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Abstract

Dispersal strategies that lead to the ideal free distribution (IFD) were shown to
be evolutionarily stable in various ecological models. In this paper, we investigate
this phenomenon in time-periodic environments where N species — identical except
for dispersal strategies — compete. We extend the notions of IFD and joint IFD,
previously established in spatially continuous models, to time-periodic and spatially
discrete models and derive sufficient and necessary conditions for IFD to be feasible.
Under these conditions, we demonstrate two competitive advantages of ideal free
dispersal: if there exists a subset of species that can achieve a joint IFD, then
for large time, the persisting collection of species must converge to an IFD for
large time; if a unique subset of species achieves a joint IFD, then that group will
dominate and competitively exclude all the other species. Furthermore, we show
that ideal free dispersal strategies are the only evolutionarily stable strategies.
Our results generalize previous work by construction of Lyapunov functions in
multi-species, time-periodic setting.
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1 Introduction

The ideal free distribution (IFD) predicts how organisms distribute themselves in

heterogeneous environments to optimize individual fitness [17]. It is based on two key
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assumptions: individuals possess complete knowledge of habitat quality, and they are
free to move. The concept of IFD originated from observations of territorial patterns in
birds [45] and has been central to understanding the evolution of dispersal [26].

An IFD is achieved when every individual has the same fitness across the habitat;
otherwise, some individuals could improve their fitness by adopting a different dispersal
strategy. In spatially heterogeneous but temporally constant environments, a species
achieves IFD when its distribution of individuals perfectly matches resource availability,
ensuring fitness to equilibrate throughout the habitat [4,37]. In such a context, it is
demonstrated across various modeling frameworks that dispersal strategies leading to IFD
are evolutionarily stable strategies (ESS), see [6] for reaction-diffusion-advection models,
[25] for patch models, [8,13] for nonlocal diffusion models, and [9] for integrodifference
models. These studies further demonstrated that dispersal strategies that can produce
IFD qualify as ESS in temporally constant environments. The concept of ESS is central
in evolutionary biology [15,43], and has strong implications in the study of biological
invasion, habitat selection and population distribution. However, ESS depends on the
class of admissible strategies and does not always lead to IFD [10, 19,27, 30,34, 39].

Most natural environments exhibit diurnal or seasonal variations. Incorporating
time-periodicity in the modeling, however, often leads to considerable mathematical
difficulties. For instance, the characterization of IFD is no longer a static location
selection as in temporally static environments, since the locations that maximize
individual fitness may change over time. Temporal periodicity significantly alters the
evolutionary dynamics of dispersal. It is for instance a driver of the diel migration
in copepods [44]. It is demonstrated in [2,22] that for reaction—diffusion models
of two competing species with strictly unconditional dispersal, if the environment is
time-periodic, then either fast or slow diffusion rate can be selected, or they could
coexist. This stands in contrast with the seminal work of [1,16,20] establishing the
selection of only slow diffusion rate in static environments. It is natural to ask the
following questions: (1) How do we define IFD in time-periodic environments? (2)
Are ideal free dispersal strategies ESS in time-periodic environments? These questions
were addressed by Cantrell et al. [3,5] by introducing a notion of generalized IFD via
pathwise fitness of a typical individual within a population in the context of time-periodic
reaction-diffusion-advection models. But [3,5], as with most previous work, apply only
in the restrictive context of two competing species due to the reliance on monotone
dynamical system theory. For three or more competing species, most existing studies
focus on the permanence or the existence of equilibrium solutions, and there is a gap in
the understanding of long-term dynamical and evolutionary aspects [7, 14,29, 36].

We will study the evolutionary stability of IFD for multiple competing species in
adaptive dynamics framework. The motivation lies in the fact that multiple species can
achieve IFD even though each individual single species cannot do so, forming the so-called

joint IFD [18]. The evolutionary stability of such situations is interesting and cannot be
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captured by models of two competing species. For competition systems of multiple species
in temporally constant environments, the joint IFD was defined to describe a combination
of distribution for multiple species that exactly matched the resource [4,7,36]. In that
case, dispersal strategies leading to IFD were proven to be ESS in the sense that when
only one species had an IFD, the species won the competition; when two out of three
species formed a unique joint IFD, the particular combination of species competitively
excluded the third species. See also the recent work by Cantrell and Cosner. We will
extend these results to multiple competing species in time-periodic, patchy environments
with an appropriate generalized notion of IFD [5].

Patch models have been widely used to understand the mechanisms for the evolution
of dispersal. For example, Chen et al. [11] gave a comprehensive classification of global
dynamics between two weakly competing species based on inter-specific competition
and the specific dispersal rates. Jiang et al. proposed a class of three-patch models
and investigated the effect of different river network topologies [23,24]. Extending this
framework, the evolutionary impacts of drift, spatial heterogeneity, and inflow/outflow
rates on competitive interactions of riverine species were studied in [10, 12, 32, 33].
Particularly, very fast dispersal strategy emerged as the unique ESS under suitable
conditions [33]. In spatially and temporally varying environments, Schreiber and Li [42]
derived invasion criteria for multiple dispersal phenotypes through eigenvalue analysis
of nonnegative matrices, where the dispersal resulting in a balanced patch was selected.
In a more recent work, it is demonstrated that IFD can arise in a partially migrating
population [40].

