
1

Proteus: An Easily Managed
Home-based Health Monitoring Infrastructure
Mengjing Liu, Mohammed Elbadry, Yindong Hua, Zongxing Xie, Suvab Baral, Isac Park, Fan Ye

Abstract—A data collection infrastructure is vital for
generating sufficient amounts and diversity of data necessary
for developing algorithms in home-based health monitoring.
However, the manageability—deployment and operation
efforts—of such an infrastructure has long been overlooked.
Even a small size of a dozen homes may incur enormous
manual efforts on the research team. In this paper, we present
Proteus, an easily managed infrastructure designed to automate
much of the work in deploying and operating such systems. We
develop new components and combine with mature technologies
to minimize the human efforts required. Proteus includes: i)
scalable, continuous deployment, operation and update of devices
with automatic bootstrapping; ii) automatic fault and error
monitoring and recovery with watchdogs and LED feedback,
and complementary edge and cloud storage backups; and iii) an
easy-to-use data-agnostic pipeline for integrating new modalities.
We demonstrate our system’s robustness through different sets
of experiments: 3 sensor nodes running for 24 days sending data
(17.4 Mbps aggregate rate), 10 sensor nodes for 14 days (58 Mbps
aggregate rate), and 32 emulated sensors (419.2 Mbps aggregate
rate). All such experiments have data loss rates less than 1%.
Further we reduce human efforts by 25-fold and code required
for adding new data modality by 25-fold. We also share our
experience and lessons learned during the design, development,
and pilot deployment of Proteus. Our results show that Proteus
is a promising solution for enabling research teams to effectively
manage home-based health monitoring at small to medium sizes.

Index Terms—Application Platform, Device Management,
Connected Health, Home-based Health Monitoring, Data
Collection Infrastructure.

I. INTRODUCTION

Home-based health monitoring has the potential to
revolutionize the way we manage our health [1], [2]. The
continuous collection and analysis of multi-modal sensing data
could lead to early and precise interventions and management
of a broad spectrum of diseases [8], [9], [10]. However, the
development of robust, generalizable algorithms and models
critically depends on the amount and diversity of data from
real homes, far beyond well controlled lab environments
[11]. The lack of a manageable infrastructure that can easily
collect such data from real homes is a fundamental barrier to
practical home-based health monitoring [12].

Mengjing Liu, Mohammed Elbadry, Yindong Hua, Zongxing Xie, Suvab
Baral, Isac Park, and Fan Ye are with the Department of Electrical and
Computer Engineering, Stony Brook Univeristy, New York 11790, United
States (e-mail: {mengjing.liu, Mohammed.Elbadry, yindong.hua, Suvab.Baral,
Isac.Park, zongxing.xie, fan.ye}@stonybrook.edu.

Copyright (c) 2024 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

This work is supported in part by NSF grants 1951880, 2119299.

The manageability in deploying and operating such an
infrastructure is a great challenge, especially for most research
teams of small sizes (e.g., one faculty member plus a few
students). Significant manual efforts and special expertise are
needed throughout all stages of the process: i) configuring
sensor, edge devices in multiple homes, installing data
collection and analytic software to create the testbed, and
constantly updating the algorithms and models running on the
sensor, edge and cloud upon improved software or changed
health conditions; ii) automatic monitoring of the system
status and performance, and timely detection, resolution of
network, device faults and errors to ensure minimal data loss
in 24/7 data collection; and iii) integrating heterogeneous
sensing hardware, modalities with varying data formats and
rates (e.g., from Kbps of activities to tens of Mbps of RF
baseband) which may require separate and distinct engineering
efforts for data streaming, processing, and storage [13].

While there exist a few research infrastructures for health
monitoring purposes (e.g. [5], [14], [4], [15]), they do not con-
sider manageability issues of intensive human efforts required
in deployment (configuring, installing) and operation (up-
dating, troubleshooting), and they support mainly traditional
sensors (e.g. video, wearable devices, ambient sensors such as
temperature and humidity) or sensors for specific diseases (e.g.
breath sensor for asthma monitoring), not easy to extend and
add new modalities. There are works (e.g. [3], [16]) focusing
on clinical data/device management. While they effectively ad-
dress the needs of managing clinical data, they do not consider
the intensive management efforts of devices and codes at the
edge/home and issues in the error-prone home environment
(e.g. network outage, hardware failure) which can result in
significant data loss. Existing data collection or IoT infrastruc-
tures from industry (e.g. KAA [6], Thingspeak [7]) support
new modalities by data-agnostic transportation and storage
utilizing MQTT and HTTPS protocols. However, they mostly
focus on cloud-side features such as data transfer, storage and
analysis. Intensive manual efforts for configuring sensor, edge
devices, and frequent update of algorithms or models needed
for home health-monitoring, are not addressed. Neither do they
consider sufficiently the faults, errors that happen frequently
(e.g. network outage, device faults) in home environments,
causing serious data losses and manual efforts to remedy.

In this paper 1. , we present Proteus, a manageability-
focused data collection infrastructure that minimizes manual
efforts so a small research team can efficiently deploy
and operate longitudinal home-based health monitoring. To

1A portion of this work was published in ACM BCB’23[1] proceedings.



TABLE I: Comparison with existing work, including both IoT platforms (i.e., KAA[6], ThingSpeak[7]) and applications developed on top of IoT
platforms (i.e., SMART-on-FHIR[3], Welcome[4]). Our proposed system (in cyan), Proteus, advances the state of the art (in both categories) by enabling
a comprehensive set of functions as a whole to allow research teams to effectively manage home-based health monitoring.

System SMART-on-FHIR[3] Welcome [4] SPHERE [5] KAA [6] ThingSpeak [7] Proteus
In-home ✗ ✓ ✓ ✓ ✓ ✓

Automatic Installation ✗ ✗ ✗ ✗ ✗ ✓
Automatic Connectivity ✗ ✗ ✗ ✗ ✗ ✓

OTA Deployment/Update ✗ ✗ ✓ ✗ ✗ ✓
Edge Status Monitoring ✗ ✗ ✓ ✓ ✓ ✓

Watchdog on Edge/Cloud ✗ ✗ ✗ ✗ ✗ ✓
Complementary Edge Storage ✗ ✗ ✗ ✗ ✗ ✓

Data-agnostic Pipeline ✓ ✗ ✓ ✓ ✓ ✓
End-to-end Data Loss — — — — — < 1%
End-to-end Latency — — — — — < 3.65 seconds

Reduction in Manufacturing Time — — — — — 25-fold
1 For cells with a ’-’, it means that the corresponding results are not provided in the respective paper.

minimize human efforts, we develop new design components,
and identify, combine mature technology pieces, engineering
practices to optimize the overall workflow, including: i) a scal-
able, continuous deployment and management pipeline with
IoT device management solution (DMS) for remote, batch de-
ployment and frequent update, automated node registration and
networking setup upon first boot, and automated connection on
edge; ii) automatic monitoring and watchdog mechanisms on
edge for timely recovery from errors, and complementary edge
storage backup for resilience against network failures; and iii)
a data-agnostic pipeline that uses publish-subscribe (pub-sub)
to transfer heterogeneous data formats to the cloud and store
the data in database appropriately. In addition, we share our
experience and lessons learned during its development, pilot
deployment and evaluation, which are useful for improving
the manageability of other similar infrastructures.

Preliminary experiences show that we can achieve 25-fold
reduction in manual configuration of 7 sensor nodes from
420 minutes to 17 minutes. A small scale stress test shows
that Proteus works reliably with 32 simulated sensor nodes,
collecting data at an aggregate rate of 419.2 Mbps, with
negligible data loss. The infrastructure we deploy in a
one-bedroom, one-bathroom simulated home environment
runs 3 real sensor nodes continuously for 40 days, and 10
real sensor nodes for 2 weeks without glitches. Despite many
faults and errors (e.g. 6 sensor nodes running for 1 month, 2
network outages, 11 low data transfer rates, lasting 2 hours in
total ), the watchdog mechanisms can always quickly restore
the normal operation, leading to minimal data loss (< 1%).
Results show that greatly improved manageability of Proteus
enables small research teams to efficiently deploy and operate
longitudinal, continuous data collection systems.

