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Abstract—Continuous monitoring of vital signs offers valuable
insights into health status through patterns of changes over
time. Radio Frequency (RF) solutions have gained significant
attention due to their non-invasive and privacy-preserving nature.
Nevertheless, the reliability of RF-based vital signs monitoring
remains an ongoing challenge, as RF signals are inherently fragile
and susceptible to disruptions, especially due to random body
movements. Most of methods proposed to enhance the robustness
of RF vital signs sensing reply on accessing and analyzing raw
RF signals. However, the diversity of RF configurations and the
restricted accessibility of commercial off-the-shelf (COTS) RF
solutions make direct analysis of raw RF data impractical for
improving accuracy. To address this gap, we propose a novel
framework that focuses solely on post-processing to recover the
vital signs from disrupted RF signals. Our approach implements
a suite of classical smoothing and denoising algorithms, along-
side representative data-driven techniques, to rectify noisy and
disrupted RF vital signs estimations through data reconstruction.
We evaluate these post-processing techniques using a dataset
containing 58 hours collected from 3 subjects in cluttered, free-
living environments. Our results show that applying Temporal
Convolutional Network (TCN) to RF heart rate (HR) estimations
doubles the percentage of data below 5 bpm error against
ground truth. We additionally find that RF respiration rate (RR)
estimations is relatively robust and a simple moving average can
increase the percentage of data below 2 bpm error by over 20%.
We assess the generalizability of these methods through a leave-
one-out evaluation and analyze their respective computational
costs, shedding light on practical trade-offs between accuracy
and resource requirements.

Index Terms—Radio Frequency (RF), Non-contact vital signs
monitoring, Post-processing, Ultra-Wideband (UWB)

I. INTRODUCTION

Monitoring vital signs, such as respiration rate (RR) and
heart rate (HR), is crucial for evaluating health status [1]. This
practice supports early detection of health changes and enables
ongoing tracking of the progression of chronic diseases.

Significant progress has been made in integrating electrocar-
diogram (ECG) and photoplethysmography (PPG) technology
into mobile devices and wearables (e.g., Fitbit, Apple Watch)
for vital signs monitoring. However, these devices require
frequent charging and wearing, presenting both physical and
cognitive challenges, particularly for older adults. Non-contact
methods using cameras, sound sensors, or radio frequency(RF)
offer a promising alternative. Of those methods, RF-based
solutions stand out as they are not as affected by environmental
factors (such as lighting and sound) and are less likely to
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cause privacy concerns (unwanted visual images or recording
of conversations).

While RF signals are sensitive in detecting variations in the
physical environment, they are inherently fragile [2]. Reliable
measurement of subtle chest displacements, such as those
caused by heartbeats, is especially challenging, as even slight
body movements can easily disrupt RF signal accuracy [3].
For that reason, researchers have proposed multiple methods
to strengthen the reliability of RF-based vital signs monitoring.
However, many of these methods require modifications to the
entire pipeline that processes raw data [4, 5]. Different RF
systems vary widely in their hardware specifications, signal
processing algorithms, and proprietary protocols, making it
difficult to apply a standardized approach to enhancing accu-
racy. Additionally, COTS RF solutions often have restricted
access to low-level signal data, which limits the ability to
directly manipulate or optimize signal interpretation. As a
result, achieving robust and accurate RF-based vital signs
monitoring requires approaches other than relying on raw data
analysis.

In this study, we focus exclusively on evaluating the ef-
fectiveness of various post-processing methods in recovering
vital signs estimations from disrupted RF signals without raw
signal access. To evaluate the performance, we employ three
metrics: the percentage of the estimations below a specified
error, the similarity of vital signs trajectory based on Dy-
namic Time Warping (DTW), and inference time. Specifically,
we aim to answer research questions including: RQ1: How
much disturbed RF vital signs estimations can be salvaged
solely based on post-processing? RQ2: How do various post-
processing methods compare regarding capturing the trend of
the vital signs? These insights could lead to choosing the best
method to apply after a COTS RF solution to construct a more
accurate and representative vital signs estimation.

By answering the above questions, our contributions are
summarized as follows:

• We propose a novel framework to salvage disrupted RF
vital signs estimations, focusing solely on post-processing
the estimated trajectories rather than relying on raw RF
signal analysis, which works around the challenges posed
by heterogeneity and limited accessibility of COTS RF
methods.

