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Abstract

Training LLMs larger than the aggregated memory of multiple
GPUs is increasingly necessary due to the faster growth of LLM
sizes compared to GPU memory. To this end, multi-tier host memory
or disk offloading techniques are proposed by state of art. Despite
advanced asynchronous multi-tier read/write strategies, such of-
floading strategies result in significant I/O overheads in the critical
path of training, resulting in slower iterations. To this end, we
propose MLP-Offload, a novel multi-level, multi-path offloading en-
gine specifically designed for optimizing LLM training on resource-
constrained setups by mitigating I/O bottlenecks. We make several
key observations that drive the design of MLP-Offload, such as I/O
overheads during the update dominate the iteration time; I/O band-
width of the third-level remote storage tier remains unutilized; and,
contention due to concurrent offloading amplifies I/O bottlenecks.
Driven by these insights, we design and implement MLP-Offload to
offload the optimizer states across multiple tiers in a cache-efficient
and concurrency-controlled fashion to mitigate I/O bottlenecks
during the backward and update phases. Evaluations on models up
to 280B parameters shows that MLP-Offload achieves 2.5X faster
iterations compared to the state-of-the-art LLM training runtimes.
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1 Introduction

Large Language Models (LLMs) have revolutionized a broad range
of domains thanks to text summarizing and knowledge distillation,
enabling researchers to navigate complex scientific literature more
efficiently. A natural evolution towards more general foundational
models (FMs) capable of capturing complex correlations between
different data modalities (e.g. using cross-attention) are beginning
to unlock an even bigger impact on scientific progress.

In a quest for advancing emergent behavior (capabilities not
explicitly trained for but emerging spontaneously due to the mas-
sive scale and exposure to vast amounts of data during training),
FMs’ scale and complexity continuously increase, requiring larger
training infrastructures and incurring enormous costs. Pre-training
and even fine-tuning were not even feasible without large-scale
HPC systems: ChatGPT-3 was trained on over 10,000 GPUs [12]
and cost over $4 million in each training session. Meta’s LLaMA
model (released Feb. 2023), follows the same pattern: it used 2,048
Nvidia A100 GPUs to train on 1.4 trillion tokens, taking about 21
days [41]. Even worse, LLMs are rapidly growing both in terms
of parameters and training data sizes. For example, ChatGPT-4 is
estimated to be 10X larger and was trained on 570X more data than
ChatGPT-3. Under these circumstances, the scale and cost required
to train or fine-tune FMs become prohibitively expensive.

Motivation: GPU Memory Wall. A large number of state-
of-the-art techniques have been proposed to make efficient use
of the computational capabilities and massive parallelism offered
by a large number of GPUs at scale. For example, DeepSeek [23]
has introduced several techniques in this direction. However, with
GPU computations becoming more efficient, the bottleneck is shift-
ing towards insufficient GPU memory capacities. For instance,
the Gopher-280B model [28] requires 4.8 TB [30], demonstrating
terabyte-scale GPU memory requirements to train models in the
order of hundreds of billions of parameters. This bottleneck leads to
a so-called memory wall: the ever-increasing size of model parame-
ters and auxiliary data structures such as activations and optimizer
state (450%/2 years) far exceed the GPU memory growth of newer
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Figure 1: Model vs GPU memory growth.

generations of devices (2x/2 years) [10, 25, 38]. This trend, illus-
trated in Figure 1 is unsustainable. Furthermore, a majority of HPC
datacenters need to serve multiple users running different work-
loads at the same time [6]. Thus, the ability to train and fine-tune
LLMs and FMs on a limited number of GPUs is highly desirable
compared with the alternative of waiting for a long time in the
batch queue to gain access to a large number of GPUs [9, 15].

To address this challenge, state-of-the-art LLM training frame-
works (e.g. DeepSpeed [31] and Megatron [33]) introduce several
techniques such as ZeRO redundancy optimization (e.g. partitioning
the large-optimizer state across data-parallel replicas) [29], quanti-
zation, mixed-precision training [33], etc. Still, this is not enough to
alleviate the large GPU memory requirements. As a consequence,
these techniques are often complemented with offloading of im-
portant data structures (model parameters, optimizer states) to the
slower host memory (DRAM) [26]. When memory constraints are
even tighter, the aggregated GPU and host memory capacity are not
enough, prompting the need to further offload the data structures to
third-level storage tiers (e.g., NVMe devices) [21, 30, 32]. While the
slower memory and storage tiers have significantly higher capaci-
ties, they also have significantly lower I/O bandwidth. For example,
when pre-training a 20B LLaMA model without offloading (model
parameters and optimizer states reside on aggregated GPU memory
of a single node), the average iteration duration is 0.4 seconds. Of-
floading the optimizer states, used during the update phase, to the
host memory increases the duration of the iterations to 3.7 seconds
on average. Further offloading to a node-local NVMe increases the
duration of the iterations to 67 seconds (§ 3.1). Such a large I/O
bottleneck results in an overall 170X slowdown compared with
training without offloading. At larger scales, such as training the
70B-parameter LLaMA across multiple nodes, communication over-
heads begin to dominate iteration time, which in turn amortizes
the relative cost of NVMe offloading. As a result, the slowdown of
NVMe-offloaded training relative to GPU-only training is reduced
by about 7x, highlighting the interaction between communication
and I/O bottlenecks in distributed settings. Therefore, despite the
scale, reducing the I/O bottlenecks when using third-level storage
is an important challenge that needs to be solved in order to be
able to benefit from a significantly higher overall memory capacity
without a prohibitive performance penalty.

Limitations of State-of-the-art. Existing advanced LLM train-
ing runtimes such as Microsoft’s DeepSpeed [31], PyTorch’s Fully
Sharded Data Parallel (FSDP) [53], Colossal-Al [19], etc. introduce
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novel asynchronous offloading techniques for both model and op-
timizer states. While FSDP allows only offloading to host mem-
ory, DeepSpeed and Colossal-Al runtimes enable NVMe offloading.
Specifically, the model parameters and optimizer state are parti-
tioned into model shards, which are distributed among worker
processes (one per GPU) and collaborate using model parallelism.
In turn, each model shard is decomposed into smaller chunks,
called “subgroups”, which are processed in combination with mixed-
precision techniques one by one as follows. During the forward pass
and backward pass, a copy of the FP16 parameters is used on the
GPUs to compute the gradients of each subgroup. As the backward
pass progresses, the gradients are flushed to host memory and from
there to third-level storage in FP32 format. Then, the update phase
is performed on the CPU to avoid excessive traffic between the
host memory and GPU memory, which negates the computational
speed-up of GPUs. During the update phase the FP32 model param-
eters, optimizer state and gradients of each subgroup are fetched
from third-level storage to host memory, the CPU-based updates are
performed, and then the updated model parameters and optimizer
state are flushed back to the third-level storage, while at the same
time an FP16 version is pushed to the GPUs. Efficient pipelining
and asynchronous I/O techniques are used to overlap computations
with transfers between the GPU memory, host memory and third-
level storage using specialized engines such as DeepNVMe [32].
However, this is not enough to alleviate the limited I/O bandwidth
of third-level storage. Furthermore, compute nodes are equipped
with many GPUs that share the same host memory and third-level
storage, resulting in competition for I/O bandwidth that is not
mitigated. Another limitation of state-of-art approaches is the un-
necessary back-and-forth movement between the host memory and
third-level storage due to a suboptimal strategy to handle gradients
and to reuse subgroups already available in the host memory.