We summarize our contributions as follows:

• We identify three sources of intensive manual efforts in
manageability challenges for deploying and operating
longitudinal home-based health monitoring: i) configur-
ing sensor nodes and edge servers, installing and updating
their software and analytics; ii) detecting, resolving
network and hardware faults and errors to ensure minimal
data loss; iii) integrating new, unforeseen data modalities.

• We design new components and identify, combine
mature techniques to minimize human efforts for greatly
improved manageability for small research teams to

deploy and operate such an infrastructure, including i)
automated, continuous deployment, operation and update
of the infrastructure with automatic self-bootstrapping;
ii) automatic monitoring and recovery with watchdogs
and complementary edge storage, requiring minimal
manual efforts while ensuring minimal data loss; and
iii) easy integration of new, unforeseen modalities with
a data-agnostic pipeline.

• We have deployed the infrastructure in a simulated home
environment. We find the manual configuring efforts are
cut down by 25 fold, and lines of code for new modality
integration is cut down by 25 fold. 10 real sensor nodes
run continuously for 2 weeks without any errors, and 32
simulated nodes collecting data at an aggregate rate of
419.2 Mbps have negligible losses.

• We share our experience and lessons learned during the
design, development, and pilot deployment of Proteus,
which includes four aspects: i) data loss within sensor
nodes before network delivery; ii) unexpected issues on
sensor nodes due to imperfect hardware and software; iii)
out of order data written into database; iv) Instructions
for ADL data collection in a lab.

II. BACKGROUND AND RELATED WORK

We identify existing techniques that are useful for
cutting down manual efforts, including Enterprise Device
Management Solutions (DMS) for remote, continuous
deployment and management of codes and models at scale,
containers and microservices to enable convenient duplicates
on edge and cloud, and pub sub communication to support
robust, asynchronous data transmission and easy integration
of new modalities. Below we provide a brief description of
these technologies that are critical for designing Proteus.

Enterprise Device Management Solutions. There exist
enterprise solutions [17] for IoT device management and field
deployment, like Amazon’s AWS Greengrass IoT, Azure IoT
device Management, which provide services like monitoring
node status remotely with a cloud dashboard, pushing updates
to remote nodes, containerized deployment of codes, version
control, watchdog services for automatic quick-recovery,
and etc. We leverage AWS Greengrass in Proteus for status
monitoring and remote update of sensors and edge servers.

2



Containers and Microservices. Containerizing the code
(e.g., docker) is a popular cloud technology that packages
a full userspace environment with complex library, code
dependencies so it can be accurately and easily duplicated in
large quantities with simple scripts in forms of microservices.
We leverage them to facilitate duplicate deployment of code
and models at scale at the edge and cloud.

Pub-Sub Communication. A pub-sub transport provides
robust asynchronous communication where data is cached
and resent under intermittent connections, and flexibility to
support data of different formats/content as opaque loads
tagged with different topics. There exist mature solutions for
constrained nodes at edge (e.g., MQTT [18]). With Quality
of Service (QoS) 2, MQTT guarantees once and only once
data delivery over network. An MQTT application typically
consists of three main components: publishers, subscribers,
and a broker. Publishers send data to the broker, which
receives and stores the data, and then sends it to subscribers
based on matching topic subscriptions. Additionally, there are
pub sub microservices to share data among processes (e.g.,
Redis [19]). We leverage them for data-agnostic transferring
pipeline in Proteus to reduce modality integration efforts.

Related Work. While these technologies help with
manageability of the intended infrastructure, building and
running such a system still requires significant efforts in an
error-prone environment with imperfect embedded devices.
There is not enough discussion and experience sharing about
minimizing manual efforts for manageability of such systems.
We categorize and compare the related work in Table I.

Home-based data collection infrastructure has been created,
but not focused on manageability. Spatial Data infrastructures
emphasize large scale data integration and search from existing
geospatial resources without considering reducing manual
efforts of the research team [20]. Advantech, in collaboration
with Microsoft, built a WISE-Cloud platform that integrates
IoT software and a cloud platform to provide services to
industries, e.g., seamless sensor information collection,
remote management of devices, and big data analytics, which
forms an enterprise solution not suitable for small teams
[21]. VitalCore [16] has developed an analytics and support
dashboard and eliminated the tall pipeline of reading HL7
format health data. Multi-modal sensor infrastructure [5]
supports various sets of data sent to the cloud, but does not
handle edge computing, or maintaining units in the field.
[3] introduces a generalized multi-site and multi-modality
cloud infrastructure for clinical data management which
establishes a standardized and secure data repository along
with a user-friendly graphical user interface. However, it is
important to note that this work is not specifically designed for
home-based health monitoring, thus intensive human efforts
for installing, monitoring devices and remedy on failures
(e.g. network outage, hardware failures) which can easily
occur in home environments are not considered. Furthermore,
the paper does not provide a quantitative estimation of
the infrastructure’s robustness and efficiency. WELCOME
[4] proposes a integrated care platform using wearable
sensing and smart cloud computing to monitor and manage
patient’s conditions. But they don’t consider the intensive

management efforts of such a big, complex infrastructure in
home environments. Many such data collection works could
use Proteus to reduce manual efforts for greatly improved
manageability (e.g., Parkinson data collection [22]).

There are also existing IoT platforms from industry
(KAA [6], Thingspeak [7]), which support multi-modal data
transportation with MQTT or HTTPS protocols, and various
data analysis and visualization tools on cloud. However, they
do not consider manual efforts in configuring, installing indi-
vidual sensor, edge devices, and detecting, troubleshooting for
faults, errors (e.g. network outage, device faults) in edge en-
vironments, which are fundamental barriers for small research
teams to conduct longitudinal home-based health monitoring.

III. SYSTEM DESIGN

A. Goals and Assumptions

1) Goals: The goals of our infrastructure design are to
minimize manual efforts of a research team in different stages:
i) deploying the infrastructure for initial setup and continuous
operating for data collection and analysis. Even a dozen homes
may incur significant efforts on a research team in installing,
configuring sensors, edge devices and their software, frequent
updating of their algorithms and models, and continuous
monitoring of the system performance; ii) detecting network,
device faults and errors, and recovering timely to facilitate
longtime, continuous running with minimum data loss.
Hardware sensors, embedded systems, and home networks are
generally imperfect; unforeseeable crashes, faults and errors
always occur in the field; and iii) coding work on the pipeline
to integrate multiple, possibly unforeseen types of sensors
(e.g., base band radio data) for health monitoring needs.

2) Assumptions: We make the following assumptions: i)
there exists sufficient wireless connection to the Internet at
homes to handle the data throughput; ii) most of the data
to be collected are time series and events (e.g., vital signs,
activities with timestamps) that can be stored in relational and
time series databases (e.g., MySQL, InfluxDB); and iii) for
certain sensitive data, the user may prefer storage, processing
locally on edge servers, not cloud.

B. System Overview

In this section, we first describe the 3-layer framework
of Proteus including the data path and control path of the
pipeline. We then provide a comprehensive description of the
efforts required to deploy and operate the infrastructure, and
our design to minimize such efforts.

