdpr(u, ') = 0 for all z* € X7 up to first order in Ju.

It is well known that §p;(u, 2%) obeys the linear time-varying equation, which
is simply the linearization of the control system (2) about the trajectory ¢y (u, z*).
Thus, we define the following property:

Definition 4 (Linearized Controllability Property). We say the system
@(t) = f(z(t),u(t)) has the Linearized Controllability Property (LCP) at x* for
all w € Lo ([0, T),R™ ™) if the linear time varying system.:

0 0
Z(t) = (f.(ai;w|($=%(uvﬂfi)vu)) Z(t) + (Wl(zﬂﬂt(u,xi%u)) U(t), (4>

v(t) € Lo ([0, T), R™ ™) is controllable.
Denote by @, ,i(t, T) the state transition matrix of (4).
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Lemma 2. Suppose that a given control function u has memorized the pair of
points (x*,y*) for the model (2). Then

Of (x,u)

- i).)0 dr.
u ‘(z-tp,(u,z ),u) ’LL(T) T

t
5gat(u,x’):/ dj(uymi)(t,T)
0

up to first order in du(t).

Proof. For a small variation of the control function u(7), denoted by du(r), we
have the following:

&(t) + 0x(t) = f (x(t) + ox(t), u(t) + du(t))
Taking the first order Taylor expansion of (5) around the trajectory z(t)
©¢(u, x) and subtracting ¢;(u, z%), we get

d 6gulu,a’)  Of(w,u) ,

L = —0 ! d 6
up to first order in du. To emphasize the linearity of the system above in the
control update du, we can introduce the notation z(t) = dp;(u, z%).Then, from
the introduced notation, one can easily see that (6) matches with (4). Using the
variation of constants formula [16], we have the following:

¢ Af (x,u
Z(t) = gzj(u,w’)(t7 O)Z(O) +/O ds(u,ml)(tvT)%kw:w.,(u,w’),u)(su(,r) dr
D)

©

Of(x,u)

=

We have 2(0) = 0 since we have g(u + du, x') = 2 and ¢g(u,z*) = x*. This
completes the proof. a

Based on Lemma 2, we define an affine operator from the space of bounded
functions over the time interval [0, T, Ju(t) € Lo ([0, T],R™*"™), to R, mapping
a control variation to the resulting variation in the end-point of the trajectory
see through the readout map R. This operator is defined as

T x(T), ul(T
E(u’zz)(éu) =R (/O @(u’wi)(T, T)W(SU(T)CIT)

for 2(7) = ¢, (u, 2%). Next, we let
K(u,z") == span{u € Loo([0,T],R™*") | Ly 41y (u) = 0}

be the kernel of the operator L, ,)(-). Then, we define the intersection of the
kernel KC(u, z?) for all 2! € X7 as follows:
K(u, X7) := span{du € Lo ([0, T],R"*™) | du € ﬂ K(u, 2)}
zieXd

We define the gradient of the given per-sample cost functional for the sample z*
at control u, as the first order variation of J%(u) in du, precisely, V,J*(u) :=
J(u+ 6u) — J%(u). Then, one can see that we have the following:
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Note that it is a function of time ¢ via the first-order variation ¢ (u, z*). We
define the projection of Vu(t)jﬁl(u) on a given subspace of functions K(u, X7)
as the solution of the following optimization problem:

T
PrOjc(u,x0) Vu() T’ (u) = arg mind(t)e/C(u,Xj)/O () = Ve T (u)|*dr

Now, we can state the main result:

Theorem 1. Consider model (2) and suppose that the control vector fields of
q-folded system (2) are bracket-generating in E(M)@, and the control function
u® has memorized the ensemble (X7,)7). Assume the space of controls that
memorize (X,Y) is connected Banach submanifold of Lo ([0, T], R™™). If u* is
selected as projy(,, x1y V) J? T (u), then the control function b (:= uF +6uF)
for X7t has been tuned without forgetting X7 up to the first order.

