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Figure 1: Model vs GPU memory growth.

generations of devices (2×/2 years) [10, 25, 38]. This trend, illus-

trated in Figure 1 is unsustainable. Furthermore, a majority of HPC

datacenters need to serve multiple users running di�erent work-

loads at the same time [6]. Thus, the ability to train and �ne-tune

LLMs and FMs on a limited number of GPUs is highly desirable

compared with the alternative of waiting for a long time in the

batch queue to gain access to a large number of GPUs [9, 15].

To address this challenge, state-of-the-art LLM training frame-

works (e.g. DeepSpeed [31] and Megatron [33]) introduce several

techniques such as ZeRO redundancy optimization (e.g. partitioning

the large-optimizer state across data-parallel replicas) [29], quanti-

zation, mixed-precision training [33], etc. Still, this is not enough to

alleviate the large GPU memory requirements. As a consequence,

these techniques are often complemented with o�oading of im-

portant data structures (model parameters, optimizer states) to the

slower host memory (DRAM) [26]. When memory constraints are

even tighter, the aggregated GPU and host memory capacity are not

enough, prompting the need to further o�oad the data structures to

third-level storage tiers (e.g., NVMe devices) [21, 30, 32]. While the

slower memory and storage tiers have signi�cantly higher capaci-

ties, they also have signi�cantly lower I/O bandwidth. For example,

when pre-training a 20B LLaMA model without o�oading (model

parameters and optimizer states reside on aggregated GPU memory

of a single node), the average iteration duration is 0.4 seconds. Of-

�oading the optimizer states, used during the update phase, to the

host memory increases the duration of the iterations to 3.7 seconds

on average. Further o�oading to a node-local NVMe increases the

duration of the iterations to 67 seconds (§ 3.1). Such a large I/O

bottleneck results in an overall 170× slowdown compared with

training without o�oading. At larger scales, such as training the

70B-parameter LLaMA across multiple nodes, communication over-

heads begin to dominate iteration time, which in turn amortizes

the relative cost of NVMe o�oading. As a result, the slowdown of

NVMe-o�oaded training relative to GPU-only training is reduced

by about 7×, highlighting the interaction between communication

and I/O bottlenecks in distributed settings. Therefore, despite the

scale, reducing the I/O bottlenecks when using third-level storage

is an important challenge that needs to be solved in order to be

able to bene�t from a signi�cantly higher overall memory capacity

without a prohibitive performance penalty.

Limitations of State-of-the-art. Existing advanced LLM train-

ing runtimes such as Microsoft’s DeepSpeed [31], PyTorch’s Fully

Sharded Data Parallel (FSDP) [53], Colossal-AI [19], etc. introduce

novel asynchronous o�oading techniques for both model and op-

timizer states. While FSDP allows only o�oading to host mem-

ory, DeepSpeed and Colossal-AI runtimes enable NVMe o�oading.

Speci�cally, the model parameters and optimizer state are parti-

tioned into model shards, which are distributed among worker

processes (one per GPU) and collaborate using model parallelism.

In turn, each model shard is decomposed into smaller chunks,

called “subgroups”, which are processed in combination with mixed-

precision techniques one by one as follows. During the forward pass

and backward pass, a copy of the FP16 parameters is used on the

GPUs to compute the gradients of each subgroup. As the backward

pass progresses, the gradients are �ushed to host memory and from

there to third-level storage in FP32 format. Then, the update phase

is performed on the CPU to avoid excessive tra�c between the

host memory and GPU memory, which negates the computational

speed-up of GPUs. During the update phase the FP32 model param-

eters, optimizer state and gradients of each subgroup are fetched

from third-level storage to host memory, the CPU-based updates are

performed, and then the updated model parameters and optimizer

state are �ushed back to the third-level storage, while at the same

time an FP16 version is pushed to the GPUs. E�cient pipelining

and asynchronous I/O techniques are used to overlap computations

with transfers between the GPU memory, host memory and third-

level storage using specialized engines such as DeepNVMe [32].

However, this is not enough to alleviate the limited I/O bandwidth

of third-level storage. Furthermore, compute nodes are equipped

with many GPUs that share the same host memory and third-level

storage, resulting in competition for I/O bandwidth that is not

mitigated. Another limitation of state-of-art approaches is the un-

necessary back-and-forth movement between the host memory and

third-level storage due to a suboptimal strategy to handle gradients

and to reuse subgroups already available in the host memory.

Key Insights and Contributions. In this work, we present

MLP-O�oad, a novel approach that aims to alleviate the afore-

mentioned limitations of state-of-the-art o�oading techniques that

make use of third-level storage to increase the overall memory

capacity and I/O bandwidth. Speci�cally, we leverage a key ob-

servation that external storage of HPC systems, e.g., parallel �le

systems (PFS) and object stores, are typically underutilized during

LLM training (except for occasional checkpointing [49]), therefore

they can complement node-local NVMe storage to provide a signif-

icant boost of I/O bandwidth. Combined with concurrency control

to mitigate contention for I/O bandwidth and a better reuse of

cached subgroups from one iteration to another, these ideas enable

MLP-O�oad to achieve a 2.5× speedup over state-of-art approaches.