Figure 1 shows the three-layer structure of Proteus and
it data/control paths. In each home (i.e., edge), embedded
systems (e.g., Raspberry Pi’s) gather data directly from
connected sensors (e.g., Ultra-Wide Band (UWB) radios, or
Neulog sensors via USB), and send data through the home
WiFi to an edge server. The edge server, a data transfer
gateway, aggregates data from all sensor nodes in one home,
pushes data to the cloud. It temporarily stores the data in a
local database when the Internet is disconnected, and resends
new incoming data upon reconnection. Sensitive data not
allowed to leave the home is also stored locally. Further,

3



Sensors

Home
WIFI

Edge/home

Edge server/ Gateway

initialization
Data Type 
Interface

Raspberry Pi

Sensor node

Edge storage 
backup

Analysis/
models

Edge MQTT Broker

Cloud

MQTT

Time 
series 

Database

Relational 
Database

Secure Cloud

Internet 

MQTT

Database Handler

Internal 
Secure Network

Cloud MQTT Broker

DMZ Microservices

Bootstrap

AWS 
Greengrass

Container

IOT DMS

MQTT

Redis

Control path Data path watchdog monitoring

UWB

Fig. 1: Proteus Design Overview. In each home, there are multiple Raspberry
Pi’s connected to sensors. They use MQTT to publish readings to an Edge
Server Gateway, which then aggregates the data and sends it to the cloud
MQTT Broker which stores it in databases appropriately. Both edge and cloud
have watchdogs, cloud monitoring and OTA (Over the Air) update capabilities.

analytic algorithms and machine learning models can be
deployed on the edge server, enabling edge processing when-
ever needed. After data is sent to a cloud MQTT broker in a
DMZ (Demilitarized Zone facing public Internet and blocking
potential malicious traffic), some microservices receive and
push the data to appropriate databases (either time-series or
relational) in the secure cloud behind DMZ. The control path
consists of two parts: i) IoT DMS to remotely deploy and
update containerized codes and models on edge, sensor nodes,
including an automatic bootstrap mechanism to minimize
configuration efforts (e.g. automatic network configuration on
boot). ii) System-wide monitoring and watchdogs to monitor
system status and performance to ensure timely detection and
recovery from faults, errors (e.g. network outage).

We divide our design into three parts: i) Automated
and Continuous Deployment to minimize human efforts in
the setup of the infrastructure, which enables large-scale
deployment for small research teams; ii) Maintenance
to monitor system performance, detect and restore from
unexpected faults, error automatically, which ensures the
system can operate seamlessly over an extended period, even
in error-prone environments; and iii) Data-agnostic Pipeline
to support easy integration of new modalities, allowing for
the collection of multi-modal data to meet comprehensive
research needs. We roughly estimate the amount of work
required for each part in minutes or LOC, which serves a
ballpark figure but not accurate description.

C. Automated and Continuous Deployment

The deployment of the infrastructure can be divided into
three phases: i) Installation which entails installing and
configuring each component (operating ssytem, software
and hardware on sensor/edge, and software on the cloud);

ii) Connectivity where the sensor nodes communicate with
the edge server and with the cloud automatically with little
manual intervention. iii) OTA Deployment and Update of
algorithms and models on edge upon improved software or
changed health conditions. Below, we describe each stage in
detail and qualitatively analyze the manpower required for
each part, and reduction from our design.

1) Installation: Manually installing operating systems and
software (e.g. Docker for containerized code, software for
LED control and WiFi configuration, etc.), or setting up the
environment for an algorithm (especially a deep learning
model) for embedded systems, are all laborious. We estimate
that it takes an expert familiar with embedded systems 10
minutes to set up a sensor node. Instead of repeating such
manual effort for every single sensor node, we duplicate them
based on a “prep” master image with all the needed packages
using a flash cloning machine, which costs only 3 minutes
to duplicate 7 units in a batch. When the number of sensor
nodes scales up, the time for packaging one unit is amortized
from 10 minutes to 3

7 minutes, a 23-fold reduction.
2) Connectivity: After installation, we need to configure

the network settings of sensor devices so they can find the
IP of edge server and establish pub/sub connections for data
transmission. We reduce 5 times on configuration time by
i) Using an automated WiFi set up app for the embedded
systems of sensor devices to avoid manual IP configuration;
ii) Dynamic Edge Server Connection where sensor nodes find
edge server IP automatically and dynamically by querying a
backend database.

WiFi Setup. Setting up WiFi connection for embedded
systems (e.g., Raspberry Pi’s) in the deployment time
is cumbersome, because they typically come without
input/output devices that allow for direct interaction. To ease
WiFi setup, the “prep” image is configured to open a WiFi
portal, so that we can easily use a mobile app to connect to the
WiFi portal and send over the WiFi identifier and password
to embedded systems of sensor nodes. The edge server is
usually a laptop or desktop with a GUI and keyboard, and
only one edge server is required per home, thus the effort to
configure network on the edge server is negligible.

We estimate manually connecting each sensor node takes 5
minutes, and with our utility it takes 1 minute, thus reducing
setup time on 10 nodes from 50 minutes to 10 minutes
(5-fold reduction).

Dynamic Edge Server Connection. To establish pub sub
connection between the sensor nodes and edge server, the only
information needed is the IP address of the broker, which is
located in the edge server. Manually configuring IP addresses
is labor-intensive and impractical due to frequent IP address
changes, while static IP maintenance is difficult to scale. We
eliminate such manual effort with a dynamic IP discovery
mechanism. To achieve that, we create a lookup table in the
cloud relational database to associate the edge server of each
home with its MAC address, which is generally considered to
be static. To establish pub sub connection, the sensor nodes
only need to query the relational database to get IP address of
the broker in the corresponding home. It takes 1 minute to add
an entry in the cloud relational database to associate the edge

4



server of one home with its MAC address. In addition, we con-
figure the home ID of the home where the sensor is deployed in
the “prep” image for record, which takes 1 minute per home.

We estimate manually entering the IP address for each
sensor node takes 1 minute, thus 10 minutes for 10 nodes.
However, when the IP address changes, we have to be
physically present in that home to enter the new IP address;
the travel to and back from that home can take minutes
or even hours, a prohibitively high cost that we avoid by
automatic discovery. By combining the easy setup utility
and dynamic edge server connection, 10 sensor nodes in
one home can be connected within 12 minutes (10 minutes
for setting up WiFi connections for 10 nodes, 1 minute for
configuring home ID in ”prep” image, 1 minute for recording
edge server MAC address in relational database). Thus the
reduction easily approaches two orders of magnitude.

3) OTA deployment and Update: Deploying code (e.g.,
algorithms and models) across tens to hundreds of sensors and
edge devices is labor-intensive. The workload is compounded
by constant code update on sensors and edge upon bug fixes,
software improvements, or changing health conditions. We
estimate it takes 2-3 minutes for an expert to manually deploy
or update code on a sensor node (including remote login,
downloading and running the code). A mere 10 such updates
on 10 nodes would easily take away 3-5 hours from an expert
who could focus on more productive work.

To alleviate such manual efforts, we build on enterprise
DMS (e.g., AWS Greengrass) which has a dashboard to easily
deploy and update code on many sensor nodes and edge
servers via a few clicks. Deployment or one OTA update on 10
sensor nodes can be finished in 1 minute (30-fold reduction).

Self-Registration However, for a sensor device to be
managed by a DMS, it needs to register and obtain its unique
ID from the DMS. Only after registration can we use the
DMS to deploy and update their software in the field (e.g.,
deploying new models). We estimate it can take up to 3
minutes for an expert to register a sensor device on the DMS.

We develop an automatic self-registration script, where
upon the first boot, the script generates a unique ID for the
edge device, registers the device to the DMS, and creates
a record in our relational database (including its unique
ID and the home ID) for subsequent tracking with the
home ID stored in the “prep” image beforehand. Then the
self-registration of dozens nodes in one home can be done in
parallel automatically on first boot without any manual efforts,
instead of 3 minutes per unit sequentially by manual efforts.

With our self-registration on boot and OTA update with
enterprise DMS, we can deploy and update code for 10 times
on many sensor nodes in parallel within 11 minutes (1 minute
to deploy code, 10 minutes to update code with DMS for 10
times) (30-fold reduction).

D. Maintenance
Our system has multiple embedded devices and multi-hop

network transport. Many problems (e.g. network interruption,
accidental unplugging of sensors, hardware failures) may oc-
cur in a home environment, resulting in critical data loss. Con-
tinuous monitoring of system status and timely recovery on

faults and errors are mandatory for seamless operation of the
infrastructure. Although software such as AWS Greengrass and
PM2 provides dashboard for remote monitoring of device sta-
tus and watchdogs to restart programs if they exit abnormally,
they do not provide detailed per-device performance metrics
(e.g. data transfer rate per hop) which are significant for gain-
ing more insights of system performance and troubleshoot-
ing. Furthermore, when such application level restart cannot
bring the system back, more action is required. Many issues
caused by buggy hardware, software (e.g., some Pi nodes have
glitches in network adaptors and/or stacks) can be solved by
rebooting the device. But manual watching for such problems
is impossible and timely rebooting must be automated.