In this paper, we will explore the competition dynamics between coalition of IFD
species and other non-IFD species, and consider the adaptive dynamics and particularly
the existence of ESS in the class of dispersal strategies that vary periodically in time,
a class which is larger than static dispersal strategies that are frequently studied in the
aforementioned literature. To mathematically characterize the long-term dynamics of
positive solutions when one or multiple species adopt ideal free dispersal strategies, we
will construct Lyapunov functions based on the generalized relative entropy inequality
(see [38] or [28, Ch. 4]). While the generalized relative entropy inequality has
extensive applications in measuring the convergence of solutions to steady states/periodic
solutions for linear models, we will employ this method for nonlinear time-periodic model
with multiple competing species. Although we state and prove our results for patch
models, note that our arguments may also be applied to extend the results in [5] (for
reaction-diffusion models) to N-species case with N > 3.

Specifically, we consider the following competition model

du® ~ il
o P (1.1)
uf(o):ufo, 1€ k=1,---,N.



Here, Q = {1,--- ,n}, n > 2, is the total number of patches. The function u(t) denotes
the population density of species k in patch i. There are a total of N species, which are
identical except possibly for their dispersal strategies as specified by the rate of movement
Kfj (t) of species k from patch j to patch i. We assume throughout this paper that, for
each 1 <k < N, the dispersal matrix L*(t) = (£};(t)) satisfies
(C) LF € C(R;R™™), £5;(t) > 0 for i # j, and €5i(t) = = >, i 55(t) for t € [0,T7.
Moreover, L* is T-periodic in ¢ and irreducible for some ¢.

We further assume, for simplicity, that the fitness function is given by

Ei(t,s) =r(1) (1 - Ks(t)> for some positive and T-periodic functions r;(t) and K;(t),

where r;(t) is the local intrinsic growth rate of patch ¢, and K;(t) is the carrying capacity

of patch 1.

Remark 1.1. The results of this paper can be extended to any Fi(t, s) which is
differentiable and such that s Fi(t, s) is a diffeomorphism of R and %Fi(t, s) < 0.
In such cases, our proofs can be repeated with the choice of T-periodic functions M (t)
and u}(t) such that

M'(t -

> ui(t) = M(t) and ® _ Fi(t,ul(t)) forallieQ, teR.

; M(t)

1€Q

Unlike the temporally constant case, there exists periodic environments in which it

is impossible for any dispersing population to perfectly match the environment, see [35]
for some discussions in two patch environment. It is therefore necessary to clarify the
meaning of IFD in time-periodic environments from first principles. To derive the notion

of IFD for model (1.1), we start by considering the following single population model:

du; U;
dt Ki(t) (1.2)

It is well known that for given T-periodic coefficients such that L = (¢;;(t)) is irreducible

and £;;(t) > 0 for i # j, and that r;(¢), K;(t) > 0, model (1.2) has a unique positive

T-periodic solution u*(t) (which depends on the choice of dispersal strategy L) (e.g.,

see [21, Theorem 28.1]). Suppose the population is at a steady state w(t) = {u;(t)}icq,

then the fitness function of an individual (at patch i at time ¢) is given by the per-capita
u;(t)

growth rate F;(t) = r;(t) <1 - K—(t)> Hence, we infer that the individual traveling along

I(t) : [0, T] — Q receives the fitness given by the quantity (see discussion in [5, Sect. 2])

I(t) — /0 rri(t) (1 - }@;t))((?)) dt. (1.3)
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Now, if the population is at an IFD, then we expect that individuals cannot improve
their fitness by choosing a different path over the time period [0, 7']. Therefore, the above
quantity (1.3) ought to be independent of the choice of path I(¢). This leads to the
following definition of IFD.

Definition 1.2. (i) For a positive, T-periodic distribution u*(t) = {ul(t)}icq, we say
that uw*(t) is an IFD if

w;(t) () -

ri(t) (1 - w) =r;(t) (1 - m forany i,j €, teR. (1.4)

(ii) We say that L(t) = (£;;(t)) is an ideal free dispersal strategy if the corresponding
unique positive, T-periodic solution of model (1.2) is an IFD.

When multiple species are present, indexed by k, their combined distribution may form
an IFD even though each species individually cannot not achieve an IFD (see [18,36]).
Thus, we introduce the concept of a joint IFD which will be central to understanding the

evolutionary dynamics.

Definition 1.3. Let K be a nonempty subset of {1,--- ,N}. We say that the competition
model (1.1) has a K-joint IFD w*(t) = (u**(t), - ,uN*(t)) € [C*R; RN if u*(t) is a
positive T-periodic solution of (1.1) such that

u*(t) >0 forke K and u™(t)=0 forkg K, teR,

and

N ks N ke
ri(t) <1 - %tl)(t)) =7;(t) (1 - k}:(l]—(t])@> foranyi,j € Q, teR.