We summarize the key contributions as follows:

(1) We perform an in-depth characterization of resource utilization

during di�erent phases of training when the optimizer state is

o�oaded to SSDs. In particular, we highlight several fundamen-

tal observations for our proposal: the CPU memory, utilized as

caching bu�ers for asynchronous data transfers, experiences

thrashing at every iteration; the upscaling and o�oading of gra-

dients are redundant; modern PFS capable of delivering several

GB/s worth of parallel bandwidth (e.g. using In�niband) remains

unused; CPU cores remain idle due to slow disk writes despite

overlapping transfers with CPU-based optimizer updates (§ 3.1).
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(2) Based on the above characterization, we propose a series of

design principles: uni�ed multi-level, multi-path asynchronous

o�oading using virtual tiers; optimized virtual tier concurrency

control for multi-path I/O; cache-friendly ordering of model

subgroup processing; and delayed in-place mixed-precision gra-

dient conversion during updates (§ 3.2). These design principles

are complemented by an I/O performance model detailed in § 3.3.

(3) We present MLP-O�oad, an open-source implementation of

the design principles that integrates with existing state-of-the-

art LLM training runtimes such as DeepSpeed and Megatron.

Our implementation insists on low-level optimizations such as

process-exclusive multi-thread-shared locking mechanism in

libaio– an optimized asynchronous POSIX I/O library; and

e�cient non-sequential ordering of asynchronous prefetch and

�ush operations to/from the disk (§ 3.5).

(4) We evaluateMLP-O�oad in a series of experiments in which we

pretrain up to 280B parameters model on 32×A100-40GB GPUs.

Our approach accelerates both backward and update phases

by 13.5× and 2.3×, respectively, and speeds up the end-to-end

training by 2.5× as compared to the state-of-art DeepSpeed (§ 4).

2 Background and Related Work

Data, Pipeline, and Tensor Parallelism. Various parallelism

techniques for data, pipelines, and tensors, have beenwidely adopted

to accelerate the training of large models, such as Convolutional

Neural Networks (CNNs) [52], Deep Learning Recommendation

Models (DLRMs) [50], Large Language Models (LLMs) [51], and

Large VisionModels (LVMs) [16]. Data parallelism accelerates train-

ing by running multiple model replicas, each running forward and

backward passes in parallel with di�erent input mini-batches and

synchronizing at the end of the iteration in the update phase to

combine the patterns learned from all mini-batches. Pipeline [13]

and Tensor [5, 33] parallelism techniques split large models across

GPUs with limited memory capacities. While pipeline parallelism

splits the model vertically by placing a subset of model layers on a

given GPU, tensor parallelism performs horizontal partitioning by

splitting the model across all available GPUs. The combination of

data, pipeline, and tensor-parallelism, often termed “3D parallelism”,

is used to e�ectively scale large-scale training across thousands of

GPUs for CNNs, LVM, LLMs, DLRMs, etc. However, given the ever-

growing large sizes of LLMs and their rapid adoption in various

�elds, optimizations beyond 3D parallelism are required to run in

resource-constrained setups.

ZeRO Redundancy Elimination. State-of-the-art LLM train-

ing runtimes, e.g., PyTorch’s Fully ShardedData-Parallel (FSDP) [53],

Microsoft DeepSpeed’s Zero Redundancy (ZeRO) [29], Colossal-

AI [19], use redundancy elimination techniques to remove redun-

dant parts of the model and optimizer states across data parallel

ranks to minimize GPU memory consumption. To this end, Deep-

Speed, a widely used [34, 45] LLM training runtime, proposes three

stages for eliminating redundancy across data parallel ranks: ZeRO-

1 splits the optimizer states; ZeRO-2 splits both the optimizer states

and gradients; and ZeRO-3 splits optimizer states, gradients, and

model parameters [29]. As illustrated in Figure 2(a), training a %

parameters model on # GPUs with full redundancy elimination

(ZeRO-3) leads to ∼ ⌈O(P)/# ⌉ order of memory savings at the

expense of 1.5× higher communication overheads [29].

The ZeRO-3 technique partitions model states across GPUs, re-

quiring frequent scatter-gather collectives to reconstruct layers

on demand, signi�cantly increasing communication costs. Conse-

quently, ZeRO-3, despite its memory e�ciency, cannot be seam-

lessly combined with pipeline parallelism, which relies on e�-

cient inter-stage communication. Instead, ZeRO-3 employs a hy-

brid model and data parallelism strategy, where training on #

GPUs typically results in # “virtual” data-parallel replicas. Unlike

conventional data parallelism where the model is fully replicated,

these replicas remain virtual because model states are dynamically

fetched and synchronized across GPUs as required.

Mixed Precision Training. Mixed precision training, proposed

by Baidu and Nvidia research [27], is another widely adopted ap-

proach to improve throughput and reduce the memory footprint

in LLM training. This is illustrated in Figure 2(b) in the left dotted

block. Speci�cally, mixed precision uses two di�erent copies of the

model parameters, one in FP16 (or BF16), used to run the forward

and backward passes, and another master copy in high-precision

(FP32), used by the optimizer in the update phase to retain higher

stability [18]. The activations and gradients produced by the for-

ward and backward passes are in half-precision formats, leading to

faster communications and faster computations. The low-precision

FP16 gradients are upscaled to FP32 and used by the optimizer

to perform the update phase. Several real-world LLMs, such as

BLOOM-176B [45], OPT-175B [49], GPT-3 [4], and GLM-130B [47],

are pre-trained using mixed-precision, thereby demonstrating the

stability and e�ciency of the mixed-precision approach.

Sharded Model and Optimizer States Into Subgroups. To

reduce the intermediary memory required during computations,

DeepSpeed’s ZeRO-3 shards the model parameters and optimizer

states of each rank/GPU into subgroups, as depicted in Figure 2(b).