We note that Theorem 1 assumes that the space of controls that memo-
rize (X,Y) is a connected Banach submanifold of Lo ([0, T],R™*™). This as-
sumption guarantees that gradient descent to minimize J771(u) subject to
uwe N, U(z',y") is a well-founded approach. However, by using LCP, we have
the following Theorem to relax this assumption.

Theorem 2. Assume the system %(t) = f(x(t),u(t)) on a manifold E(M) has
the LCP for each x', and that the set of control vector fields of q-folded sys-
tem is bracket-generating in E(M)9. Assume that E(M) is connected and
that the fundamental group m (E(M)) = 0. Then, the space of controls that
memorize (X,Y) is connected Banach submanifold of Loo ([0, T],R™*™) of finite-
codimension.

Due to our focus on algorithms and because of space limitations, we do not
include the proof of Theorem 2 here. We will provide it an extended version.

Now, we can present the proof of Theorem 1.
Proof (Theorem 1). From Lemma 1, we know that there exists a control u**?
such that

Cop(uMHt, 27t = yrtt,
From definition of £, ,)(-) and Lemma 2, we have:
Co(u® + suf, 2% = Cp(uF, 2") + L'(uk@q:)(éuk),Vwi c X’

up to first order in Ju*. Then, we project V., 771 (u*) onto K(u*, X7), that is, we
select 6u” as du¥ = proji(,r xiy VuJ? T (uF). The selection satisfies Condition 1
in Definition. 3. By the construction of K(u*, X7) and from the memorization
assumption, we have that E(uk@i)(&uk) =0,V2’ € X7 and Cop(uF, z?) = ', Vo' €
X7, respectively. Then, we have:

C (p(u* + 6u¥,2%) =y + o(6u"), V' € &7

It matches the Condition 2 in Definition 3, and this completes the proof. ad
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We emphasize that we only consider the intersection of the kernel KC(u*,z?)
for all the points z! € X7 because we need to keep the first-order variation of
the end-point mapping C(¢(u¥, x%)) zero for all points 2° in &7 while we allow
variation on the end-point mapping for the rest of the points.

4 Numerical Method for Tuning without Forgetting

Building on the results of the previous section, we describe in this section a
numerical algorithm to tune a control function without forgetting X7 up to the
first order. The algorithm comprises three main phases, on which we elaborate
below. Assume that a control u’ has memorized (X7, )7) for a given control affine
system. Consider an expansion of the ensemble, {xi}g:j 41- For the iteration
k=1, we let u! = u". We assume that T = 1 without loss of generality. For the
sake of exposition, we also rely on an explicit Euler method to solve the ODEs
involved; using different solvers would entail a trivial modification. We let NV be
the number of discretization points.

For the sake of notation simplicity, we assume that the control system is affine
in the control: #(t) = >"5_, uq(t) fa(z(t)),ua(t) € R,u € Loo([0,T],RP) for some
smooth functions f4(-) € Vect(E(M)),d = 1,---,p. However, one can easily
apply the algorithm by vectorizing the control function in the matrix form (2).

We let u* € RPN be the discretization of a time-varying control function and
denote the corresponding discretized trajectory by ¢j1.n)(uf,z%) € R™*N. We
let 6u* € RPN be the discretization of a time-varying control variation.

Approximation of L, i (-): We first provide a method to compute a numerical
approximation of L1 i(-) for all x' € X7, This is Algorithm 1 below, which
computes the numerical approximation of d, ¢ (u*, z%). The algorithm iteratively

Algorithm 1 Approximation of L, ,i)(-)

: Input: u,z’
z go[l:N](u,xi),¢N+1 — Inxn
: for / =N to 1 do
F[f] < f(=[€],ulf])
By Doy (I + 251
end for
return C[PF[1],P2F[2], - , PN F[N]]