Remark 1.4. Throughout this paper, we use the indices i,7 € ) to denote spatial
locations, the indices k, h,l to distinguish between species, and boldface symbols to denote

vector of population distribution indexed by i € €.
This paper has three main objectives:

e (Subsect. 2.1) To derive a necessary and sufficient condition in environmental
functions 7(t) and K (t) for IFD to be feasible, see Corollary 2.6.

e (Subsect. 2.2) To prove that IFD is evolutionarily stable in the sense that if model
(1.1) has a K-joint IFD, then the spatial distribution of the total population

converges to IFD distribution as ¢ — o0, i.e. the spatial distribution

U(t) = nli_rg@Zuk(t +mT) (1.5)
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qualifies as an IFD. If, in addition, there exists a unique nonempty K’ achieving a
joint IFD, then the species in K’ competitively excludes all the other species, i.e.
(1.5) holds and

lim u®(t +mT) — 0 forall k¢ K,

m— 00
see Theorem 2.8. This generalizes the main results established in [5] where the case

N =2 and |K'| = 1 was treated for a reaction-diffusion-advection system.

e (Subsect. 2.3) To prove that only the ideal free dispersal strategy can be ESS in
the sense that if N-1 competing species are coexisting at steady state but they are
not in IFD, then such a steady state can be destabilized by an exotic species with

a suitable dispersal strategy, see Theorem 2.11.

In this way, we generalize previous results concerning the generalized IFD for
time-periodic environments [5] to the context of a patch model. In addition, the
evolutionary stability of joint IFD in a competition system with arbitrary number of
species is established here, thanks to a novel construction of Lyapunov function for
time-periodic systems. To our knowledge, evolutionary stability and global dynamical
attractivity of joint IFD was only treated in the case of three species for an autonomous

reaction-diffusion system in [36].

2 Statements of Main results

2.1 Characterization of IFD
Let r(t) and K (t) be given. We define the quantities M(t) and K (t) = {K;(t)}icq by

_‘[0 (s)dsf’ b(s)e fs a(7)d7 :ZS
L (& fO ‘l(s)ds

M(t) = [e —l—/t b(s)e‘f:a(T)desl , (2.1)

and

Ri(t) = % <ri(t) _ ]]‘\44((;)) for i€ Q. (2.2)

Here we se
t Sl 1
> ica(Ki(t) /(1)) > ica(Hi(t)/ri(t)

Remark 2.1. One can verify that M(t) is the unique positive, periodic solution of

M'(¢) _ a(t)
ORI (2.3)

aft) =

since z(t) = 1/M(t) satisfies 2’ +a(t)z = b(t), which has a unique positive and T-periodic
solution. Indeed, M (t) is T-periodic in t since

M(0) = M(T) = Jo b(s)e” Js “(T)des] B .

1—e fOT a(s)ds
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see [5, Lemma 3.1] for more details. As a consequence, the functions {K;(t)}icq satisfy

Z Ki(t)=1 forallt. (2.4)

Next, consider model (1.1) and recall that L*(t) = (£(t)) is the dispersal matrix of
the k-th species.

Lemma 2.2. For each k € {1,--- N}, there exists a unique positive and T-periodic
solution ¢*(t) = {#¥(t) }icq to the linear problem

d k _ 1k k k _
¢ () = L0t (t)  and Y of(0)=1. (2.5)

1€Q)
In addition, ¢f(t) >0 for alli,t and Y, . ¢ (t) =1 for all t.

Proof of Lemma 2.2. Thanks to the cooperativity and irreducibility of L*(t), we can
argue as in [28, Theorem 2.1.1] via the Krein-Rutman theorem [28] to assert that there

exists A\g € R and a unique positive T-periodic solution ¢(t) = {¢;(t)}icq such that
Y icq ®i(0) = 1 and

d
a@(t) = Z%(t)@(t) + Xoi(t)  for each i € Q. (2.6)
jeQ
Using 05;(t) = — 3" icq. ;i U5(t), we take the summation over i in (2.6) to get
d
720t =Xy ilh). (2.7)
i€eQ i€

Since ¢(t) is T-periodic, we integrate (2.7) in t over [0,7] to deduce that \g = 0.
Substitute into (2.7), it follows that Y., ¢i(t) = > ,cq ¢:(0) = 1 for all ¢. O

By the definition of M(t) and K(t), and Lemma 2.2, we give some equivalent

statements of joint IFD in the following theorem.

Theorem 2.3. Let 7(t) and K (t) be given, and let M(t) and K (t) be defined as in (2.1)

and (2.2), respectively. The following statements are equivalent.

(i) There ezists a nonempty subset IC of {1,---, N} such that model (1.1) has K-joint
IFD denoted by {u*(t)}_,.

