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Abstract

Many of the primal ingredients of convex optimization extend naturally
from Euclidean to Hadamard spaces — nonpositively curved metric spaces
like Euclidean, Hilbert, and hyperbolic spaces, metric trees, and more general
CAT(0) cubical complexes. Linear structure, however, and the duality theory
it supports are absent. Nonetheless, we introduce a new type of subgradi-
ent for convex functions on Hadamard spaces, based on Busemann functions.
This notion supports a splitting subgradient method with guaranteed com-
plexity bounds. In particular, the algorithm solves p-mean problems in general
Hadamard spaces: we illustrate by computing medians in BHV tree space.
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1 Introduction

We consider optimization problems posed over a subset C' of a complete metric
space (X,d). We assume that X is a Hadamard space, meaning that it has non-
positive curvature — the “CAT(0)” property from metric geometry [11]. This opti-
mization framework covers the familiar example of Hilbert space, and all complete
simply-connected Riemannian manifolds of nonpositive sectional curvature. Ex-
amples of such manifolds include Euclidean and hyperbolic spaces, and spaces of
positive-definite symmetric matrices with the affine-invariant metric [10]. However,
the Hadamard space framework also subsumes interesting examples that are not
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manifolds, such as the Billera-Holmes-Vogtmann (BHV) tree space [§] and, more
generally, all CAT(0) cubical complexes. A simple example to keep in mind is the
tripod, which consists of three copies of the halfline R, with its usual metric, glued
together by identifying the three copies of 0.

Any two points x and y in the Hadamard space X are connected by a unique
geodesic [z, y]. For algorithmic purposes, we assume that we can readily compute
the distance d(z,y) and the geodesic [z, y]. We also assume the extension property:
there exists a geodesic ray originating at x that contains y, and furthermore we can
find such a ray computationally. These assumptions hold for each of the examples
we have mentioned ([10] [16]).

For tractability, as in the classical Euclidean case, we focus on convex minimiza-
tion problems

(1) iréff

where both the feasible region C' and the objective f: C' — R are geodesically
convex. In general Hadamard spaces, as shown in [3], such optimization problems
are solvable in principle by iterating the proximal update

(2) r < argmin{f(y) + ad(z,y)* :y € C}

for any constant o > 0. However, this update is only implementable in a few special
cases.

For our current purposes, we refine the expression of the optimization problem
to allow for additive structure:

m

(3) flo) = > fila) (xe€0),

=1

where the component functions f;: C' — R are geodesically convex. Rather than it-
erating the proximal update for f, we can then apply a splitting approach, cyclically
applying proximal updates to each component f; in turn. Under mild assumptions on
the problem data, convergence is proved in [3] but with no explicit complexity anal-
ysis. A closer inspection of the proofs reveals that appropriately chosen stepsizes
lead to complexity guarantees for certain problems of interest: an e-approximate
minimizer of the objective can be found within O(e7?) iterations. Proximal split-
ting works, for example, for the p-mean problem (for p > 1) associated with given
points a; € C' and nonnegative weights w;. In that case each component

filzr) = wid(z,a;)? (x € C)

has an implementable proximal update, albeit requiring a one-dimensional mini-
mization problem unless the exponent p is 1 or 2. The case when each w; = 1 and
p =1 is the classical Weber problem [28] in location theory.
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Unfortunately, proximal updates are rarely implementable in general. Even in
the classical Euclidean case we must often rely instead on subgradient-based meth-
ods. We therefore consider the following question:

Do classical subgradient methods extend to general Hadamard spaces?

This question presents an immediate conundrum. Whereas the proximal iteration
is primal in nature, simply defined on the underlying Hadamard space X, sub-
gradients in the FEuclidean setting are dual objects — linear functionals on X. In
the absence of any linear structure, the analogue in Hadamard space is unclear.

To handle this fundamental hurdle when the space X is a manifold, the subgra-
dient methods introduced in [I5] and the complexity analysis of [29] rely on local
linearization, much like the theory of smooth optimization in [10]. These works view
gradients and subgradients at a point z € X as elements of the tangent space T, X,
forcing use of the exponential map Exp,: 7, X — X or some approximate version.
Moreover, the complexity bound in [29] depends unavoidably on a lower curvature
bound for X [12].

This approach is technical, and furthermore fails in general Hadamard spaces X
because the machinery of local linearization, duality, and lower curvature bounds is
unavailable. We argue here for an entirely different approach, one that is simpler,
global, primal, and requires no lower curvature bound. We identify subgradients
with constant-speed geodesic rays in X, and we escape the curvature-related worst-
case bounds of [12] by restricting the class of objectives f, arriving at an algorithm
with complexity analogous to the Euclidean case.

A first step in this direction was the recent development of a horospherical sub-
gradient algorithm in [22]. This method applies in a general Hadamard space X,
but requires a quasiconvexity property: at any point x € C', the level set

Ly = {yeC: fly) < flz)}

must be horospherically convex. In non-Euclidean settings, horospherical quasi-
convexity is a significant assumption, but one that often holds in practice. The
algorithm relies on an oracle that returns a geodesic ray originating from z and in
some sense normal to L,, mimicking the key property of subgradient directions in
the Euclidean case. The algorithm then takes a step from x along a “supporting
ray”’: a geodesic ray opposite to the normal ray. The resulting complexity parallels
the Euclidean case.

Horospherical ideas had appeared earlier in optimization, in works such as [6], [14]
17]. Horospheres in Hadamard spaces are limits of spheres: in Euclidean space, they
are hyperplanes. Horospheres have the form {z € X : b(z) = 0} for Busemann func-
tions b, the natural generalizations of affine functions on Euclidean spaces. Noticing
these analogies, a notion of Fenchel conjugation based on Busemann functions was
introduced for manifolds in [6], and more generally in [17].
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Although the supporting ray oracle in [22] is implementable for some interest-
ing functions, the horospherical subgradient algorithm is difficult to apply in much
generality, because unlike Euclidean subgradients, supporting rays have no obvious
calculus. Specifically, for structured objectives f = ). f;, we cannot easily combine
supporting rays for each component f; into a supporting ray for f. We therefore turn
our attention instead to splitting subgradient methods that employ steps computed
only from individual components f;.

Splitting subgradient methods are appealing for their simplicity. Our approach
in Hadamard space is inspired by the complexity analysis for a Euclidean splitting
(or “incremental”) algorithm in [23]. Quasiconvex versions of that algorithm appear
in [I8, 27], and were considered on manifolds with curvature bounded below in [1J,
but these algorithms have the drawback that all the components f; must share a
common minimizer. This restriction rules out many interesting examples, including
the p-mean problem, but it seems inherent to methods relying only on supporting
ray oracles, which cannot distinguish between different component functions having
geometrically similar level sets. This drawback suggests the need for a stronger
oracle: supporting rays give directional information but that alone does not suffice.

Our main contribution — the new splitting algorithm we introduce here — relies
instead on a Busemann subgradient oracle. When called for one of the component
functions f; at a point x € C, the oracle returns a Busemann function b and a
“speed” s > 0 such that

fily) — filz) > S(b(y) — b(x)) for all y € C.

Analogous subgradient inequalities have appeared previously in [20] 21]. Indeed, the
notion of a Busemann subgradient that we introduce corresponds to subgradients in
the sense of the [21]. Starting from x, the algorithm uses the information returned by
the oracle, following the geodesic ray associated with b at speed s for a judiciously
chosen time interval, before repeating the process. The method generalizes the
incremental subgradient algorithm of [23], and enjoys the same complexity.

The structure of this paper is as follows. We begin by reviewing some metric
geometry, and consequences of nonpositive curvature. Central to our development
is the concept of direction, so we review some large-scale geometric properties of
Hadamard spaces. This exploration leads to a new property, called Busemann sub-
differentiability, strong enough to support a useful notion of subgradients in non-
linear space. We compare this new notion with earlier ideas about subgradients in
Hadamard space, and relate it to horospherical convexity.

Remarkably, even in the Euclidean case, Busemann subdifferentiability gives a
new perspective on subgradients of convex functions, allowing a fundamentally ge-
ometric or primal understanding, without explicit reference to the inner product.
We show that many natural functions defined in terms of metric data are Buse-
mann subdifferentiable, and we explore the calculus of Busemann subgradients. We



demonstrate that Busemann subdifferentiability is not preserved under addition,
motivating the use of splitting in Busemann subgradient-based algorithms.

Rather than formal convex analysis, our aim here is the development of imple-
mentable algorithms with complexity guarantees for structured convex optimization.
To this end, we adapt an incremental subgradient method from the Euclidean set-
ting [23] to minimize sums of Busemann subdifferentiable functions on a Hadamard
space. The complexity result matches that of the Euclidean algorithm and the cyclic
proximal algorithm appearing in [3], requiring O(¢72) iterations to guarantee an ob-
jective function value within € of the minimum value. To illustrate the approach
computationally, we solve the Weber (1-mean) problem for some small examples,
from [4], in BHV tree space [§].

2 Geodesic geometry and convexity

A metric space (X, d) is a geodesic metric space if every two points x,y € X can be
joined by a geodesic, which is to say a map ~y from a closed interval [a, b] into X with
d(y(t),y(t") = [t = t'| for all t,t' € [a,b]. A ray is a geodesic with domain R, and
we say 1 issues from x if r(0) = x. A geodesic metric space is said to be CAT(0)
if the map ¢ — 3d(y(t),a)? is 1-strongly convex for every a € X and geodesic . A
Hadamard space is a complete CAT(0) space. In a Hadamard space, there is exactly
one geodesic joining x to y for every z,y € X. We say that a Hadamard space has
the geodesic extension property if for every x # y € X there exists aray r: R, — X
with 7(0) = x and r(t) = y for some ¢ > 0. A subset C' of a Hadamard space X
is geodesically convex if the geodesic between any two points in C' is contained in
C. A metric space (X,d) is proper if the closed ball B,(x) is compact for every
ze X, r>0.

Henceforth, (X, d) will be a Hadamard space with the geodesic extension prop-
erty, and to avoid degenerate case-splitting in forthcoming results we will assume
X has at least two points. The significance of this technical assumption is that
there always exist rays. Given a ray r on X we may associate the corresponding
Busemann function b,.: X — R defined by

b.(z) = tgrilo(d(z,r(t)) —t) (z € X).
Busemann functions are 1-Lipschitz, convex, and satisfy b,.(r(0)) = 0. Given a ray
r, sets of the form b, !((—o0, 0]) are called horoballs.

