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Abstract

Monocular depth estimation (MDE) is fundamental for deriving 3D scene struc-
tures from 2D images. While state-of-the-art monocular relative depth estimation
(MRDE) excels in estimating relative depths for in-the-wild images, current monoc-
ular metric depth estimation (MMDE) approaches still face challenges in handling
unseen scenes. Since MMDE can be viewed as the composition of MRDE and
metric scale recovery, we attribute this difficulty to scene dependency, where
MMDE models rely on scenes observed during supervised training for predicting
scene scales during inference. To address this issue, we propose to use humans
as landmarks for distilling scene-independent metric scale priors from generative
painting models. Our approach, Metric from Human (MfH), bridges from general-
izable MRDE to zero-shot MMDE in a generate-and-estimate manner. Specifically,
MfH generates humans on the input image with generative painting and estimates
human dimensions with an off-the-shelf human mesh recovery (HMR) model.
Based on MRDE predictions, it propagates the metric information from painted
humans to the contexts, resulting in metric depth estimations for the original input.
Through this annotation-free test-time adaptation, MfH achieves superior zero-shot
performance in MMDE, demonstrating its strong generalization ability.
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Figure 1: Illustration of our meotivation. (a) Fully supervised MMDE cannot generalize well on
unseen data as (b) MRDE, with its reliance on training scenes for predicting metric scales during
test time. (c) Hence, we develop MfH to distill metric scale priors from generative models in a
generate-and-estimate manner, bridging the gap from generalizable MRDE to zero-shot MMDE. We
use grayscale to represent normalized depths in MRDE predictions, while a colormap mapping metric
depth from meters to RGB values in MMDE results. In @, z(-) denotes rasterized metric depths.
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Figure 2: Comparison of state-of-the-art
MRDE and MMDE methods in terms of
AbsRel and the number of training samples.
Marigold [1] and Depth Anything [2] are de-
signed for MRDE, while the rest are for MMDE.
We observe MMDE approaches require notably
more data to achieve similar AbsRel as MRDE.
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Figure 3: MMDE §; versus the maximum co-
sine similarity between each test sample and
all metric-annotated training samples. “x /o™
from indoor/outdoor datasets. We see that the
scale-related performance of a test sample pos-
itively correlates with its similarity to training
samples. Details can be found in Appendix A.1.

1 Introduction

Monocular depth estimation (MDE) is essential in understanding the 3D structure of scenes from
2D images and has many applications in robotics [3, 4], autonomous driving [5, 6], and virtual
reality [7, 8]. It requires recovering depth information from a single image without relying on
additional sensors or stereo cameras, thereby being inherently ill-posed.

Recent literature mainly explores MDE in two branches, namely, monocular relative depth estimation
(MRDE) [2, 1, 9] and monocular metric depth estimation (MMDE) [10-17]. MRDE estimates
normalized depths or disparities by factoring out the scale. Its scale-invariant nature enables large-
scale training on diverse datasets with distinct camera parameters, while at the cost of bringing in
scale ambiguity. In contrast, MMDE predicts absolute depths in meters. Due to the unbounded output
range and the intertwined relationship between depths and focal lengths, early works of this line often
cannot perform well on test data with arbitrary scene scales or camera intrinsics. To compensate for
this, recent progress resorts to injecting scene information [12] or camera information [10, 11, 14]
into the model. The former attempt learns scene-specific scale priors, modeled with metric heads for
indoor or outdoor scenes, and uses either to transform relative depths into metric depths in a heuristic
manner. The latter aims to disambiguate scale prediction with extra camera inputs. However, as
shown in Fig. 2, both lines of work require notably larger amounts of labeled training data to achieve
similar mean absolute relative errors (AbsRel) as their MRDE counterparts.

What causes the data hunger of MMDE, and what makes MMDE harder to generalize? Given that
MMDE can be viewed as the composition of MRDE and metric scale recovery, we posit the latter
might be the primary factor. MMDE models might face challenges in inferring scene scales without
sufficient exposure to similar annotated scenes during training, which is not a problem for scale-
invariant MRDE. To validate our assumption, we evaluate a scale-related metric (6;) of an MMDE
model, ZoeDepth [12], on randomly sampled test images. Meanwhile, we calculate the maximum
cosine similarity between each test sample and all training samples with metric annotations using
DINOv2 [18]. Our findings from Fig. 3 indicate a clear trend: higher similarity to training samples
positively correlates with better performance, and vice versa. This reflects a scene dependency of
MMDE models, likely arising from their supervised training paradigm. In other words, they tend to
learn an implicit mapping between training scenes and metric scales from <image, metric annotation>
pairs. As a result, adapting to novel scenes may require extra domain-specific fine-tuning.



To address this dependency for better generalization capabilities, we propose to avoid scene-dependent
supervised learning, while leveraging a scene-independent metric scale prior. Our insights are two-
fold. First, we observe generative painting models can paint objects of proper sizes based on partial
contexts, indicating an underlying sense of scales. Additionally, humans can be potentially utilized as
relatively universal landmarks, since humans exhibit sizes that are generally more comparable to each
other than other common in-the-wild objects, e.g., tables, trees, and cars. To explicitly derive a metric
scale prior from generative painting models, we notice state-of-the-art human mesh recovery (HMR)
approaches [19-21] can robustly estimate human dimensions for in-the-wild images. Also, they
typically output SMPL [22, 23] representations with shape space defined in meters. While the input
image does not guarantee to include humans, we speculate an off-the-shelf image painting model
can paint proportionate humans in the scene, which provides an opportunity to retrieve metric-scale
information for the original input by measuring painted humans. Hence, we introduce a test-time
adaptation pipeline, Metric from Human (MfH), as illustrated in Fig. 1. Concretely, it 1) paints
humans with partial contexts of the input image, 2) estimates human dimensions from the painted
image, and 3) propagates the metric-scale information from humans to the contexts for MMDE. In
this way, we can distill the metric scale prior hidden inside the generative painting model, unleashing
its power to comprehend diverse scenes. As a result, our MfH mitigates the scene dependency issue
in fully supervised MMDE, thereby being potentially more generalizable to unseen scenes.