(i) Model (1.1) has a nonnegative, T-periodic solution {u* (t)}_, such that

> ul(t) = MK (2).
k=1



(iti) There exist nonnegative constants {cy}N_, such that >_n ¢, = 1 and

N N

Z adt(t) = K(t) e et (t) = Ki(t) for alli € Q, (2.8)

k=1 k=1
where for each k, ¢*(t) = {¥(t) }icq is given in Lemma 2.2.

Proof. (i) = (ii): Let {u**(¢)}2_, be a K-joint IFD with some ideal free dispersal strategy
L**(t). Now, by Definition 1.3, there is a scalar function F(t) such that

N Ekx*
(T
F(t) =ri(t) <1 — —k;(lzfl) ( )> is independent of ¢ € €, (2.9)
l.e. .
dudt(t) = L™ (t)u™(t) + F(t)u™(t) foreach 1 <k < N. (2.10)

Taking summation in %k and 4, it follows that the total population w(t) =
S S ul(t) satisfies w'(t) = F(t)w(t) and hence

ri(t) S~ .
0 kZu (t) forallie Q. (2.11)

1
Upon dividing (2.11) by r;(t)/K;(t), taking summation in i, we deduce that

1 w'(t) _ a(t)
b(t) w(t) — b(?)

- w<t)7

where a(t) and b(t) are the same as those in (2.1), which implies that w(t) is a positive
T-periodic solution of (2.3). By uniqueness (see Remark 2.1), it follows that w(t) = M (t).
Hence, (2.2) and (2.11) imply (ii). In particular, K(t) > 0.

(i) = (iii): By S0, u**(t) = M(t)K(t) and (2.2), we derive that

(1)) M(t)Ki(t) ) _ M'(t) :
ri(t) (1 - T(t)) = r;(t) (1 - T@)) =200 foralli e Q. (2.12)

It follows that (2.10) holds with F(t) = M'(t)/M(t). Then, for each k, u**(t)/M(t) is a
T-periodic solution of (2.5) and hence for each 1 < k < N,

ut* (t)/M(t) = c@"(t)  for some constant cj > 0,

where we used Lemma 2.2. Thus,

N 1 3
> agt(t) = ii0] > ut(t) = K(1)
k=1 k=1

Summing over ¢ € (), we have
N N )

k=1 i€Q k=1 i€Q



This proves the implication “(ii) = (iii)”.
(iti) = (i): Define u**(t) = ¢, M(t)@*(t), then u**(t) is T-periodic. Due to S | ¢ =
1, there exists K C {1,---, N} such that ¢, > 0 for k € K and ¢, = 0 for k ¢ K. This,
together with M(t) > 0 and @"(t) > 0, shows that u**(t) > 0 for k € K and u**(t) = 0
for k ¢ K. Now, we compute via the definition of ¢F(¢) to deduce
(1) M) ey
dt M(t)
By SN | cr¢¥(t) = K,(t) and the definition of K;(t), we have

(D (1 ) M) it (1 MY, cmf(t)) M) e

= LF*(t)ub*(t) + for each 1 <k < N.

K (1) Ki(t) M(t)
Hence, the above expression is independent of i and w**(t) is a T-periodic solution of
(1.1). This proves (i). O
The next result gives a sufficient condition for the existence of a single species IFD,
provided the dispersal strategy is suitably chosen.
Proposition 2.4. If K(t) > 0 for all t, which is equivalent (thanks to (2.2)) to

a0 > s

then there exists at least one dispersal strategy L*(t) given by (2.14) such that the single

for all t, (2.13)

species model (1.2) admits an IFD.
Remark 2.5. Note that (2.13) is a condition that depends only on the given

environmental parameters 2, v(t) and K (t).

Proof of Proposition 2.4. Let K(t) > 0 be defined by (2.2). It suffices to construct L*(t)
such that w*(t) = M(t)K(t) is the corresponding positive T-periodic solution of the
single species system. Note that there are multiple such choices of L*(t), and we choose

the simplest one involving a bi-diagonal matrix.
Define {¢; (t)}?:2 by

R Ak 1
t - ~—+ )
et =Moot =0 7

K.

() =q;(t) —— + - = forj=2,---,n—1.

gj+1(t) = ¢( )Kj+1 i Ton J

Then choose the constant My > 1 to ensure that {g;(t)}}_, are positive functions.
Next, define the dispersal matrix L*(t) = (¢;;(t)) as follows

(

M, for (i, j) = (n,1),
_MO fOl" (Zaj) = (17 1)a
ffj(t) =94 ¢;(t) fori=35—-1,2<j<n,
—q;(t) fori=j, 2<5<n,

0 otherwise.
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1.e.