We will restrict our attention to a class of functions that interacts nicely with
the geometry of the given Hadamard space in a way that goes beyond geodesic
convexity. Fundamental to our development is an appropriate notion of direction
in a Hadamard space; in the Euclidean setting, the fundamental role played by
directions and the associated compactification of R™ has been emphasized as a pillar
of modern variational analysis [26, Chapter 3].
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Let us review some standard tools to study the geometry at infinity of a Hadamard
space, a more detailed discussion of which can be found in |11, Chapter IL1.8]. Two
rays r,r’ are said to be asymptotic if there exists a positive constant K > 0 such
that d(r(t),r'(t)) < K for all ¢ > 0. This defines an equivalence relation on rays
in X: the set of equivalence classes is denoted X and called the boundary of X
at infinity, or simply the boundary. Note our assumption that X has at least two
points and the geodesic extension property guarantees the boundary is nonempty.
The equivalence class of a particular ray r is denoted r(c0), and we say a ray r
has direction & € X if r belongs to the equivalence class of £&. Given x € X and
¢ € X, there exists a unique ray r issuing from z such that r(co) = £ [11], 11.8.2].
If we fix an arbitrary reference point £ € X, we can thus identify any ¢ € X*°
with the unique ray r;¢ issuing from z with direction ¢, and hence to the unique
corresponding Busemann function which we may denote either b, or bz ¢. To avoid
cumbersome notation, we henceforth fix such a reference point * € X and denote
the corresponding Busemann function b, by simply be.

The space X is naturally endowed with the so-called cone topology [11), Defini-
tion I1.8.6], and notably this space is first-countable [11 Proof of Theorem I1.8.13].
In particular, the cone topology is completely specified by the convergent sequences,
so let us mention that &, — £ € X*° if and only if b, — b¢ uniformly on bounded
subsets of X. If X is proper then X*° is compact [11, Definition I1.8.6]. Our in-
terest in topologizing X*° comes from optimization: it will be desirable to have a
large class of compact subsets of X*° so that certain continuous functions defined
on X will attain their maximum. In the literature, the set X is often endowed
with a stronger metric topology induced by an angular metric (see for example [11]
Proposition 11.9.7], [17]). This angular metric is convenient for the study of large-
scale geometry of the space X but is often too strong to be useful for our purposes.
For example, the boundary at infinity of the n-dimensional hyperbolic space H™
is discrete in this angular metric, whereas it is homeomorphic to S*~! in the cone
topology (see Example . In particular, the only compact sets are finite when the
angular metric is used. Henceforth we will only make use of the cone topology.

Convergence in X*° can be understood more geometrically in terms of point-
wise convergence of rays, a characterization stated in [13, p.7] without proof. We
formulate this precisely in the next proposition and give a proof for the sake of com-
pleteness. Note the proof and result are similar to [11, Proposition 11.8.19], though
the result therein deals with unbounded sequences in X that converge to points in
X whereas we emphasize sequences converging from within X°.

Proposition 2.1. Let X be a Hadamard space with boundary X*°, let {&,} -, C
X be a sequence, and let £ € X*°. For each n € N, denote the ray issuing from
z € X with direction &, by r,, and let r be the ray issuing from z with direction &.
Then &, — £ in X if and only if r,(6) — 7(d) for all 6 > 0.

Proof. Suppose first that &, — £ in X*°, which is to say b¢, — b uniformly on
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bounded subsets of X. Fix § > 0 and let € > 0 be arbitrary. By assumption, there
exists N € N such that

2
(4) |be,., (10,(0)) + 0| = |be,,, (17,(8)) — be,, (1,,(9))| < ;—6 for all n,m > N.
The inequality in [11] Lemma I1.8.21(2)] asserts
(7 (6), 7n(6))?
26
Making the substitution s = § + ¢, this simplifies to
d(ry(0),7m(9))?
26
Letting s — oo we conclude
d(ra(6), rm(9))
24
Now use (4)) to bound the righthand side by £2/(24), which leads to

< d(rm(0+1t),mn(0)) — d(rm (0 +t),rm(0)) for all t > 0.

< d(rm(s),rn(0)) — s+ 0 for all s > 0.

< b, (rn(0)) + 0.

d(rn(0),rm(5)) < € for all n,m > N.

Since ¢ > 0 was arbitrary, the sequence {r,(d)} -, is Cauchy and thus converges
since X is complete. It remains to prove that its limit is 7(J). It is easy to see
from that {r,(0)} -, is an infimizing sequence for b that lies in the sphere of
radius ¢ around z, denoted Ss(Z). It follows that the limit z = lim,,_,o, 7,(J) is in
Ss(Z). Since r(9) is the unique minimizer of b on Ss(Z) ([11, Proposition 11.8.22]),
we deduce
= be(r() = min be(2) < be(2) =l be(r(3)) = =5

Thus equality holds throughout, and b¢(Z) = —¢. The uniqueness of b¢’s minimizer
on Ss(z) forces z = lim,, o0 7, (0) = r(J) as desired.

Conversely, let us suppose that r,(0) — 7(d) for all 6 > 0 and prove be, — b
uniformly on bounded subsets. It suffices to prove be, — b¢ uniformly on each ball
Bs(z) for all § > 0. Fix § > 0 and let € > 0 be arbitrary. The inequality in [11]
Lemma I1.8.21(1)] asserts the existence of R > 0 such that

(5)  0<d(z,rn(R)) +t—dirn(R+1),2) < g for all 2 € Bs(z),t > 0,n € N.

For any z € Bs(z),n,m € N, t > 0, two applications of along with the triangle
inequality gives us

6)  ld(zra(R+1) —d(z,rm(R+1))] < e+ |d(z,70(R)) — d(z,7m(R))|
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Letting ¢ — oo in (), we deduce the following inequality for all z € B;(z):
[be, (2) = be,, (2)] < &+ |d(z,7a(R)) — d(z,7m(R))| < € + d(rn(R), rm(R)).
Taking the supremum over z € Bs(Z), it follows that

limsup sup |be,(2) — bg,, (2)| < e for all € > 0.

n,m—>OO ZEB§ (i‘)

As a consequence, limy, ;o0 SUD, ¢ (2 |0, (2) = g, (2)| = 0. That is to say {be, },~,
satisfies the Cauchy criterion for uniform convergence on Bs(z) as desired. ]

Consider the product space X*° x R, endowed with the product of the cone
topology on X* and the usual topology on R, . Define an equivalence relation ~ on
XOxRy by (&,5) ~ (¢,s)ifs=s"=0o0r (£,s)=(¢,s"). Now define the boundary
cone C X as the quotient of X*° x R, by ~, endowed with the quotient topology
which we will also refer to as the cone topology (context should always prevent
any confusion). The equivalence class of (£,s) € X x R, is denoted [, s]. We
will sometimes use the notation [0] to denote the equivalence class corresponding to
s = 0. Note that continuity of a function defined on C'X*° is equivalent to sequential
continuity because of the sequentially characterized topology on X*° xR, . The cone
topology on C' X has been used to study the geometry of Wasserstein space #5(X)
where X is a Hadamard space [7]. When X is Euclidean R", the boundary at infinity
is homeomorphic to S*~! and the boundary cone is homeomorphic to X = R™. The
next example serves to illustrate some of these concepts in a space that is very
different from R™.

Example 2.1. The tripod is the Hadamard space X consisting of three copies of
the half-line R, glued together at the common point 0. A natural choice for the
reference point z is this common origin. Two rays are asymptotic if and only if
they eventually lie in the same copy of R, , so the boundary X°° comprises three
equivalence classes: X = {&,&,&3}. If we denote a point in X by (z,7), where
x € Ry, j€{1,2,3} then we can write the Busemann functions explicitly:

be. (2, ) = {x L#

—x, 1=7.

Proposition [2.1] tells us that a sequence of points in X°° converges to a limit ( € X
if and only if the corresponding rays issuing from the origin converge pointwise to
the ray defined by (. Clearly a sequence of rays in the tripod can only converge
pointwise if it is eventually constant, i.e. the only convergent sequences in X are
eventually constant. Thus the boundary X is discrete since every subset is closed.



Example 2.2. In this example we characterize the cone topology for the boundary
of hyperbolic space X = H". We use the Poincaré ball model, viewing X as the 0
1

. . n . . _ IIp—qH2 . .
unit ball in R™ with metric d(p, ¢) = arccosh (1 + 2—(1_“p||2)(1_”q”2)>. Proposition

says a sequence {&,} ~; € X converges to { € X if and only if the corresponding
rays {r,} -, issuing from Z = 0 € H" converge pointwise to the ray defined by &.
Such rays are radial lines from the origin to the corresponding boundary point &,
—we have once again identified X° with the boundary sphere S*~!. Explicitly, we
can write 7,(t) = tanh(¢/2)&,. Then

&, — € in the cone topology <= 1,(d) — r(J) for all § > 0
< || tanh(6/2)¢, — tanh(0/2)¢|| — 0 for all § > 0
= [|& =&l = 0.

We see that convergence in the cone topology on X is precisely norm convergence
for the induced Euclidean norm on S"~!. In particular, X*° has a familiar and rich
topological structure with many compact subsets.

To shed some light on the cone topology for C' X> we give a partial characteri-
zation of convergence in terms of convergence in X x R,.

Lemma 2.3. Let {[,, sn]}.—; € CX* be a sequence and let [¢,s] € CX°°. Then

= S, — S, s=0
<~ s, —»>sand §, =& sF#0.

€0y 0] — (€, 8] {

If X is proper then the converse implication also holds in the case s = 0.

Proof. Suppose first that [€,,s,] — [0]. Then [,, s,] is eventually contained in
any open neighborhood of [0]. Let ¢: X*° x R,y — CX> be the quotient map.
For any ¢ > 0 define the set W, = ¢(X*> x [0,¢)). It is readily verified that
q Y (W.) = X* x [0,¢), which is open in X*° x R,. Thus by the definition of the
quotient topology on C' X the set T, is open in C X and contains [0]. It follows
that [&,, s,] is eventually contained in W, which then implies s, < ¢ eventually.
Since € > 0 was arbitrary, s, — 0.