Our contributions can be summed up as follows:

1. We discuss that the current obstacle for generalizable MMDE lies in scene dependency
and propose to use a scene-independent metric scale prior as a solution. Further, we find it
possible to establish such prior by distilling from generative painting models.

2. To extract the metric scale prior from generative painting models for zero-shot MMDE,
we design a test-time adaptation framework, Metric from Human (MfH). Using humans as
landmarks, we bridge from MRDE to MMDE by a generate-and-estimate pipeline.

3. Through qualitative and quantitative experiments, we demonstrate the superiority and gener-
alization ability of our MfH in zero-shot MMDE, needless of any metric depth annotations.

2 Related Work

Monocular Depth Estimation (MDE) has garnered significant interest in recent years. Early
approaches focused on supervised methods that predict either monocular metric depth estimation
(MMDE) [16, 24-27, 15] or monocular relative depth estimation (MRDE) [27-29, 9]. Despite
remarkable progress in network architectures [30-33, 16, 13, 34, 15], existing MMDE methods often
confine their training and testing to specific domains, leading to performance degradation under minor
domain shifts and poor generalization to unseen environments. In contrast, relative depth models have
demonstrated better generalization by leveraging scale-invariant losses [9, 35, 36] on diverse datasets.
However, these models cannot recover metric scales, which are crucial for downstream applications.
Recent works explored generalizable MMDE models [12, 11, 14, 10] for diverse domains, leveraging
camera awareness through explicit incorporation of intrinsics [37, 11] or normalization based on
camera properties [38, 17, 14]. They often require fine-tuning to adjust to specific domains [11, 10].
Several recent studies explore zero-shot MMDE, using language as a prior to ground predictions
to metric scale [39—41]. However, their hand-crafted depth captions to connect the language and
metric worlds are often too coarse to capture accurate depths. Our MfH instead distills metric scale
priors from generative painting models, enhancing both the generalization capability and pixel-wise
precision of zero-shot MMDE models without relying on metric depth annotations.

Human Mesh Recovery (HMR) aims to reconstruct 3D human bodies from visual inputs.
Optimization-based HMR relies on iterative optimization techniques to fit parametric body models
such as SMPL to detect image features. Examples include SMPLify [42] and its variants [23, 43],
which iteratively minimize an objective function to align the model with 2D key points and silhouettes.
In contrast, feed-forward methods [44—49] directly regress the body shape and pose parameters from a
single image using deep learning techniques. Among them, HMR 2.0 [20] is a fully transformer-based
approach for recovering 3D human meshes from single images. We adopt it as our HMR model for
estimating in-the-wild human structures and poses. With HMR, we derive metric scale priors from
generative painting models, thereby bridging generalizable MRDE to zero-shot MMDE.
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Figure 4: The framework of Metric from Human (MfH). Our pipeline comprises two phases. The
test-time training phase learns a metric head that transforms relative depths into metric depths based
on images randomly painted upon the input image and the corresponding pseudo ground truths. After
training the metric head, the inference phase estimates metric depths for the original input.

3 Method

Taking an RGB image I € R *" 3 with its camera intrinsic K € R3*3 as input, we aim to estimate
its pixel-wise metric depths D™ € RHE>XWX1 Unlike existing MMDE methods [12, 11, 14, 10]
that typically train on images with metric annotations and expect the trained model to generalize
to unseen inputs, we instead consider a test-time adaptation scenario. That is, to estimate metric
depths on a certain image without training on domain-specific metric annotations. To achieve
this, we propose a framework to learn a metric head for each input I, as depicted in Fig. 4. The
metric head is concatenated after an off-the-shelf MRDE model to transform relative depths into
metric depths. While the inference pipeline is simplistic, our key insight is to use humans as metric
landmarks during test-time training. Since humans are not guaranteed to exist in in-the-wild images,
we introduce a generate-and-estimate method in Sec. 3.2 to extract metric scale information from
the given image. This extracted information together with the estimated relative depths allows us to
approach annotation-free zero-shot metric depth estimation, as outlined in Sec. 3.3.

3.1 Preliminaries

3.1.1 Monocular Depth Estimation (MDE)
Assuming a pinhole camera model, we have the following relation

Cb-f D™ — ((D™)

m ZJ rel — my __
D" = g D rel(D™) D™

ey
where b and f are the camera baseline and focal length, D™ and d™ are metric depths and disparities,
and s(-) and t(-) are scalar functions, denoting a scale and a translation to normalize the input. We use
superscript ™ and ™ to refer to metric and relative values, accordingly. Due to the correlation between
camera parameters and the scale of depth, MMDE cannot generalize well if the camera intrinsic
is unknown or the scene scale is hard to predict, e.g., when the scene is unseen during training. In
contrast, MRDE enjoys better generalization ability for its affine-invariant formulation.