NG Ry

computes the state transition matrix @ (,x ,i) (T, 7) of the system in (4) for a given
initial point z* and a control function u*. Then, Dk 51y (T, 7) is multiplied with
the matrix of vector fields in (2) and the product is stored in a matrix, which
is the numerical approximation of d,p(u*,z?). Let L; € R"*PN be the output
of Algorithm 1 for a given «* and an initial point 2. We have L, ) (0uF) ~
L;5u®. Then, the right kernel of the matrix L; is the numerical approximation
of K(u*, x?).
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Phase I: We now implement the statement of Theorem 1. We state the Phase
I in Algorithm 2. We first compute L; for all 2° € X7 by using Algorithm 1
to construct K(u”, X7) for a given j. Then, we column-wise concatenate them
and place the concatenated matrix into the first block of L € R 4*PN and fill
the remaining entries with zeros. One can easily see that the right kernel of the
matrix L, denoted by A/(L), is a numerical approximation of K(u!, X7) for a
given j. Following Theorem 1, we project V, J7*1(u*) € RPN onto N'(L), which
is a linear operation. We have the following for the update control u*+1:

uk:+1 _ uk _ ak pI"OjN(L) Vujj+1(uk) (7)

where af € Rt is a step size. We repeat the iteration in (7), and we compute
the matrix L; for i = 1,--- ,j for the control u* to replace corresponding blocks
in the matrix L until the per-sample loss converges. Once it converges, we pick
the next point 712 and compute the matrix L; for i = 1,--- ,j + 1 to replace
corresponding blocks in the matrix L. We then continue picking new points.

Algorithm 2 Phase I: Kernel Projected Gradient Descent
. L; + Algorithm1(u®, z*),Vi € T¢
U U
: L« [L1; Lo;--- ; Lj;0;--- ;0]
: fori=j+4+1toqdo
repeat
U 4= U — APIOjpr(1) VT (u)
Ly + Algorithm1(u, z%),for £=1,--- ,i—1
Update the corresponding block L, in L,V¢ € 701
until convergence
10: end for
11: return L,u”

S AN ol e

©

Remark 1. If we consider X° as an empty set and u’ = 0, it results in L to be a
zero matrix. Thus, one can use the proposed algorithm to design a control func-
tion u that sends given initial states to desired final ones. This is an alternative
to the g-folded method.

In the next two phases, we focus on minimizing the cost-functional J (u, X)
in (3), which comprises two sub-cost functionals: the sum of per-sample costs and
the L2 norm of the control u. First, we minimize the L? norm of the control «, and
then we minimize the sum of per-sample costs. We call the consecutive execution
of Phase II and III refinement rounds. One can employ multiple refinement
rounds to reduce the cost.

Phase II In this phase, we minimize the L? norm of the control u. We project the
gradient of the L? norm of the control function onto the subspace of functions
K(u*, X) at each iteration. We state Phase II in Algorithm 3.
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Phase II1 In this phase, we aim to refine the control u to steer all the points closer
to their associated end-points. Let P be the number of iterations per sample in
the algorithm. For a given point z?, we first call Algorithm 1 to compute L, for
all £ € T\ {i}. Notably, we do not update the kernel for z°. Then, we update the
matrix L accordingly and compute the projected gradient. Then, we pick the
next point zT!. We repeat these steps until the last point in the training set.
Then, we again pick 2! and repeat the steps above P times.

Algorithm 3 Phase II: Regularization

1: L,u <+ Algorithm2()

2: for i =1to g do

3 repeat
4 L + Algorithm1(u, z%),Vzt € X

5 Update the corresponding block L, in L,V{ € T
6: U 4= u — aprojr)(u)
7

8:

9:

until convergence
end for
return L,u

Algorithm 4 Phase III: Refinement

1: L,u + Algorithm3()
2: form=1toP do
3: fori=1toqdo

4: L + Algorithm1(u, z°),Vz* € X\ {'}

5: Update the corresponding block Lg in L,V¢ € T\ {i}
6: U 4= U — PIOjpr(1) VuJ ()

7:  end for

8: end for

9: return u

In the tuning without forgetting method, we solve a boundary value problem
on R" for each sample point. Thus our method has a complexity of O(qgn*N)
per iteration in total. The g-folded method has complexity of O(¢?n?N) per
iteration.

5 A Computational Example
In this section, we provide computational examples. We consider the model

(1) = Wa(t) tanh (W1 (£)2(£) + b1 (1)) + ba(t) (8)

where Wi (t), Wa(t) € Loo([0,T]),R™"™™) and b1(t),b2(t) € Loo([0,T],R™). We
discretize trajectories with N = 10. For a given ' € X € R?, we consider the
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following end-point mapping.