Key Insights and Contributions. In this work, we present
MLP-Offload, a novel approach that aims to alleviate the afore-
mentioned limitations of state-of-the-art offloading techniques that
make use of third-level storage to increase the overall memory
capacity and I/O bandwidth. Specifically, we leverage a key ob-
servation that external storage of HPC systems, e.g., parallel file
systems (PFS) and object stores, are typically underutilized during
LLM training (except for occasional checkpointing [49]), therefore
they can complement node-local NVMe storage to provide a signif-
icant boost of I/O bandwidth. Combined with concurrency control
to mitigate contention for I/O bandwidth and a better reuse of
cached subgroups from one iteration to another, these ideas enable
MLP-Offload to achieve a 2.5X speedup over state-of-art approaches.

We summarize the key contributions as follows:

(1) We perform an in-depth characterization of resource utilization
during different phases of training when the optimizer state is
offloaded to SSDs. In particular, we highlight several fundamen-
tal observations for our proposal: the CPU memory, utilized as
caching buffers for asynchronous data transfers, experiences
thrashing at every iteration; the upscaling and offloading of gra-
dients are redundant; modern PFS capable of delivering several
GB/s worth of parallel bandwidth (e.g. using Infiniband) remains
unused; CPU cores remain idle due to slow disk writes despite
overlapping transfers with CPU-based optimizer updates (§ 3.1).
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(2) Based on the above characterization, we propose a series of
design principles: unified multi-level, multi-path asynchronous
offloading using virtual tiers; optimized virtual tier concurrency
control for multi-path I/O; cache-friendly ordering of model
subgroup processing; and delayed in-place mixed-precision gra-
dient conversion during updates (§ 3.2). These design principles
are complemented by an I/O performance model detailed in § 3.3.

(3) We present MLP-Offload, an open-source implementation of
the design principles that integrates with existing state-of-the-
art LLM training runtimes such as DeepSpeed and Megatron.
Our implementation insists on low-level optimizations such as
process-exclusive multi-thread-shared locking mechanism in
libaio- an optimized asynchronous POSIX I/O library; and
efficient non-sequential ordering of asynchronous prefetch and
flush operations to/from the disk (§ 3.5).

(4) We evaluate MLP-Offload in a series of experiments in which we
pretrain up to 280B parameters model on 32xXA100-40GB GPUs.
Our approach accelerates both backward and update phases
by 13.5% and 2.3X, respectively, and speeds up the end-to-end
training by 2.5x as compared to the state-of-art DeepSpeed (§ 4).

2 Background and Related Work

Data, Pipeline, and Tensor Parallelism. Various parallelism
techniques for data, pipelines, and tensors, have been widely adopted
to accelerate the training of large models, such as Convolutional
Neural Networks (CNNs) [52], Deep Learning Recommendation
Models (DLRMs) [50], Large Language Models (LLMs) [51], and
Large Vision Models (LVMs) [16]. Data parallelism accelerates train-
ing by running multiple model replicas, each running forward and
backward passes in parallel with different input mini-batches and
synchronizing at the end of the iteration in the update phase to
combine the patterns learned from all mini-batches. Pipeline [13]
and Tensor [5, 33] parallelism techniques split large models across
GPUs with limited memory capacities. While pipeline parallelism
splits the model vertically by placing a subset of model layers on a
given GPU, tensor parallelism performs horizontal partitioning by
splitting the model across all available GPUs. The combination of
data, pipeline, and tensor-parallelism, often termed “3D parallelism”,
is used to effectively scale large-scale training across thousands of
GPUs for CNNs, LVM, LLMs, DLRMs, etc. However, given the ever-
growing large sizes of LLMs and their rapid adoption in various
fields, optimizations beyond 3D parallelism are required to run in
resource-constrained setups.

ZeRO Redundancy Elimination. State-of-the-art LLM train-
ing runtimes, e.g., PyTorch’s Fully Sharded Data-Parallel (FSDP) [53],
Microsoft DeepSpeed’s Zero Redundancy (ZeRO) [29], Colossal-
AT [19], use redundancy elimination techniques to remove redun-
dant parts of the model and optimizer states across data parallel
ranks to minimize GPU memory consumption. To this end, Deep-
Speed, a widely used [34, 45] LLM training runtime, proposes three
stages for eliminating redundancy across data parallel ranks: ZeRO-
1 splits the optimizer states; ZeRO-2 splits both the optimizer states
and gradients; and ZeRO-3 splits optimizer states, gradients, and
model parameters [29]. As illustrated in Figure 2(a), training a P
parameters model on N GPUs with full redundancy elimination
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(ZeRO-3) leads to ~ [O(P)/N] order of memory savings at the
expense of 1.5X higher communication overheads [29].

The ZeRO-3 technique partitions model states across GPUs, re-
quiring frequent scatter-gather collectives to reconstruct layers
on demand, significantly increasing communication costs. Conse-
quently, ZeRO-3, despite its memory efficiency, cannot be seam-
lessly combined with pipeline parallelism, which relies on effi-
cient inter-stage communication. Instead, ZeRO-3 employs a hy-
brid model and data parallelism strategy, where training on N
GPUs typically results in N “virtual” data-parallel replicas. Unlike
conventional data parallelism where the model is fully replicated,
these replicas remain virtual because model states are dynamically
fetched and synchronized across GPUs as required.

Mixed Precision Training. Mixed precision training, proposed
by Baidu and Nvidia research [27], is another widely adopted ap-
proach to improve throughput and reduce the memory footprint
in LLM training. This is illustrated in Figure 2(b) in the left dotted
block. Specifically, mixed precision uses two different copies of the
model parameters, one in FP16 (or BF16), used to run the forward
and backward passes, and another master copy in high-precision
(FP32), used by the optimizer in the update phase to retain higher
stability [18]. The activations and gradients produced by the for-
ward and backward passes are in half-precision formats, leading to
faster communications and faster computations. The low-precision
FP16 gradients are upscaled to FP32 and used by the optimizer
to perform the update phase. Several real-world LLMs, such as
BLOOM-176B [45], OPT-175B [49], GPT-3 [4], and GLM-130B [47],
are pre-trained using mixed-precision, thereby demonstrating the
stability and efficiency of the mixed-precision approach.