3.1.2 Human Mesh Recovery (HMR)

We adopt a state-of-the-art HMR model, HMR 2.0 [20], for reconstructing camera-frame human

meshes from an image I, € REXWX3 with K people. Starting with human segmentation masks
{M,,, € RE>XWXIVEK | from Mask R-CNN [50], HMR 2.0 predicts SMPL [22] parameters for each



human as {®,,x, Ok, Bnk, Lk}, . These parameters represent global orientation ®,,;, € R3*3,
body pose 8,1, € R?2%3%3 shape B, € R'?, and root translation T',,;, € R3. Then the human body
meshes with vertices V,,;, € R3%%89 can be recovered with the SMPL model

V.. = SMPL (':I)n]€7 Gnk,,@nk) + Tk, wherek=1,2,..., K. )

Since the shape space of SMPL is defined in meters, the generated vertices { V.1 } are also in meters.
As aresult, all HMR regressors, such as HMR 2.0 we use, inherit such data prior.

3.2 Generating Humans as Metric Landmarks

To start off, we randomly place people on the input image with generative image painting,
with text prompts {Pe N sampled from {"a man", "a woman"} and mask prompts {Pm*k ¢
RAXWXIAN  sampled from rectangles smaller than the whole i image. We write P,, = (P'Xt pmask)
as a shorthand. Once at a time, we randomly generate [V painted images with humans

I, = paint (I|P,,), wheren =1,2,..., N, 3)

and {I,, € REXWx31N_ are the painted images. We observe the generative image painting model
can paint people of proper sizes that are compatible with the unmasked background. This allows us
to use the painted people as landmarks to inform our model of the metric scale. To this end, we fed

these painted images into HMR 2.0 to predict human instance segmentation masks {Mnk}n k=1

and meshes {Vnk}n:1 x—1> Where the subscripts denote the k-th person in the n-th image. We obtain
the pseudo metric ground truths D} with rasterization

D} = mkin [erode (M, N Spx) © D), 4)

where S, Dy = p(K, V1) are the rasterized silhouettes and depths, respectively, and © stands
for the Hadamard product. We erode the intersection of the instance segmentation mask M,,;, and
the rasterized silhouette S, to avoid overlapping and take the minimum of k£ depth maps so that the
depth values from closer humans can occlude the farther ones. Using these pseudo ground truths, we
supervise the learning of the metric head with the scale-invariant log (SIjog) loss [51]

2
Hym * 1 A
Lsn,, (D7, D) = HW Z € — (HW)2 (Z 6z’> ) ()

where € = log ]52 — log D}, with IA)?: being the estimated metric depth map, subscript ; denotes the
index of each pixel, and A € [0, 1]. Since the rasterized depths D, are in meters and the first term in
ﬁsrlog is pixel-wise [z, this loss provides crucial metric scale information to the metric head.

3.3 Transforming Relative Depths into Metric Depths

During training, we estimate a relative depth map f)ﬁfl for each painted image I, witha pre-trained

MRDE model, and learn a metric head to transform ]f)rel into an estimated metric depth map ]jm.
Similarly, we obtain D™ and D™ from the original input I durmg inference. According to Eq. (1)

we can learn a simple linear layer as our metric head, i.e., Dm =5- Drel + . In addition, we need
to account for the difference between the relative depths predlcted from the original image D™ and

those from the painted images {]55?1} on the unpainted regions. Considering the affine-invariant
nature of MRDE, we further decompose metric depth predictions with

D" =5 (s, -D+¢,)+t=s-D+ ¢ where D' = 5, - D' +¢,,, (6)
and {s,}, {t,},s,t € R are optimizable parameters. Then we align D™ and {D™!} with
EMSE Drel Drel H ( Pmask) (]:_);;31 _ Drel) H2 . (7)

This objective considers the pixel-wise alignment of unpainted regions with an affine transform
specific to each painted image. Finally, we formulate our complete objective function as

: * : rel rel
min E Lst,, ( D",D E min Lyse (D D). 8)
o — sustn



Table 1: Performance comparisons of our MfH and state-of-the-art methods on the NYU-Depth V2
[52] and KITTI [55] datasets. TLORN uses 200 images and 2,500 partial images for training.

Method ‘ Supervision NYUv2 KITTI
01T AbsRel| Sligld RMSE| | 611 AbsRel] Sleg) RMSE]

ZeroDepth [11] many-shot | 90.1 10.0 — 0.380 89.2 10.2 — 4.38
Metric3D [14] many-shot | 92.6 9.38 9.13 0.337 97.5 5.33 7.28 2.26
UniDepth-C [10] | many-shot | 97.2 6.26 6.41 0.232 97.9 4.69 6.71 2.00
UniDepth-V [10] | many-shot | 98.4 5.78 5.27 0.201 98.6 4.21 5.84 1.75
LORN [58]f few-shot 70.3 101 — 9.452 — — — -
Hu et al. [40] one-shot 42.8 34.7 — 1.049 31.2 38.4 — 12.29
DepthCLIP [59] zero-shot 39.4 38.8 — 1.167 28.1 473 — 12.96
MIfH (Ours) zero-shot 83.2 13.7 9.78 0.487 81.2 13.3 10.5 4.21

Such formulation propagates metric scale information from human pixels to background pixels,
thereby enabling the metric head to predict for the non-human context. After optimization, it is then
possible to infer metric depths for the original input image. While one can deploy fancier metric head
and apply up-to-affine consistency constraints between aligned relative depth predictions D™ and

metric depth predictions ]5?; for better robustness, we observe a simple affine transform is capable of
providing good predictions, leaving further parameterization for future works.