—My (1) 0 0o - 0
0 —q@) ¢@ 0 - 0

L*@t)=1 0 0 —gs(t) @) O . (2.14)
My 00 0 g

It is then clear from the construction of L*(¢) that
dK (t)

dt
Combining with (2.2), it follows that w*(t) = M (t) K (t) satisfies

= L*(t)K (t). (2.15)

A0 N~ g 1) — A — AL M()Ki(t)
L2 S () = M) = MK (0)r() (1 - K—)

JEQ

Therefore, the T-periodic distribution w*(t) = M(t)K(t) is a (and hence the unique)
positive T-periodic solution of the single species adopting the dispersal strategy L*(t),
and it fulfills condition (1.4). O

We state the following corollary of Theorem 2.3 and Proposition 2.4.

Corollary 2.6. Condition (2.13) (or equivalently K(t) > 0) on the environmental

parameters Q2 r, K is necessary and sufficient for the existence of a KC-joint IFD.

Remark 2.7. In particular, a T-periodic solution u*(t) of the single species model is
an IFD if and only if (2.13) holds and w*(t) = M(t)K(t), which is also equivalent to

o(t) = K(1).

2.2 Evolutionary Stability of IFD: Sufficiency

In this section, we discuss the evolutionary stability of IFD. Our basic assumption is
that there is a coalition of species indexed by £ € K forming a joint IFD. Our first
main result shows that dispersal strategies that generate a K-joint IFD (or a single
species IFD if |[K| = 1) are evolutionarily stable. Hereafter, we say that {u®(t)}_, is a
nonnegative, nontrivial solution of (1.1) if it is componentwise nonnegative, and that for
each k, max;equ¥(0) > 0. Recall also that a group of species form a K-joint IFD if and
only if 3wk = M(t)K(t), where M(t) and K (t) be defined in terms of (t) and K (t)
in (2.1)k§]rc1d (2.2), respectively.

Theorem 2.8. Suppose that there is a nonempty subset KC of {1,--- , N} such that model
(1.1) has a K-joint IFD. Then for any nonnegative, nontrivial solution {u®(t)}2_, of
(1.1), the following conclusions hold.
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(a) The collection of species converges to IFD distribution given by the environment:

lim sup | > " uf(t) — M(t)K;(t)| = 0.

t—o00 e —1

(b) Passing to subsequences {m'} C N with m' — oo, lim u*(t +m/T) is a K'-joint
m/—00

IFD for some K' C {1,--+ N}, i.e. there exists ¢ = {c*}_, € [0,1]" such that
Zszlck: 1, >0 forkeK andc* =0 fork ¢ K' and

lim, /00 SUp ico  SUPelo,T) |uf(t +m/T) — M (t)pkF(t) |Cloc(R) =0, and
i () = K1),
where @F(t) is given in Lemma 2.2.

(c) If, in addition, there is a unique subset Ko C {1,---, N} such that model (1.1) has
a K-joint IFD if and only if K = Ky, then there exists a unique set of coefficients
{ex 1, €10, 1) such that ¢, > 0 for k € Ko and ¢, =0 for k & Ko and
lim sup |uf(t) — ceM(t)¢f(t)] = 0.
t—o0 e
1<k<N
As a direct consequence of Theorem 2.8 and Remark 2.7, when only one species adopts
an ideal free dispersal strategy, it can drive other N — 1 species to be extinct, see the
following result. This is an extension of [36, Theorem 2.2 | and [7, Theorem 3].
Corollary 2.9. Let M(t) and K (t) be defined in terms of v(t) and K(t) in (2.1) and
(2.2), respectively. Suppose that the first species achieves an IFD (i.e. ¢*(t) = K(t)).
Then for any nonnegative, nontrivial solution of model (1.1), the following statements

hold.
(a) The collection of species converges to IFD distribution, i.e.
N

lim sup | > " uf(t) — M(t)K;(t)| = 0.

t—o00 ;
1€Q 1

(b) If, in addition, no subset K' C {2,--- N} form a K'-joint IFD, then

lim sup |uzl(t) — M(t)gbzl(t)‘ =0 and tlim uf(t) =0 for ke {2,--- N},

t—o00 e
where @' (t) is given in Lemma 2.2.

Remark 2.10. Assertion (b), applied to the case N = 2, implies that ideal free
dispersal strategies are non-invadable by non-ideal free dispersal strategies, i.e. they are

evolutionarily stable.

11



Proof of Theorem 2.8. First of all, let {¢F(t)}ica1<k<ny be as given in Lemma 2.2. By
the dissipativity assumption in Remark 1.1, we have
Jap >0 such that sup  Fy(t,s¢¥(t)) <0 for s> ap. (2.16)

i€Q, 1<k<N,
teR

Then, for each ¢, define the subset T (t) C R™¥ by

={Zt)={F®)} eR”N : Z(t) > 0 and zf(t) <apef(t) forall i€Q, 1<k<N},
(2.17)
={Z(t) e RN :Z(t) >0 and 2(t) < apg;(t) forallieQ, 1<k<N}.