Thus, we design watchdogs combined with LED chipsets
for automatic monitoring and recovery to detect, notify (with
different LED lighting modes) and remedy on i) network
issues and ii) hardware issues in time to ensure seamless
operation of the infrastructure.

Network Issues. We have a local database on the edge
server to temporarily store data when Internet is disconnected.
However, there are network issues on sensor nodes that can
cause data loss before data is transferred to the edge server,
requiring extra efforts to operate correctly.

Considering network status on sensor nodes is not stable
and can cause critical data loss within sensor, it is important to
monitor if abnormal network issues (e.g. network outage, low
data transfer rates) happen. Thus, we identify two key metrics
to monitor sensor nodes: memory usage and publisher queue
size over time, which can reflect data transfer rates and reveal
abnormal network issues occurring (see details in Section IV).

Due to the resiliency of MQTT pub sub transfers, we only
address network issues if they persist for an extended period
of time or cause problems that require urgent intervention
(e.g. memory is almost exhausted due to low data transfer
rates). We monitor the network connection, notify users with
an LED light pattern (blue light) and reboot the device to
recover if the network outage lasts longer than a threshold.
For low data transfer rates, we monitor the publisher queue
size and reboot the device when publisher queue reaches the
maximum limit (configured corresponding to memory limit)
and data transfer rate remains low within a time window.

Hardware Failures. Multiple hardware failures (sensors
being unplugged, power supply failure, file system corruption
and edge server going offline) can happen on edge, requiring
mandatory human operations. We integrate the embedded
system with an LED chipset whose lighting modes can indicate
the sensor states, aiding non-expert users and the research team
to conduct troubleshoot and remedy on errors without physical
travel. The states and corresponding recoveries are i) Green:
the sensor device is running normally, no operation required;
ii) Red: the embedded system does not detect the connected
sensor and the sensor needs to be re-plugged. iii) Flashing:
edge server going offline. We indicate different reasons of edge
server going offline with different flashing colors for details:
iii-i) Yellow flashing: the sensor node can not discover the edge
server MAC address, requiring to record edge server MAC in
relational database. iii-ii) Blue flashing: the sensor node can
not discover the edge server IP address, requiring to connect

5



edge server to home WiFi or reboot it if it is unresponsive. It
is possible that edge servers (e.g. laptops or desktops) require
rebooting after long time continuous running. iii-iii) Red
flashing: the sensor node can not connect to the broker on
the edge server, requiring to reboot the edge server. iv) LED
is off: file system corruption, requiring OS image reflash for
recovery. v) A power light off on sensor nodes indicates a
power failure and requires the power supply to be re-plugged.

More events can be supported by additional lighting
patterns of the LEDs. Compared to having to read logs to
analyze the problem, which is cumbersome, and feasible only
by the research team, LED feedback offers an easy, direct
visual means for a few most common problems, allowing
even non-expert users to help the research team troubleshoot
remotely (e.g., via phone calls).

Combined with our monitoring (metrics and LED feedback)
and watchdog mechanism, we eliminate the operational time
required for seamlessly recovery from errors (e.g. 5 minutes
reading logs to identify and act on each error). We present
more description on unexpected issues on sensor nodes in
Section IV.

E. Data-agnostic pipeline

The utilization of heterogeneous sensing devices and
modalities is essential to meet comprehensive research needs
and effectively monitor home health. However, it is non-trivial
to integrate into the infrastructure the heterogeneous sensing
modalities, which are typically of varying data rates. While
data transmission over the network independent of the data
type can be easily achieved with pub sub transportation,
extra effort is needed to deal with storage of data from
heterogeneous sensing modalities to facilitate subsequent data
analysis. We design interfaces for data types to minimize the
required coding effort.

Interface for data types. When adding a new sensor
modality, the developer will need to update code for streaming
data from the sensor (according to respective libraries), and
passing the opaque, tagged data in the format they wish to
store in the database. Two categories of metadata are defined
to accommodate the new data type: i) database type and
name, which instructs the pipeline the type of the database
(i.e. time-series, relational) and name of database to store data
within; ii) tags (i.e., topics) to store each respective field (e.g.
“baseband timestamp” indicates two tags to store baseband
data field and timestamp field of when the data is generated)
appropriately within the database. We use the database tags
as topics in pub sub transportation, so only microservices
subscribing on those topics for respective databases receive
the corresponding data.

With our data-agnostic pipeline, only 4-5 LOC are needed
to parse the data from the sensor (2-3 LOC with appropriate
libraries) and pass it to our API (2 LOC, with one defining
metadata and the other calling the API).

To summarize, Proteus minimizes the manual efforts
imposed on small research teams to deploy and operate
home-based data collection infrastructure. To set up, the team
only needs a couple steps. These include: 1) configuring the

home ID in a ”prep” master image, registering the home ID
and MAC address of the edge server in the cloud; 2) setting
up sensor nodes and edge servers using the “prep” image,
and connecting the sensor nodes (using a mobile app) and
edge servers to the home WiFi network.

To incorporate a new modality, one uses an existing or
develops a new driver to stream data from the sensor to
the embedded system, then defines a data type interface for
the MQTT pub/sub transport and database storage on the
edge and cloud. These manageability features automate lots
of manual labor, saving huge amounts of efforts for small
research teams in the long run.

For home residents, the only effort required is simple
actions (e.g., power off then on to reboot) to address issues
based on the LED light patterns, or notify the research team
of the patterns, all straightforward for non-experts. Although
some manual intervention by the team may be indispensable,
we empower non-expert residents to resolve most common
faults (e.g., network outages, memory leak thus “dead” sensor
nodes) with simple actions. This relieves researchers from the
mundane yet constant burden of resolving frequent problems
in home environments with error-prone embedded systems.

IV. EXPERIENCE AND LESSONS LEARNED

We present experiences and lessons during the design,
development, and pilot deployment of the infrastructure, and
hope they will gain attention from the community and inspire
future research on continuous and longitudinal home health
monitoring data collection.

Data loss within sensor nodes before network delivery.
Initially, we anticipated no data loss with MQTT that guaran-
tees once and exactly once data delivery through the network
at QOS level 2, based on a four way handshake protocol [23].
Our observations were found to contradicting to what was
initially hypothesized. Such contradicting phenomenon
happen when data publishing fails due to network issues,
during which the data will be kept in the publisher queue in
the sensor node memory, waiting to be re-published until the
publishing (i.e., four-way handshake) finishes successfully.
While new data keeps coming in, data piles up in the queue.
Once the maximum queue size is reached, new data cannot be
appended in the queue and are dropped. Thus data loss still
happens inside the node before data is sent over the network.
Without any limit on the queue size, in extreme cases (e.g.,
extended network outage), we observed the node could run
out of memory. A size limit on the publisher queue is needed
to avoid it consuming all the memory. Our lesson is that data
loss must be considered end-to-end, not only over networks.

To prevent data loss in such case, we design two distinct
solutions on the sensor node and edge server based on their
respective characteristics. On the edge server, the publisher
queue accumulates primarily due to poor network connectivity
to the cloud. Thus, we design edge database as backup. In
contrast, the primary cause of queue buildup on sensor nodes
is the low data transfer rate due to imperfect hardware and
software, and the only solution is to restart the Pi node.
Detailed solutions for each are provided below respectively.

6



On the edge server, we have a local database for temporary
storage. When the data upload to the cloud fails, data will be
stored on the local database, and resent the new coming data
when the network resumes. We use the publisher queue size
to indicate the status of the network transfer from the edge
server to the cloud. The smaller the real time publisher queue
size, the better the network transmission status. Let Q denote
the maximum publisher queue size. The real time publisher
queue size is q. We empirically set two thresholds x=0.3 and
y=0.8, meeting the inequality expression 0 < x < y < 1. If
q reaches Q×y, we write new data to local database, while
keeping sending data already in the queue until q drops under
Q× x. Thus the queue size will not continue to grow once
the higher threshold is reached. If q<Q×x, we stop writing
new data to the local database, and append them only to the
queue for publishing. This continues as long as q fluctuates
between the two thresholds. This design ensures queue size
never exceeds Q×y, and once reaching Q×y, it will continue
to drain until to a lower mark Q×x.