4 Experiments
4.1 Experimental Setting

Datasets. Under our test-time adaptation setting, we do not train on any datasets but only test on
each input image directly after image-specific optimizations. Specifically, we evaluate the zero-shot
MMDE capability of MfH on NYU-Depth V2 [52], IBims-1 [53], ETH-3D [54] with the split
from [13] and official masks, and KITTI [55] with the corrected Eigen-split from [51]. Following
prior works [12, 15, 16], we apply the Eigen evaluation mask [51] on NYU-Depth V2 and IBims-1
while the Garg evaluation mask [56] on KITTIL.

Evaluation Metrics. We employ several common metrics to assess the performance of all baseline
Dpred D

Dgl ’ Dpred
fraction of predicted depth values that are within a threshold factor of their corresponding true

methods and our model. The §; = ﬁ Zivlv [max ( ) < 1.25| metric evaluates the

values; the Mean Absolute Relative Error, AbsRel = HW ZHW M , measures the average
absolute difference between the predicted and true depth values, normahzed by the true depth; the

Scale Invariant Logarithmic Error, Sl = 100 \/ Var(log Dpreq — log Dy;), quantifies the error in
a logarithmic scale that is invariant to the absolute scale of the scene; the Root Mean Squared

Error, RMSE = \/ HW HW 1 (Dgt — Dpred)Q, focuses on the square root of the mean of squared
differences between the predlcted and actual depth values, emphasizing larger errors.

Implementation Details. We adopt Depth Anything [2] without fintuning on metric annotations as
our MRDE model, Stable Diffusion v2 [57] for generative painting, and HMR 2.0 [20] for human
mesh recovery. In Lgy,, we follow ZoeDepth [12] to set the A = 0.15. For optimizing the alignment
parameters {s,}, {¢,}, we leverage linear regression to obtain a close-formed solution. As for
optimizing the metric head parameters, s, t, we use the L-BFGS optimizer with a fixed learning rate
of 1 for 50 steps. Unless otherwise specified, we randomly paint 32 images for our comparison
experiments and 4 for our ablation studies. All experiments are run on one NVIDIA A100 GPU.

4.2 Comparison Results

We first evaluate the MMDE results on NYU-Depth V2 [52] and KITTI [55], common benchmarks
with indoor and outdoor scenes, respectively. In Tab. 1, we show that our zero-shot MfH consistently
outperforms other approaches trained with few/one/zero-shot supervision. This indicates that genera-
tive painting models are capable of capturing metric scale information, which is potentially more
accurate than that embedded in language models [40, 59]. With our generate-and-estimate pipeline,
the metric scale prior hidden inside generative painting models can be leveraged for zero-shot MMDE.



Table 2: Performance comparisons of our MfH and many-shot methods on the DIODE (Indoor) [60],
iBims-1 [61], and ETH3D [54] datasets. *-{N, K, NK}: fine-tuned on NYUv2 [52], KITTI [55], or
the union of them. We re-evaluate all results with a consistent pipeline for metric completeness.

Method ‘ DIODE (Indoor) iBims-1 ‘ ETH3D
61T AbsRel | Sliogl RMSE] | 611 AbsRell Sligl RMSE| | 61T AbsRel| Slig) RMSE]

ZoeDepth-NK [12] 38.8 33.0 13.3 1.598 61.0 18.7 8.98 0.778 335 47.3 14.0 2.094
Depth Anything-N [2] | 29.7 327 125 1.486 71.3 15.0 7.58 0.594 252 38.7 10.2 2.327
Depth Anything-K [2] | 11.1 231 15.5 5.199 2.88 217 17.2 5.385 16.9 136 17.1 4.202
ZeroDepth [11] 43.2 30.0 132 1.392 74.6 16.4 10.6 0.634 312 326 13.4 1.926
Metric3D [14] - 26.8 - 1.429 - 144 - 0.646 - 342 - 2.965
UniDepth-C [10] 62.8 23.8 115 0.968 81.1 14.8 8.30 0.536 433 355 10.3 1.532
UniDepth-V [10] 79.8 18.1 104 0.760 234 35.7 6.87 1.063 272 43.1 8.93 1.950
MIfH (Ours) 422 345 13.2 1.363 67.7 233 9.73 0.738 47.1 24.0 8.16 1.366

Table 3: Ablation study for MRDE models and  Table 4: Ablation study for optimization param-
optimization targets on the NYUv2 dataset. True  eters and optimization targets on NYUv2. We
depth/disparity represents the performance with ~ optimize the predictions in the same space as
oracle depths/disparities as optimization targets. optimization targets, i.e., the depth space for
depth targets and the inverted depth space for

MRDE Model Optim. Target | 6,7 AbsRel| Sk, | RMSE] disparity targets The same applies to Tab. 3
true depth 63.9 224 24.5 0.692 : :
ZoeDepth [12] true disparity 66.5 20.1 23.2 0.658
P painted depth 29.5 355 30.6 1.246 Optim. Param. ~ Optim. Target | 6 T AbsRel | S,z | RMSE |
painted disparity | 30.2 323 25.1 1.158 truc disparity 979 457 6.68 0222
true depth 96.3 5.88 8.70 0.251 51 painted disparity ‘ 58.6 28.0 21.2 1.079
wewa AR RSB B 08 T e i e e
painted disparity | 40.7 31.1 313 1.086 painted disparity | 29.6 744 366 3.000
true disparity 0.00 98.9 62.5 2.825
true depth 75.8 16.8 19.8 0.657 {sn}, {tn} 1 . A ‘
Depth Anything [2] true disparity 97.9 457 6.68 0222 painted disparity | 0.30 113 182 3.387
ph Anything painted depth 501 417 279 1.874 (5u} At} s, e disparity 979 457 6.68 0.222
painted disparity | 66.8  21.9 152 0.792 SnpUn s ST painted disparity | 66.8 21.9 152 0.792