(2.18)

We claim that 7(t) is forward invariant' with respect to the semiflow generated by the

model (1.1), i.e., for any ¢; > 0, and any solution w(t) = {uf(¢)}icq.1<k<n of model (1.1),
we have

u(ty) € T(to) = wu(t)eT(t) forallt>t. (2.19)

Indeed, fix typ > 0 and fix a solution w(t) of model (1.1) such that w(ty) € T (to). We
easily obtain w(t) > 0 for t > ¢ (resp. u(t) > 0 for ¢ > ¢y) using the irreducibility and
cooperativity of the dispersal matrix L*(¢).

Next, denote wf(t) = u¥(t)/¢¥(t), then

N
d ok k k h, h
arli T Zgij(t)wj +wi Fi | t, Z¢z w; (2.20)

JEQ h=1
where
k() = £ (t) %50 4 j#i and  C(t Z 0 (2.21)
“ “ ¢f(t) JEQ,
J#i

We claim that w(t) € T(t) for all ¢ > t,. Suppose not, there exist t* € (to,00) and k*, i*
such that w(t) € T(t) for t € [to, t*) and

* d *
wh(t*) <ag foral 1< k<N, i€Q, wh(t)=ay and %wf (t*) > 0.
Substitute into (2.20), and take (i, k) = (i*, k"), we have

0< ) <D () ag + agFy (£, agdf (7). (2.22)

JjeQ

However, > q Zf**j(t*)ao = 0 (thanks to the definition of (gg(t)) in (2.21)) and
F(t*,app® (t*)) < 0 by (2.16), which is a contradiction to (2.22). This proves
the forward-invariance of 7(t). By continuous dependence, it follows that 7 is also

forward-invariant. Note also that ap > 1 can be chosen arbitrarily large.

LAn equivalent formulation is that the Poincaré map is forward invariant with respect to 7(0).
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Let {u**(¢t)}_, be the K-joint IFD, with the convention that
u*(t) >0 for k€K and u™(t)=0 for k&K

Then, we see that Z,ivzl uh(t) = M(t)f((t) (by Theorem 2.3 (ii)), and

by M (1) :
Zl w;"(t) (D) foralli € Q, [ € K. (2.23)
JEQ
Here M (t) and K (t) are defined in terms of r(t) and K (t) in (2.1) and (2.2), respectively.
Let G(s) = s —Ins for s > 0, and denote K¢ = {1,--- , N} \ K. Fix an arbitrary solution

(ul(t),- - ,uN(t)) with initial data belonging to the forward-invariant set 7(0), then
define V(u'(t), -+ ,u”(t)) = Vi + Vi, where

-yyu (5 tt))>>0 and =33 U i_

i€Q lek i€Q ke/Cc
For | € K, denote
l D%
! u;(t) ! 1 i (t)
Cimc (ul—(t)) and (Gi)' = (G sy = 1= 1

Then direct calculations yield,

. 1 duﬁ* ! (Gﬁ)’uﬁ ! “i el
L Gt o KNGt ]
I

1€Q leX
1 dut* M, ul dul*  du
o (I R )
N N
= _ZZ {Gl Zéﬁjué* + ( Gl e ZEM u; + wauj +u — (Zu?* — Zu?
i€Q 1eX JEQ i JEQ JEQ h=1 h=1
! !
SODHWLA LR m(%—%)ﬁ§
lek ieQ jeQ J ?
+—Zn <Zuh* Zu)Zu —ul*),
ieQ K; lek

where we use Y, .o (ulfGh =37

1,J€EQ Vg J

o UGS o 0l = 0 and (Gl)'ul = ul —ul in the last

1€Q ~ij
equality.

”LLl~ u ”LLl~ us 2
By the Taylor’s theorem, G, = GL+(G!)’ (u{ ull> +5G"(8)]s=et 1 ( L — ;) , for
; . ij u u
some &L(t) > 0 between u(t)/uf*(t) and u}(t)/ul(t), so

Y S (S e N L
S EET L () L (- k) Tt

leK: i€Q ]GQ

13



Note that ul(t) is eventually bounded from above, and u!*(t) is uniformly bounded away
from zero and infinity, so £l (t) is uniformly bounded from above for all [ € K.

Next, we use > = 0 to compute

1€Q Z]
k kM/)
1 ko k he U k et U
:MZZ Zﬁwuﬂ—i—un 1—T —U;T; 1—T
i€Q keke Ljen v v
- _Z 7’: (Z h Zu ) Z uk (2.25)
1€Q keke

and use u**(t) = 0 for each k € K¢ to compute

0= Z Z(;u* ;u>< kZ}@uf*) (2.26)

’LEQ

<

By adding (2.24), (2.25) and (2.26), we have

ZZZ | <__Z_§*> _%Z%<ZU?*—ZU?> <0. (2.27)

zeQ JEQ lek 1€Q) h=1 h=1

According to (2.27), M := {V = 0} is given by
M= {(ul(t), -, u’N(t)) € T(t) : (2.28) holds for some x,(t), | € K}.

where

TN wbt) = SN ul(t) = MOK(t)  forieQ,

(2.28)
ul(t) = xi(t)ul*(t) forieQ, le kK.