For the converse implication when s = 0 we assume X is proper, hence X is
compact. Suppose s, — 0 and fix any neighborhood U of [0]. Then for each { € X°
there exists an open set W, C X* and ¢, > 0 such that (¢,0) € W, x [0,e) C
¢~ (U) because ¢~'(U) is open in X*° x Ry. The sets {We x [0,6¢)}cx form an
open cover of the compact set X x {0}, from which we select a finite subcover
{We, x [O,&Q)}fil. Let V := UN, W, x [0,,). To summarize, X* x {0} C V C
n sufficiently large. Then [£,, s,] € ¢(V) C q(¢*(U)) = U for all n sufficiently large,
which says [&,, s,] converges to [0] since the open set U around [0] was arbitrary.
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Now suppose [&,, sn] — [€,s] with s > 0. As before, [£,, s,] is eventually con-
tained in any open neighborhood of [£, s]. For any € > 0 with s—e > 0, and any open
set U C X containing ¢, consider the set Wy . = q(U x (s—e, s+¢)). As before it is
easy to check that ¢~ (Wy.) = U X (s—¢, s+¢) which is open in X*° xR, , hence Wy
is open in C X . It follows that [£,, s,] is eventually contained in Wy ., which implies
&, € U eventually and s, € (s — g,s + ¢) eventually. Since U, were arbitrary, we
conclude &, — € and s,, — s. Conversely, suppose &, — £ and s, — s > 0. If U is an
open neighborhood of [¢, s] then (£, s) € ¢7'(U) so there exists an open set W C X
and ¢ > 0 such that (£,s) € Wx(s—e,s+e) C ¢ ' (U). Then &, € W eventually, and
Sn € (s—e, s+¢) eventually, implying [¢,,, s,] € ¢(W x (s—¢,s+¢)) C q(¢(U)) =U
for all n sufficiently large.

O

Remark 2.4. The converse implication in Lemma can fail if X is not proper
due to the lack of compactness for X*°. Indeed, if X is an infinite-dimensional
Hilbert space then X*° is homeomorphic to the unit sphere S C X with the norm
topology. But passing to the quotient topology introduces undesirable open sets.
Choose any continuous function f: S — R, with infimal value 0 (the existence of
such a function hinges on the noncompactness of ), and let {£,}~, be an infimizing
sequence. The set V ={(£,s) € X® xR, | s < f(§)} is open in X x R, because
f is continuous. Moreover, X* x {0} C V and ¢ '(¢(V)) = V. Thus ¢(V) is an
open neighborhood of [0] in C X, we have f(&,) — 0, but [&,, f(&)] € ¢(V) for

any n € N and so does not converge to [0].

Now define a pairing on X x C' X to be the function

sbe(x), s>0

<.,->:X><CXOO—>R; <;p,[§,8]>:{0 s=0.

This suggestive notation will be put to use in the next section, after we prove here

some important properties of the pairing.

Proposition 2.2. The pairing (-,-) : X x CX* — R has the following properties:
1. It is continuous.

2. For all [¢,s] € CX®, the map (-, [£,s]) : X — R is geodesically convex and
s-Lipschitz.

3. For all [¢,s] € CX> and a > 0, the pairing is positively homogeneous in the
second argument: (-, [§, as]) = a (-, [&, s]).

Proof. (1) Due to our earlier remarks on the sequential nature of the topology of
C X, it suffices to prove that the pairing is sequentially continuous. Suppose that
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T, =z in X and [&,, 8,] = [§,s] iIn CX>. If s = 0, then s, — 0 by Lemma [2.3
and furthermore:

|be, ()| = lbg, (2n) = bg, ()| < d(2n, T) = d(z, Z).
Thus the sequence {be, (z,)}, | is a bounded sequence of real numbers, whence
(T, [&n, $n]) = snbe, (2n) = 0 = (z,[0])
since s, — 0. If s > 0 then s, — s and &, — & by Lemma [2.3] giving

Knowing that b, (x) — be(z) from the definition of convergence in X*°, we deduce
that {bg, (x,)} —, and {bg,(x)} ~, share the common limit be(z). It follows that

(Zns [€n, sn]) = Snbe, (¥n) = sbe(x) = (,[€, 5]) -

Thus (-, -) is continuous.

(2) Let [£, s] € CX*> and consider the map x — (z, [{, s]) from X toR. If s =0
then this is the constant function zero which is trivially convex and 0-Lipschitz.
Otherwise, this map is x +— sb¢(x). Busemann functions are geodesically convex
and 1-Lipschitz, and s > 0 so this map is also geodesically convex and s-Lipschitz.

(3) By definition.

O

It should be noted that continuity of the pairing is further evidence that the
cone topology strikes the right balance for our purposes: it has enough open sets to
support the nontrivial family of continuous functions CX* 3 [¢, s| — (z, [, s]) for
x € X, without sacrificing too many compact subsets.

3 Busemann subgradients

The rest of this paper relies fundamentally on the following definition.

Definition 3.1. Consider a subset C' of X and a real-valued function f: C'— R. A
Busemann subgradient of f at a point x € C'is an element [€, s] € C X such that
minimizes y — f(y)—(y, [, s]) over C. The function f is Busemann subdifferentiable
if it has a Busemann subgradient at every point in C.

A few preliminary observations are in order. Immediate from the definition is
the simple observation that x € C' minimizes a function f: C' — R if and only if
[0] is a Busemann subgradient of f at x. When the space X is Euclidean R"™, the
boundary at infinity can be identified with S"~! and the Busemann function b¢ has
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the form b (y) = (z — y)T€ (recall the fixed reference point ). Then Definition
says [€, ] is a Busemann subgradient at x if and only if

fly) =58z —y) > f(x) —s¢" (T — =) forall y € C,

where we interpret the expression s¢ here and throughout as identically 0 if s = 0.
This is equivalent to

fly) > flx) — s (y — ) for all y € C.

In other words, Busemann subgradients for functions on Euclidean space coincide
with the usual notion of subgradient via the identification [{,s] <> —s{. More
generally, Definition says [¢, s| is a Busemann subgradient at z if and only if

(7) f(y) — sbe(y) > f(z) — sbe(x) for all y € C.

We adopt the same convention that sbg is identically 0 if s = 0. The Busemann
functions for asymptotic rays differ only by an additive constant [11], I1.8.23(1)] so
it is easy to check that

(8) b = bzg = brg + be(x).
It follows that is equivalent to

(9) f(y) = f(z) + sbye(y) for all y € C.

This serves as a version of the subgradient inequality in Hadamard space. An
immediate consequence of @ is that f: C' — R is lower semicontinuous at any point
where it has a Busemann subgradient because Busemann functions themselves are
continuous. It seems natural to think of Busemann subgradients [, s] for f at x as
rays issuing from x in direction £ with speed s > 0. Before we proceed to examples let
us show that Busemann subdifferentiable functions defined on geodesically convex
sets are geodesically convex.

Proposition 3.1. Suppose C' C X is geodesically convex and f: C' — R is Buse-
mann subdifferentiable. Then f is geodesically convex on C.

Proof. Take any two points z,y € C and let A € [0,1]. Let «: [0, 1] — X parametrize
the geodesic segment [z, y], denote the point v(\) by 2y, and note z), € C by geodesic
convexity of C'. Use the Busemann subdifferentiability of f to procure a Busemann
subgradient [, s] at z). Then two applications of Definition yield:

f(@) = (z,[& 8]) = f(22) = (an €, 8])
FW) =, [ sl) = fzn) = (2, (€ 8]) -
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Multiply the first inequality by A and the second by 1 — A, and sum the resulting
inequalities to obtain

Convexity of the pairing in the first argument (Proposition [2.2(2)) implies

A, [€s]) + (1= A) (g, [§: s]) = (an, [€:8]) -
Then it follows from that

AM(@)+ 1= fy) = f(=2),
so f is geodesically convex on C' since x,y € C' were arbitrary. O]

Before going any further let us mention a different but related usage of the
Busemann function as it pertains to convex analysis in Hadamard spaces. Given
a geodesically convex function f: X — R, the paper [17] defines the asymptotic
Legendre-Fenchel conjugate f*: CX*> — (—o0, +00| by

f(1& s]) = sup {— (x, [, s]) = f()} -

zeX

Note that this definition depends implicitly on the choice of reference point z, but
only up to an additive term (by ) That is, if we use subscripts to denote the
choice of reference point then

f2((€s]) = f2([€: s]) — (2, 1€, ]) forall [, 5] € CX™.

The definition of f* immediately yields a version of the classical Fenchel-Young
inequality:

A€ 8]) + f(z) > — (x,[€,5]) forall [£,s] € CX® z € X.

If f: X — R is Busemann subdifferentiable, any Busemann subgradient [, s] at
x € X gives the following inequality by definition:

fly) =, [& s]) > f(x) — (x,[¢,s]) forally € X.

Rearranging and taking the supremum over y € X leads to

(11> <‘Ta [éa S]> - f(ZL‘) > SuP{<ya [5, S]> - f(y)} = f.([éa S])

yeX

This defines a different type of conjugate f*: CX*> — (—o0, +0o0] satisfying the
Fenchel-Young-type inequality

(12) foE,s]) + f(x) > (x, €, s]) forall [§,s] € CX>® xe X.
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Inequality shows that holds with equality whenever v is a Busemann
subgradient for f at x. Conversely, it is easy to show that whenever holds with
equality, v is a Busemann subgradient for f at x. The upshot is that Busemann
subgradients can be characterized by equality in a Fenchel-Young-type inequality,
in exactly the same way as usual subgradients. Note the only difference between
the definitions of f* and f*® is the sign of the pairing term.

The next few examples tease out the relationship between Busemann and geodesic
convexity. Notably, the converse of Proposition is false in general but essentially
true in Euclidean space. Thus the emphasis on Busemann subdifferentiability in
this paper is indeed a restrictive condition and the stronger properties of Buse-
mann subdifferentiable functions in a general Hadamard space are what enable the
development of efficient algorithms in the sequel.

Example 3.1. Consider the tripod X and let C' C X be the union of any two out
of the three defining rays (including the origin). Then C' is geodesically convex so
the function f(x) = dist(x,C) is geodesically convex, but we claim that f has no
Busemann subgradient at any point outside of C.

Suppose z lies in the open ray disjoint from C. Assume f has a Busemann
subgradient [, s] at xg, with s > 0 because xy does not minimize f. Then we have
the inequality

(13) F(y) = sbe(y) = f (o) — sbe(wo) for all y € X.

Since xy does not minimize f we must have s > 0. At least one of the rays defining
C must be distinct from the ray emanating from the origin with direction &, so take
y to be a point in such a ray . Then f(y) = 0, while —sb¢(y) blows up to —oo as y
travels along r away from the origin (see Example [2.1). For y sufficiently far along
7 this leads to a violation of (13).