In Tab. 2, we further provide a comparison between MfH and state-of-the-art many-shot methods,
which are typically trained upon large-scale datasets with dense metric depth annotations. Our
model achieves performance on par with, and sometimes superior to, these approaches, especially on
ETH3D [54], which contains both indoor and outdoor scenes. It is noteworthy that these prior arts
can do well on certain datasets while failing on others. For instance, ZeroDepth [11] performs well
on iBims-1 but struggles to estimate depths on DIODE (Indoor) and ETH3D accurately. Similarly,
UniDepth-V [10] shows promising results on DIODE (Indoor) while underperforming on the other
two benchmarks. These findings signify the scene-dependent nature of existing fully supervised
methods, which may result in degraded performance on unseen scenes. In contrast, our model
demonstrates robust zero-shot generalization capabilities across diverse scenes. We further highlight
the comparison among our MfH and Depth Anything [2] fine-tuned on NYUv2 or KITTI (2"¢-3
rows). These methods adopt a common Depth Anything MRDE backbone while deploying different
strategies for MMDE. The results demonstrate that our test-time adaptation strategy generally works
better than domain-specific fine-tuning, without the need for training on metric depth annotations.

4.3 Ablation Study

Impact of MRDE models. In Tab. 3, we investigate the performance of MfH with different MRDE
models and various optimization targets. For ZoeDepth [12] and Depth Anything [2], we only adopt
their pre-trained MRDE backbone as our MRDE model. Note that we use ground truth depths or
disparities as optimization targets to show an approximate upper bound of performances, while only
accessing painted depths or disparities as pseudo ground truths during real test-time adaptation. We
also ensure consistency by optimizing predictions in the same space as the target, i.e., the depth
space for depth targets and the inverted depth space for disparity targets. Overall, we observe using
Depth Anything as our MRDE model and painted disparities as our optimization target shows the best
performance. Comparing the first two rows and the last two rows for each MRDE model, we see that
optimizations in the disparity space yield superior results for ZoeDepth [12] and Depth Anything [2],
whereas optimizations in the depth space prove more effective for Marigold [1]. A similar scenario
can also be found in the last two rows of each MRDE model. This variation in performance may stem
from the difference in their output spaces. To be concrete, ZoeDepth and Depth Anything produce
inverted depths, while Marigold outputs depths. Optimizing in the original output space can provide
better numerical stability, leading to better optimization results.
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Figure 6: An alternative perspective on MfH. (a) Using camera intrinsics, the estimated metric
depths can be transformed into a metric point cloud. (b) Our generate-and-estimate process can be
seen as aligning the estimated point cloud of each painted human to its corresponding human mesh.

Impact of optimization parameters. In Tab. 4, we verify the benefits of aligning relative depth
estimations of the original input and painted images with {s,, }, {¢,} and parameterizing the metric
head with s,t. We view the results from bottom to top. First, optimizing all parameters (7"-8®
rows) yields the lowest error. When we fix the scaling factor to 1 while keeping the other parameters
optimizable (5"-6" rows), the model has the highest error and cannot be aligned with the ground
truth. Instead, when using optimizable scales (3"-4" rows) in the metric head, the model can better
capture depths, which indicates an accurate scene scale is crucial in MMDE. Removing the alignment
between the input image MRDE and painted image MRDEs (1%-2" rows) results in sub-optimal
predictions since the same contents on two different images might result in distinct MRDE predictions.
The performance difference of using different optimization parameters while the true disparity as the
target (3™ vs. 5" vs. 7" row) shows it is possible to apply an affine transformation upon MRDE to
achieve good MMDE predictions, if with accurate scale and translation recovered.

Impact of loss functions. In Tab. 5, we ablate the effect of using various loss functions for test-time
training the metric head. Notably, employing an I; loss (1% row) yields inferior performance compared
to losses incorporating an I, term (2"4-4" rows). This is probably because our generate-and-estimate
process can introduce noises to a certain degree. Since the /; loss treats all errors equally, regardless
of their magnitude, it can be more sensitive to small perturbations. An [, term that focuses more
on large errors thus provides better robustness. Furthermore, a comparison between the 2" and the
last two rows shows optimizing in the log space brings better performance, which is expected since
logarithmic transformation tends to mitigate the impact of outliers. This also accords with the general
experience in training depth models using ground truth annotations, suggesting that the depths of
generated humans might also be normally distributed in the log space, akin to real-world scenarios.
From the last two rows, we see optimizing with the MSE;, loss or the Sljog loss is not discrepant by
much. We opt for the SIj,g loss in our optimization process due to its relatively superior AbsRel.

Impact of painting numbers N. In Fig. 5, we analyze the effect of increasing the number of painted
images with humans. Specifically, we paint 4, 8, 16, and 32 images with humans, plotting curves
as well as error bars for various metrics against the painting numbers. To draw reliable conclusions,
we conduct experiments across five consistent random seeds for each painted image quantity. Our
analysis reveals a clear linear association between the per-sample runtime and the number of painted
images, as depicted in the time plot. The §; and RMSE plots show an upward trend in MMDE
performance with the increment in painting numbers, albeit sublinearly. By further examining the
error bars, we see a larger number of painted images results in better robustness of predictions, which
is demonstrated by a smaller, gradually converging standard deviation.