• We conduct comprehensive experiments to evaluate the
proposed post-processing methods using data collected



Fig. 1: A generic pipeline for RF vital signs sensing (illustrated using UWB as the RF front-end, without loss of generality).

over 58 hours from cluttered, free-living settings, demon-
strating error reduction in vital signs monitoring.

• We analyze the generalizability of the post-processing
methods using leave-one-out evaluation, and compare
their computational costs, highlighting their practical
trade-offs, implying their usefulness in respective appli-
cation scenarios.

The contribution of this study lies in understanding how
different post-processing methods can improve the results of
RF solutions when there is no access to raw RF signals. These
insights can lead to better accuracy when utilizing COTS RF-
based vital signs monitoring solutions where there is limited
access to raw RF signals. To the best of our knowledge,
this is the first systematic study focused exclusively on post-
processing approaches to recovering disrupted RF vital signs
estimation without access to raw signals.

II. RELATED WORK

Radar-based non-contact vital signs detection has garnered
significant research interests over the past decade [6, 7].
Much of this work has concentrated on developing innovative
embedded RF sensing systems to improve vital signs detection
accuracy [2]. Although a wide range of frameworks [4, 6] and
specific components [3, 8] have been explored for improved
robustness, they all rely on accessing and analyzing raw RF
signals. For example, the differential measurement of RF
signals between a pair of radar sensors was introduced to
mitigate interference from random body movements [6]. With
recent advances in deep learning approaches, one representa-
tive work, MoVi-Fi ([5]) uses contrastive learning on noisy
RF vital signals to detect and recover disrupted vital signs
estimation.

To address the limited access of raw RF signals, a subset
of studies focuses exclusively on post-processing techniques.
For instance, a customized CNN was introduced for post-
processing [9], demonstrating its ability to derive reasonable
vital sign estimations from noisy outputs.

Despite these advancements, there remains a lack of com-
prehensive investigations into the effectiveness of various post-
processing methods applied specifically to noisy outputs. We
address this gap by systematically evaluating various post-
processing methods for improved RF vital signs monitoring.

III. PRELIMINARIES

In this section, we focus on the general way in which vital
signs are extracted using RF sensors. RF-based vital signs
extraction typically involves the transmission of RF signals,
which are reflected back from the human body. Respiration
causes periodic chest movements. Similarly, the chest cavity

expands and contracts with each heartbeat. RF signals can de-
tect subtle variations in the chest’s expansion and contraction
to obtain a vital signs estimate.

A. Embedded RF Vital Signs Sensing

The process of converting the raw data, or signal received
from the RF device, into vital signs is grounded in the
following signal modeling approach:

y(t) = α(t)e−j2πfc
2d(t)

c s

(
t− 2d(t)

c

)
, (1)

where α(t) is the instant amplitude, fc is the carrier frequency,
c denotes the speed of radio waves, d(t) is the distance from
the chest wall to the RF sensor, and s (t) is the waveform
(agnostic to either IR-UWB, FMCW, or others).

The basic structure of the pipeline for RF vital signs
estimation is shown in Figure 1 [10]. We will now go over
each component, outlining its general function as well as what
it does in the specific UWB-based pipeline we chose to use [1],
without loss of generality following the signal modeling in (1).

1) UWB Channel Impulse Response (CIR): The pipeline
begins with the raw RF data. In our case, since we use a
UWB sensor as the RF front-end, we will analyze UWB CIR
from the captured reflections (in baseband).

2) Range Bin Selection: When a RF signal is sent and
reflected back from an object, the time it takes to return to
the receiver is measured, allowing for distance estimation.
Because of that, the raw data, the data captured from the
RF device is split up into range bins, each representing a
specific distance interval. To determine which range bin to
use, there are multiple strategies, such as identifying the bin
with the highest signal peak. To ensure reliable RF vital
signs monitoring, precise detection and ranging of the target
(chest wall) for processing corresponding reflections is crucial;
however, this is beyond the scope of this work.

3) Preprocessing: For our pipeline, we started by extracting
the phase from the raw signal. We used a 30 second interval
so that we would have a collection of data over a period of
time. We then applied filters to isolate specific frequencies for
respiration rate and heart rate respectively.

4) Vital Signs Estimation: From the preprocessed data, the
periodicity of cyclic variations in RF signals are extracted
based on both temporal and spectral analysis, creating a noisy
vital sign estimate.