The situation is no better even if X is a manifold, as the next example shows.

Example 3.2. We construct an example in X = H?, the Poincaré disk. The subset
F = {(z,y) € H? | y = 0} is closed and geodesically convex (it is a geodesic line
in H?), so the function f(p) = dist(p, F)) is geodesically convex ([I1} IT.2 Corollary
2.5]). However, f is not Busemann subdifferentiable on any neighborhood of F.

To see this, let U be a neighborhood of F', consider any (zg,y0) € U with
yo # 0, and suppose there exists a Busemann subgradient [¢,s]| at (zo,yo), with
s > 0 because (g, o) does not minimize f. We can identify £ € X* with a point
£ =(&,&) € S*, and we will use this to write the Busemann function be explicitly.
By definition f — (-, [£, s]) is minimized at (z¢, yo), i.e.

dist((¢,0), F) — ((t,0), [£, s]) > dist((zo,v0), F') — {(z0,v0), [, s]) forall t € (—1,1).
Since (t,0) € F for all t € (—1,1) this is equivalent to
(14) —sbe(t,0) > dist((zo, vo), ) — (w0, v0), €, s]) forall t € (—1,1).
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Choosing our reference point to be (z,g) = (0,0), [11] 11.8.24(2)] tells us the Buse-
mann function b¢ has the following form:

Substituting into gives

1—¢?
1 ———— | >dist F)— .
slog ( e 522) > dist (20, 40), F) — (20, 30), [€, 5]
If& #0lett — 1, and if & = 0 let ¢ — —&;. In either case the lefthand side
approaches —oo while the righthand side remains constant, a contradiction.

Example 3.3. (Euclidean Space) Let C' C R" be convex and suppose f: C' — R
is convex in the usual sense. A standard convex analysis argument, which can
be found in the appendix, shows that if f is locally Lipschitz on C' then f has a
subgradient at each x € C. By our remarks following Definition this says f is
Busemann subdifferentiable on C'. Together with Proposition [3.1] we conclude that
convexity and Busemann subdifferentiability coincide for locally Lipschitz functions
on convex sets in Fuclidean space.

The next example gives a fundamental way to construct nontrivial Busemann
subdifferentiable functions on a general Hadamard space.

Example 3.4. (Busemann envelopes) Suppose g: CX*> — (—o0, +00] is a func-
tion such that, for any € X, the function [¢,s| — (x,[¢, s]) — g([¢, s]) attains its
maximum on C'X*°. Define a function f: X — R by

f(z) = max {(z,[§, s]) — g([€, s]): [§, 5] € CX=}.

Then f is Busemann subdifferentiable. Indeed, any [¢, s] attaining the maximum
for a given point x € X gives

f(y) - <y7 [§7S]> > _g<[§78]> - f(I) - <l‘, [578]> for all Yy € X.
This says [¢, s| is a Busemann subgradient at = according to Definition

Example 3.5. (Busemann functions) Perhaps the most basic example of Buse-
mann subdifferentiable functions are Busemann functions themselves. Suppose r is
aray on X issuing from zy € X, and set ( = r(00). Let K C C X be the singleton
{[¢,1]} and define g: CX* — (—o0, +00] by

gy @ lEsl), [Esle K
g([€; s]) {+oo, vk
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Then we derive:

br () = bay c(7)
= be(w) — be(wo)
= (2, [¢, 1]) = be (o)
= max {(z, [¢, s]) — g([¢, s]): [§, 5] € CX*}.

The first equality is just a consequence of our notation while the second uses .
We deduce that b, is a Busemann envelope as in Example [3.4] and is thus Busemann
subdifferentiable, with Busemann subgradient [r(c0), 1] at each x € X.

Example 3.6. (Continuous-compact-representable functions) Our decision
to endow X with the cone topology stems from the family of examples gener-
ated by the following natural construction. Suppose K C C'X* is compact and
g: CX> — (—00,+00] is continuous on K and +oo outside of K. Then ¢ satisfies
the assumptions of Example because the pairing is also continuous (Proposition
2.2(1)). In Euclidean space we recover the class of “almost sublinear” functions f
such that sup,cgn | f(x) — h(z)| < oo for some sublinear function A [9, Proposition
4.5]. This should not be viewed as a restricted class, since in practice we opti-
mize functions over closed and bounded feasible regions and can typically extend
the functions to have this “almost sublinear” growth off of the feasible set with-
out changing the underlying optimization problem. If the space X is proper, the
boundary X is compact. Then compact subsets of C'X*° are abundant, because if
F C X is closed and I C R, is compact, then ¢(F' x I) is compact in C X (here
q: X*° xR, — CX* is the quotient map).

Example 3.7. (Euclidean convex functions) If f: R" — R is convex, then
Fenchel biconjugation allows us to write f(z) = sup {y"z — f*(y): y € R"} where
f*: R* — R is the convex conjugate of f. The supremum is always attained by
choosing any subgradient y € df(x), which is always nonempty since f is continuous.
Furthermore, our earlier remarks show that we can identify C'(R")* with R™ itself
via the bijection ¢: C(R™)>® — R", ¢([¢,s]) = —s& (viewing & as an element of
S™=1). If we adopt the reference point Z = 0 then our Busemann functions take the
form be(z) = —¢72. Then we derive:

f(z) =max {y"z — f*(y): y e R"}
= max {p([£,s])"z — (f* o ©)([¢, s]): [€, 5] € C(R™)>}
= max {—s&"x — (f* o ) (&, 8]): [¢, 5] € C(R")®}
= max {sbe(z) — (o p)([§, 5]): [§, 5] € C(R")™}
= max {(z, [£, s]) — (f* o ©)([¢, 8]): €, 5] € C(R")>¥}.

We see that taking g = f* o we are in the setting of Example|3.4] Thus we recover
the class of real-valued convex functions on R™. More generally, this same argument
applies for continuous convex functions on a Hilbert space.
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Example 3.8. (Distance functions) Consider the function f(z) = d(z,a) for
any fixed @ € X. For each x # a let r,,: Ry — X be any ray issuing from
x that eventually passes through a (at least one exists by the geodesic extension
property). Furthermore, define &, = r,,(c0), and let K = {[¢,;,1] |z € X \ {a}}.
Define g: CX* — (—o0, +00] by

(a,[€,8]), [£,5] € K

g€, o)) = {m o

Let 7(t) = 1, 4(d(z,a)+1t) be a ray issuing from a in direction &, so b, ¢, = bz. Then

(16) bag, () = bi(x) = lim (d(z, 75 4(d(z,a) + 1)) — t) = d(x,a).

t—o00

Now write:

Sup{<$, [57 S]> - g([év SD: [§,8] S CXOO} = sup{(x, [57 8]> - g([ga 8]): [575] S K}
= sup {(z, [§;, 1]) = be.(a): 2z € X'\ {a}}
(17) = sup {be. () — be.(a): z € X \ {a}}.

If x = a then this last expression is identically zero, so choose any z € X \ {a} and
observe [£.,1] € C X attains the supremum in . We have the upper bound
be. () — be.(a) < d(x,a) for all z € X \ {a} because Busemann functions are 1-

Lipschitz. On the other hand, if x # a then choosing z = x we use and to
conclude

be, () = be, (@) = bag, () = d(z, a).

Thus the supremum in is attained by [,,1] € CX>. It follows that for all
x € X the supremum in the first line above is always attained, allowing us to say

f(@) = d(z,a) = max {{z, [¢, s]) — g([¢, s]): [, s] € CX}
is Busemann subdifferentiable by Example (3.4

Remark 3.9. If f1,..., f,, are Busemann subdifferentiable functions on a common
set C, then max{fi,..., fin} is Busemann subdifferentiable on C: a Busemann
subgradient at x € C' is obtained by choosing a Busemann subgradient for any
function attaining the maximum.

Example 3.10. (Distance to (horo)balls) Generalizing Example [3.8] we can
show that the distance functions to balls and horoballs are Busemann subdifferen-
tiable. Fix any a € X, p > 0 and consider the function f(z) = dist(x, B,(a)) where
B,(a) is the closed ball of radius p around a. Then f(z) = max{0,d(z,a) — p} and
the Busemann subdifferentiability of f follows from Example and Remark [3.9}

17



Now consider a ray r in X and the corresponding horoball H, = b, !((—o0, 0]).
We will prove that g(z) = dist(z, H,) can be written as g(xr) = max{0,b.(z)},
proving ¢ is Busemann subdifferentiable by Example and Remark Indeed,
if z € H, then dist(z, H,) = 0 = max{0,b.(z)} so it remains to consider x ¢ H,.
We use the Lipschitz property of b, and the definition of H, to deduce

be(x) < be(y) + d(z,y) < d(z,y) for all y € H,.

Taking the infimum over y € H, implies b,(x) < dist(x, H,). On the other hand,
for any t > 0 one has By(r(t)) C H, because s — d(z,7(s)) — s is nonincreasing.
As a consequence, dist(z, H,) < dist(z, B;(r(t))). But since z ¢ H, we must have
x & By(r(t)) for any t > 0, so dist(x, By(r(t)) = d(x,r(t)) — t. To summarize,

dist(z, H,) < d(z,r(t)) —t for all t > 0.
As t — oo we get dist(z, H,) < b.(z), proving dist(x, H,) = b.(z) for = ¢ H,.

We now consider some consequences of Busemann subdifferentiability. We recall
the notion of horospherical convexity, a geometric property defined for subsets of
Hadamard space in terms of Busemann functions.

Definition 3.2. For a closed set F' C X we say F' is horospherically convex if for
each x € bdry F' there exists a supporting ray at x, which is to say a ray r issuing
from z such that

FC{ze X |b(z) <0}.

Then we call the righthand side a supporting horoball for F' at x, and say the ray r
supports F at x.

In light of the Busemann functions appearing in both Definitions and [3.2]
it seems plausible that the level sets of a Busemann subdifferentiable function may
be horospherically convex in the same way the level sets of a convex function are
convex. Indeed, we show that continuous Busemann subdifferentiable functions
typically have horospherically convex level sets.

Proposition 3.2. Suppose f: X — R is continuous and Busemann subdifferen-
tiable with infyx f < M. Then F = {z € X | f(x) < M} is horospherically convex.