IBims-1 Diode (Indoor)

ETH3D

0.00

(a) Input & GT  (b) ZoeDepth-NK  (c) ZeroDepth (d) UniDepth-C ~ (e) MfH (Ours) Meters | AbsRel

Figure 7: Zero-shot qualitative results. Each pair of consecutive rows corresponds to one test
sample. Each odd row shows an input RGB image alongside the absolute relative error map, while
each even row shows the ground truth metric depth and predicted metric depths.

4.4 Qualitative Analysis

We present an alternative view of our MfH in Fig. 6. With camera intrinsics, the estimated metric
depths for both the painted images {D™} and the original input D™ correspond to metric point
clouds. Our MfH stretches the point clouds for {D!'} along the z-axis by setting human landmarks

in 3D, revealing the 3D structure of the unpainted background in meters. With random painting, we
progressively capture the 3D structure of the entire original input, thus bridging MRDE to MMDE.

We demonstrate metric depth predictions and pixel-wise AbsRel in Fig. 7, highlighting the strong
zero-shot generalization ability of our MfH. Additionally, we show MMDE results for in-the-wild
samples captured by DSLR cameras and smartphones in Fig. 8. Besides the robust performance of
MfH, we observe that fully supervised MMDE methods like UniDepth [10] often provide bounded
metric depths, inheriting from the limited range of sensors used in their training ground truths. In
contrast, our MfH can provide more flexible results.

Case studies, user studies, and more qualitative analysis can be found in Appendix D.

5 Conclusion

We present MfH, a method that infers metric depths from in-the-wild images without the need for
training on metric depth annotations. Utilizing humans as landmarks to extract metric scale priors
from generative painting models, our approach addresses the challenge of scene dependency inherent
in MMDE trained with metric depth supervision. Through a test-time adaptation pipeline, MfH
effectively captures metric scale information from images by generating and estimating humans,
which is then leveraged for zero-shot MMDE. Our experiments demonstrate that MfH achieves
superior performance and better generalization ability compared to existing methods.



(a) Input (b) UniDepth-C (c) MfH (Ours) Meters (d) Input (e) UniDepth-C (f) MfH (Ours) Meters

Figure 8: In-the-wild qualitative results. Each group of rows (a)-(c) or (d)-(f) corresponds to one
in-the-wild test sample captured by a DSLR camera or a smartphone.

Limitation discussion. Our MfH works based on the assumption that humans can exist in the scene
so that it is possible to paint a human upon the input image. While this holds for most usages of
MMDE, it might not be ideal for some cases, e.g., close-up scenes. This opens up new challenges,
such as incorporating objects other than humans into the generate-and-estimate pipeline as metric
landmarks. Another assumption is the MRDE predictions align with true depths up to affine. Despite
the training objectives of MRDE being linearly transformed true depths, the MRDE predictions can
contain noises, making the linear metric head hard to capture accurate metric depths. Whether other
parameterizations of the metric head can tackle this remains an open question.

Broader impacts. Our MfH decreases the demand for metric depth annotation which commonly
requires depth sensors or stereo systems, making MMDE models more environmentally friendly.
However, its usage of human-related models can perpetuate biases present in the training data, leading
to unfair or discriminatory outcomes.
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A Experiments on Scene Dependency

A.1 Similarity with Training Samples

We provide more details of plotting MMDE §; against the maximum cosine similarity between each
test sample and all training samples in Fig. 3. Specifically, we run ZoeDepth [12] on each sample of
its test sets and calculate their 6; metrics. We also calculate the cosine similarity of each test sample
against each training sample with metric annotations with DINOv2 [18] and find the similarity value
for the nearest neighbor. Since ZoeDepth first pre-trains its backbone for MRDE and then finetunes
on NYUv2 [52] and KITTI [55] for MMDE, we only include the two datasets used for MMDE
training during similarity calculation. For the scatter plot, we randomly take 10 different samples
each time and plot their average J; and maximum cosine similarity with training samples as one point
on the figure. In this way, we plot 100 points for each testing dataset.

A.2 MRDE Performances of MMDE Models

Table 6: Performance comparisons of our MMDE methods in terms of MMDE and MRDE settings
on the DIODE (Indoor) [60], iBims-1 [61], and ETH3D [54] datasets. *-{N, K, NK}: fine-tuned on
NYUv2 [52], KITTI [55], or the union of them. We re-evaluate all results with a fair and consistent
pipeline for metric completeness.

Method ‘ Setting ‘ DIODE (Indoor) iBims-1 ETH3D
01T AbsRel] Sliogd | 61T AbsRel] Sliog) | 61T AbsRel] Sliog |

ZoeDepth-NK [12] 38.8 33.0 13.3 61.0 18.7 8.98 335 473 14.0
Depth Anything-N [2] 297 327 125 | 713 150 758 | 252 387 10.2
Depth Anything-K [2] 11.1 231 15.5 2.88 217 17.2 16.9 136 17.1
ZeroDepth [11] MMDE | 43.2 30.0 13.2 74.6 16.4 10.6 31.2 32.6 13.4
Metric3D [14] — 26.8 — — 14.4 — - 342 -
UniDepth-C [10] 62.8 23.8 11.5 81.1 14.8 8.30 43.3 35.5 10.3
UniDepth-V [10] 79.8 18.1 104 234 35.7 6.87 27.2 43.1 8.93
ZoeDepth-NK [12] 91.6 12.2 11.9 97.3 5.61 7.74 94.9 8.15 9.85
Depth Anything-N [2] 94.4 10.2 10.6 98.4 4.45 6.18 93.8 8.03 9.95
Depth Anything-K [2] MRDE 92.4 11.9 12.0 95.7 6.82 9.36 97.7 6.09 7.36
ZeroDepth [11] 91.8 12.1 12.1 94.8 6.51 9.25 87.6 11.6 12.1
UniDepth-C [10] 94.2 10.2 10.7 97.6 4.68 7.24 96.6 6.96 8.76
UniDepth-V [10] 95.6 8.89 9.78 98.6 341 5.69 97.4 5.79 7.53