B. Post-processing

When using data from external sources (eg. other studies)
or COTS RF devices, the ability to modify or control the raw
signal is often limited or entirely unavailable. The only “data”



we would have available would be the “Noisy Output” from
after the Embedded RF Vital Signs Sensing pipeline.

Data collection, especially in real-world environments, is
often hindered by the ease with which raw signals can be dis-
rupted. Radio signals are particularly vulnerable to interference
from environmental factors, multipath effects, and movement.
Traditionally, the approach to addressing this issue has been
to employ signal quality analysis. By analyzing the raw signal
quality, researchers can assess its reliability and choose which
pieces to keep and to what extent. Without that data, we would
have to search for alternative methods to improve the accuracy
of the results

As shown in Figure 1, the only step that modifies noisy
output without access to the Embedded RF Vital Signs Sensing
pipeline is Post-processing. By investigating the improvements
that various postprocessing methods can offer, we can identify
methods to enhance results, even in the absence of control over
earlier stages of the pipeline.

C. Modeling Post-processing Problem

Given that we do not have access to the raw signal data,
the post-processing problem can be formally described as
attempting to recover the true vital sign signals from the noisy
post-pipeline data. This is represented by the equation:

p(t) = vs(t) + n(t) (2)

where p(t) is ‘Noisy Output’ data, vs(t) is the true vital
signs, and n(t) is the noise, the distribution of which is,
unknown. In essence, our objective is to examine the per-
formance of various methods across different conditions for
recovering vital signs trajectory, thus enhancing the accuracy
and reliability of RF vital signs sensing.

IV. METHOD

A. Data Collection

To obtain real-world results, we collected data from three
participants (two males and one female) over eight nights, each
lasting 6–8 hours, resulting in a total dataset over 58 hours.

Data collection was conducted using four IR-UWB (X4-
XeThru) sensors [11], operating at 10 frames per second,
deployed in each participant’s room: one beneath the bed, one
beside the bed, one on the ceiling, and one at the foot of the
bed. To measure the groundtruth of vital signs, we used a
Masimo Pulse Oximeter [12], a FDA approved device, which
provided a vital signs reading once per second.

B. Post-processing Methods

For the experiment, we used the post processing methods
shown in Table I. We chose the windowed filters and the fore-
casting method as four simple traditional denoising approaches
that require no training.

We explore Random Forest and Gradient Boosting Re-
gressor (GBR) as baseline traditional non neural network
supervised learning methods [13][14].

While GBR optimizes around loss, Random Forest focuses
on reducing variance through an ensemble of decision trees,

Group Method Setup

1

Mean Windowed filter with mean kernel
Gaussian Windowed filter with Gaussian kernel
Median Windowed filter with median kernel
Kalman E: 0, Var(Process: 1e-5; Measure: 0.25)

2
Random Forest Trees: 100, Max Depth: None

GBR Learning Rate: 0.1, Trees: 100, Max Depth: 3
SVR Degree: 3, Epsilon: 0.1

3

TCN Filters: 64, Kernel Size: 3, Dilations: 1,2,4,8,16
LSTM-FCN Batch Size: 128, Kernel Size: 8,5,3
Multirocket Dilation: 32, Kernel Size: 4, Kernels: 10,000

MLP Activation: ReLu, hidden layers: 100

TABLE I: Post-processing methods categorized into: 1) classical
smoothing techniques; 2) supervised learning methods for denoising;
3) representative neural network models.

each trained on different data subsets. This distinction allows
GBR to be more sensitive to subtle patterns by iteratively
correcting errors, while Random Forest tends to be more robust
to overfitting, particularly with highly variable data.

Support Vector Regression (SVR) approaches regression
differently by finding a hyperplane that best fits the data within
a specified margin of error. SVR aims to minimize errors
by maximizing the margin around the hyperplane, making it
especially effective for handling high-dimensional data and
cases where noise needs to be carefully managed.

For time series regression, the two most commonly used
neural network architectures are Convolutional Neural Net-
works (CNNs) and Long Short-Term Memory (LSTM) net-
works. CNNs are effective at capturing local patterns, while
LSTMs excel in retaining long-term dependencies. We used
Temporal Convolutional Network (TCN)[15] as a represen-
tative CNN variation designed for capturing temporal rela-
tionships in time series. Instead of using a standalone LSTM,
we opted to experiment with an LSTM/CNN hybrid model,
specifically the LSTM Fully Convolutional Network (LSTM-
FCN) [16], to leverage the strengths of both architectures.