Proof. Suppose z € bdry F, so f(z) = M by continuity. Since f is Busemann
subdifferentiable there exists a Busemann subgradient [€,s] at Z, so let r be the
ray issuing from z with direction £&. We will show that r supports F' at Z. Since
M > infx f we have T ¢ argminy f, implying s > 0. Then apply @ to deduce

sbze(z) + f(Z) < f(z) for all z € X.

If z € F notice f(z) = M > f(z) so in fact sbz¢(z) < 0. Dividing by s > 0
implies bz ¢(2) < 0. The equality bz ¢ = b, is only a matter of notation, so in this
way we obtain a supporting horoball at every boundary point of F, rendering F'
horospherically convex. O
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A basic result in convex analysis says that real-valued convex functions on Eu-
clidean space are continuous, in which case Proposition says essentially that
convex functions have convex sublevel sets. Proposition also gives us another
way to reach the conclusions of Examples and 3.2} the functions involved are
continuous but their sublevel sets are not horospherically convex, so the functions
themselves are not Busemann subdifferentiable.

There is also a relationship between Busemann subgradients and Lipschitz conti-
nuity of the function, generalizing the relationship between boundedness of subgra-
dients and Lipschitz continuity for convex functions on R" (c.f. [5, Theorem 3.61]).

Proposition 3.3. Let f: C C X — R be Busemann subdifferentiable, and suppose
L>0.

(i) If at each point in C the function f admits a Busemann subgradient [, s] with
s < L, then f is L-Lipschitz on C.

(ii) If f is L-Lipschitz on C' and C'is open, then every Busemann subgradient [¢, s]
for f at x in C satisfies s < L.

Proof. (i) For z,y € C choose the assumed Busemann subgradients [{,, 5], [£,, 5]
at x,y respectively. Applying Definition [3.1] twice gives:

f(l') - <3§', [59@; Sm]> < f(y) - <y7 [£$7S$]> )
fy) =y, &y 8]) < f) — (2,16, 8]) -

Rearranging the first inequality in implies

f(ﬂ?) - f(y) < <y> [fra Sx]> - <$v [5@&0]) < Sxd(ﬂf,y) < Ld(x,y),

where the second inequality comes from Proposition (2) Arguing similarly for
the second inequality in , we find f is L-Lipschitz on C.

(ii) Suppose f is L-Lipschitz on C and take any Busemann subgradient [¢, s at
x € C. If s = 0 there is nothing to prove, so we assume s > 0. Let r be the ray
issuing from x with direction £. Since X has the geodesic extension property r can
be extended to a geodesic line 7: R — X by [11, Lemma I1.5.8(2)]. The geodesic
line 7 is continuous with 7(0) = = € C, and C is open so there exists ¢ > 0 such
that 7(—¢) € C. By (9) we have

(18)

sbee(y) + f(x) < fly) for all y € X.

Plugging in y. = 7(—¢) and using the definition of b, ¢ = b, we find b, ¢(y.) = ¢ from
which we derive:

se = sbye(ye) < f(ye) — f(2) < Ld(ye, ) = Le.

Divide through by ¢ > 0 to conclude s < L. O
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To broaden the class of Busemann subdifferentiable functions on a general Hadamard

space, we prove a basic chain rule for compositions of Busemann subdifferentiable
functions with scalar convex functions. Then we can leverage previous examples,
opening the door to more interesting problems with additive structure.

Proposition 3.4. (Chain rule) Suppose f: C' — R is Busemann subdifferen-
tiable, and ¢g: R — R is a nondecreasing convex function. Then g o f is Busemann
subdifferentiable, and if f has a Busemann subgradient [¢, s| at 2 € C' then for any
a € dg(f(x)), [€, as] is a Busemann subgradient for g o f at x.

Proof. Fix x € C and let [£,s] be a Busemann subgradient for f at x. For any
o € Dg(f(x)) we must show y — (g0 f)(y) — (y, €, as]} is minimized over C' by z.
Note that a > 0 because ¢ is nondecreasing. Since [¢, s] is a Busemann subgradient
for f at x we have

(19> f(y) - <y7 [57 S]> > f(l’) - <.T7 [§78}> for all yE C.
Likewise, since a € dg(f(x)) we have
(20) 9(f(y)) —af(y) =2 g(f(x)) — af(z) for all y € C.

Finally we estimate

The first and last equalities use positive homogeneity of the pairing in the second
slot (Proposition [2.2(3)), while the second line and third lines use and
respectively. The inequality is preserved because the coefficient « is nonnega-
tive. ]

Example 3.11. (Reparametrized distance functions) Fixa € X, 0 > 0,b € R,
and p > 1. Taking f(x) = d(z,a) and g(s) = os? + b, we combine the result of
Example with the chain rule (Proposition to immediately yield the Buse-
mann subdifferentiability of g o f on X. More explicitly, [0] remains a Busemann
subgradient at a and at each x € X \ {a} we obtain a Busemann subgradient
[72,0(00), pod(z, a)P~].

Remark 3.12. Example 3.8 showed that x — dist(x, B) is Busemann subdifferen-
tiable when B is a singleton, and Example [3.10| generalized this conclusion to sets B
that are balls or horoballs. Given the relationship between Busemann subdifferen-
tiability and horospherical convexity, some of which is discussed in Proposition
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one might ask if the distance function to a horospherically convex set is Busemann
subdifferentiable. After all, balls, horoballs, and singletons are particular instances
of horospherically convex sets. However, this conclusion is false even in Euclidean
space. If C' is any set of two distinct points in R™, then C' is horospherically convex
but not convex—in particular, horospherical convexity is not stronger than geodesic
convexity and the distance to C'is not convex. It is not hard to see that horospher-
ical convexity does imply geodesic convexity for closed subsets of X with nonempty
interior, but we defer a detailed discussion to a future work.

The next example shows that the behaviour illustrated in Remark persists
even for distances to sets that are both horospherically and geodesically convex.

Example 3.13. (Non-Busemann subdifferentiability of a distance) A simple
but interesting example of a Hadamard space (X, d) can be obtained by gluing
five Euclidean quadrants along their edges to form a cycle, which can be realized
concretely as the union of the following quadrants in R® endowed with the intrinsic
metric induced by Euclidean distance:

Ry xRy x {0}, Ry xR_x {0}, R xRy x{0}, {0} xR_ xR, R_x{0} xR;.

This space arises as a subspace of the tree space T, (see Section @, and is illustrated
in [8, Figure 12] as well as Figure[4.1] We will revisit this space when discussing the
Busemann subdifferentiability of a sum of Busemann subdifferentiable functions in
Example 4.1

Define C' C X to be the geodesic segment joining the points (1,0, 0) and (0, 1, 0).
It is not hard to see that C' is horospherically convex by considering rays parallel
to r(t) = (t/v/2)(1,1,0), and C is obviously geodesically convex. But one can show
that if f(x) = dist(z,C) then f is not Busemann subdifferentiable at zy = (1, 1,0).
The argument is structurally similar to those of Examples [3.1], but requires
checking a few cases so we relegate this casework to the appendix.

To conclude this section we explore the relationship between Busemann sub-
gradients and subgradients in the sense of the recent work [21]. We briefly review
the tangent space construction of these objects; many of the subsequent notions
are presented in detail in e.g. [I1]. Fix z € X and denote by ©,X the set of all
nonconstant geodesics issuing at x.

Given three points z,y, z € X, a geodesic triangle A = A(x,y, z) is the union of
three geodesic segments (its sides) joining each pair of points. A comparison triangle
for A is a triangle A(Z, 7, z) in R? that has side lengths equal to those of A. Take
two geodesics v, € O, let v, = y(t),ns = n(s) for t,s > 0 and let A(¥, Z,75) be a
comparison triangle in R? for A(v4, z,7,). Then the angle /7,77, is a nondecreasing
function of both ¢ and s and the Alexandrov angle between v and 7 is well-defined
as the following limit:

Z(’}/7 77) = thsﬂ% éﬁtfﬁs-

21



The Alexandrov angle induces a metric on the set ¥, X of equivalence classes of
geodesics in ©,X, where two geodesics 7,7 € ©,X are considered equivalent if
Z(v,m) = 0. For a geodesic v € ©,X, we denote by [y] its equivalence class.
The tangent space T, X of X at z is the Euclidean cone over the metric space
(X.X, Z) (see [11, Chapter I, Definition 5.6]). For v = ([7],7),w = ([n],s) € T.X
the scalar product of v and w is given by ((v, w)) = rscos Z(7,n). For a geodesically
convex function f: X — R, the subdifferential of f at x, denoted Jf(x), can be
characterized (c.f. [21, Proposition 4.4]) as the elements ([n],s) € T, X satisfying
the subgradient inequality

(21) (], 5), (), d(,9)))) + f(2) < fly) for all y € X,

where v, : [0,d(z,y)] — X denotes the geodesic from z to y. Any element v € 0f(z)
is called a subgradient of f at x. It is shown in [21, Theorem 4.11] that continuous
geodesically convex functions have subgradients everywhere, whereas we have seen
already in Example that such functions may not be Busemann subdifferentiable.
In the forthcoming Example 4.1 we will examine this failure more closely for a
function on the quadrant space of Example by demonstrating a subgradient
that does not give rise to a Busemann subgradient. On the other hand, the next
theorem shows that Busemann subgradients, when they exist, can be understood as
subgradients.

Theorem 3.14. Let f: C' — R be geodesically convex and suppose f has a Buse-
mann subgradient [£,s] at z € C. Let r be the ray issuing from x with direction
¢. Extend r to a geodesic line 7: R — X and define a new ray r_: R, — X by
r_(t) =7(—t). Then ([r_],s) € 0f(z).

Proof. By definition of the scalar product on T,X, the subgradient inequality we
wish to prove is

sd(x,y)cos Z(r_,v,) + f(z) < f(y) for all y € X.
Busemann subdifferentiability of f implies, by @,
sbr(y) + f(z) < f(y) for all y € X.
Thus it is enough to prove (the case s = 0 being trivial):
(22) b.(y) > d(x,y)cos L(r_,~,) for all y € X.

We proceed in two steps, first proving cos Z(r_,v,) < —cos Z(r,7,) (x). Using the
triangle inequality for angles we find:

m=L(r,r_) < Z(r_,yy) + Z(r,vy)-
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Hence m — Z(r,7,) < Z(r_,7,), and taking the cosine reverses the inequality to
prove (x):
cos Z(r_,7y) < cos(m — Z(r,7,)) = —cos Z(r, 7).