To use an MMDE model for MRDE, we align the predictions with ground truths by solving optimal
scales and translations. As demonstrated in Tab. 6, under the MRDE setting, MMDE models all
perform well on in-the-wild data. In contrast, under the MMDE setting, they degrade to various
degrees. These results show that, with fully supervised training, depth models are generally more
generalizable under the MRDE setting than the MMDE setting. Since the MMDE task can be
understood as a combination of MRDE and metric scale recovery, we believe the latter can be more
difficult to conduct in the wild. Either implicitly or explicitly, conventional MMDE models predict
metric scales in a discriminative manner, conditioned on the input image. With the fully supervised
training scheme, they may tend to rely on the relation between training scenes and the testing scene
to infer the metric scale. If the testing scene is unseen during training, it can be difficult to infer a
scene scale. The MRDE task is relatively easier since it can potentially utilize more local visual clues
for lower-level predictions. While establishing a global correspondence between training scenes and
the testing scene might be challenging, the model can still identify local correspondences to predict
relationships within different parts of a scene.

B More Ablation Study and Analysis

Impact of mask prompts. For generative painting, we randomly create mask prompts with heights
h equal to the input image height H and widths w € [o - min(H, W), 8 - min(H, W)], where
0 < a < 8 < 1 are two hyperparameters. In Tab. 7, we ablate the choices of them by painting N = 4
images with humans for each input. The results demonstrate that different «, 8 values will affect the
model performance, while to a small degree. By comparing among the last three rows, we see the
model performs better with smaller mask prompts within a reasonable range. When mask prompts
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Table 7: Ablation study for mask sizes on the NYUv2 dataset.

Min Ratio v Max Ratio 8 | d; T AbsRel | SIi,g | RMSE |

0.1 0.7 67.1 23.3 15.4 0.812
0.2 0.8 66.8 21.9 15.2 0.792
0.3 0.9 66.0 235 15.0 0.834
0.2 0.6 66.0 224 14.7 0.827
0.3 0.7 67.5 229 14.9 0.806
0.4 0.8 54.3 27.3 16.9 1.031

are constrained to larger sizes, as seen in the last row, model performance degrades. Moreover, when
comparing rows (1% vs. 4, 21 g, 5t 31 ys. 6M) with common centers (a + 3)/2 while different
ranges (8 — «), we observe larger ranges yields lower RMSE. This might be due to a larger range of
mask sizes providing an opportunity to paint humans of more flexible sizes. As we can imagine, a
close human will occupy larger areas in the painted image, and vice versa. This diversity leads to
better numerical stabilities during solving the scale s and the translation ¢ in Eq. (1). Therefore, we
use o = 0.2, 8 = 0.8 in our main experiments for optimal AbsRel results.

Table 8: Ablation study for different generative paint- Table 9: Ablation study for different HMR

ing models on the NYUv2 dataset. models on the NYUv2 dataset.
Model | 611 AbsRel] STl RMSE.] Model | 604 AbsRel] Slog) RMSE|
Stable Diffusion [57] v1.5 | 740  16.8 115 0642 HMAR [62] 820 142 9.83  0.489
Stable Diffusion [57] XL | 785 159 113 0.533 TokenHMR [63] | 80.4 149 955 0495
Stable Diffusion [57] v2 | 832 137 9.78  0.487 HMR2.0[20] |832 137 9.78  0.487

Impact of generative painting models. In Tab. 8, we show the effect of using different generative
painting models by generating N = 32 images for each input. The results indicate that current
generative painting models generally work well with MfH in MMDE. MfH combined with Stable
Diffusion v2 produces the best outcomes, likely due to its superior ability to generate realistic
paintings. It is possible that if a generation model can better capture the real-world 2D image
distributions, it has a better sense of scale, serving as a more effective source of metric scale priors.
Hence, we anticipate further performance gain of MfH with more advanced generative painting
models.

Impact of HMR models. In Tab. 9, we evaluate the impact of using different HMR models within
MfH. Here we use N = 32 painted images for each input. Our findings indicate that the performance
of our approach remains stable regardless of the HMR model used, suggesting that humans serve as
effective universal landmarks for deriving metric scales from images. Furthermore, current HMR
models reliably contribute to extracting metric scales for MMDE within the MfH framework.

60.00 ZoeDepth-NK  UniDepth-C = MfH (Ours

5000 4043 4624 ’ 2488 P 06 O 45 o
140,00 33.58 36.22 73368 37.19 35.80 27.91
g 30.00 25.19 22.94 22.57 24.26 24.01 1 24.02
2 20.00
< 10.00
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low level high short (close-up) medium long (wide-view)
angle of view distance of shot

Figure 9: AbsRel ({) comparisons for different types of shots on the ETH3D dataset.