Sharded Model and Optimizer States Into Subgroups. To
reduce the intermediary memory required during computations,
DeepSpeed’s ZeRO-3 shards the model parameters and optimizer
states of each rank/GPU into subgroups, as depicted in Figure 2(b).
The subgroup sharding technique is unique to the DeepSpeed run-
time and is unavailable on other runtimes such as FSDP or Colossal-
Al The size of these subgroups, M, is user-defined and specifies the
total number of parameters per subgroup. The subgroups are evenly
distributed among the GPUs. When using mixed precision for train-
ing, for each subgroup of M parameters, the forward and backward
passes operate on the FP16 parameters and FP16 gradients, while
the update step operates on the M corresponding FP32 parameters
and FP32 optimizer state. This subgroup-style sharding allows for
efficient piecewise computation and communication overlaps while
minimizing memory footprint, as explained in ZeRO-Infinity [30].

Optimizer State Offloading. The optimizer state, held in FP32,
is much larger than the model parameters and is only required
during the update step. Thus, in memory-constrained scenarios,
offloading it to the host memory (and further other multi-level
tiers such as node-local NVMe) is a practical choice. The use of
subgroups further facilitates swapping between the host memory
and other multi-level tiers. This is shown in Figure 2(c). When
optimizer offloading is enabled, updates are typically performed
on the CPU because (a) GPU memory is typically fully utilized
by FP16 model parameters, and (b) transferring FP32 optimizer
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Figure 2: DeepSpeed ZeRO-3 showing (a) hybrid model and data parallelism; wherein (b) the model parameters, activations,
gradients, and optimizer states are sharded into subgroups; and (c) the optimizer states are offloaded to node-local NVMe.

states and gradients between GPU and CPU, even subgroup-by-
subgroup, incurs high I/O overhead. To efficiently manage these
subgroup updates, each GPU worker allocates an independent I/O
buffer on shared host memory, with enough capacity to hold a
configurable number of subgroups. These I/O buffers serve two
primary purposes: (1) caching FP16 gradients during the backward
pass, upscaling them to FP32, and asynchronously flushing the FP32
gradients to disk for consumption during the update step, and (2)
offloading to disk using asynchronous swap-in/out of optimizer
subgroups between the host memory and the disk.

Accelerating Model and Optimizer Offloading. Several re-
cent efforts focus on mitigating the I/O bottlenecks encountered due
to offloading for training, fine-tuning, and inference scenarios. For
instance, Fuyou [21] and LoHan [22] perform pipelined overlapping
activation, parameter, and optimizer swapping across GPU-CPU-
SSD to accelerate fine-tuning for extremely constrained scenarios,
wherein neither model nor optimizer fits on the GPU memory; and
is therefore not applicable for the scenario targeted in our work.
Smart-Infinity [14] uses computational storage devices (NVMe at-
tached to FPGAs) to mitigate I/O between the NVMe and CPU,
which accelerates the update phase but requires specialized NVMe
devices. To mitigate the slowdown due to the expensive update
phase, asynchronous update techniques such as one-step-delayed
updates had been previously proposed in ZeRO-Offload [32]: it over-
laps the next iteration on the GPUs (with stale parameters) with
the still ongoing CPU-based updates. However, this optimization
was later removed from the runtime due model inconsistencies [36].
DeepSpeed TwinFlow [43] and Deep Optimizer States [26] are com-
plementary efforts that exclusively focus on optimizing CPU-only
offloading and do not optimize disk-based offloading.

3 Our Contribution: MLP-Offload
3.1 Gap Analysis

The combination of redundancy elimination and multi-tier offload-
ing enables the pre-training and fine-tuning of large LLM models
that normally would not fit in the aggregated GPU memory. How-
ever, the differences in I/O bandwidth between GPU memory, host

memory, and third-level storage are large, especially when con-
sidering node-local SSDs or other forms of disk storage [32]. As
a consequence, I/O overheads may significantly delay especially
the update phase, during which the offloaded subgroups need to be
fetched, updated and flushed back.

Training Iterations are Dominated by the Update Phase.
As a first step, we study the breakdown of a training iteration in
terms of time spent in the forward pass, backward pass and the
update phase, in order to check whether the update phase occupies
a significant fraction of the overall iteration duration, which would
validate the hypothesis that accelerating the update phase would
accelerate the overall training iteration. To this end, we study Deep-
Speed [31], configured to use redundancy elimination and multi-tier
offloading that includes a local SSD. We run experiments on a single
node with 4xH100-80GB GPUs (Table 1), and record a breakdown of
the iterations. We indeed confirmed that the iteration is dominated
by the update phase. For instance, in the case of a 40B model (setup
and methodology described in § 4.1, respectively), the forward and
backward passes finish in 0.6s (0.02%) and 28s (11%) of the total
242s iteration time, while the update phase finishes in 213s (89%).
Thus, accelerating the update phase is an important step towards a
faster end-to-end runtime.

Update Phases are Dominated by I/O when using SSD Of-
floading. We evaluate four model configurations, i.e., 20B, 40B,
70B, and 120B parameters model (Table 2). For the 20B model [44],
the full FP32 parameters and optimizer state fit in the 512 GB host
memory; therefore, we use it as a baseline. Larger model sizes of-
fload their subgroups to an SSD. As shown in Figure 3, in the case
of the 20B model, the update phase completes ~30X faster than in
the case of larger models that offload the model subgroups to an
SSD. Specifically, when subgroups are offloaded to the SSD, 99% of
the update phase duration is spent in SSD I/O, despite DeepSpeed’s
optimized DeepNVMe engine that overlaps I/O with CPU compu-
tations. Thus, we can conclude that accelerating the fetches and
flushes of offloaded subgroups to/from the host memory will signifi-
cantly accelerate the update phase, which according to the previous
experiments, will significantly accelerate the overall iteration.
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I/0 during the update phase

I/0 Bandwidth of Different Third-Level Storage. HPC sys-
tems are not only equipped with node-local SSDs but also external
storage such as parallel file systems (PFS) and object stores (e.g.
DAOS). Although external storage is shared by all compute nodes,
and therefore they are subject to I/O competition, at a medium scale,
it can provide a significant aggregated I/O bandwidth boost to com-
plement the limited I/O bandwidth of node-local SSDs. To quantify
this opportunity, we measure the raw read and write throughput of
both node-local NVMe storage and remote PFS using microbench-
marks. Remote storage can offer higher throughput than node-local
NVMe in some cases (e.g., Testbed-2 in Table 1). Additionally, given
that each GPU process independently issues fetch and flush opera-
tions for its optimizer state subgroups, understanding I/O perfor-
mance under contention is crucial. Figure 4 shows that while overall
read/write throughputs remain constant as the number of concur-
rent processes increases, per-process latency (shown using lines
and minor y-axis) worsens due to contention within the storage
subsystem. This suggests that shared NVMe bandwidth saturation
is a limiting factor, making I/O the primary bottleneck at scale.