Next we prove b,(y) > —d(z,y) cos Z(r,7,) (*x). By the law of cosines we have:
d(r(t),y)* > d(z,r(t))* + d(z,y)* — 2d(z,7(t))d(x, y) cos Z(r,,).
Rearrangement leads to

d(?”(t), y>2 B t2 > d(l’, y)2
2t - 2t

(23) —d(z,y) cos Z(r, 7).

Since r is unit-speed some algebra shows

(24) TGON )

t—o0 2t t—o0

Using and sending ¢ — oo in readily yields (). Combining (*) and (*x)

gives

d(z,y) cos L(r_,vy) < —d(x,y) cos Z(r,v,) < b.(y).
This proves . O

4 Incremental minimization of sums

We are nearly ready to discuss the role of Busemann subgradients in concrete op-
timization algorithms of the form . Let us pause to mention how an alternative
approach based on horospherical convexity is insufficient for tackling such problems,
as well as a challenge associated with both Busemann subgradients and horospher-
ical convexity that helped shape the algorithmic paradigm we are soon to present.
The iteration described as the horospherical subgradient method in [22] assumes
that the function to be minimized is horospherically quasiconvexr—that is, it has
horospherically convex level sets. As discussed in the introduction, this has its lim-
itations and is difficult to extend to the problem of minimizing a sum of functions
for at least two reasons:

(i) Horospherical quasiconvexity is not preserved under summation. Simple coun-
terexamples exist for quasiconvex functions on Euclidean space. This necessi-
tates the treatment of each summand individually, for which point (ii) below
becomes a concern.

(ii) Different functions can have the same level sets. For example, an algorithm
using only level set information cannot distinguish between = +— d(z, a)? and
x + d(z,a), and thus cannot hope to distinguish p-means from medians.
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Horospherical quasiconvexity entails only a supporting ray to a level set at a given
point, while Busemann subdifferentiability yields both a ray and an additional
scalar—the speed at which that ray is traversed. It is exactly this extra information
that allows Busemann subgradients to resolve point (ii) above.

We turn now to the question of whether Busemann subdifferentiability is pre-
served by addition, the counterpart to point (i) above. Geodesic convexity, of course,
is stable under addition. Calculus for sums of convex functions is at the heart of
convex analysis and optimization in Euclidean space. One might hope that Buse-
mann subdifferentiability is preserved under addition in general, perhaps with a
useful sum rule to employ in algorithms. It turns out this is false, one of the striking
differences between Busemann subdifferentiability and geodesic convexity in non-
Euclidean spaces. We outline a simple counterexample below, with the details in
the appendix. This finding motivates the use of splitting to minimize a sum of
Busemann subdifferentiable functions since Busemann subgradients for the sum do
not exist.

Example 4.1. (Non-Busemann subdifferentiability of a sum) Recall the
quadrant space X of Example Let a; = (0,—1,0),as = (—1,0,0) be points in
X and define f: X — R by

f(z) = %d(x, ay)* + %d(m, as)?.

By Example f is a sum of Busemann subdifferentiable functions. Taking
T =(1/4,1/4,0), we claim that the level set fz = {2z € X | f(2) < f(Z)} is not horo-
spherically convex. In the appendix, we show that there is no supporting horoball
for fz at . This example is illustrated in Figure [4.1] where the black point is Z, the
blue set corresponds to the horoball at z generated by the ray moving towards the
spine (the half-line z = 0,y = 0,z > 0), and the red set is the level set fz. Only the
parts of the horoball and level set contained in the plane z = 0 are shown. Since
f is continuous, it cannot be Busemann subdifferentiable else this level set would
be horospherically convex by Proposition [3.2] In particular, f is not Busemann
subdifferentiable at .

As promised before Theorem [3.14] we can still find an explicit subgradient for f
at Z. Consider the geodesic n: [0,1] — X, n(t) = +t(1,1,0) in the quadrant R, x
R, x {0} € X. We show in the appendix that ([5],3/v/2) € Tz X is a subgradient for
f at x by verifying the subgradient inequality . Roughly speaking, the ability
to convert Busemann subgradients to subgradients but not the other way around
can be attributed to the gap incurred by the following inequality used in the proof
of Theorem [3.14}

b,(y) > —d(z,y) cos Z(n,~,) for all y € X.
The expression on the righthand side, defining the subgradient inequality , is

attentive to the local geometry of the space X because the angle between geodesics
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Figure 4.1: Part of a level set that fails to be horospherically convex.

is determined locally at the point of origin. The Busemann function on the lefthand
side, defining the Busemann subgradient inequality @, is determined instead by
the large-scale geometry of X rather than the geometry of X near z. The existence
of a nontrivial Busemann subgradient requires the function f to be compatible with
the global geometry of the space X.

Let us revisit the original problem of minimizing the objective and collect
our assumptions for deriving an incremental subgradient-type method on Hadamard
space. We denote the projection onto a nonempty closed geodesically convex set C'
by Pe (this is well-defined by Proposition 11.2.4]). Define an oracle Busemann
that accepts a Busemann subdifferentiable function g: C' — R and a point x € C,
and returns a Busemann subgradient for g at z: [, s|] < Busemann(g, z). If [¢, ] is
a Busemann subgradient for g at =, we will use the notation r¢ to denote the ray
issuing from x with direction &.

Assumption A.
(i) (X,d) is a Hadamard space with the geodesic extension property.
(ii) C' C X is nonempty, closed, and geodesically convex.

(iii) The objective f: C' — R decomposes as f = > ", fi, where each f;: C —
R,7=1,...,m is Busemann subdifferentiable.

(iv) The optimal set of inf,cc f(z) is nonempty, and denoted X*. The optimal
value of the problem is denoted by fop.

(v) There is a constant L > 0 such that for all ¢ = 1,...,m, every Busemann
subgradient [, s] for f; at every point in C has s < L.
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Under these assumptions, we are now ready to introduce our basic incremental
subgradient method:

Algorithm 1 Incremental Busemann Subgradient Method
Require: 2° € C, {tx},oy C Ry
for k=0,1,2... do
k0 ¥
fori=0,1,...,m—1do
€14, Sk.i) < Busemann(f;, z%7)
l’k’Z—H <— PC (T’gk’i (Sk,itk))
end for
2R pkm
end for

Understanding the complexity of Algorithm [1] is our immediate goal, towards
which the next two lemmas take us most of the way.

Lemma 4.2. (Projected Busemann subgradient inequality) Suppose f: X —
R is Busemann subdifferentiable on a nonempty, closed, and geodesically convex set
C. Let z € C, t > 0 and choose a Busemann subgradient [¢, s] for f at x. Define
the new point

x, s =0,

o {PC (rog(st)), s>0

where 7, ¢ is the ray issuing from z with direction §. Then for any y € C,

d(z*,y)? < d(z,y)? = 2t(f(x) — f(y)) + "t

Proof. For brevity we denote r = r,¢. If s = 0 then the desired inequality reduces
to f(x) < f(y) for all y € C', which holds because x minimizes f over C'. Thus we
may assume s > 0. Since X is Hadamard, x %d(aj,y)Q is 1-strongly convex for
any y € C. It follows that for all § > st we have

d(z*,y)* = d (Po(r (st)), Po(y))*
< d(r(st),y)”
< (1 - %) d(z,y) + %td(r(é),y)2 - (1 - %t) %td(x,r(é)f
— (1 - %t) d(z,y)? + %td(r(é), y)? + s** — dst
- (1 _ %t) d(z,y) + %t(d(r((S),y)Q _ %) 4 s,
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The second line uses nonexpansivity of the projection Pg. Letting § — oo and using

once more we deduce
d(a*t,y)? < d(z,y)? + 2stb,(y) + s°t°.
By (@) we have sb,(y) < —(f(x) — f(y)). We conclude:
d(at,y)® < d(z,y)® + 2stb.(y) + °t° < d(z,y)* — 2t(f(z) — f(y)) + $*t%.
O

The following lemma and its proof are straightforwardly adapted from [5, Lemma
8.39], which is itself an adaptation of the original [23] Lemma 2.1].

Lemma 4.3. (Incremental Busemann subgradient inequality) Suppose As-
sumption |A| holds, and let {xk} r—o Pe the sequence of iterates generated by Algo-
rithm |1} I with positive stepsizes {tk}k o- Then for any z* € X* and k > 0,

d(@**,2")? < d(a®,2*)? = 2,(f(2%) = fop) + tim? L.
Proof. Fix i € {0,1,...,m — 1}. Lemma proves

(™ a)? < d(@™, 1) = 20 (fipa (2) = fipa (27)) + 83t

Summing the inequality over i = 0,1,...,m — 1 and using the identities 2%° =
aF 2P = 2P we deduce:
m—1
d(@™ 2*)? <d(a”,2)? — 2t Z ferr (&™) = fi(27) + 8 Z Spi
i=0
< d(a* — 2ty Z fir1 (@) = fiza(z*)) + tpmL?
_ ko .x\2 ki 2 2
—d(l’ , L ) _2tk <f( fopt+z fz—i—l fH—l( ))) +tkmL
(25) < d(x®, 2%) = 25 (f(2%) = fopt) + 21 L Z d(z )+ t2mL>.

1=0

The second inequality uses Assumption [A|v), and the last inequality makes use of L-
Lipschitz continuity via Proposition We aim to control the size of d(z*, 2%),i =
0,...,m — 1 in the last line above, so we start by estimating

(26) d(a®',2%) = d(Po(re, o (siotr))s Po(z")) < d(re,, (skotr), 2*) = siote < Lty
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This required nonexpansivity of the projection P as well as Assumption (v)
Moving on to z%2, we argue similarly

d(ah?, 1) < d(rg,, (snati). 7%) < dlre,, (sati), =) + d(2H, %) < 2Lty

Here we used nonexpansivity of Pg, the triangle inequality, Assumption (V), and
. Iterating these estimates for ¢ = 2,...,m — 1 we conclude

d(z® 2% <iLt, i=0,1,...,m— 1.
Combined with we find:

m—1

d(zF, o) < d(a,2%)? = 20 (F (%) = fopr) + 266 LY d(a™ 2%) + imL?
1=0

m—1
< d(a® 2% — 260 (f(2¥) — fops) + 2t3 L7 Z i+ timL?
i=0
= d(2", 2%)? — 265 (f(2") — fopr) + 2 L*m>.