On sensor nodes, we observed persistent low data transfer
rate caused by some glitches or defects in the Pi node
network adaptor and stack. When this happens, data drains
much slower than it comes in, and eventually the queue will
be filled up, and the only solution is to reboot the Pi node.
We set up a watchdog that monitors the data transfer rate
when the publisher queue is full. If the data transfer rate is
consistently less than a threshold in a 10-min time window,
the watchdog reboots the sensor node. If the data rate is
high enough, the queue will drain gradually thus no need for
rebooting. During rebooting (about 40 seconds), data may be
lost briefly before it is again inserted into the queue.

Through our methods, we minimize data loss within sensor
nodes and edge servers before network delivery.

Unexpected Issues on Sensor Nodes. We observe some is-
sues on sensor nodes especially with Raspberry Pi’s. We hope
that these experiences will save efforts for future researchers
dealing with commodity hardware. i) When the WiFi router
is disconnected for a period of time and then restored, the
Raspberry Pi cannot automatically reconnect to the WiFi. The
OS “believes” that the network is unreachable after a period
of disconnection. We have to reboot the operating system so
it can reconnect to the network. ii) Raspberry Pis’ hardware
quality can be really inconsistent. Some are good, Some
can have questionable hardware. Watchdogs are necessary to
ensure their operations are normal. iii) Network throughput on
a Raspberry Pi can be erratic. It sometimes gets very low and
requires a reboot to recover. The low rate can have several
causes such as high CPU/memory load, network congestion,
low disk space, file system corruption, etc. Glitches or
defects in hardware and operating systems are also possible
causes. It is important to prepare for such unexpected faults
happening where normally we would not expect, and have
extra mechanisms (e.g., watchdogs) for recovery.

Out of Order Data Write into Database. On the cloud,
we initially used a thread pool to write sensor data into
InfluxDB database. Each thread is free to take and write any
data received by the cloud broker and transferred by Redis.
We found that that data written into the database can be out of

order. With 2 million data frames, about 7% in a test were out
of order. In the case of time series health monitoring, such out
of order data frames can cause incorrect health interpretation
and must be reordered. What’s more, the reading and analysis
may happen many times. Thus lot resorting overhead is paid
reading large amount of data, and it is better to ensure correct
order in writing. As we dig deeper, we found that more than
one parallel thread might be writing data from the same
sensor, causing out of order writing. We modified the thread
scheduling such that at most one thread handles the writing
of data from each sensor. Experiments showed this solved the
problem. We also found that the data received by the broker
could be out of order, but the probability was really low
(among 5.8 million frames, only 16 out of order, less than
0.001%). Thus, we consider this harmless and negligible.

Instructions for ADL data collection in a lab. Conducting
self-assessment at home can significantly reduce the need
for patients or elderly individuals to frequently visit the
hospital. One effective way to gauge a patient’s health status
is by evaluating their performance in various Activities of
Daily Living (ADLs), which can provide insights into their
muscle strength, body coordination, and more. Activities of
Daily Living reflect the body strength, coordination and can
provide insights on the health status of people. As a use case
of Proteus, we have designed an IRB protocol for patients
to conduct a series of guided activities in a simulated home
environment. Given the physical, cognitive challenges patient
may face, we have developed a mobile app (Figure 2) to
guide them through ADLs, while reducing cognitive strain.
We work with users with different health conditions to get
their feedback on cognitive differences and design the app to
include: i) Room-by-Room Guidance: Activities are organized
on a room-by-room basis. Users are given instructions for all
activities within one room before being guided to the next,
minimizing the need to move back and forth between rooms.
ii) Overview Page: Each room has an overview page that
provides a brief outline of the activities to be completed there,
giving users a general idea of what to expect. iii) Detailed
Instructions: For each activity, the app displays written
descriptions on the screen, complemented by video and audio
instructions to enhance understanding and ease of use. This
app is intended as a proof of concept for self guided data
collection, and we plan to generalize and further extend it to
accommodate other use cases for data collection of different
populations, in both simulated and real home environments.

V. EVALUATION

We implement our infrastructure’s cloud components on a
HIPPA-compliant data center using standard virtual machines
running Red Hat Enterprise Linux 8.4.1. For each sensor
node, we use a commodity Raspberry Pi 3B+ connecting a
Ultra-Wide Band (UWB) radio sensor (5.8 Mbps data rate of
baseband frames) and a LED chipset. We take gaming laptops
(Intel Core i7, 16GB RAM, 1 GPU, 512 GB hard drive) as
edge servers. We deploy one MQTT broker on the edge server
to aggregate data from all sensors per home, and another in
cloud for all homes. We leverage AWS Greengrass to control

7



(a) Overview page of all activities in
kitchen.

(b) Instruction of one activity in
kitchen.

Fig. 2: Screenshots of the APP. For each activity, we provide written
descriptions on the screen, complemented by illustrative video and audio
instructions so participants can easily follow. For the video instructions,
we pre-record videos as examples of the corresponding activities to guide
participants and reduce potential cognitive stress.

Edge Server
Sensor Node

Raspberry Pi

UWB Radar

LED Chipset

Fig. 3: Each home has a gaming laptop based edge server and multiple
sensor nodes each consisting of a Raspberry pi, UWB sensor and LED
chipset. The Raspberry Pi reads data from the UWB sensor and publishes
it to an edge server using MQTT pub-sub. The LED chipset indicates the
sensor states through different lighting modes, helping both non-expert users
and the research team to troubleshoot and resolve issues remotely, without
the need for physical presence. The edge server collects data from all sensor
nodes and then forwards it to the cloud server by MQTT.

the sensor/edge devices and push containerized updates to
them from a cloud dashboard. We deploy InfluxDB as our
time-series database because of its fast read (427 Mbps, 74
times faster than sensor data rate) and write (348 Mbps, 60
times faster than sensor data rate) speeds in our preliminary
tests on the laptop. We configure our sensor nodes and edge
server (Raspberry Pi’s and laptops) with automatic bootstrap
and connectivity to minimize human efforts.

We summarize the comparison between Proteus and
existing home-based health monitoring infrastructures and
IOT platforms in Table I. We are the first to introduce a
manageability focused infrastructure that minimizes manual
efforts in deployment and operation. This enables small
research teams to efficiently manage longitudinal home-
based health monitoring systems. Furthermore, we conduct

quantitative evaluations to assess the end-to-end loss, latency,
and reduction in manufacturing time, providing concrete
evidence of the robustness and efficiency of our infrastructure.

A. Automated and Continuous Deployment

25-fold reduction in manufacturing time from 420
minutes to 17 minutes. Originally, setting up 7 sensor
nodes costs 420 minutes (60 minutes per unit in total, a
rough estimate of the effort, including 10 minutes for OS
and software installation, 5 minutes WiFi setup, 30 minutes
dynamic edge server connection, 3 minutes deploy code on
edge, 12 minutes update code on edge. Empirically, home
WiFi breaks 1/day, thus 30 edge server connections/month.
Code updates 1/week, thus 4/month). Through configuration
and batch OS flash image cloning, automatic WiFi setup and
connectivity, automated self-bootstrapping and OTA update,
we reduce 420 minutes to 17 minutes (itemized as OS image
cloning 3 minutes, WiFi setup 7 minutes, dynamic edge server
connection 2 minutes, code deployment 1 minute and code
update 4 minutes per month for 7 nodes in total). This saves
significant time and makes it manageable by a small research
team to deploy dozens of homes in a matter of hours. We have
successfully worked with other research teams, sending them
“prep” images and scripts to install and configure all necessary
software. With their feedback, we further improve the
deployment script and instructions so that they could set up the
infrastructure (including sensor nodes and edge servers) with-
out additional help from the development team, demonstrating
the effectiveness of our autonomous deployment design.