Note that x;(t) is independent of i € .

It is known from the LaSalle’s invariance principle [31, Theorem 5] that, for arbitrary
ap > 1 satisfying (2.16), the solution initiating from 7 (0) tends to the maximal invariant
subset M’ of M. In general, for each trajectory w of (1.1) with nonnegative and nontrivial
initial value, there exists m € N such that w(mT) € T (mT) = T(0). It follows that M’
attracts the solution initiating from any nonnegative and nontrivial initial value (see,
e.g., [46, Theorem 1.2.1]). We further characterize M’. Indeed, let (w!(t),--- ,u™(t)) be
an entire solution (which is defined for ¢ € R) and lie in M, then conclusion (a) follows
from the first condition in (2.28), and the fact that ag > 1 can be chosen arbitrarily
large.

Moreover, the solution satisfies

d ko ki M)
—u (t) — L*(H)u”(t) = M(t)u (t) for 1<k<N,teR. (2.29)

14



Observe also that M(t)¢"(t) is another positive entire solution of (2.29). By the
uniqueness of positive entire solution of (2.29) (see [28, Theorem 4.1.2] for the statement
for linear parabolic equations and the general exponential separation result due to
Polacik et al. [41]), we see that u*(t)/M(t) = c,¢"(t) for some constant ¢, > 0. This
means that w”(¢) is T-periodic in time. Taking the summation over k, we deduce that
Zszl et (t) = Z]kvz1 uF(t)/M(t) = K(t) by (2.28). Then, summing over i € Q and
using Y ;. @F(t) = 1 and (2.2), we have

N
=) Kit)=1.
k=1 i€Q

Thus, conclusion (b) holds.

To prove conclusion (c), assume that there is a unique subset Ky that supports a joint
IFD. It follows from (b) that subsequential limits of w*(t +mT)/M(t) as m — oo equal
cr@®(t) with ¢, being supported precisely on K.

It suffices to show the uniqueness of {cj}i_,. If there are two distinct combinations

of {cx}4., and {c} }_; whose support is precisely Ky such that

N N

S ad(t) = gkt = K@),

k=1 k=1
Then define s" := minger, {c}/cx}, then 0 < s’ < 1. It then follows that

1
"no._
Cg - 1 — s

(¢, —sck) >0

: N
satisfies >, | ¢ = 1, ¢f/, = 0 for some k; € Ko, and

N
> de(t) = K(b),
k=1

which implies that there is a joint IFD with fewer species. This is a contradiction. O]

Theorem 2.8 demonstrates that the long-time limit of each solution to model (1.1)
selects an IFD. However, that a subset of multiple species exhibits a joint IFD does not
imply immediately that particular subset can drive all other species to extinction. A

counter example can be obtained for two-species system: if ¢'(t) = ¢*(t) = K(t), then

it follows that for each s € [0,1], (wl(t),u2(t)) == (sM()K(t),(1 — s)M(t)K(t)) is a
coexistence periodic solution, indicating that neither species may competitively exclude
the other one. The same situation holds if K; = {1} and Ky = {2,3} simultaneously
have joint IFD.

On the other hand, sufficient conditions for competition exclusion in three-species

reaction-diffusion models with temporally constant environments have been obtained
in [36]. For example, = {1} has IFD while no subset of {2,3} has IFD, then the
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first species competitively excludes the second and third species [36, Theorem 2.2]; if
K = {1,2} forms a K-joint IFD, and K = {3} does not, then the third species will be
competitively excluded while the first two species coexist stably [36, Theorem 2.3].

Our results (Theorem 2.8 and Corollary 2.9) generalize these previous results to
N-species problems with N > 3. Namely, if only one specific combination of species
can achieve a joint IFD, then the species combination will dominate and competitively

exclude all other species.

2.3 Evolutionary Stability of IFD: Necessity

Suppose a positive, T-periodic distribution (@'(t),--- ,@” ~!(¢),0) in an N species system

is not an IFD (or a joint-IFD in case it consists of multiple species). We show in this
subsection that it can be destablized by certain choices of dispersal strategy of the N

species. There are two direct consequences:

e For a time-periodic steady state of a single or multiple sepcies, being an IFD is a

necessary condition to keep evolutionary stable;

e When (2.13) does not hold, an IFD is not possible and hence the given environment

does not support any evolutionary stable time-periodic steady states.

Theorem 2.11. Let (@'(t),---,a”"'(t),0) be a T-periodic solution of model (1.1).
Suppose (@'(t),--- ,a™N"(t)) is not a joint IFD. Then there exists a dispersal strategy
LN(t) given in Claim 2.18 such that (@'(t),--- ,@”"*(t),0) is unstable, i.c., rare N-th

species invades.

Remark 2.12. If we assume in addition that (2.13) holds, then Theorem 2.11 is a
consequence of Corollary 2.9. However, we show that Theorem 2.11 holds without
imposing (2.13).