The subgroup sharding technique is unique to the DeepSpeed run-

time and is unavailable on other runtimes such as FSDP or Colossal-

AI. The size of these subgroups," , is user-de�ned and speci�es the

total number of parameters per subgroup. The subgroups are evenly

distributed among the GPUs. When using mixed precision for train-

ing, for each subgroup of" parameters, the forward and backward

passes operate on the FP16 parameters and FP16 gradients, while

the update step operates on the" corresponding FP32 parameters

and FP32 optimizer state. This subgroup-style sharding allows for

e�cient piecewise computation and communication overlaps while

minimizing memory footprint, as explained in ZeRO-In�nity [30].

Optimizer State O�loading. The optimizer state, held in FP32,

is much larger than the model parameters and is only required

during the update step. Thus, in memory-constrained scenarios,

o�oading it to the host memory (and further other multi-level

tiers such as node-local NVMe) is a practical choice. The use of

subgroups further facilitates swapping between the host memory

and other multi-level tiers. This is shown in Figure 2(c). When

optimizer o�oading is enabled, updates are typically performed

on the CPU because (a) GPU memory is typically fully utilized

by FP16 model parameters, and (b) transferring FP32 optimizer
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Figure 5: I/O bandwidth under concur-

rency per subgroup using a local SSD

I/O Bandwidth of Di�erent Third-Level Storage. HPC sys-

tems are not only equipped with node-local SSDs but also external

storage such as parallel �le systems (PFS) and object stores (e.g.

DAOS). Although external storage is shared by all compute nodes,

and therefore they are subject to I/O competition, at a medium scale,

it can provide a signi�cant aggregated I/O bandwidth boost to com-

plement the limited I/O bandwidth of node-local SSDs. To quantify

this opportunity, we measure the raw read and write throughput of

both node-local NVMe storage and remote PFS using microbench-

marks. Remote storage can o�er higher throughput than node-local

NVMe in some cases (e.g., Testbed-2 in Table 1). Additionally, given

that each GPU process independently issues fetch and �ush opera-

tions for its optimizer state subgroups, understanding I/O perfor-

mance under contention is crucial. Figure 4 shows that while overall

read/write throughputs remain constant as the number of concur-

rent processes increases, per-process latency (shown using lines

and minor y-axis) worsens due to contention within the storage

subsystem. This suggests that shared NVMe bandwidth saturation

is a limiting factor, making I/O the primary bottleneck at scale.

I/O Bandwidth under Concurrency during O�loading. Fi-

nally, we analyze the e�ective read/write throughput perceived

by the training runtime when o�oading the optimizer states of

a 40B model to a node-local NVMe. Figure 5 reveals oscillations

in throughput due to runtime memory constraints, which restrict

active subgroups in host memory to three at a time: one prefetched,

one actively updated, and one �ushed back to disk. The slow �ush-

back rate results in cases where the next subgroup is prefetched

before the previous one is fully written, leading to intermittent

spikes in read-throughput. However, the aggregated read and write

throughput remains bottlenecked by NVMe’s write bandwidth, re-

inforcing the I/O limitations observed in prior experiments.

3.2 Design Principles

Uni�ed Multi-level, Multi-path Asynchronous O�loading

using Virtual Tiers. Leveraging local SSDs for o�oading is scal-

able because the SSDs can be leveraged independently using model

parallelism to achieve a high aggregated I/O bandwidth. However,

model subgroups o�oaded to local storage, such as SSDs, intro-

duce high I/O overheads that dramatically slow down the update

phase, as discussed in § 3.1. On the other hand, external storage has

signi�cant potential to complement the limited I/O bandwidth of

node-local SSDs and is typically under-utilized during pretraining

(save for occasional checkpoints) [46]. It is this observation that we

capitalize on to extend existing multi-level o�oading techniques

with support for multi-path I/O at each level. Speci�cally, we unify

all alternative storage (local SSDs, parallel �le systems (PFS), object

stores) into a virtual, third-level tier that can be used to o�oad

model subgroups from the host memory. Then, based on an I/O

performance model (detailed in § 3.3), we assign the subgroups to

the alternative storage tiers proportionally to their I/O bandwidth.

Using this approach, we can parallelize I/O operations such that

slow tiers �nish roughly at the same time as fast tiers because

they store fewer subgroups. This I/O load balancing allows our

approach to avoid any of the tiers becoming a bottleneck, thereby

maximizing the acceleration of I/O operations for the overlapping

with the computations. Although we illustrate this principle for the

third-level tier, it can be generalized to any level (e.g., second-level

tier to combine GPU-CPU or GPU-GPU HBMs, DDR, CXL, etc.).

Optimized Virtual Tier Concurrency Control for Multi-

Path I/O. To enable high scalability for model parallelism, we

allow each worker process (typically attached to a single GPU), to

apply I/O load balancing on alternative storage independently of

other workers. Using this approach, we avoid the need for expen-

sive global synchronization. However, each compute node features

multiple GPUs, which means that multiple processes will compete

for a shared I/O bandwidth to alternative storage tiers. Therefore,

we introduce a lightweight concurrency control strategy at the

node level that allows only one worker process on each compute

node to access a given alternative storage at a time. With this re-

striction of exclusive access per alternative storage, the full I/O

bandwidth is guaranteed to be available to a worker process, which

achieves lower latency (Figure 4) and I/O load balancing. At the

same time, the other worker processes are free to compute up-

dates for prefetched groups using all the available CPU cores, and

use other alternative storage(s) in parallel, resulting in a natural

interleaving that achieves global I/O load balancing. Note that a

worker is not limited to accessing an alternative storage using a

single I/O thread; it can leverage the preferred I/O parallelism of

the alternative storage (e.g., a PFS is faster when using multiple I/O

threads [11]). Furthermore, if the preferred I/O parallelism cannot

be saturated by a single worker, then the alternative storage can be

subdivided further into multiple virtual tiers.