]

The work above culminates in a standard complexity result under a boundedness
assumption on the feasible set C'. With Lemma in hand, the proof below is a
rewrite of [5 Theorem 8.40] with the metric d in place of the Euclidean distance.

Theorem 4.4. (Complexity of incremental Busemann subgradient method)
Suppose Assumption |A| holds, and let {xk}:;o be the sequence of iterates gener-

ated by Algorithm |I| with positive stepsizes {tj},-,. Suppose furthermore that the

diameter of C' is bounded above by D > 0. If t, = #ﬁ then for all £ > 2

, , 2(1 + log(3))mLD
WSS D) = fopt < :
fbest : z:Hll’Hl,kf(x ) fopt — \//C——I—Z

More generally, if Y7 t2/> 7t — 0 as n — oo then fF . — foor as k — oo
even if C' is unbounded.

Proof. By Lemma [4.3] for any n >0
d(x™ T 2*)? < d(a,2%)? — 2t,(f(2") = fopt) + L2 L*m>.
Summing over n = [k/2],..., k we find
k k
d(z" 7 2*)? < d(2TF? 1) — 2 Z ta(f(2™) = fopt) + L*m? Z t2.
n=[k/2] n=[k/2]
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Rearranging gives

2 Z — fopt) < d(z™2 2V 4 L2m Z t2.

n=[k/2] =[k/2]

We readily estimate

[k/2] .%)\2 2,2 Nk 2 2 2m k 2
opt = k -~ .
=y 23 etk tn 2 Zn— k2] b
Plugging in ¢, = D/(Lm~/n + 1) we arrive at
k 1
mLD (1 + Zn:[k/?] n_+1)

min f( N — Jopt < k 1
i=i,... 2 D n=lk/2] TorT

Applying [5, Lemma 8.27(b)] gives the bound

k 1
k 1 -
2 n=(k/2] VAT Vk+2

and the final estimate follows. The last statement of the theorem can be proven in
exactly the same way as [5, Theorem 8.40(a)]. O

5 Computing medians

On any Hadamard space (X, d) with the geodesic extension property, we specialize
to the median problem

(27) min {f(a:) = Zwid(:v, a;) |z € X} ,

=1

where A = {a1,...,a,} C X are given points and w € R} is a vector of nonnegative
weights summing to one. It is well-known that problem (27) admits at least one
minimizer. Each function f; := w;d(x,a;) is 1-Lipschitz so Assumption (V) is
satisfied by Proposition [3.3(ii). Each f; is Busemann subdifferentiable by Example
3.11} with a Busemann subgradient [r,,(co),w;] at x # a and [0] at z = a. To
attain the stronger theoretical complexity guarantee in Theorem we require a
bound on the diameter of the feasible region. The structure of the problem implies
that the minimizers cannot be too far from points in A. Without loss of generality
we may assume w; > 0. Then for any minimizer * € X* and any 2° € X, we have

wid(x*,a1) < Zwid(x*,ai) < Zwid(:vo,ai) = f(z9).
i=1 i=1
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It follows that X* C Bp(0)/u,(a1). This ball has diameter D = 2f(2°)/w;, and
projecting onto a ball is straightforward. With Assumption [A] verified, we can use
our work above and the stepsize from Theorem [4.4] to specialize Algorithm [1|to the
median problem:

Algorithm 2 Incremental Median Algorithm
Require: 2° € X
for k=0,1,2... do
k0 ok
fort=0,1,...,m—1do

i1 i
xXr v < PBf(Io) (al) (Tfk‘lyai <w1m\/m
?Ul

end for
[L’k+l — xk,m
end for

Corollary 5.1. (Median complexity) Algorithm [2] satisfies the following com-
plexity bound for all k£ > 2:

v Al +1og(3))mf (2°)
fbest < :
w1V k + 2
Proof. Set D = 2f(z°)/w;, L = 1 in Theorem [4.4] O

In a similar way, one can find a suitable set C' (a ball) satisfying Assumption
for the problem of computing p-means and the corresponding Algorithm [1| can
be written explicitly in a fashion analagous to Algorithm [2| In closing this section,
let us contrast Algorithm [2| with the cyclic proximal point method for computing
medians described in [3]. We restate the algorithm below in Algorithm 3}

Algorithm 3 Cyclic Proximal Median Algorithm [3]
Require: 2° € X, {tx},o, C Ry
for k=0,1,2... do
o0 ok
fori=0,1,...,m—1do
P rpna g, (min {d(2) a;), wity, })
end for
PR pkm
end for

It is shown in [3] that if {¢},_ is a sequence of positive stepsizes satisfying
o0 oo
(28) Ztk:oo, Zti < 00
k=0 k=0
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then the iterates {xk}zozo converge to a median of A. No explicit complexity anal-
ysis is given, but it is not hard to see by comparing [3| Inequality (3.7)] with our
Lemma [4.3| that the same line of reasoning can be carried out as in Theorem 4.4 to
obtain an O(e7?) complexity bound for p-mean problems. The emphasis on step-
sizes satisfying seems to be oriented towards the analysis of a stochastic variant
of the incremental proximal algorithm discussed in [3].

Algorithms 1] and [3| are quite similar when C' is chosen to be the whole space X,
making the projection step in the former redundant. The main difference between
Algorithms (1] and |3| is that the latter requires only geodesics instead of rays; this
manifests as the thresholding min {d(m’“, a;), witk} in the argument of rxi,,. In
particular, Algorithm [3| works in Hadamard spaces without the geodesic extension
property. In situations where the iterates {xk}ZO:O remain bounded away from the
set A, both algorithms should coincide after sufficiently many iterations because
the stepsizes decay to zero. In such cases, the new iterates "+ always lie in
the geodesic segment [2% a;] and the extension to a geodesic ray is redundant;
both algorithms are the same. We observe this phenomenon empirically in our
computational experiments. This can fail, however, if one of the points in A happens
to be a median.

Example 5.1. Let X = C = R with A = {0}. The unique median of A is
obviously z* = 0, and Algorithm [I] amounts to the classical subgradient method
applied to f(z) = |z|. Taking 2° = 1 and t;, = 1/(k + 2) + 1/(k + 1), the sequence
of iterates generated by Algorithm (1] is ¥ = (—1)*/(k + 1). In particular, z*
alternates between positive and negative values as it overshoots the solution x* at
each iteration, meaning it always requires a ray oracle. Algorithm [3] on the other
hand, would generate iterates remaining in the interval [0,1] and monotonically
decreasing to x* = 0 as it only uses a geodesic oracle.

In Examplel[6.1] we illustrate Algorithm [2]computationally. Under the regime C' =
X and t, = 1/k, our numerical experiments indicated that this algorithm coincides
with Algorithm [3| so we only show the data for the former to avoid obfuscating
the plot in Figure [6.2l Based on our discussion above, we expect both algorithms
to perform similarly in general. In spite of the stronger theoretical complexity
guaranteed by the choice of stepsize in Theorem , the stepsize t;, = 1/k seems to
achieve better performance based on the plots in Figures and

6 Computational experiments
We consider the BHV tree space T, of binary trees on n labelled leaves, introduced
in the seminal work [8]. There are (2n — 3)!! = (2n — 3)(2n — 5)---3 - 1 such

binary trees, each with n — 2 internal edges. The space 7, models all such binary
trees by ascribing an (n — 2)-dimensional orthant [0, 00)" ™2 to each tree so that a
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point in each orthant describes a particular binary tree topology with a prescribed
choice of nonnegative internal edge lengths. Since its introduction at the turn of the
century, tree space has generated much interest at the intersection of mathematics
and computational biology, in particular as a model for comparison and averaging
of phylogenetic trees. The space 7,, was shown in [§] to be CAT(0) and is easily
seen to be complete, rendering it a Hadamard space. Note that 7,, has the geodesic
extension property as a consequence of [11, Proposition I1.5.10] since every orthant
of dimension at most n — 3 appears as a boundary face of at least three (n — 2)-
dimensional orthants [8, p. 743] so there are no free faces. The referenced result
assumes that the set of isometry classes of the faces of cells in the complex is finite;
this is trivially satisfied since 7, is a finite union of finite-dimensional orthants.

For ease of exposition and visualization we focus on 7Ty, where the binary trees
have 4 labelled leaves. There is no difficulty in extending the computational ex-
amples below to 7,, the only input to the code we use is a list of trees in Newick
notation [2]. The space T is a union of 15 two-dimensional quadrants. In what
follows we will demonstrate how Algorithm [2| can be used to estimate the median
of a finite set of trees in 7,. To facilitate the examples, we employ the existing soft-
ware package SturmMean [24] which implements a polynomial-time algorithm [25]
to compute geodesics and geodesic distances in tree space. Algorithm [2| actually
relies on rays which could extend beyond the span of a geodesic between two trees
and the choice of extension is not typically unique: consider 73 which coincides with
the tripod of Example 2.1, and imagine extending a geodesic that terminates at
the origin. The code from SturmMean for computing geodesics does not implement
such extensions, but in the examples we consider below all stepsizes are sufficiently
small starting from the initial point that the iterates lie in the unextended geodesic
segment so a ray oracle is not needed. We also need the value f(2°) to compute
the projection step, so it is often convenient to initialize the algorithm at 2° being
the origin of tree space because it makes f(z°) particularly easy to compute: the
origin is in every orthant so the distance from the origin to each a; is just the usual
Euclidean distance, i.e. the norm of the vector of edge lengths.

Example 6.1. Our first example comes from the documentation of SturmMean [24].
This example is convenient because the trees embed simply in R? in such a way that
we can calculate the true median exactly, allowing us to demonstrate convergence
of the best found function value to the optimal value. Figure shows the three
trees we consider, with equal weights w; = 1/3 assigned to each tree. For z in the
top right quadrant we have an explicit representation for f:

2

fx) = % (”x — (L2 + e = 2, =3/2) + =]l + @) :
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Figure 6.1: Three trees in 7; with neighboring respective orthants, embedded iso-
metrically in R? (recreated from [24]).

From here it is easy to check that

. 2657 — 1038v/3 3006 — 1369v/3
€T =
1898 ’ 5694

satisfies the first-order optimality condition V f(z*) = 0. Hence z* is a local mini-
mizer of f, and the convexity of f on 7Ty implies x* is a global minimizer. Thus we
set

fops = f(z*) = %\/% <43 +11V3 + \/37(49 + 22\/§)>.