B. Maintenance

Monitoring Network Issues. We monitor network status
based on the two key metrics (i.e., memory usage and
publisher queue size). To understand how effective these
metrics can indicate data transfer status and abnormal network
events occurring on sensor nodes, we examine developer
logs on sensor nodes in experiments of the following setting.
7 real nodes run concurrently and continuously for 6 days,
sending data at an aggregate rate of 40.6 Mbps. Each sensor
node publishes 4 MQTT messages per second. Each message
is 0.18 MB, including 20 baseband frames. Considering that
Raspberry Pi has 900 MB of RAM, among them about 300
MB is used for the OS and software (e.g. AWS Greengrass)
and 150 MB will be used for the data collection program
except for the publisher queue, we set the maximum publisher
queue size to 2490 number of messages (#msgs), correspond-
ing to 448 MB of data. In Figure 4, we show the publisher
queue size and memory usage over time on two of the sensor
nodes. We use Figure 4 as examples to illustrate parameter
patterns for normal and abnormal network conditions.

From Figure 4 publisher queue size and memory usage on
sensor node 2 are relatively low and stable over time (queue
size less than 5 #msgs most of the time, never greater than 35
#msgs). We check the developer logs on sensor node 2, and
find that it has been running well with no abnormal events.
However, there are two different events on sensor node 1. In
the first event, the publisher queue size and memory usage

8



0 2 4 6
running time (day)

0.0

1.5

2.5
pu

bl
ish

er
 q

ue
ue

 si
ze

 (#
m

sg
s)

1e3
node 1
node 2

(a) publisher queue size

0 2 4 6
running time (day)

1

5

9

m
em

or
y 

us
ag

e 
(M

B)

1e2
node 1
node 2

(b) memory usage

Fig. 4: Publisher queue size and memory usage over time on two sensor nodes.
Sensor node 2 is running stably with publisher queue size less than 35 #msgs
(most are less than 5 #msgs) and memory usage around 500 MB. Sensor
node 1 experiences two different abnormal events and is recovered by the
watchdog, corresponding to two spikes in the queue size and memory usage.

both hit limits. In the second event, the publisher queue size
increases by 1200 #msgs, while the memory usage increases
by 216 MB, which corresponds to the size of 5 minutes of
data. By examining the logs on sensor node 1, we find that the
publisher queue size reaches the maximum limit after 16 hours
of running and the data transfer rate in the next 10 minutes is
about 0.57 Mbps, indicating poor data transfer performance
(one-tenth of the sensor data rate). The sensor node recovers
after being rebooted by the watchdog. Then a network outage
occurs after 103 hours and persists for 5 minutes, resulting in 5
minutes of data remained in the queue, until the sensor node is
rebooted again by the watchdog. These explain the phenomena
we observe in Figure 4. We observe similar spikes in queue
sizes and memory usage for other sensor nodes as well.

These observations suggest that i) Publisher queue size
and memory usage trends indicate the status and performance
of sensor devices. Small and stable publisher queue sizes
and memory usage indicate healthy performance. Sudden
increases in publisher queue size and memory usage reflect
poor network connection status and data transfer rates. ii)
Our watchdog effectively recovers the sensor nodes from
network problems. With our watchdog, only 0.08% of data
is lost due to unexpected issues on two nodes running for 6
days. Without the watchdog, sensor nodes could crash (and
indeed happened), resulting in hours to days of data loss,
depending on when the developers or users find and resolve
the problem. Furthermore, we save the effort of reading logs
for troubleshooting and recovery on errors by our watchdog.

By monitoring CPU usage, we find the CPU load on sensor
nodes is mainly between 12% and 15% and it is always
below 35%, which shows that the sensor nodes can afford
the required amount of computation.

Automatic Recovery. During infrastructure testing,
abnormal events occur on several sensor nodes, but our
watchdogs are able to recover them from errors and ensure
continuous operation. In Figure 5 we present the events on
three of the sensor nodes through 24 days of running. Sensor
node 1 runs smoothly with no issues, while on sensor node
2, the publisher queue is full after 2.5 days briefly (no reboot
or issue) and the node is rebooted after 11.5 days due to a
network disconnection. After 16 days, node 2 is rebooted
due to having publisher queue full for over 10 minutes.
Meanwhile, sensor node 3 encounters the same event and

Time of running (day)

Sensor node 1
Sensor node 2
Sensor node 3

8 16 24

Publisher queue is full, 
Transfers data fast, recovers

Publisher Queue is full;
Transfers data slowly, be restarted

No network;
Be restarted

Fig. 5: Abnormal events occur on sensor nodes during a 24-day run.

SN

pub

ES

sub pub

DMZ
Broker

sub pub
Redis

sub
Data 
handler

1 2 3
Secure

4

SQL
InfluxDB

Fig. 6: The hop-by-hop data flow from the sensor node to the cloud database.

is rebooted automatically. Our results confirm that multiple
issues happen in continuous operating systems in the field,
and that our watchdog can recover the nodes and prevent
data loss (0.03% data loss on edge in 24 days).

During running, we also observe 2 times of file system
corruptions on sensor nodes and 2 times of edge server
going offline because it has been running for months without
being restarted. Due to our monitoring with LED, we can
be notified of such hardware failures and remedy timely to
prevent data loss.

C. Easy integration of new modality (25× reduction in LOC)

We demonstrate the adaptability of our pipeline to support
new data modalities. For time-series data like UWB baseband
data and Neulog sensor data, we pack their data into MQTT
messages for data transfer and store them in corresponding
measurements in InfluxDB on cloud. For example, for Activi-
ties of Daily Living (ADL) recognition, the sensor nodes col-
lect baseband data (containing all original information for de-
veloping better ADL recognition algorithms) from UWB sen-
sors and package them with timestamps into MQTT messages
to send under the topic “BasebandData timestamp/Node ID”.
On the cloud, a measurement named “Baseband-
Data timestamp/Node ID” in InfluxDB should be created,
including “BasebandData” and “timestamp” fields so that the
data handler can read messages and write timestamps and
baseband data into the database correctly. With our system, we
can implement it within 4-5 LOC (2-3 LOC parse data from
sensor, and 2 LOC pass it to our API) instead of hundreds of
LOC :15 LOC to create a publisher or subscriber, 2 LOC to
publish and subscribe to topics of interest, 20 LOC on the sub-
scriber side to parse messages and decide what to do with them
(e.g. push to the next hop or store in edge database), 55 LOC
to parse data and convert it to the appropriate format before
writing to the database, 15 LOC to write data into database in
multi-threading. If programming languages used on the edge
and cloud are different, the LOC count can easily double.

D. Overall Performance

We evaluate the overall performance of the infrastructure
in terms of the data loss and latency with different number of
sensor nodes running concurrently for an extended period of

9



TABLE II: Data Loss Rate Hop by Hop
# of SN R ES Sub Red DB EDB T

4 23.2 0.05% 0 0 0.06% 8% 15D
7 40.6 0.27% 0 0 0.26% 12% 6D
10 58.0 0.5% 0.17% 0 0.03% 3.8% 14D
16 92.8 0 0 0 0.10% 1.4% 2H

time. Each sensor node sends 1 MQTT message per second,
including 80 UWB base-band data frames, where the message
data size is 0.72MB. In addition, we run multiple threads
simultaneously on a gaming laptop to simulate multiple
sensor node connections to stress test the system for data loss
and latency. We estimate the data loss and latency from one
hop to the next to get a insight of the system performance.
The data flow and 4 hops of the infrastructure are shown in
Figure 6. We estimate the data loss and latency hop-by-hop
between the publishers on sensor nodes (SN), subscriber on
the edge server (ES), subscriber of broker on cloud (Sub),
subscriber of Redis on cloud (Red) and InfluxDB (DB) on
cloud. We measure the loss and latency with different data
rates (R) in Mbps, numbers of sensor nodes, and continuous
running times (T, in the units of days denoted by “D” and
hours “H”). We summarize the test results of data loss in
Table II, including the ratio of data temporarily stored in the
edge database as a percentage of all data (EDB). Results for
4, 7, and 10 nodes are from real sensor nodes, and the others
are node connections from multithreaded simulations.