Cache-Friendly Ordering of Model Subgroup Processing.

An important observation during the update phase of adaptive op-

timizers (e.g., ADAM [17]) is that the computations are embarrass-

ingly parallel: each model subgroup has its own set of correspond-

ing parameters, optimizer state and gradients that can be applied
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independently to obtain the new model parameter and optimizer

state. Therefore, the order in which the subgroups are independently

processed is inconsequential and does not impact accuracy or con-

vergence. We exploit this observation to design a cache-friendly

update strategy that leverages subgroups present on fast tiers (host

memory) as much as possible. Speci�cally, in the �rst iteration, we

start processing the subgroups in increasing order of IDs. After

the update phase, the subgroups with a high ID will reside on fast

(cache) tiers, while the subgroups with a low ID will reside on the

slow tiers as they were evicted to slow tiers to make room for the

subgroups with higher ID in the host memory. Then, in the second

iteration, unlike state-of-the-art approaches, we reverse the order of

processing the subgroups. This results in a signi�cant acceleration

of the update phase because a large number of subgroups with a

high ID are already present on the fast tiers, thereby reducing I/O

overheads due to memory thrashing. After the second iteration, the

subgroups with low IDs end up on the fast tiers, which means we

can take advantage of the increasing order again in the third itera-

tion. Thus, we keep alternating between ascending and descending

order of subgroup IDs which maximizes the bene�ts of caching.

Delayed In-place Mixed-Precision Gradient Conversion

during the Update Phase. As mentioned in § 2, o�oading is typ-

ically implemented in combination with mixed-precision training.

In this case, state-of-the-art approaches typically push the FP16 gra-

dients that are computed during the backward pass from the GPU

to the host memory, where they are converted to FP32. From there,

they are �ushed to the third-level virtual tier. However, during the

update phase, each subgroup o�oaded to the third-level virtual tier

needs to be brought back to the host memory. Since the subgroup,

composed of FP32 optimizer states (parameters, momentum, and

variance), becomes even larger because of FP32 gradients, each

fetch operation is slower than in the case when the subgroup only

holds the optimizer state. On the other hand, FP16 to FP32 gradient

conversions on a modern CPU have a high throughput (65 GB/s on

Testbed-1 in Table 1) that is an order of magnitude larger than the

fetch throughput. Thus, we propose an alternative strategy: during

the backward pass, we simply store the FP16 gradients on the host

memory– which anyway needs to reserve enough room for the

FP16 gradients of all subgroups to enable gradient accumulation.

Then, during the update phase, unlike state-of-the-art approaches,

we fetch the subgroup (without FP32 gradients) and instead convert

the FP16 gradients to their FP32 variant on-the-�y (using the same

standardized numeric primitives as DeepSpeed [31, 43]). Thus, we

accelerate both the backward pass (as we eliminate large asynchro-

nous FP32 gradient �ushes that can potentially delay the backward

pass if they do not fully overlap with the computations) and the up-

date phase (because the overhead of in-place FP16 to FP32 gradient

conversion is typically negligible compared with the I/O overhead

of fetching FP32 gradients from slow tiers).

3.3 Performance Model for Subgroup Allocation

To enable load balancing for virtual tiers that can leverage multiple

alternative storage options by aggregating multi-path I/O, we pro-

pose an approach that assigns model subgroups proportional to the

I/O bandwidth of each alternative storage. Speci�cally, we assume

each worker splits its model shard into" equally sized subgroups,

which is typically the case to achieve computational load balancing.

Furthermore, we assume a virtual tier composed of # storage tiers

%8 , where 0 ≤ 8 < # , each with respective I/O bandwidth of �8–

the minimum of read or write throughput. Then, the number of

subgroups)8 allocated to each storage tier %8 can be represented as:

)8 =

⌈

" · �8
∑

#

8=0
�8

⌉

, adjusted such that

#
∑

8=0

)8 = " (1)

The intuition behind Equation 1 is to allocate to each alternative

storage a number of subgroups roughly equal to the contribution

of its I/O bandwidth to the total aggregated I/O bandwidth. This

results in parallel fetches and �ushes of subgroups from di�erent

alternative storage that �nish at roughly the same time. Therefore,

this will reduce the likelihood of computational stalls due to a

straggling alternative storage while the others remain idle.

Initially, �8 for each alternative storage is measured using mi-

crobenchmarks. Then, after the �rst iteration, �8 is adjusted based

on the average observed I/O bandwidth for subgroup �ushes and

fetches. This ensures that our approach adapts to any potential

shifts in I/O bandwidth trends that may a�ect some of the alterna-

tive storage options. For example, a local SSD exclusively owned

during a batch job reservation will not experience I/O bandwidth

shifts. However, a parallel �le system may be under I/O pressure

from di�erent batch jobs owned by di�erent users, in which case an

updated �8 can modify the value of )8 to repartition the subgroups

across di�erent virtual tiers based on their I/O bandwidths.

In addition to faster backward and update phases, the virtual stor-

age tiers in MLP-O�oad also accelerate the checkpointing process

by pre-staging a fraction of optimizer states to persistent storage.

This can be leveraged by multi-tier asynchronous checkpointing

engines such as DataStates-LLM [24] to �ush the remainder of

model and optimizer states from the GPU memory, host memory,

and the non-persistent storage tiers, such as local-disk, during the

immutable forward and backward passes.