I/0 Bandwidth under Concurrency during Offloading. Fi-
nally, we analyze the effective read/write throughput perceived
by the training runtime when offloading the optimizer states of
a 40B model to a node-local NVMe. Figure 5 reveals oscillations
in throughput due to runtime memory constraints, which restrict
active subgroups in host memory to three at a time: one prefetched,
one actively updated, and one flushed back to disk. The slow flush-
back rate results in cases where the next subgroup is prefetched
before the previous one is fully written, leading to intermittent
spikes in read-throughput. However, the aggregated read and write
throughput remains bottlenecked by NVMe’s write bandwidth, re-
inforcing the I/O limitations observed in prior experiments.

3.2 Design Principles

Unified Multi-level, Multi-path Asynchronous Offloading
using Virtual Tiers. Leveraging local SSDs for offloading is scal-
able because the SSDs can be leveraged independently using model
parallelism to achieve a high aggregated I/O bandwidth. However,
model subgroups offloaded to local storage, such as SSDs, intro-
duce high I/O overheads that dramatically slow down the update
phase, as discussed in § 3.1. On the other hand, external storage has
significant potential to complement the limited I/O bandwidth of
node-local SSDs and is typically under-utilized during pretraining
(save for occasional checkpoints) [46]. It is this observation that we
capitalize on to extend existing multi-level offloading techniques

parallel file system (remote)

rency per subgroup using a local SSD

with support for multi-path I/O at each level. Specifically, we unify
all alternative storage (local SSDs, parallel file systems (PFS), object
stores) into a virtual, third-level tier that can be used to offload
model subgroups from the host memory. Then, based on an I/O
performance model (detailed in § 3.3), we assign the subgroups to
the alternative storage tiers proportionally to their I/O bandwidth.
Using this approach, we can parallelize I/O operations such that
slow tiers finish roughly at the same time as fast tiers because
they store fewer subgroups. This I/O load balancing allows our
approach to avoid any of the tiers becoming a bottleneck, thereby
maximizing the acceleration of I/O operations for the overlapping
with the computations. Although we illustrate this principle for the
third-level tier, it can be generalized to any level (e.g., second-level
tier to combine GPU-CPU or GPU-GPU HBMs, DDR, CXL, etc.).

Optimized Virtual Tier Concurrency Control for Multi-
Path 1/0. To enable high scalability for model parallelism, we
allow each worker process (typically attached to a single GPU), to
apply I/O load balancing on alternative storage independently of
other workers. Using this approach, we avoid the need for expen-
sive global synchronization. However, each compute node features
multiple GPUs, which means that multiple processes will compete
for a shared I/O bandwidth to alternative storage tiers. Therefore,
we introduce a lightweight concurrency control strategy at the
node level that allows only one worker process on each compute
node to access a given alternative storage at a time. With this re-
striction of exclusive access per alternative storage, the full I/O
bandwidth is guaranteed to be available to a worker process, which
achieves lower latency (Figure 4) and I/O load balancing. At the
same time, the other worker processes are free to compute up-
dates for prefetched groups using all the available CPU cores, and
use other alternative storage(s) in parallel, resulting in a natural
interleaving that achieves global I/O load balancing. Note that a
worker is not limited to accessing an alternative storage using a
single I/O thread; it can leverage the preferred I/O parallelism of
the alternative storage (e.g., a PFS is faster when using multiple I/O
threads [11]). Furthermore, if the preferred I/O parallelism cannot
be saturated by a single worker, then the alternative storage can be
subdivided further into multiple virtual tiers.

Cache-Friendly Ordering of Model Subgroup Processing,.
An important observation during the update phase of adaptive op-
timizers (e.g., ADAM [17]) is that the computations are embarrass-
ingly parallel: each model subgroup has its own set of correspond-
ing parameters, optimizer state and gradients that can be applied
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independently to obtain the new model parameter and optimizer
state. Therefore, the order in which the subgroups are independently
processed is inconsequential and does not impact accuracy or con-
vergence. We exploit this observation to design a cache-friendly
update strategy that leverages subgroups present on fast tiers (host
memory) as much as possible. Specifically, in the first iteration, we
start processing the subgroups in increasing order of IDs. After
the update phase, the subgroups with a high ID will reside on fast
(cache) tiers, while the subgroups with a low ID will reside on the
slow tiers as they were evicted to slow tiers to make room for the
subgroups with higher ID in the host memory. Then, in the second
iteration, unlike state-of-the-art approaches, we reverse the order of
processing the subgroups. This results in a significant acceleration
of the update phase because a large number of subgroups with a
high ID are already present on the fast tiers, thereby reducing I/O
overheads due to memory thrashing. After the second iteration, the
subgroups with low IDs end up on the fast tiers, which means we
can take advantage of the increasing order again in the third itera-
tion. Thus, we keep alternating between ascending and descending
order of subgroup IDs which maximizes the benefits of caching.

Delayed In-place Mixed-Precision Gradient Conversion
during the Update Phase. As mentioned in § 2, offloading is typ-
ically implemented in combination with mixed-precision training.
In this case, state-of-the-art approaches typically push the FP16 gra-
dients that are computed during the backward pass from the GPU
to the host memory, where they are converted to FP32. From there,
they are flushed to the third-level virtual tier. However, during the
update phase, each subgroup offloaded to the third-level virtual tier
needs to be brought back to the host memory. Since the subgroup,
composed of FP32 optimizer states (parameters, momentum, and
variance), becomes even larger because of FP32 gradients, each
fetch operation is slower than in the case when the subgroup only
holds the optimizer state. On the other hand, FP16 to FP32 gradient
conversions on a modern CPU have a high throughput (65 GB/s on
Testbed-1 in Table 1) that is an order of magnitude larger than the
fetch throughput. Thus, we propose an alternative strategy: during
the backward pass, we simply store the FP16 gradients on the host
memory—- which anyway needs to reserve enough room for the
FP16 gradients of all subgroups to enable gradient accumulation.
Then, during the update phase, unlike state-of-the-art approaches,
we fetch the subgroup (without FP32 gradients) and instead convert
the FP16 gradients to their FP32 variant on-the-fly (using the same
standardized numeric primitives as DeepSpeed [31, 43]). Thus, we
accelerate both the backward pass (as we eliminate large asynchro-
nous FP32 gradient flushes that can potentially delay the backward
pass if they do not fully overlap with the computations) and the up-
date phase (because the overhead of in-place FP16 to FP32 gradient
conversion is typically negligible compared with the I/O overhead
of fetching FP32 gradients from slow tiers).