Additionally, we used the MultiRocket neural network [17].
Although technically a type of CNN, MultiRocket is specif-
ically designed for time series classification and regression
tasks. It applies multiple convolutional kernels with varying
dilation rates and sizes and uses the results as features for
a SVM-like logistic regressor; the kernels allow for it to
potentially capture both long and short term trends.

Finally, we selected a Multi-Layer Perceptron (MLP) [18]
for its straightforward, fully connected architecture that can
efficiently model complex relationships within the data. Unlike
CNNs and LSTMs, MLPs do not assume any spatial or
temporal structure, making them a flexible baseline model.

C. Post-processing Setup

1) Non data based methods: For the mean, median, and
gaussian filters, we used a moving window of 30 seconds to
predict one second of ground truth. For the Kalman filter, we
forecast ground truth by running the filter through the pipeline
data.



2) Supervised Learning Methods: Most of the implemented
methods were directly sourced from established libraries
sklearn.ensemble and sktime.regression [19][20]. Exceptions
to this include the Temporal Convolutional Network (TCN),
which was implemented using Keras [21], and MultiRocket,
which utilized its transformation neural network from sk-
time.transformations while employing the logistic regressor as
described in the original MultiRocket paper [17].

For all methods requiring supervised learning, a 30-second
moving window derived from the pipeline was utilized to
predict a one-second segment of the ground truth. Two distinct
approaches to training and testing data splits were employed.

• Global Evaluation: We integrate all of the data from
all of the nights and sensors into one large data set. We
then use a 80/20 split (80% for training, 20% for test-
ing) as a traditional methodology for evaluting methods’
performance.

• Cross-validation Evaluation: We perform leave-one-out
training for each sensor. For each sensor’s measurements
from each night, we train the method using all remaining
data from that sensor across other nights. This approach
allows us to evaluate method performance on test data
that is reasonably distinct from the training data, assess-
ing the methods’ generalizability with a limited dataset.

3) Neural Networks (NNs): For all NN methods, we used
the ADAM optimizer and measured loss using mean squared
error. During training, the number of epochs was determined
by an early stopping criterion, where training halted if no
improvement was observed for 10 consecutive epochs.

4) Normalization: Data was normalized using global nor-
malization: We found the mean and standard deviation of
all the training data (from both the pipeline and the ground
truth). We then normalize all training data around this global
mean and standard deviation before training. During testing,
we normalize the testing input around the same global mean
and standard deviation and then de-normalize the output after
applying the post-processing method.

V. EVALUATION

A. Evaluation Metrics

To measure performance, we used three metrics: 1

• Percentage of data within 10% error of the ground
truth. After post processing, we find the percentage of
the data within 5 bpm of the ground truth for heart rate
and within 2 bpm of the ground truth for respiration
rate. This metric gives us an idea of what percentage
of the data would be “salvageable”. The choice of 2
bpm for respiration rate and 5 bpm for heart rate would
be an approximately 10% error based off of average
respiration/heart rate respectively.

• DTW score. DTW score is a relative score that deter-
mines the similarity between two time series. We will
be using this to see which methods are best capable of

1For cross-validation evaluation, DTW and time are averaged across all
sessions with different sensor/camera combinations.

(a) RR (b) HR

Fig. 2: Shown above is a sample of Noisy Output vs Ground Truth.
Before post processing, the data for Respiration Rate reasonably
closely follows ground truth with a few evident outliers.

(a) RR (b) HR

Fig. 3: Shown above is a sample of Denoised Output vs Ground
Truth. This is using the best performing denoising method: mean for
respiration rate and TCN for heart rate.

(a) RR (b) HR

Fig. 4: Shown above is the CDF of error between post processing
results and ground truth for the best four performing methods,
according to “percentage within 10% error”, for respiration rate and
heart rate respectively.

capturing the trend of the data regardless of the actual
amount of data the method can salvage.

• Inference time. Inference time, measured in miliseconds,
is the time it takes for a single instance to go through the
method. We will use the average testing time for super-
vised learning methods. This gives us an idea of how well
these methods would perform in real-world environments
where we may need instantaneous calculations.