3.4 System Composition ofMLP-O�load

We illustrate how to combine the design principles mentioned

above in Figure 6, showing the end-to-end iteration execution of

DeepSpeed’s ZeRO-3 vs our approach. Speci�cally, we assume a

simpli�ed LLM architecture where each model shard on a GPU is

composed of four subgroups denoted by (1 . . . (4. The same pattern

happens in parallel on the other processes when using model par-

allelism. DeepSpeed ZeRO-3 computes the FP16 gradients for each

subgroup during the backward pass, and then �ushes them to the

host memory in the background. On the host, the FP16 gradients

are converted to FP32 and �ushed to the NVMe. Then, during the

update phase, each subgroup (composed of FP32 parameters, mo-

mentum, variance, and gradients) is asynchronously fetched from

the NVMe using a pipeline: as soon as (1 is available in the host

memory, a corresponding parallel multi-core CPU computation is

triggered to update the model and optimizer states. Meanwhile, (2

is fetched to the host memory. When the computation is complete,

the subgroup’s new parameters are fetched on GPU and the opti-

mizer state is �ushed to the SSD after discarding FP32 gradients.

The fetches, updates, and �ushes overlap throughout the update

phase. At the next iteration, the same sequence of patterns repeats.
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orchestrates e�cient host bu�er management through explicit pool-

based allocations for asynchronous fetch/�ush operations, enabling

�ne-grained concurrency and reducing I/O contention when pro-

cesses share a storage tier.

MLP-O�oad can be enabled and con�gured via two JSON key-

value pairs in the DeepSpeed runtime con�guration. During ZeRO-

3 initialization, we instantiate multiple o�oading engine objects

per process, corresponding to the number of storage tiers. Each

o�oading object is assigned a dedicated host bu�er to facilitate

asynchronous prefetching and lazy �ushing. The host bu�er size

is con�gurable based on available host memory, the number of

processes per node, and the number of storage tiers. Additionally,

MLP-O�oad allows user-speci�ed distribution of subgroups across

storage tiers, guided by the performance model (§ 3.3). For exam-

ple, a 2:1 split between /local/ and /remote/ directories ensures

that for every subgroup stored remotely, two are o�oaded to the

local disk. Beyond managing multiple o�oading engines, MLP-

O�oad dynamically predicts subgroup prefetch order and where

to lazily �ush updated subgroups based on the o�oading ratio.

While designed for Megatron-DeepSpeed with ZeRO-3, the core

principles of MLP-O�oad make it extensible to other training run-

times, such as TensorNVMe [37] in Colossal-AI [19] by specifying

multiple DiskOffloader objects to create the virtual third-level

tier, on each of which the corresponding subgroups dictated by our

performance model can be consequently o�oaded.

4 Performance Evaluation

4.1 Methodology

Experimental Setup. We conducted our experiments on Testbed-

1 (ANL JLSE) [2] and Testbed-2 (ALCF Polaris) [3], consisting of

4×H100-80GB and 4×A100-40GB GPUs per node, respectively, out-

lined in Table 1. The ratio of host memory to aggregated GPU

memory for the Testbed-1 and Testbed-2 platforms are 1.6:1 (simi-

lar to AWS p4de.24xlarge) and 3.2:1 respectively (similar to AWS

p5.48xlarge), neither adequate enough to hold the 8:1 optimizer

to model state memory ratio described in ZeRO-Ini�nity [30], com-

pellingNVMe o�oading. Both platforms consist of 2×RAID-mounted

1.6 TB NVMeM2 SSDs for local storage, the read and write through-

puts of which are listed in Table 1. The Testbed-1 nodes feature

2× Intel(R) Xeon(R) Platinum 8468, consisting of 96 CPU cores,

while the Testbed-2 nodes feature 1× AMD EPYC 7543P, consisting

of 32 CPU cores. We use Testbed-1 for small-scale experiments

and Testbed-2 for scalability experiments. In terms of external

storage use as alternative o�oading tiers, Testbed-1 features a

VAST [42] parallel �le system of 1 PB capacity using 4 DNodes,

whose read/write throughputs roughly correspond to speeds of

AWS’s advanced FSX Lustre FS [1]. Testbed-2 is composed of 100 PB

storage using HPE ClusterStor E1000 platform through 160 (OSTs),

with read/write throughputs described in Table 1.

ComparedApproaches. We compareMLP-O�load, illustrated

in Figure 6 (bottom) with DeepSpeed ZeRO-3, which is a prominent

implementation of the latest state-of-art in LLM training and illus-

trated in Figure 6 (top). Speci�cally, DeepSpeed ZeRO-3 supports

NVMe o�oading of the optimizer states, similar to Colossal-AI [19].

We use its asynchronous o�oading engine, i.e., DeepNVMe, which

Table 1: Testbed con�gurations.

Feature ↓ | Testbed → Testbed-1 [2] Testbed-2 [3]

GPUs 4× H100-80GB 4× A100-40GB

Pinned D↔H B/W (GB/s) 55 25

Number of CPUs cores 96 32

Per node host memory (GB) 512 512

NVMe Read | Write thruput (GB/s) 6.9 | 5.3 13.5 | 4.8

Parallel File System (PFS) VAST FS Lustre FS

PFS Read | Write throughput (GB/s) 3.6 | 3.6 6.9 | 13.7

Table 2: Models used for evaluations. #! : Number of layers;

�� : Hidden dimensions; �� : Attention heads.