Results in Table II show that Proteus can support data
collection with 32 sensor nodes sending data at 185.6 Mbps
aggregate rate, with negligible data loss (0.05% end-to-end),
sufficient for the needs of home health monitoring. In the test
with 10 real sensor nodes running for 2 weeks, we observe
0.7% end-to-end data loss. Given the resilient pipeline and
watchdogs, there are negligible data loss between SN and
ES during rebooting of sensor nodes. In our preliminary
experiment using 3 sensor nodes for 40 days, we observe no
data loss and no errors from sensor nodes to the edge server.
Results show that Proteus is reasonably stable and promising
for continuous, longitudinal data collection.

EDB in Table II demonstrates the fraction of data backup on
edge server at up to 12% upon network failures, which proves
such backup storage is necessary. We also conduct offline tests
(e.g., manually disconnecting the network of the edge server
for 2 hours) and observe no data loss because of edge storage.

Figure 7 shows the average hop-by-hop latency with real
and simulated sensor nodes. In the 15-day run test with 4
real sensor nodes, the average latency from sensor node to
each hop of the infrastructure is 0.2, 0.23, 0.24, 0.53 seconds
respectively. With more sensor nodes and higher data rates,
we observe the end-to-end latency slightly increases due to
higher data transfer and storage requirements. But even with
16 simulated sensor nodes to connect to the system and
send data at 92.8 Mbps, we observe 3.65 seconds end-to-end
latency, still sufficient for home health monitoring (e.g.,
detecting falls within seconds).

We observe that it is frequently desirable to change the
baseband data frame rate thus data rate of sensors for different
monitoring purposes. Consider activities of daily living (ADL)

recognition, where the velocity distributions from Doppler
maps are usually utilized. The frame rate per second (FPS)
determines the maximum unambiguous radial velocity Vmax.
If the actual velocity exceeds Vmax, the “aliasing” effect [24]
will distort the velocity estimations in the Doppler map. Thus
a higher FPS is needed for a larger Vmax.

However, a higher FPS results in higher per sensor thus
aggregate data rates, and may hit the cap of the WiFi upload
bandwidth (usually in the range of 1-100 Mbps for most
homes). We observe that 11 sensor nodes with an aggregate
data rate of 144.1 Mbps (FPS 180, 13.1 Mbps data rate per
sensor) hitting the cap, resulting in 3% loss within sensors.

To address this problem, we add compression on sensors,
and decompression on the edge server. We use Zlib libary
[25], which can cut down the payload size thus bandwidth to
22%, thus quadrupling the number of sensors. To evaluate the
potential increase of CPU load and latency on sensors and edge
server with data compression/decompression, we configure the
sensor node to collect data at 180FPS, 13.1 Mbps to run w/o
compression. Given the UWB radio band at 7.25∼10.2 GHz,
the maximum unambiguous velocity is 3 m/s. We measure
the data loss within sensors (Lo-S), CPU load on sensor nodes
(CPU-S) and edge server (CPU-E), end-to-end latency (La-
E2E) and end-to-end data loss (Lo-E2E, including loss within
sensors) and present the results in Table III (“(w)” denotes tests
with compression, “(o)” denotes tests without compression).

With 12 sensor nodes running together at an aggregate
data rate of 157.2 Mbps, there is 10.8% of data loss within
the sensor, 32% end-to-end loss and 55.1 seconds end-to-end
latency without compression due to limited bandwidth. With
data compression, we observe the data loss within sensor
of 0.6% (18× reduction), end-to-end loss of 0.34% (76×
reduction) and latency of 0.34 seconds (162× reduction),
with only 3.1% increase in CPU load on the edge server.
Additionally, we stress tests the system by simulating 32
sensor node connections on laptops. To ensure consistency, we
set the same memory limit for each simulated node as the real
nodes. Due to the fact that the simulated nodes are running on
laptops, we do not measure the CPU load as it would not pro-
vide a meaningful reference value. With 32 nodes collecting
data at 180 FPS and an aggregate data rate of 419.2 Mbps, we
observe zero data loss within sensor nodes, end-to-end data
loss of 0.13% and latency of 0.17 seconds when deploying
data compression before transmission. This demonstrates the
scalability of our infrastructure to accommodate more sensor
nodes in a home with high data rates. Given the fact that the
number of sensors is capped by WiFi upload bandwidth, we
further boost the number of sensors with compression by 4×.

TABLE III: Comparison of data transmission w/o compression
# of SN Lo-S CPU-S CPU-E La-E2E Lo-E2E T

12 (o) 10.8% 23% 6.1% 55.1 32% 3H
12 (w) 0.6% 22% 9.2% 0.34 0.42% 3H
32 (o) 58% — 10.2% 43.3 60.7% 2H
32 (w) 0 — 6.8% 0.17 0.13% 2H

We also measure the fraction of out of order write into
the database. After changing the scheduling such that at any
time, at most one thread is writing data for one sensor node,

10



0 1 2 3 4
latency (s)

4
7

10
16

# 
of

 S
N

DB
Red

Sub
ES

Fig. 7: Average Latency Hop by Hop. With 16 simulated sensor node
connections sending data at 92.8 Mbps, the end-to-end latency is 3.65
seconds, slightly higher but still enough for home health monitoring (e.g.,
fall detection).

we observe that the out of order ratio dropped from 7% to
0% in a test writing 5.8 million data frames to the database.

VI. DISCUSSION

We discuss multiple functions to be supported in future
and limitations of our current infrastructure.

Data Privacy. We protect data during transportation (e.g.,
TLS encryption, edge gateway for access control) and storage
(database on a secure, private cloud behind DMZ). To further
protect privacy that could be exposed by analysing data,
inspection of data content before it leaves home is needed.
We are working with experts on system and machine learning
privacy to develop needed solutions.

Analytics Support. We have yet to deploy real analytic
models on the edge server. With AWS greengrass, deploying
and updating containerized models only requires a few mouse
clicks on the backend dashboard. We have pushed full docker
images to both Pi’s and edge server successfully many times
thus the capability already exists.

System Visibility. We enable system visibility in two
aspects: 1) visuals: indicating device status with different
lighting patterns of LED; 2) code instrumentation: developer
logs including key metrics. At present, we do daily metrics
analysis offline on sensor nodes for performance reviewing.
In our experiences, daily checks are mostly efficient because
of all the watchdog mechanisms we have. In the future, we
will integrate real-time transmission of the metrics into the
data-agnostic pipeline to enable real-time visualization and
monitoring of performance.

Auto-scaling on Cloud Workload. Our work involves auto-
scaling on the cloud based on workload. There are existing
services that we plan on leveraging that enable system’s auto
scalability when the load (either network, CPU, or both)
increases to prevent increase in latency or data loss, such as:
Amazon EKS [26] and AWS Elastic Beanstalk [27] services.
This allows the system to scale on an as-needed basis.

Computing Resources on Sensor and Edge. Based on
our current results in Tab III, CPU usage is less than 23%
on sensor nodes and 10.2% on the edge server (with 32
simulated sensor nodes running concurrently), indicating
that commodity hardware is sufficient for the load. In the
future, we plan to deploy deep learning models on the edge
and explore methods (e.g. model compression) to efficiently
deploy and run these models on constrained edge resources.

Limitations. Our current work has limitations: i) scale: Al-
though all our infrastructure is designed for scaling, the current
test is limited to a dozen real sensors, about 30 simulated

sensors. This is mainly constrained by hardware resources
available to us - cloud, sensor and edge. We are in conversation
with AWS Higher Education to obtain more resources to con-
duct much larger scale experiments. ii) environment: current
evaluation is mainly done in the simulated home. We are in
the process of deploying and testing the infrastructure in real
homes which we believe will help uncover new issues and
challenges , including participants of different health condi-
tions. iii) database type: current system can handle time-series
data and can be expanded for large record files (e.g., video,
image files). While influxDB allows for storing events which
can handle them, a record-based database (e.g., MongoDB) is
more efficient for such data. Another cloud microservice han-
dler can be added to support such data storage in MongoDB.
iv) expertise requirement: We automate the management of the
system so that only simply actions are required for non-expert
home residents, and manufacturing effort is greatly (25-fold)
reduced for researchers to manage the system. We do assume
for researchers, some level of expertise (e.g. usage of DMS
to check device status, update programs OTA, and etc.) is
required to manage the system. We are planning home deploy-
ments to further test the system to understand what additional
challenges it may pose, and will address them in future.