_ _ R =[0, - . -1 N2 <1
xz ERQ £> [xlT,01X6]T ERS Mgi ERS My74 — {1 3”x1::§ ; 1
s 127112

In words, we consider a unit radius ball in R? centered at the origin. If a
point is inside the ball, we aim to steer it to the hyperplane zg = 1, otherwise,
to the hyperplane xg = —1 (a similar example is provided in [11]). One can see
that the set of control vector fields for the (overparametrized) g-folded control
system (8) is bracket-generating in F(M)(®). We define the average error for a
control u on the ensemble X as

1 . )
g(uv)() = m Z HCSD(waz) - ylH
zPEX

We have a set X of cardinality 64 whose elements are indexed by Z. First, we
have that an initial training set (sub-ensemble) X7/ is given for some j. We apply
the g-folded method in Section 2 to learn these samples and denote the control
function that g-method gives by u°. Then, we expand the training set X7 to A’
by adding samples in the order provided by Z. For convenience, we denote the
difference of the subensembles X} := {zf € X : j < £ <i}(= X7\ &9).

To adapt the control function u° to new samples while remembering previous
ones, we use the tuning without forgetting X7 method with multiple refinement
rounds to obtain the control function u*. We also compare our results with the
Penalty Method, which encourages the tuned control function @ to stay close to

u® using a penalty term in the cost functional [1].

M ) ] T
J(u, X) = Z ICe(@, a*) =y + A/O [a(r) —u®(r)|[*dr

Figure 1 depicts the average error on different sets as a function of number of
rounds for both algorithms. First, we observe that, in Fig 1, the average error
on the new points S(uO,X;) is remarkably higher compared to &(u®, X7) for
any given training set at round 0 (where u* = u® and @ = u°). As expected,
it shows that the control u° has not learned the additional samples XJ? for the
given model.

For the learning plasticity [3], we measure the difference in the performance of
model on a task between its joint training performance £(u’, X*) and fine-tuning
performance €(-, 7). We observe that both &£(u*, X7) and &(a, X}) for (i,7) =
(64,52), (32,8), (32, 25) are close to £(u’, X?). It shows that the control u* and
@ has learned the additional samples satisfactorily. For the memory stability [3],
we compare the error on the previously learned points £(-, X7) as the tuning
continues. We observe that £(u*, X7) for j = 8,16,25 is close to &(u’, X7). It
shows that the control u* keeps the performance on the previously learned points
X7 nearly constants. Comparing our method to the Penalty Method, we observe
that &(@, A7) is higher than £(u®, X7) for any given j. It shows that the control
function @ has learned the additional points but has forgotten the previously
learned points. Thus, the penalty method does not directly address the issue of
catastrophic forgetting.
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Fig. 1. (a) and (b) average error as a function of number of rounds for |X| = 64 for
j =16 and j = 52, respectively. (c) and (d) average error as a function of number of
rounds for |X| = 32 for j = 8 and j = 25, respectively. The dark gray region is Phase
I region and the light gray region is Phase III region (each round is followed by Phase
IT). Average error on the given set for the control functions v*,a, and 1 are marked
by e, 4, and X, respectively.

6 Summary and Outlook

In this work, we have considered a controlled dynamical system to learn a task,
focusing on the impact of training set expansion. We have addressed the issue
of model performance loss on the original task while adapting the model to a
new task-specific dataset, known as catastrophic forgetting. We have introduced
a novel fine-tuning method, tuning without forgetting up to first-order. Our work
contributes to the scalability of control methods, offering a novel approach to
adaptively handle training set expansions. In our numerical results, we have
observed that the proposed algorithm effectively handles changes in ensemble
cardinalities, preserving previously learned points and adopting new points.
The present work can be extended in several directions. Our method has the

disadvantage of storing X7 to compute the set K(u, X7). To address this, one can
keep track of the variation in the kernels to approximate the new kernel. Also,

we will provide the proof for Theorem 2 which relaxes some of the assumptions
for Theorem 1 in an extended version.
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