Model 40B[44] 52B[20] 70B[40] 100B[44] 120B[35] 130B[48] 280B[28]

#! 128 64 80 124 96 70 72

�� 5120 8192 8192 8192 10240 12288 16384

�� 40 64 64 64 80 96 128

overlaps all three operations (fetch, update, �ush) to accelerate the

update phase at the cost of additional host memory required for

asynchronous data movement. Given the fact that the host memory

is exhausted while holding a fraction of subgroups, we consider the

advanced asynchronous engine as a representative baseline.

Models and Dataset. The con�gurations of models used in our

evaluations, which are based on real-world LLM training scenarios,

are summarized in Table 2. We do not consider models smaller

than 40B because their optimizer states are small enough to �t

in the host memory (512 GB). We use a subset of the OSCAR-en

dataset consisting of 79K records, included in the repository of

the Bloom model [45], and use the default LLaMA2 [39] tokenizer

for preprocessing the dataset into tokens. Unless otherwise noted,

similar to the OPT training con�guration [49], we set the default

sequence length to 2048 and microbatch size to 1 to avoid OOM

errors in any con�guration.

Runtime Con�gurations. As discussed in Section 2, Deep-

Speed does not support pipeline parallelism in combination with

ZeRO-3, which is responsible for the sharding of the model and

optimizer states. Therefore, for single-node experiments, we use

data-parallelism with ZeRO-3, which shards the model parameters,

gradients, and optimizer states to �t in the GPU memory. For weak

scalability experiments, we use a combination of tensor-parallelism

(intra-node) and data-parallelism (inter-node) approaches to maxi-

mize performance and memory savings [30, 33].

In each experiment, all the GPUs on the selected node(s) are

utilized, and each GPU is associated uniquely with a single pro-

cess. For all models, local NVMe o�oading is enabled, based on the

asynchronous approach for overlapping fetch, �ush, and update

operations of subgroups. Our approach has additional access to the

PFS. To facilitate prefetching and lazy-�ushing of subgroups for

asynchronous o�oading, a con�gurable number of pinned host

bu�ers are pre-allocated such that the host memory is utilized to

the maximum extent (>90% memory utilization) for all compared

approaches. The size of this host bu�er for asynchronous o�oad-

ing varies between di�erent models because each model reserves a
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Figure 7: Average iteration time break-

down on scaling model sizes.
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Figure 8: Average update throughput ob-

served when scaling model sizes.
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Figure 9: E�ective I/O throughputs for

di�erent model sizes.

di�erent amount of runtime-level bu�ers, such as for gradient accu-

mulation, all-reduce, etc. We refer the reader to ZeRO-O�oad [32],

ZeRO-In�nity [30], and DeepSpeed memory estimator [7] for the

breakdown of GPU/host memory consumed by the runtime.

Throughout our evaluations, we ensure that the aggregated GPU

memory is su�cient to store the following: (1) FP16 model parame-

ters; (2) activation checkpoints generated by the forward pass; and

(3) FP16 gradients of one at least subgroup generated during the

backward pass which is �ushed asynchronously to the gradient ac-

cumulation bu�er residing on the host memory. We also ensure that

the host memory is large enough to hold runtime-level bu�ers (e.g.,

gradient accumulation, all-reduce buckets, etc. [7]), and a minimum

of three subgroups to facilitate asynchronous updates: the previous

subgroup being lazily �ushed to disk, the current subgroup being

updated, and the next subgroup being prefetched from local NVMe.

Although the subgroup sizes do not impact the iteration dura-

tion, convergence, or accuracy as mentioned in [14, 26], smaller

subgroups achieve better I/O and compute overlap of o�oaded

subgroups. Therefore, for all approaches, we use a subgroup size of

100 million trainable parameters as opposed to DeepSpeed’s default

size of 1 billion parameters per subgroup, which allows better load

balancing for our approach. Similar to Turing-NLG 17.2B, GPT-3

175B, BLOOM-176B [45], we used activation checkpointing to re-

duce the GPU memory utilization at the expense of 33% additional

recomputations during the backward pass [30]. This is a popular

choice for training with scarce GPU memory. Nevertheless, our

approach is complementary to activation checkpointing and would

produce similar results without activation checkpointing as well.

Key Performance Metrics. We use the following metrics for

evaluating the aforementioned approaches: (1) average time to

run a single training iteration (broken down by the duration of

the forward pass, backward pass, and update phase); (2) update

throughput (expressed as millions of parameters updated per sec-

ond); (3) e�ective read/write throughput observed while fetching

and �ushing disk-o�oaded subgroups; and (4) distribution of the

optimizer states across di�erent tiers. These metrics are important

to understand the end-to-end performance and scalability of LLM

training using our approach vs. state of art, as well as to highlight

important intermediate steps that in�uence the end-to-end results.

4.2 Results: Model Size Scalability

We �rst measure the iteration time, broken down by forward, back-

ward, and update phase durations for increasing model sizes as

listed in Table 2 on a single 4×H100 node of Testbed-1 (Table 1).

Each experiment runs for 10 iterations, of which the �rst 2 are

warmups, and the average from 8 iterations is reported. We vary

the model size between 40B and 120B such that all FP16 parame-

ters and gradients for a single subgroup �t within the aggregated

320 GB of GPU memory. With increasing model size, the intensity

of o�oading increases as well, thus highlighting the e�ectiveness

of the compared approaches as the o�oading pressure increases

(at 120B parameters, the optimizer state reaches 1.8 TB).