3.3 Performance Model for Subgroup Allocation

To enable load balancing for virtual tiers that can leverage multiple
alternative storage options by aggregating multi-path I/O, we pro-
pose an approach that assigns model subgroups proportional to the
I/0 bandwidth of each alternative storage. Specifically, we assume
each worker splits its model shard into M equally sized subgroups,
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which is typically the case to achieve computational load balancing.
Furthermore, we assume a virtual tier composed of N storage tiers
P;, where 0 < i < N, each with respective I/O bandwidth of B;—
the minimum of read or write throughput. Then, the number of
subgroups T; allocated to each storage tier P; can be represented as:

M- B; -
T; = N " |, adjusted such that Z T;,=M (1)
Zito Bi i=0

The intuition behind Equation 1 is to allocate to each alternative
storage a number of subgroups roughly equal to the contribution
of its I/O bandwidth to the total aggregated I/O bandwidth. This
results in parallel fetches and flushes of subgroups from different
alternative storage that finish at roughly the same time. Therefore,
this will reduce the likelihood of computational stalls due to a
straggling alternative storage while the others remain idle.

Initially, B; for each alternative storage is measured using mi-
crobenchmarks. Then, after the first iteration, B; is adjusted based
on the average observed I/O bandwidth for subgroup flushes and
fetches. This ensures that our approach adapts to any potential
shifts in I/O bandwidth trends that may affect some of the alterna-
tive storage options. For example, a local SSD exclusively owned
during a batch job reservation will not experience I/O bandwidth
shifts. However, a parallel file system may be under I/O pressure
from different batch jobs owned by different users, in which case an
updated B; can modify the value of T; to repartition the subgroups
across different virtual tiers based on their I/O bandwidths.

In addition to faster backward and update phases, the virtual stor-
age tiers in MLP-Offload also accelerate the checkpointing process
by pre-staging a fraction of optimizer states to persistent storage.
This can be leveraged by multi-tier asynchronous checkpointing
engines such as DataStates-LLM [24] to flush the remainder of
model and optimizer states from the GPU memory, host memory,
and the non-persistent storage tiers, such as local-disk, during the
immutable forward and backward passes.

3.4 System Composition of MLP-Offload

We illustrate how to combine the design principles mentioned
above in Figure 6, showing the end-to-end iteration execution of
DeepSpeed’s ZeRO-3 vs our approach. Specifically, we assume a
simplified LLM architecture where each model shard on a GPU is
composed of four subgroups denoted by S! . .. §*. The same pattern
happens in parallel on the other processes when using model par-
allelism. DeepSpeed ZeRO-3 computes the FP16 gradients for each
subgroup during the backward pass, and then flushes them to the
host memory in the background. On the host, the FP16 gradients
are converted to FP32 and flushed to the NVMe. Then, during the
update phase, each subgroup (composed of FP32 parameters, mo-
mentum, variance, and gradients) is asynchronously fetched from
the NVMe using a pipeline: as soon as S! is available in the host
memory, a corresponding parallel multi-core CPU computation is
triggered to update the model and optimizer states. Meanwhile, S?
is fetched to the host memory. When the computation is complete,
the subgroup’s new parameters are fetched on GPU and the opti-
mizer state is flushed to the SSD after discarding FP32 gradients.
The fetches, updates, and flushes overlap throughout the update
phase. At the next iteration, the same sequence of patterns repeats.
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Figure 6: Illustrative example: application of the design principles proposed by MLP-Offload vs. state-of-art (DeepSpeed ZeRO-3).

Algorithm 1: Optimizer Multi-Tier Offloading and Updates
Input:iter: training iteration number; (S): Optimizer subgroups;
(B):1/O bandwidth of local and remote tiers. f2h, h2f, and
h2d, denote file-to-host, host-to-file (for NVMe and PFS),
and host-to-device (GPU) transfers, respectively.
1 Function run_update(iter, (S), (B)):
update_order — {0,1,...|S| -1} or {|S| - 1,|S| - 2,...0}

// reversed at each update phase to maximize host memory hits

2

for i € update_order do
pt « storage_tier(i)

5 s « f2h_prefetch_wait_subgrp(i)

6 s.grad « host_grad_accumgp¢[i].to(FP32)
7 cpu_update_kernel(s)

8 async_h2d_transfer(s.params.to(FP16))

t « assign_storage_tier(i, B)
async_h2f_flush(s, t)
async_f2h_prefetch(next_subgroup(i), pt)

In the case of our approach, we create a virtual third-level tier
that combines the local NVMe with a parallel file system (PFS).
Initially, the subgroups are created on the host memory and flushed
to either the NVMe or PFS (according to the performance model dis-
cussed in § 3.3). The FP16 parameters are copied to the GPU. Then,
the training iterations can start. Unlike ZeRO-3, the backward pass
does not upscale and flush gradients to storage tiers. Algorithm 1
provides a high-level pseudo-code description, complementing Fig-
ure 6. Specifically, during the update phase, S! and S? are fetched
in parallel from the NVMe and PFS through separate I/O paths. As
soon as S' completes (Line#5), the corresponding gradients on the
host accumulation buffer are upscaled from FP16 to FP32 (Line#6),

after which the update computation starts (Line#7). Then, an asyn-
chronous host-to-device transfer of the downscaled FP16 model
parameters is initiated (Line#8) after which the new storage tier
t for S! is determined using equation 1 in Line#9. Subsequently,
the asynchronous flush of S! to its new tier t and asynchronous
prefetch of the next group on the previous tier pt of S! is initiated
(Lines #10-11). As seen in Figure 6, since the fetch of S? finishes
before the update phase of S!, the update computation of 52 can
start immediately after the update computation of S!. Meanwhile,
the flush of S! and prefetch of $* can progress independently, again
on separate I/O paths. While the asynchronous prefetch and flush
operations can be enqueued, they might get deferred due to the
tier-exclusive concurrency control mechanism (§ 3.2) when com-
peting with other node-local processes. Similarly, S* and S* have
an opportunity to leverage separate I/O paths for fetches. However,
unlike ZeRO-3, note that we do not need to flush S and S* to the
virtual tier, because we can switch the order in the next update
phase (Line #2) to directly use $* and $* from the host memory.

3.5 Implementation and Integration

We implement the proposed design principles in MLP-Offload ! as a
standalone open-source library integrated with DeepSpeed ZeRO-3.
Specifically, the integration extends DeepSpeed’s DeepNVMe of-
floading engine, which leverages 1ibaio [8], a kernel-accelerated
asynchronous I/O library, to support multi-path parallel read/write
operations across processes (each mapped to GPUs) and storage
tiers. In addition to benefiting from kernel-accelerated I/O, DeepN-
VMe’s C++-based implementation avoids inefficiencies introduced
by Python’s Global Interpreter Lock (GIL) and PyTorch’s pooled
memory management. Building on this foundation, MLP-Offload

!https://github.com/DataStates/artifacts/blob/main/MLP- Offload
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orchestrates efficient host buffer management through explicit pool-
based allocations for asynchronous fetch/flush operations, enabling
fine-grained concurrency and reducing I/O contention when pro-
cesses share a storage tier.