B. Respiration Rate

1) Global Evaluation: Our global evaluation allows for us
a simple way to asses overall performance of post processing
methods assuming sufficient similar data. Following the global
data split for training and testing, analysis of the noisy
output data extracted from the pipeline indicates that 65% of
predictions fall within a 2 bpm margin of the ground truth. A
plot of noisy output vs ground truth can be seen in Figure 2.
These results suggest that even without post-processing, the
pipeline achieves a substantial degree of accuracy.



Method RR HR

% in 2 bpm DTW Inference Time (ms) % in 5 bpm DTW Inference Time (ms)

Noisy Output (Baseline) 65.33 0.121 – 22.23 2.01 –

Mean 87.22 0.082 0.0001 31.92 1.19 0.0001
Gaussian 86.23 0.093 0.0002 32.24 1.39 0.0003
Median 85.46 0.094 0.0001 33.19 1.23 0.0001
Kalman 85.21 0.101 0.0002 35.62 1.08 0.0004

Random Forest 78.21 0.107 3.22 48.66 0.35 2.89
GBR 77.32 0.118 1.88 47.23 0.42 1.49
SVR 76.27 0.123 100.21 45.66 0.44 100.54

TCN 79.23 0.108 2.42 48.92 0.41 2.82
LSTM FCN 72.97 0.181 10.92 33.21 0.63 12.93
Multi Rocket 74.88 0.113 30.31 44.98 0.70 30.25
MLP 79.23 0.113 34.66 37.83 0.73 33.29

TABLE II: method Performance in Global Split. Best-performing results in each category are bolded.

As shown in Table II, although the unprocessed data demon-
strates reasonable accuracy, the application of all methods
yields enhanced performance, both in percentage of data
considered “salvageable” and in similarity to ground truth.
The best performing methods for respiration rate were actually
the non data based methods with the best method, mean,
increasing salvageable data from 65% to 87.22%. However,
the CDF of error between denoised output and ground truth,
Figure 4, shows that there is similar performances between all
non data based methods. Table II indicates that non data-driven
methods achieve the highest similarity to the ground truth.
However, the extent of improvement by DTW is comparatively
limited with only mean standing out. Applying mean to our
noisy data creates a significantly closer to ground truth output
as shown in Figure 3. For data that is easy to determine from
radio frequency, mean offers promising results with little to
no trade off or complexity.

2) Cross-validation Evaluation: For the sake of space limi-
tations, we did not use tables/figures to display the results from
cross-validation evaluation (leave one out split). The purpose
of cross-validation evaluation is to test the ability of data-
driven methods to generalize.

Unsurprisingly, with less data, supervised learning methods
performed worse. For cross-validation, the best-performing
supervised learning method was TCN. After applying TCN,
75.33% of data fell within 2 bpm of the ground truth.
Comparatively, applying “mean” had 86.88% of the data fall
within 2 bpm of ground truth. When comparing by similarity
to ground truth through the metric of DTW, we find that
the best performing supervised learning method, TCN, has an
average distance of 0.087 from the ground truth, barely better
than the average DTW distance for Noisy Output data which is
0.091. Alternatively, mean, brings the average DTW down to
0.063 and the worst performing non-learning method, Kalman
Filter, brings DTW down to 0.072.

C. Heart Rate

1) Global Evaluation: Compared to respiratory rate, the
pre-post processing estimation for heart rate was considerably
less accurate, although its general trend follows ground truth,
only 18.43% of Noisy Output data is actually within 5 bpm

of ground truth. As Figure 2 shows, the difference between
noisy data and ground truth data for heart rate is significant.

Results in Table II show that the supervised learning meth-
ods performed significantly better than non-learning based
methods by both increasing the similarity to ground truth
(reducing DTW) as well as increasing salvageable information
(as defined by percentage of data within 5 bpm of ground
truth). Although there remains a lot of data not within 5 bpm
after post processing, the supervised learning methods almost
double the amount of data within 5 bpm of the ground truth,
with Random Forest and TCN having almost 50% of the data
within 5 bpm of ground truth. GBR, SVR, and MultiRocket
show similar levels of performance while other supervised
learning methods performed noticeably worse. In terms of
absolute error, these top performing methods also perform
similarly as shown in Figure 4 although TCN does show
slightly more promise than the other methods.