As observed in Figure 7, the iteration duration follows an in-

creasing trend for increasing model sizes (with slight exceptions

for 52B vs. 40B and 120B vs. 100B, as they have fewer transformer

layers but more hidden dimensions). As expected, due to o�oading,

the update phase is the longest, while the forward pass is almost

negligible in comparison. For DeepSpeed ZeRO-3, the backward

pass begins to be noticeable, while our approach reduces it to a

negligible level. We also observe that our approach accelerates the

update phase by up to 2.4×, leading to iterations that are overall

2.7× faster compared with DeepSpeed ZeRO-3.

To further explain these results, we depict in Figure 8 the update

throughput, which for reference is ∼40000M params/s on the GPUs

and ∼ 8000M params/s on the CPUs when the model parameters

and optimizer states are fully available in the GPU and host memory,

respectively. With o�oading the update throughput drops by an

order of magnitude, even on the CPUs, which con�rms that the

bottleneck is not on the compute side, but rather due to the slow

I/O to the NVMe and/or PFS. Furthermore, the update throughput

stays relatively stable for all model sizes (the update throughput

per subgroup remains unchanged, only the number of subgroups

changes for di�erent models). Overall, MLP-O�oad achieves an

update throughput 1.8×–2.4× higher than DeepSpeed ZeRO-3.

4.3 Results: I/O and Storage Tier Load

As mentioned previously, the update throughput is subject to I/O

bottlenecks. Therefore, we discuss next the I/O throughput sus-

tained byMLP-O�oad vs. DeepSpeed ZeRO-3. As opposed to themi-

crobenchmarks discussed in Figure 4, running an end-to-end train-

ing overlaps I/O (asynchronous prefetch and �ush) with computa-

tions, which introduces additional overheads. Speci�cally, the I/O

throughput is computed as 2× BD16A>D?_B8I4_1~C4B/(A403_C8<4 +

FA8C4_C8<4), averaged over all subgroups. The size is doubled be-

cause every subgroup needs to be both read and written. Figure 9

depicts the aggregated I/O throughput of all subgroups for an in-

creasing model size. Interestingly, the DeepSpeed ZeRO-3 approach
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creasing model sizes with # GPUs.
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Figure 13: Average iteration time of dif-

ferent batch sizes for the 40B model.
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Figure 14: Performance ablation on node-

local NVMe.
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Figure 15: Performance ablation on node-

local NVMe and PFS.

demonstrates I/O throughput of ∼ 3.2 GB/s, which is much lower

than the peak write speed (5.3 GB/s) of the NVMe on Testbed-1 (Ta-

ble 1). This is because parallel multi-threaded reads and writes from

all processes create contention on the CPU-NVMe interconnect

(which is PCIe in this case) and on the NVMe storage subsystem.

Conversely, MLP-O�oad alleviates the pressure on the local NVMe

by using a PFS, thus bene�ting from both multi-tier o�oading and

better utilization of individual tiers, ultimately being 2.6× faster.

The e�ective I/O throughput with MLP-O�oad decreases slightly

with increasing model size because smaller fractions of the opti-

mizer states can be cached on the host memory, thereby reducing

the e�ectiveness of caching. However, MLP-O�oad still achieves

∼2× I/O speedup for larger models compared to the DeepSpeed

ZeRO-3 approach.

To explain the impact of multi-tier o�oading, we highlight the

distribution of the optimizer states across the di�erent storage tiers.

A major chunk of the host memory is consumed by the DeepSpeed

runtime for setting up the ZeRO-3 speci�c data structures that con-

sume 250-350 GB of host memory, proportional to the model size,

as reported by DeepSpeed’s memory estimator [7]. The remaining

host memory is used for caching subgroups and asynchronous I/O

operations. Figure 10 depicts the percentage of optimizer states

distributed across the host memory, local NVMe, and the PFS at

every iteration. Unlike MLP-O�oad, DeepSpeed ZeRO-3 experi-

ences cache thrashing on the host bu�ers due to sequential-ordered

subgroup updates and does not utilize the PFS, forcing all opti-

mizer states to be read and written back to local NVMe in each

iteration. The fraction of the optimizer states distributed across the

local NVMe and the PFS con�rm the e�ectiveness of our perfor-

mance model (§ 3.3), showing a 2:1 NVMe to PFS o�oading that is

consistent with the read and write throughputs in Table 1.

4.4 Results: Weak Scalability

Next, we study the weak scalability of MLP-O�oad by varying the

model sizes proportionally to an increasing number of nodes. As

discussed in § 2, DeepSpeed does not implement pipeline paral-

lelism in combination with the sharding of model parameters and

optimizer state. Therefore, we use tensor parallelism across the four

co-located GPUs on the same compute node, and data parallelism

between the compute nodes.

ZeRO-3’s parameter sharding across data-parallel ranks requires

frequent scatter collectives leading to higher communication costs

during forward and backward passes at the expense of memory

savings. Therefore, this scalability study is important to understand

if higher communication costs o�set the gains achieved by MLP-

O�oad in backward and update phases at scale.

For this experiment, we scale up to 8 nodes (32× A100-40GB

GPUs) on Testbed-2 (Table 1). The largest model that �ts within the

aggregated GPU memory in FP16 format is selected from Table 2,

ensuring a proportional increase in model size with node count:

40B (1 node), 70B (2 nodes), 100B (3 nodes), 130B (4 nodes), and

280B (8 nodes). Figure 11 shows that iteration time decreases for

an increasing number of GPUs. In this case, the communication

overheads in forward and backward passes are not as signi�cant

compared to the I/O bottlenecks of o�oaded optimizer state up-

dates due to the fast interconnect between the compute nodes (e.g.,

Slingshot, In�niband) that are typically available on HPC infrastruc-

tures. Furthermore, an increasing node count enables independent

I/O to the local NVMe, which accelerates the subgroup updates.