MLP-Offload can be enabled and configured via two JSON key-
value pairs in the DeepSpeed runtime configuration. During ZeRO-
3 initialization, we instantiate multiple offloading engine objects
per process, corresponding to the number of storage tiers. Each
offloading object is assigned a dedicated host buffer to facilitate
asynchronous prefetching and lazy flushing. The host buffer size
is configurable based on available host memory, the number of
processes per node, and the number of storage tiers. Additionally,
MLP-Offload allows user-specified distribution of subgroups across
storage tiers, guided by the performance model (§ 3.3). For exam-
ple, a 2:1 split between /local/ and /remote/ directories ensures
that for every subgroup stored remotely, two are offloaded to the
local disk. Beyond managing multiple offloading engines, MLP-
Offload dynamically predicts subgroup prefetch order and where
to lazily flush updated subgroups based on the offloading ratio.
While designed for Megatron-DeepSpeed with ZeRO-3, the core
principles of MLP-Offload make it extensible to other training run-
times, such as TensorNVMe [37] in Colossal-Al [19] by specifying
multiple DiskOffloader objects to create the virtual third-level
tier, on each of which the corresponding subgroups dictated by our
performance model can be consequently offloaded.

4 Performance Evaluation
4.1 Methodology

Experimental Setup. We conducted our experiments on Testbed-

1 (ANL JLSE) [2] and Testbed-2 (ALCF Polaris) [3], consisting of
4xH100-80GB and 4xXA100-40GB GPUs per node, respectively, out-
lined in Table 1. The ratio of host memory to aggregated GPU
memory for the Testbed-1 and Testbed-2 platforms are 1.6:1 (simi-
lar to AWS p4de. 24x1large) and 3.2:1 respectively (similar to AWS
p5.48xlarge), neither adequate enough to hold the 8:1 optimizer
to model state memory ratio described in ZeRO-Inifinity [30], com-
pelling NVMe offloading. Both platforms consist of 2x RAID-mounted
1.6 TB NVMe M2 SSDs for local storage, the read and write through-
puts of which are listed in Table 1. The Testbed-1 nodes feature
2x Intel(R) Xeon(R) Platinum 8468, consisting of 96 CPU cores,
while the Testbed-2 nodes feature 1x AMD EPYC 7543P, consisting
of 32 CPU cores. We use Testbed-1 for small-scale experiments
and Testbed-2 for scalability experiments. In terms of external
storage use as alternative offloading tiers, Testbed-1 features a
VAST [42] parallel file system of 1 PB capacity using 4 DNodes,
whose read/write throughputs roughly correspond to speeds of
AWS’s advanced FSX Lustre FS [1]. Testbed-2 is composed of 100 PB
storage using HPE ClusterStor E1000 platform through 160 (OSTs),
with read/write throughputs described in Table 1.

Compared Approaches. We compare MLP-Offload, illustrated
in Figure 6 (bottom) with DeepSpeed ZeRO-3, which is a prominent
implementation of the latest state-of-art in LLM training and illus-
trated in Figure 6 (top). Specifically, DeepSpeed ZeRO-3 supports
NVMe offloading of the optimizer states, similar to Colossal-AI [19].
We use its asynchronous offloading engine, i.e., DeepNVMe, which
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Table 1: Testbed configurations.

l Feature | | Testbed — [ Testbed-1 [2] [ Testbed-2 [3] ]

GPUs 4x H100-80GB | 4x A100-40GB
Pinned D—H B/W (GB/s) 55 25
Number of CPUs cores 96 32
Per node host memory (GB) 512 512
NVMe Read | Write thruput (GB/s) 6.9]5.3 13.5]4.8
Parallel File System (PES) VAST FS Lustre FS
PFS Read | Write throughput (GB/s) 3.6]3.6 6.9]13.7

Table 2: Models used for evaluations. N;: Number of layers;
Dy: Hidden dimensions; AH: Attention heads.

[Model[[40B[44]52B[20][70B[40][100B[44][120B[35][130B[48][280B[28]]

N, 128 64 80 124 96 70 72
Dy 5120 | 8192 | 8192 8192 10240 | 12288 | 16384
AH 40 64 64 64 80 96 128

overlaps all three operations (fetch, update, flush) to accelerate the
update phase at the cost of additional host memory required for
asynchronous data movement. Given the fact that the host memory
is exhausted while holding a fraction of subgroups, we consider the
advanced asynchronous engine as a representative baseline.

Models and Dataset. The configurations of models used in our
evaluations, which are based on real-world LLM training scenarios,
are summarized in Table 2. We do not consider models smaller
than 40B because their optimizer states are small enough to fit
in the host memory (512 GB). We use a subset of the OSCAR-en
dataset consisting of 79K records, included in the repository of
the Bloom model [45], and use the default LLaMA2 [39] tokenizer
for preprocessing the dataset into tokens. Unless otherwise noted,
similar to the OPT training configuration [49], we set the default
sequence length to 2048 and microbatch size to 1 to avoid OOM
errors in any configuration.

Runtime Configurations. As discussed in Section 2, Deep-
Speed does not support pipeline parallelism in combination with
ZeRO-3, which is responsible for the sharding of the model and
optimizer states. Therefore, for single-node experiments, we use
data-parallelism with ZeRO-3, which shards the model parameters,
gradients, and optimizer states to fit in the GPU memory. For weak
scalability experiments, we use a combination of tensor-parallelism
(intra-node) and data-parallelism (inter-node) approaches to maxi-
mize performance and memory savings [30, 33].