Initialized at the origin, the result of running Algorithm [2{ on this problem for 10°
iterations is shown in Figure|6.2] We also tested the algorithm initialized at a point
20 far from the median, in the sense that the tree topology of 2° does not correspond
to one of the quadrants containing the given trees and the branch lengths are larger.

Example 6.2. In this example we consider three trees in 7; whose median lies
on the common boundary ray of three quadrants, with each quadrant containing
one of the trees. We refer to this common boundary ray as the spine. A figure
illustrating the local geometry of this setup can be found in [8, Figure 10]. The
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Figure 6.2: Convergence of f(z") to fop in Example 6.1| using two different stepsizes
and choices of initial tree.

three neighboring quadrants arise by permuting the labels on the leaves of the left
subtree of the leftmost tree in Figure[6.3] The spine corresponds to the second tree
in this same figure, obtained by contracting the lower internal edge so that the left
subtree leaves become siblings. The label L on the separated leaf remains fixed
throughout.

The occurrence of the median on a negligible subset is actually representative
of a well-known and studied phenomenon of stickiness in certain cubical com-
plexes, whereby the mean of a randomly generated set of points will lie on a
lower-dimensional face with positive probability [19]. We observe similarly with
the median: letting p;,i = 1,2,3 denote the point (1,1) in some ordering of the
three neighboring quadrants, the median clearly lies on the spine, and one can show
(e.g. by computing Euclidean directional derivatives) that for ¢ = 1/(1 + 2v/3) the
median remains stuck on the spine even after perturbing each of the p; within the
box p; + [—€, €]? in their respective quadrants. In this way we arrive at the following
three points whose median lies on the spine:

[ 2v3 23 b= (L1), o= 2+2v3 2+2V3
i) T T3 i12v3 )

Note that a, b, ¢ correspond directly to trees with the given internal branch lengths
and the three tree topologies implicit in Figure [6.3] The height of the median on
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L L

Figure 6.3: The tree topology defining three neighboring quadrants and their com-
mon spine.

the spine can be calculated as the optimal solution to the following problem:

miny/(y — a2)? + a3 + /(g — 02 + 1+ /g — 2)? + 2.

Y

Numerically, we find the optimal value to be

y* ~ 0.966816497678259.
This gives an estimate for the optimal value:

fopt &= 1.016799490957051.

Initialized at the origin, the result of running Algorithm [2 on this problem for 10°
iterations is shown in Figure [6.4, We also tested the algorithm initialized at a point
2 far from the median, in the same sense as Example [6.1]

7 Appendix

7.1 Example 3.3

We will show that if C' C R" is convex and f: C' — R is convex and locally Lipschitz
on C then f has a (Euclidean) subgradient at each point in C. For any z € C| if f
is locally Lipschitz one can find L,d > 0 such that |f(y) — f(2)| < L|ly — z|| for all
y € C N Bs(x) =: C". Define g: R* — (—o0, +0o0] as follows:

%w:{ﬂw,yeﬁ

400, else.

Then set h(y) = inf,crn {g(2) + L|ly — z||}. We claim that h is finite-valued, convex,
and agrees with f on C’. Clearly h(y) < 400 for any y because C’ is nonempty,
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Figure 6.4: Convergence of f(z") to fopt in Example 6.2 using two different stepsizes
and choices of initial tree.

while h(y) > —oo because C’ is bounded and
h(w) = inf (/=) + Ly — 21} 2 (@) + L i {ly — =]~ |z~ 2]}} > —oc.

Thus h is finite-valued, and convexity of h follows by recognizing h as the infimal
convolution of the convex function g with the finite-valued convex function L|| - ||.
Given y € C" we observe h(y) < f(y) because y is feasible for the infimum defining
h, while on the other hand the L-Lipschitz property for f on C’ implies

f(z)+ Llly — z|| > f(y) for all z € C".

Taking the infimum over z € C’ implies h(y) > f(y), hence h = f on C’.
Now, h is a real-valued convex function on R™ and thus admits a subgradient v
at x. We claim that v is a subgradient of f. The subgradient inequality for h reads

h(y) > h(z) +v"(y — z) for all y € R™.

Restricting to points in ¢’ where h = f this shows f := f — vT(- — ) is minimized
over C" at x. By definition of €’ it follows that z is a local minimizer of f on C,
from which convexity of f implies x minimizes f on C'. This says exactly that v is
a subgradient of f at x.
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7.2 Example

Let = (0,0, 0) be the reference point with respect to which we define our Busemann
functions. Suppose for a contradiction that f has a Busemann subgradient [¢, s| at
xo = (1,1,0). As z is not a minimizer of f, we have s > 0. Moreover,

2
(29) fly) — sbe(y) > - sbe(xg) for all y € X.

Case 1: Suppose £ is the direction of the ray ~ issuing from ¥ and passing
through z. Taking y = (1/2,1/2,0) we have f(y) = 0,be(y) = —v/2/2, and be(wo) =
—+/2, in contradiction to ([29).

Case 2: Suppose ¢ is the direction of a ray r in the plane {z = 0} issuing from z
and obtained by moving v an angle o € (0,37/4] in the trigonometric sense. Taking
y = (3/2,1/2,0), we have f(y) = v/2/2 and d(Z,y) = v/5/v/2. Moreover, for all
t >0,

d(zo,m(t))? =2+ t* — 2v/2t cos a

and

d(y,r(t))? = g +12 —2t(v2cosa — (1/V/2)sina).
Hence, be(9) = —v/2cosa and be(y) = —v2cosa + (1/4/2)sina, in contradiction
to .

Case 3: Suppose ¢ is the direction of a ray r in the quadrant {x < 0,y = 0,z > 0}.
Taking y = (3/2,1/2,0), we have f(y) = v/2/2 and be(wp) < /2.

Fix ¢t > 0 and let v = (—s,0,0), where s > 0, be such that d(y,r(t)) = d(y,v) +
d(v,r(t)). Then s <t and

5 5 5
d(y,r(t)):d(v,r(t))+\/§+32+3s2t—s+\/§+32+352\/§+t2+3t.

We conclude that be(y) > 3/2, so be(y) > be(xp), a contradiction.
The rest of the possible cases follow by symmetry.

7.3 Example
Defining z = (2/5,0,0),z = (1/4,1/4,0), we do some preliminary calculations:

1
f(#) = = (d(#,a1)* + d(%,az)?) = 37/25,
(30) %
f(@) =5 (A, 1) + d(7,a2)") = 13/8.
Any ray issuing from 7 is determined by a choice of unit vector v = (vy,vs,0),

or equivalently an angle 6 € [0,27] such that v = (cosf,sin6,0). By symmetry
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it suffices to consider 7/4 < 6 < 57/4. We denote a ray r originating from = in
direction v using the notation r,.

Case 1: Corresponding to 6 = 57 /4 consider the direction v = (—1/v/2, —1/1/2,0),
pointing from Z to the origin 0 := (0,0, 0). Since the ray ultimately extends up the
spine {0} x {0} x R4, for ¢ > 0 sufficiently large the geodesic between r,(t) and any
x € Ry x Ry x {0} consists of the two segments [z, 0] U [0,7,(t)]. Hence

d(z, (1)) = [lz]| + 12 = [[Z]])(0,0, D] = [[«]| +- ¢ — [[z]| for all ¢ > ||Z].
The corresponding Busemann function at such an z is thus
br, (x) = [lz]| — [Iz]].

Plugging in # we find b, (7) = 2/5 —+/2/4 = (8 —5v/2)/20 > 0. On the other hand,
the preliminary calculations show f(z) < f(z), so & € fz \ {br, <0} ie. this
horoball does not contain the given level set.

Case 2: Now consider any direction v corresponding to 7 < 6 < 5w /4. After
sufficient time, the point r,(¢) will inhabit the upright quadrant R_ x {0} x R,.
By imagining the quadrant R_ x {0} x R, being folded down into R_ x R_ x {0},
we see that for ¢ > 0 large enough the distance d(0,7,(¢)) is equal to the Euclidean
distance || + tv|| when we identify Z,v with vectors in R3. Since the geodesic from
T to such an r,(t) consists again of the two segments [z, 0] U[0, r,(t)], it follows that

d(Z, 7o (1)) = || 2] + [|7 + to].
The corresponding Busemann function evaluated at = is thus
b, (2) = 2] + 0"z > ||z]| - ||z]| > 0.

As in the previous case we conclude & € f; \ {b., < 0}.

Case 3: Finally, consider directions v corresponding to /4 < 6 < 7. In this
case we have d(Z,r,(t)) = || — Z — tv]|, from which we deduce b, (%) = vT(z — 7).
Using v = (cosf,sin 6, 0) we find:

1
b, (T) = —2—30 cos 0 + 1 sin 6.

Using calculus, one can show that the righthand side is a concave function of € on
[7/4, 7] and so attains its minimum at an endpoint. It is easy to check that the
values at these endpoints are both positive, so b, (Z) > 0 for all such 6. As before,
Z € fz \ {br, <0}. We conclude that no ray issuing from z € bdry f; supports fz,
so fz is not horospherically convex.

Define the geodesic n: [0,1] — X,n(t) = & + (t/v/2)(1,1,0). We will show that
([n],3/v/2) € T:X is a subgradient for f at Z. According to and the value
computed for f(z) in , it suffices to prove

3

13
(31) Ed(f,y) cos £(n, ) + o < f(y) for ally € X.
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Despite the initial requirement that this inequality holds for all y € X, it is shown
in [21, Remark 3.3(iv)] that the subdifferential of a geodesically convex function
depends only on the function locally. Thus it suffices to verify on a small
ball around z contained in the quadrant @ = Ry x Ry x {0}, say By/5(Z). For

y = (y1,y2,0) € Q we have

(32) fly) = % (i + 1+ 5 + 5+ (2 + 1))

Furthermore, for y € By/5(Z) the geodesic segment [Z,y] is the Euclidean line seg-
ment joining these points in Q. It follows that d(z,y) = ||y — Z|| and

L1L,0)"(y—7) pn+yp—1/2
V2y - 1| V2|ly - 1|

Thus after restricting to y € By/5(Z) and substituting and into , our
desired inequality becomes

3 3 7 1

B +§y2+g < 3 (o +1)% + 93 + 47 + (g2 +1)%) for all y = (y1,y2,0) € Byys(7).
This now holds by the Euclidean subgradient inequality for the differentiable convex
function h(a,b) = 1 ((a + 1)* 4+ b* 4+ a* + (b+ 1)?) at the point (1/4,1/4).

(33) cos (1, 1) =
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