Consequently,MLP-O�oad achieves up to 2× faster iterations than

DeepSpeed ZeRO-3, even at scale. To explain this trend, we analyze

the update throughputs in Figure 12. As expected, update through-

put scales with increasing resources (I/O bandwidth and CPUs);
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and when correlated with the iteration duration this con�rms that

I/O is still the bottleneck.

In addition to demonstratingMLP-O�oad’s scalability gains over

ZeRO-3 with increasing model sizes, the weak scalability exper-

iments also highlight the cost-e�ectiveness of NVMe-o�oading

with MLP-O�oad as compared to the GPU-only training scenario.

For instance, training the 70B model without o�oading requires the

aggregated memory of ∼80 A100-40GB GPUs [24] and runs a single

iteration in 24s. Conversely, as shown in Figure 11, with NVMe-

based optimizer o�oading, ZeRO-3 can run using 10× fewer GPUs,

but takes 168s per iteration, i.e., 7× slower. In contrast,MLP-O�oad

is only 4.8× slower, thereby achieving a 5× slowdown while using

10× fewer GPUs– yielding a 2× improvement in cost-e�ectiveness

compared to GPU-only training.

4.5 Results: Gradient Accumulation Scalability

We next study the impact of using gradient accumulation, which is

a popular technique [45] to reduce the number of update phases

(and thus the impact of o�oading) by running multiple forward and

backward passes before each update phase. While the number of

iterations does not decrease, it is equivalent to running the training

with larger mini-batches (an alternative that is not possible when

the GPU memory is scarce). The goal is to show that despite the

reduced frequency of the update phase, our approach still delivers a

signi�cant end-to-end speedup compared with the state-of-the-art.

We experimentwith the 40Bmodel running on Testbed-1 (4×H100

GPUs), which can accommodate a mini-batch size of 8 samples, be-

yond which we encounter out-of-memory on GPUs. Consequently,

when running across 4 GPUs in a data-parallel fashion, when we

run an update phase for and increasing number of forward and

backward passes (1–16), the equivalent batch size increases in the

range of 32–512. As observed in Figure 13, even when gradient ac-

cumulation is used to amortize the cost of expensive update phases,

MLP-O�oad still outperforms DeepSpeed ZeRO-3 by at least 40%.

4.6 Results: Ablation Study

In the last set of experiments, we perform ablation studies to under-

stand the impact of each optimization proposed as part of our design

principles (§ 3). We consider three models, i.e., 40B, 70B, and 100B,

which represent small-scale, medium-scale, and large-scale models,

respectively, on Testbed-1. Figure 14 depicts the accumulated impact

(i.e. progressive activation) of each optimization when the optimizer

state is only o�oaded to the node-local NVMe. The approaches

labeled as Enable Caching, Skip Gradients, and Process Atomic R/W

correspond to the design principles discussed in § 3.2: cache-friendly

subgroup reordering, delayed in-place mixed-precision gradient

conversion, and optimized virtual tier concurrency control, respec-

tively. As can be observed, progressive activation of each opti-

mization further reduces the iteration duration, which means each

optimization individually contributes to the speedup, resulting in

up to 1.6× speedup vs. DeepSpeed even without a PFS. Figure 15

depicts the same accumulation of optimizations but with the PFS

active (multi-path). In this case, activating all three optimizations

is equivalent to our approach. Compared with Figure 14, the multi-

path parallel I/O further speeds up the iteration by 1.6×, resulting

in 2.5× faster iterations compared with DeepSpeed ZeRO-3.

5 Conclusions

In this paper, we present a novel technique,MLP-O�oad, and its im-

plementation as a library that can be integratedwith state-of-the-art

LLM runtimes that enable scalable training and �ne-tuning. Speci�-

cally, we target the o�oading of the optimizer state to a multi-level,

multi-path memory and storage hierarchy to accelerate the train-

ing of large LLMs under GPU memory constraints. In this context,

state-of-art approaches su�er from signi�cant I/O bottlenecks with

optimizer state o�oading to storage tiers due to the large size of

the full-precision optimizer states (8× larger than FP16 parameters),

which spill beyond the capacity of the host memory (that is typically

only 2× larger than the aggregated GPU memory) and therefore

need to be o�oaded to tertiary storage tiers (e.g., node-local NVMe

devices), whose I/O bandwidth is orders of magnitude lower. To

reduce these I/O bottlenecks, MLP-O�oad proposes several design

principles, such as multi-level multi-path asynchronous o�oading,

concurrency control for multi-path I/O, cache-friendly subgroup

update reordering, and dynamic in-place mixed-precision gradient

conversion. The design principles are implemented as a modular

extension to DeepSpeed’s o�oading engine. Extensive evaluations

on 40B–280B parameter models demonstrate 2.5× faster training

iterations as compared to DeepSpeed ZeRO-3 for di�erent con-

�gurations at scale. Encouraged by these results, we next plan to

explore parallel I/O paths for next-generation Compute-Express

Link (CXL) memory pools and the integration of MLP-O�oad with

other o�oading runtimes, frameworks, and accelerators. Of partic-

ular interest is a deeper study on the behavior of globally shared

alternative storage tiers under I/O competition, which is the case

of parallel �le systems and object stores. In this case, we plan to

explore how to mitigate predictable �uctuations in I/O bandwidth.
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