In each experiment, all the GPUs on the selected node(s) are
utilized, and each GPU is associated uniquely with a single pro-
cess. For all models, local NVMe offloading is enabled, based on the
asynchronous approach for overlapping fetch, flush, and update
operations of subgroups. Our approach has additional access to the
PFS. To facilitate prefetching and lazy-flushing of subgroups for
asynchronous offloading, a configurable number of pinned host
buffers are pre-allocated such that the host memory is utilized to
the maximum extent (>90% memory utilization) for all compared
approaches. The size of this host buffer for asynchronous offload-
ing varies between different models because each model reserves a
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Figure 7: Average iteration time break-
down on scaling model sizes.

different amount of runtime-level buffers, such as for gradient accu-
mulation, all-reduce, etc. We refer the reader to ZeRO-Offload [32],
ZeRO-Infinity [30], and DeepSpeed memory estimator [7] for the
breakdown of GPU/host memory consumed by the runtime.
Throughout our evaluations, we ensure that the aggregated GPU
memory is sufficient to store the following: (1) FP16 model parame-
ters; (2) activation checkpoints generated by the forward pass; and
(3) FP16 gradients of one at least subgroup generated during the
backward pass which is flushed asynchronously to the gradient ac-
cumulation buffer residing on the host memory. We also ensure that
the host memory is large enough to hold runtime-level buffers (e.g.,
gradient accumulation, all-reduce buckets, etc. [7]), and a minimum
of three subgroups to facilitate asynchronous updates: the previous
subgroup being lazily flushed to disk, the current subgroup being
updated, and the next subgroup being prefetched from local NVMe.
Although the subgroup sizes do not impact the iteration dura-
tion, convergence, or accuracy as mentioned in [14, 26], smaller
subgroups achieve better I/O and compute overlap of offloaded
subgroups. Therefore, for all approaches, we use a subgroup size of
100 million trainable parameters as opposed to DeepSpeed’s default
size of 1 billion parameters per subgroup, which allows better load
balancing for our approach. Similar to Turing-NLG 17.2B, GPT-3
175B, BLOOM-176B [45], we used activation checkpointing to re-
duce the GPU memory utilization at the expense of 33% additional
recomputations during the backward pass [30]. This is a popular
choice for training with scarce GPU memory. Nevertheless, our
approach is complementary to activation checkpointing and would
produce similar results without activation checkpointing as well.

Key Performance Metrics. We use the following metrics for
evaluating the aforementioned approaches: (1) average time to
run a single training iteration (broken down by the duration of
the forward pass, backward pass, and update phase); (2) update
throughput (expressed as millions of parameters updated per sec-
ond); (3) effective read/write throughput observed while fetching
and flushing disk-offloaded subgroups; and (4) distribution of the
optimizer states across different tiers. These metrics are important
to understand the end-to-end performance and scalability of LLM
training using our approach vs. state of art, as well as to highlight
important intermediate steps that influence the end-to-end results.

4.2 Results: Model Size Scalability

We first measure the iteration time, broken down by forward, back-
ward, and update phase durations for increasing model sizes as

Model size (Billion of params)

Figure 8: Average update throughput ob-
served when scaling model sizes.

Model sizes (Billions of params)

Figure 9: Effective 1/0O throughputs for
different model sizes.

listed in Table 2 on a single 4xH100 node of Testbed-1 (Table 1).
Each experiment runs for 10 iterations, of which the first 2 are
warmups, and the average from 8 iterations is reported. We vary
the model size between 40B and 120B such that all FP16 parame-
ters and gradients for a single subgroup fit within the aggregated
320 GB of GPU memory. With increasing model size, the intensity
of offloading increases as well, thus highlighting the effectiveness
of the compared approaches as the offloading pressure increases
(at 120B parameters, the optimizer state reaches 1.8 TB).

As observed in Figure 7, the iteration duration follows an in-
creasing trend for increasing model sizes (with slight exceptions
for 52B vs. 40B and 120B vs. 100B, as they have fewer transformer
layers but more hidden dimensions). As expected, due to offloading,
the update phase is the longest, while the forward pass is almost
negligible in comparison. For DeepSpeed ZeRO-3, the backward
pass begins to be noticeable, while our approach reduces it to a
negligible level. We also observe that our approach accelerates the
update phase by up to 2.4X, leading to iterations that are overall
2.7% faster compared with DeepSpeed ZeRO-3.

To further explain these results, we depict in Figure 8 the update
throughput, which for reference is ~40000M params/s on the GPUs
and ~ 8000M params/s on the CPUs when the model parameters
and optimizer states are fully available in the GPU and host memory,
respectively. With offloading the update throughput drops by an
order of magnitude, even on the CPUs, which confirms that the
bottleneck is not on the compute side, but rather due to the slow
1/O to the NVMe and/or PFS. Furthermore, the update throughput
stays relatively stable for all model sizes (the update throughput
per subgroup remains unchanged, only the number of subgroups
changes for different models). Overall, MLP-Offload achieves an
update throughput 1.8xX-2.4Xx higher than DeepSpeed ZeRO-3.

4.3 Results: I/0 and Storage Tier Load

As mentioned previously, the update throughput is subject to I/O
bottlenecks. Therefore, we discuss next the I/O throughput sus-
tained by MLP-Offload vs. DeepSpeed ZeRO-3. As opposed to the mi-
crobenchmarks discussed in Figure 4, running an end-to-end train-
ing overlaps I/O (asynchronous prefetch and flush) with computa-
tions, which introduces additional overheads. Specifically, the I/O
throughput is computed as 2 X subgroup_size_bytes/(read_time +
write_time), averaged over all subgroups. The size is doubled be-
cause every subgroup needs to be both read and written. Figure 9
depicts the aggregated I/O throughput of all subgroups for an in-
creasing model size. Interestingly, the DeepSpeed ZeRO-3 approach
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Figure 13: Average iteration time of dif-

ferent batch sizes for the 40B model. local NVMe.

demonstrates I/O throughput of ~ 3.2 GB/s, which is much lower
than the peak write speed (5.3 GB/s) of the NVMe on Testbed-1 (Ta-
ble 1). This is because parallel multi-threaded reads and writes from
all processes create contention on the CPU-NVMe interconnect
(which is PCIe in this case) and on the NVMe storage subsystem.
Conversely, MLP-Offload alleviates the pressure on the local NVMe
by using a PFS, thus benefiting from both multi-tier offloading and
better utilization of individual tiers, ultimately being 2.6x faster.
The effective I/O throughput with MLP-Offload decreases slightly
with increasing model size because smaller fractions of the opti-
mizer states can be cached on the host memory, thereby reducing
the effectiveness of caching. However, MLP-Offload still achieves
~2x I/O speedup for larger models compared to the DeepSpeed
ZeRO-3 approach.

To explain the impact of multi-tier offloading, we highlight the
distribution of the optimizer states across the different storage tiers.
A major chunk of the host memory is consumed by the DeepSpeed
runtime for setting up the ZeRO-3 specific data structures that con-
sume 250-350 GB of host memory, proportional to the model size,
as reported by DeepSpeed’s memory estimator [7]. The remaining
host memory is used for caching subgroups and asynchronous I/O
operations. Figure 10 depicts the percentage of optimizer states
distributed across the host memory, local NVMe, and the PFS at
every iteration. Unlike MLP-Offload, DeepSpeed ZeRO-3 experi-
ences cache thrashing on the host buffers due to sequential-ordered
subgroup updates and does not utilize the PFS, forcing all opti-
mizer states to be read and written back to local NVMe in each
iteration. The fraction of the optimizer states distributed across the
local NVMe and the PFS confirm the effectiveness of our perfor-
mance model (§ 3.3), showing a 2:1 NVMe to PFS offloading that is
consistent with the read and write throughputs in Table 1.