The analysis of the method results using DTW indicate that
Random Forest, GBR, SVR, and TCN provide results most
similar to the ground truth. Noticeably, after those four results,
the next lowest DTW score belongs to LSTM FCN which
is almost 50% farther away suggesting that the four earlier
indicated methods are significantly better at capturing trend for
heart rate. From this analysis, it is evident that, given sufficient
data, TCNs are the best choice for processing complex signals
such as heart rate. As illustrated in Figure 3, the methods are
able to yield results that are significantly more consistent with
the ground truth, despite their inability to fully capture the
entire ground truth. TCNs demonstrate the ability to effectively
preserve a significant amount of information while accurately
capturing the overall trends of the ground truth.

2) Cross-validation Evaluation: In contrast to a global
split, a cross-validation evaluation approach could provide
clearer insights into method performance when trained on
limited data and data originating from distinct sources. The
change in data available to train on significantly decreases the
quality of supervised learning methods, which may affect how
the top performing methods for global split heart rate perform.

Compared to almost 50% of data within 5 bpm, the best
performing supervised learning method, Random Forest, was
only able to obtain 36.1% in 5 bpm of ground truth. The



best performing overall method was Kalman filter which
obtained 36.3% in 5 bpm of ground truth. When examining
at DWT, we find Kalman Filter exhibits the highest DTW
distance, measured at 3.05. This contrasts significantly with
the average DTW distance between the ground truth and the
pipeline data for each sensor, which stands at 0.64. For DTW,
the best performing methods were GBR, TCN, and Random
Forest which had DTW distances of 0.332, 0.312, and 0.319
respectively, almost half the DTW distance of the base Noisy
Output data. This suggests that despite being unable to salvage
a lot of information, these methods were able to learn to
capture the trend of the ground truth.

This analysis indicates that while TCNs and other super-
vised learning techniques are capable of capturing the complex
trends inherent in heart rate data, they may not be effective at
obtaining the actual heart rate unless they are properly trained
on enough data with similar characteristics.

D. Computing Resources

As presented in Table II, our four simple non-learning
denoising methods exhibited extremely low execution times,
completing post-processing for a single instance on the order
of microseconds. SVR takes exceptionally longer for inference
as it does not scale well for large datasets which would make
it non optimal for real world calculations. The experiments are
processed on servers equipped with two NVIDIA RTX 4090
GPUs and an AMD Ryzen Threadripper PRO 5995WX.

VI. DISCUSSION

In this study, we examine the effectiveness of various post-
processing methods on salvaging vital signs estimation from
an ultrawideband RF device. Respiration rate, due to its sig-
nificant effect on chest displacement, can be reliably detected
and estimated from RF signals. Although the baseline RF
pipeline can generate a reasonable estimate of the respiration
rate, simple denoising methods, especially moving average,
further led to notable performance improvements.

For heart rate estimation, we observed that supervised learn-
ing methods Random Forest, Gradient Boosting Regressor, and
Temporal Convolutional Network, effectively captured trends
and recovered a substantial portion of the disrupted data,
with Temporal Convolutional Network demonstrating slightly
superior performance compared to the others.

However, with limited training data, these methods strug-
gled to recover the majority of data when tested on a different
set, highlighting the dependency of these methods on a large
and diverse dataset.

In the future, we will continue to evaluate these methods
as we collect increasingly diverse datasets given the potential
performance gains achieved with more data. Moreover, we will
experiment with various feature extraction techniques prior to
post-processing to further improve the performance. Addition-
ally, we will investigate the trade-offs between computational
efficiency and inference latency to optimize the method for
practical deployment, where real-time performance is critical.

VII. CONCLUSION

In this paper, we examine the impact of various post-
processing methods on post-pipeline RF data. Performance
evaluation is conducted using multiple training and testing
methods using data collected from a real world environment.
Our analysis reveals that despite the significantly more com-
plex nature of heart rate signals, Random Forest and TCN
models, which achieve comparable performance, were able to
recover an additional 20% more of the total data compared
to the noisy output prior to post-processing. These methods
recovered 10% more than all non-supervised learning methods
and even some of the other representative Neural Network
models. For respiration rate estimation, the moving average
method demonstrates superior performance, surpassing more
complex post-processing methods, recovering slightly over
20% more of the total data than the noisy output. When
utilizing data from external sources or COTS RF devices,
improving result accuracy remains a critical consideration.
This paper offers practical recommendations for enhancing
the performance of out-of-box RF vital signs monitoring in
scenarios where access to raw data is unavailable.
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