VII. CONCLUSION

In this paper, we present our experience in developing
and pilot deploying an infrastructure for home-based health
monitoring. We recognize the human efforts needed in the
full cycle of deploying and operating such infrastructure. Our
system cuts down on labor efforts by 25X and reduces code
necessary for deployment by 25X. Our system ran end to end
(from sensor on edge to database on cloud) and had 0.7%
data loss over 14 days experiment. We share experiences and
lessons hopefully valuable for other research teams, and we
plan to make the infrastructure available to the community
for shared data collection once it becomes mature.

REFERENCES

[1] M. Liu, M. Elbadry, Y. Hua, Z. Xie, and F. Ye, “Proteus: Towards a
manageability-focused home-based health monitoring infrastructure,”
in Proceedings of the 14th ACM International Conference on Bioinfor-
matics, Computational Biology, and Health Informatics, 2023, pp. 1–6.

[2] H. Kwon, Z. Xie, M. Liu, and F. Ye, “Poster: Comparative study of
transformer models on a large multivariate time series har dataset,”
in 2024 IEEE/ACM Conference on Connected Health: Applications,
Systems and Engineering Technologies (CHASE), 2024, pp. 193–194.

[3] A. Hornback, W. Shi, F. O. Giuste, Y. Zhu, A. M. Carpenter, C. Hilton,
V. N. Bijanki, H. Stahl, G. S. Gottesman, C. Purnell et al., “Development
of a generalizable multi-site and multi-modality clinical data cloud
infrastructure for pediatric patient care,” in Proceedings of the 13th
ACM International Conference on Bioinformatics, Computational
Biology and Health Informatics, 2022, pp. 1–10.

[4] I. Chouvarda, N. Y. Philip, P. Natsiavas, V. Kilintzis, D. Sobnath,
R. Kayyali, J. Henriques, R. P. Paiva, A. Raptopoulos, O. Chetelat et al.,
“Welcome—innovative integrated care platform using wearable sensing
and smart cloud computing for copd patients with comorbidities,” in
2014 36th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society. IEEE, 2014, pp. 3180–3183.

[5] P. Woznowski, X. Fafoutis, T. Song, S. Hannuna, M. Camplani, L. Tao,
A. Paiement, E. Mellios, M. Haghighi, N. Zhu et al., “A multi-modal
sensor infrastructure for healthcare in a residential environment,” in
IEEE ICCW 2015. IEEE, 2015.

[6] K. Technologies, “Enterprise IoT platform with free plan — kaa,”
2023. [Online]. Available: https://www.kaaiot.com/

11



[7] T. MathWorks, “IoT analytics - thingspeak internet of things,” 2023.
[Online]. Available: https://thingspeak.com/

[8] Y. Liu, G. Zhang, C. G. Tarolli, R. Hristov, S. Jensen-Roberts, E. M.
Waddell, T. L. Myers, M. E. Pawlik, J. M. Soto, R. M. Wilson et al.,
“Monitoring gait at home with radio waves in parkinson’s disease:
A marker of severity, progression, and medication response,” Science
Translational Medicine, vol. 14, no. 663, p. eadc9669, 2022.

[9] L. Zhang, D. Zheng, M. Yuan, F. Han, Z. Wu, M. Liu, and X.-Y.
Li, “Multisense: Cross-labelling and learning human activities using
multimodal sensing data,” ACM Trans. Sen. Netw., vol. 19, no. 3, apr
2023. [Online]. Available: https://doi.org/10.1145/3578267

[10] M. Liu, L. Zhang, D. Zheng, and X. Li, “Collaborative deep sensing
by dynamically fusing multiple models,” in 2021 7th International
Conference on Big Data Computing and Communications (BigCom),
2021, pp. 316–323.

[11] P. N. Dawadi, D. J. Cook, and M. Schmitter-Edgecombe, “Automated
cognitive health assessment using smart home monitoring of complex
tasks,” IEEE transactions on systems, man, and cybernetics: systems,
vol. 43, no. 6, pp. 1302–1313, 2013.

[12] M. Elbadry, M. Liu, Y. Hua, Z. Xie, and F. Ye, “Poster: Towards robust,
extensible, and scalable home sensing data collection,” in Proceedings of
the 8th ACM/IEEE International Conference on Connected Health: Ap-
plications, Systems and Engineering Technologies, 2023, pp. 192–193.

[13] L. Zhang, D. Zheng, Z. Wu, M. Liu, M. Yuan, F. Han, and X.-Y.
Li, “Poster: Cross labelling and learning unknown activities among
multimodal sensing data,” in The 25th Annual International Conference
on Mobile Computing and Networking, ser. MobiCom ’19. New York,
NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3300061.3343407

[14] M. Hämäläinen, L. Mucchi, S. Caputo, L. Biotti, L. Ciani, D. Marabissi,
and G. Patrizi, “Ultra-wideband radar-based indoor activity monitoring
for elderly care,” Sensors, vol. 21, no. 9, p. 3158, 2021.

[15] H.-K. Ra, A. Salekin, H. J. Yoon, J. Kim, S. Nirjon, D. J. Stone,
S. Kim, J.-M. Lee, S. H. Son, and J. A. Stankovic, “Asthmaguide:
an asthma monitoring and advice ecosystem,” in 2016 IEEE Wireless
Health (WH). IEEE, 2016, pp. 1–8.

[16] H. Choi, A. Lor, M. Megonegal, X. Ji, A. Watson, J. Weimer, and
I. Lee, “Vitalcore: Analytics and support dashboard for medical device
integration,” in IEEE/ACM CHASE 2021. IEEE, 2021, pp. 82–86.

[17] A. Ravulavaru, Enterprise Internet of Things Handbook: Build end-to-
end IoT solutions using popular IoT platforms. Packt Publishing Ltd,
2018.

[18] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-
S—a publish/subscribe protocol for wireless sensor networks,” in
COMSWARE’08. IEEE, 2008, pp. 791–798.

[19] R. Ltd, “Redis,” 2023. [Online]. Available: https://redis.io
[20] Y. Hu and W. Li, “Spatial data infrastructures,” arXiv preprint

arXiv:1707.03969, 2017.
[21] A. Co, “Advantech co-creating the future of the iot world,” 1983-2023.

[Online]. Available: https://www.advantech.com/en-us
[22] S. Sadhu, D. Solanki, N. Constant, V. Ravichandran, G. Cay,

M. J. Saikia, U. Akbar, and K. Mankodiya, “Towards a telehealth
infrastructure supported by machine learning on edge/fog for parkinson’s
movement screening,” Smart Health, p. 100351, 2022.

[23] E. T. Inc, “Introduction to MQTT QoS 0,
1, 2—EMQ,” 2013-2023. [Online]. Available:
https://www.emqx.com/en/blog/introduction-to-mqtt-qos

[24] F. Serafino, C. Lugni, J. C. Nieto Borge, and F. Soldovieri, “A simple
strategy to mitigate the aliasing effect in X-band marine radar data:
Numerical results for a 2d case,” Sensors, vol. 11, no. 1, pp. 1009–1027,
2011.

[25] G. Roelofs, “Zlib home site,” 1996-2023. [Online]. Available:
http://www.zlib.net/

[26] Microsoft, “Managed Kubbernets Service (AKS)
— Microsoft Azure,” 2023. [Online]. Available:
https://azure.microsoft.com/en-us/products/kubernetes-service

[27] A. W. Services, “Website and Web APP Deployment -
AWS Elastic Beanstalk - AWS,” 2023. [Online]. Available:
https://aws.amazon.com/elasticbeanstalk/?nc1=h ls

12