Figure 14: Performance ablation on node-

Figure 15: Performance ablation on node-
local NVMe and PFS.

4.4 Results: Weak Scalability

Next, we study the weak scalability of MLP-Offload by varying the
model sizes proportionally to an increasing number of nodes. As
discussed in § 2, DeepSpeed does not implement pipeline paral-
lelism in combination with the sharding of model parameters and
optimizer state. Therefore, we use tensor parallelism across the four
co-located GPUs on the same compute node, and data parallelism
between the compute nodes.

ZeRO-3’s parameter sharding across data-parallel ranks requires
frequent scatter collectives leading to higher communication costs
during forward and backward passes at the expense of memory
savings. Therefore, this scalability study is important to understand
if higher communication costs offset the gains achieved by MLP-
Offload in backward and update phases at scale.

For this experiment, we scale up to 8 nodes (32x A100-40GB
GPUs) on Testbed-2 (Table 1). The largest model that fits within the
aggregated GPU memory in FP16 format is selected from Table 2,
ensuring a proportional increase in model size with node count:
40B (1 node), 70B (2 nodes), 100B (3 nodes), 130B (4 nodes), and
280B (8 nodes). Figure 11 shows that iteration time decreases for
an increasing number of GPUs. In this case, the communication
overheads in forward and backward passes are not as significant
compared to the I/O bottlenecks of offloaded optimizer state up-
dates due to the fast interconnect between the compute nodes (e.g.,
Slingshot, Infiniband) that are typically available on HPC infrastruc-
tures. Furthermore, an increasing node count enables independent
I/O to the local NVMe, which accelerates the subgroup updates.
Consequently, MLP-Offload achieves up to 2 faster iterations than
DeepSpeed ZeRO-3, even at scale. To explain this trend, we analyze
the update throughputs in Figure 12. As expected, update through-
put scales with increasing resources (I/O bandwidth and CPUs);
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and when correlated with the iteration duration this confirms that
I/O is still the bottleneck.

In addition to demonstrating MLP-Offload’s scalability gains over
ZeRO-3 with increasing model sizes, the weak scalability exper-
iments also highlight the cost-effectiveness of NVMe-offloading
with MLP-Offload as compared to the GPU-only training scenario.
For instance, training the 70B model without offloading requires the
aggregated memory of ~80 A100-40GB GPUs [24] and runs a single
iteration in 24s. Conversely, as shown in Figure 11, with NVMe-
based optimizer offloading, ZeRO-3 can run using 10X fewer GPUs,
but takes 168s per iteration, i.e., 7x slower. In contrast, MLP-Offload
is only 4.8% slower, thereby achieving a 5x slowdown while using
10x fewer GPUs- yielding a 2x improvement in cost-effectiveness
compared to GPU-only training.

4.5 Results: Gradient Accumulation Scalability

We next study the impact of using gradient accumulation, which is
a popular technique [45] to reduce the number of update phases
(and thus the impact of offloading) by running multiple forward and
backward passes before each update phase. While the number of
iterations does not decrease, it is equivalent to running the training
with larger mini-batches (an alternative that is not possible when
the GPU memory is scarce). The goal is to show that despite the
reduced frequency of the update phase, our approach still delivers a
significant end-to-end speedup compared with the state-of-the-art.
We experiment with the 40B model running on Testbed-1 (4xH100
GPUs), which can accommodate a mini-batch size of 8 samples, be-
yond which we encounter out-of-memory on GPUs. Consequently,
when running across 4 GPUs in a data-parallel fashion, when we
run an update phase for and increasing number of forward and
backward passes (1-16), the equivalent batch size increases in the
range of 32-512. As observed in Figure 13, even when gradient ac-
cumulation is used to amortize the cost of expensive update phases,
MLP-Offload still outperforms DeepSpeed ZeRO-3 by at least 40%.

4.6 Results: Ablation Study

In the last set of experiments, we perform ablation studies to under-
stand the impact of each optimization proposed as part of our design
principles (§ 3). We consider three models, i.e., 40B, 70B, and 100B,
which represent small-scale, medium-scale, and large-scale models,
respectively, on Testbed-1. Figure 14 depicts the accumulated impact
(i.e. progressive activation) of each optimization when the optimizer
state is only offloaded to the node-local NVMe. The approaches
labeled as Enable Caching, Skip Gradients, and Process Atomic R/'W
correspond to the design principles discussed in § 3.2: cache-friendly
subgroup reordering, delayed in-place mixed-precision gradient
conversion, and optimized virtual tier concurrency control, respec-
tively. As can be observed, progressive activation of each opti-
mization further reduces the iteration duration, which means each
optimization individually contributes to the speedup, resulting in
up to 1.6X speedup vs. DeepSpeed even without a PFS. Figure 15
depicts the same accumulation of optimizations but with the PFS
active (multi-path). In this case, activating all three optimizations
is equivalent to our approach. Compared with Figure 14, the multi-
path parallel I/O further speeds up the iteration by 1.6X, resulting
in 2.5X faster iterations compared with DeepSpeed ZeRO-3.
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5 Conclusions

In this paper, we present a novel technique, MLP-Offload, and its im-
plementation as a library that can be integrated with state-of-the-art
LLM runtimes that enable scalable training and fine-tuning. Specifi-
cally, we target the offloading of the optimizer state to a multi-level,
multi-path memory and storage hierarchy to accelerate the train-
ing of large LLMs under GPU memory constraints. In this context,
state-of-art approaches suffer from significant I/O bottlenecks with
optimizer state offloading to storage tiers due to the large size of
the full-precision optimizer states (8x larger than FP16 parameters),
which spill beyond the capacity of the host memory (that is typically
only 2X larger than the aggregated GPU memory) and therefore
need to be offloaded to tertiary storage tiers (e.g., node-local NVMe
devices), whose I/O bandwidth is orders of magnitude lower. To
reduce these I/O bottlenecks, MLP-Offload proposes several design
principles, such as multi-level multi-path asynchronous offloading,
concurrency control for multi-path I/O, cache-friendly subgroup
update reordering, and dynamic in-place mixed-precision gradient
conversion. The design principles are implemented as a modular
extension to DeepSpeed’s offloading engine. Extensive evaluations
on 40B-280B parameter models demonstrate 2.5 faster training
iterations as compared to DeepSpeed ZeRO-3 for different con-
figurations at scale. Encouraged by these results, we next plan to
explore parallel I/O paths for next-generation Compute-Express
Link (CXL) memory pools and the integration of MLP-Offload with
other offloading runtimes, frameworks, and accelerators. Of partic-
ular interest is a deeper study on the behavior of globally shared
alternative storage tiers under I/O competition, which is the case
of parallel file systems and object stores. In this case, we plan to
explore how to mitigate predictable fluctuations in I/O bandwidth.
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