Proof of Theorem 2.11. Let {u*(t)}2_, be the solution to the initial value problem (1.1),
and define (t) = S_~ " u(t). Then (8(t),0), where 8(t) = S0 @*(¢) and {@"(t)} N
is given in the statement of the theorem, is the semitrivial T-periodic solution of

(

0; N
ZZe £yt + 7 )9,(1— K*“) i€Q, t>0,
k=1 j€Q (]\)]
0; .
Z@ u +ri(tud (11— U , 1e€Q, t>0, (2:30)
e Ki(t)

L 0:(0) = Zk 1 %07 UZJ‘V(O):U%~

It is clear that O(t) satisfies

E u—l—n )§l<1— ! ), 1€, t>0,
; JEZQ Ki(t) (2.31)
( )= Zk 1 uzO) 1€ Q.
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Then (é(t), 0) is linearly unstable provided that the following eigenvalue problem has a
negative principal eigenvalue (see [28, Chap. 7]):

dip; ,
SO =" (s + Fli, )i + Aps, i€ Q. (2.32)

JEQ

F(i,t) == ry(t) (1 - Kfét)> .

Let Ay € R be the principal eigenvalue of (2.32) and has positive eigenfunction

where

®(t) normalized by fOT Yicqei(t)dt = T, whose existence can be derived from the
Krein-Rutman theorem. It is enough to prove that A\; < 0 for some dispersal strategy
L(t), which implies the instability of (8(t), 0).

Take summation over ¢ in (2.31), then

%Z(Z = F(i,t)f; < {gleaﬂxF (J,t ] > b,

1€Q 1€Q 1€Q

where the strict inequality holds because (@'(t),---,@” ~'(t)) is not a joint IFD. Divide

both sides of the above equation by ZzeQé and integrate the result in ¢ over [0, 7], then
there exists some patch choice I(t) : [0,7] — Q such that

/TF(I(t),t) gt = [ maxF(j.t)dt > 0.

0 ]EQ

E;(t)=1 when I(t)=14, and E;(t)=0 otherwise,

then we can choose a smooth T-periodic positive function k(t) = {k;(t)}icq such that

> i ki(t) =1, and k(t) = E(t) in L'. By approximation, one can assume further that

/ > F(i t)r(t) dt > 0. (2.33)

S

Now, by a procedure similar to the proof of Proposition 2.4, it is easy to construct a
dispersal matrix A(t) = (a;;(t)) satisfying condition (C), such that A(t)k(t) = 0 for
t € [0,T]. For example, if k(t) = (k1(t), k2(t), k3(t)), then we can take

—kp(t)/k1(t) 1 0
Alt) = 0 1 —mo()/ms(t) |
Ko(t)/ka(t) 0 ka(t)/ks(t)

and note that A(t) is smooth and satisfies condition (C). Furthermore, for each t € [0, T,
A(t)v(t) = 0 and v(t) > 0 implies that v(t) = cor(t) for some ¢y > 0 by Perron-Frobenius
Theorem.
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Claim 2.13. Choose L™ (t) = aA(t) in the eigenvalue problem (2.32). Then as o — +00,
we have \y = — 4 fo o F (i, t)k(t) dt < 0.

To see the claim, take LY (t) = a’A(t) in (2.32). Observe that \; is bounded uniformly
for a > 0 by integrating the equation (2.32) in ¢ and summing over ¢ € € to get

|)\1|/ S ity d ZF”% £)dt| < max | PG ||Oo/ S i) d

i€ i€ i€

so that |\;| < maxeq || F(7,)|ls, and that A\; — X upon passing to a subsequence as
a — 0.
Next, denote ¢®(t) := >, ¢i(t), then

Zie (F(i>t) + Al)gpi(t)
a0 ==

Since the right hand side is uniformly bounded by 2 max;cq || F(4, -)|| 0, if We also normalize

(2.34)

q“(0) = 1, then Ascoli’s theorem implies that by passing to a subsequence, there exists a
positive function ¢(t) € Lip(]0,7T]) such that g(0) = g(T) = 1 and

q¢*(t) — q(t) uniformly in [0,7] as a — 0.

Also, the boundedness of Y . ., @;(t) in L*® also implies that (again passing to a
subsequence) there exists v(t) = {vi(t)}ico € L™ such that ¢ — v weakly in L for
any 1 < p < oco. Divide the equation (2.32) by «,

1 dg;
o dt

1
= ai(t)p;+ = (F(i,t) + M)y, i €9,
JEQ @
and then passing to the limit, we deduce v(t) = q(t)k(t). Finally, integrate (2.34) over
[0, T, then the left hand side vanishes by periodicity of ¢*. We then pass to the limit as
o — 00, so that

dt

0= lim
a—r 00

/ DicaF'(1, 1) + M) pi(t)
zeﬂgpl(t)
R P
q(t)
/ Z (i,t) + M)k (t) dt.

1€

This proves that A\; — —= fo F(i,t)r;(t) dt < 0 as o — 00. O

1€Q
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