Impact of input shot types. To analyze the contribution of metric information from humans, we
look into the MMDE results on ETH3D [54], which includes both indoor and outdoor scenes with
diverse shot types. Specifically, we annotate ETH3D images with two shot-related attributes and plot
the AbsRel comparisons in Fig. 9. They confirm that our MfH can robustly recover metric depths,
as it consistently achieves low errors across various types of shots. We also identify that the metric
information from humans helps the most for level-angle inputs. This is likely because MRDE models
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tend to interpret similar semantics, such as different parts of a human body, as having similar depths.
This interpretation aligns well with standing humans, which are typically generated in level-angle
images. Moreover, we do not observe significant degradation with varying the distance of shots. This
indicates that MfH can effectively handle general close-up and wide-view shots.

C Difference with Previous Methods

Discriminative vs. Generative + Discriminative. Traditional MMDE models metric depth prediction
in a discriminative manner. That is, given an input image I, they model a conditional probability of
metric depths D™ with a neural network 6, i.e., Pg(D™|I). Further, the distribution of metric depths
can be considered as a joint distribution of relative depths D™ and metric scales S. According to the
chain rule, we have

Py(D™|I) = Po(D™, S|I) = Py(D™|S, 1) - Py(S|I). )
Since the relative depth is scale-invariant, Dl s independent to S,
Py(D™|S,I) = Po(D™|I) = Py(D™|I) = Py(D™|I) - Po(S|I). (10)

Most prior arts [12, 11, 14, 10, 2] parameterize the two terms py(D™|I), pg(S|I) jointly with a
single discriminative . In contrast, we consider introducing generative and discriminative priors in
modeling P(S|I). With the law of total probability, we have

P(S|I) =Y " P(S|IP™, 1) - P(I™™|1), (11)

Jpaint

where IP*™ is the random variable for the painted image. In this equation, P(IP%™|]) can be captured
by the generative painting model conditioned on the input, and P(S|7P*™, ) is estimated by HMR
and our metric head, which are discriminative. The summation over IP%™ corresponds to our global
optimization upon random generative painting. Our MfH can thus approximate P(S|I) through
Monte Carlo sampling, bridging the gap between MRDE, i.e., P(D™|I), and MMDE, i.e., P(D™|I).

Training vs. Pre-training + Fine-tuning vs. Test-time Adaptation Most traditional MMDE
approaches [17, 16, 15, 13, 11, 14, 10] follow a fully supervised training paradigm, for which we
discuss can cause dependency to training scenes during test time. For them, expensive metric depth
annotations on diverse scenes are necessary for zero-shot abilities. Some recent works seek to reduce
the cost of data labeling by introducing pretraining over relative depth [12] or unlabeled image
data [2]. While this mitigates the data hunger to some degree, these works also require downstream
fine-tuning with metric depth annotations for MMDE. We instead consider a test-time adaptation
scenario having no access to metric annotations. Under this setting, our model is required to predict
the metric depth merely dependent on one input image.

D More Qualitative Analysis

D.1 Case Study

Since the performance of MfH relies on the quality of the pseudo ground truths {D} }, we illustrate
both successful and failed cases generated during this process in Fig. 10. Typical failure cases,
shown in the first three rows, include 1) the generative painting model producing non-human objects
with human features (1% row), 2) the generative painting model incorrectly capturing the scene
scale and producing out-of-proportion humans (2" row), and 3) the human mesh recovery model
predicting meshes that penetrate each other (3™ row). In contrast, success cases in the last three
rows demonstrate accurate space and scale relationships between human figures and scenes, leading
to effective pseudo ground truths. These visualizations partially explain why more painted images
help to improve the MMDE performance. The reason is that a larger number of painted images
dilutes the influence of outliers, facilitating a more robust optimization. We hence speculate prompt
engineering, as well as better sampling and filtering strategies in human painting, can further improve
the performance of MfH. We leave the exploration of these to future work.
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Failure Cases
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(c) Human Meshes (d) Human Masks  (e) Pseudo GT Depths

(a) Original Inputs (b) Painted Images

Figure 10: Success cases and failure cases of MfH during the process of pseudo ground truth
D} generation. The first three rows show failure cases, while the last three rows show success ones.

D.2 User Study

We further conduct a user study for in-the-wild inputs where ground truths are unavailable. This
study includes MMDE results from DepthAnything-{N, K} [2], Metric3D-v1 [14], Metric3D-v2 [64],
UniDepth-{C, V} [10], ZeroDepth [11], ZoeDepth-NK [12], and our proposed MfH. As shown
in Fig. 11, participants are presented with input images, corresponding MMDE results from the
above-listed methods, along with a color bar mapping metric depth values to colors. They were
instructed to select the most reasonable MMDE result for each sample, with the following guidance:

Please choose the most reasonable metric depth estimation for each question given
the input image and the meter bar. Different colors represent different metric depth
values. Note that depth values farther than the maximum value or nearer than the
minimum value on the meter bar are truncated.

To analyze the results, we take each input image as a separate sample and add one count to the
corresponding method if its MMDE result is selected as the most reasonable MMDE given the
corresponding input image and the meter bar. We then calculate the selection rate for each method,
representing the proportion of selected results for this method out of the total number of selections.
We received 50 responses with the results in Tab. 10. According to the meter bar attached, we roughly
break down the selection rate for short, medium, and long depth ranges.

These results indicate that our MfH method achieves the highest selection rate across all depth ranges,
demonstrating its robustness. Metric3D-v2 also performs well, securing the second-highest selection

18



Table 10: Selection rate as the most reasonable MMDE result across different ranges. The ranges
indicate the maximum value of the meter bar related to each input sample.

Range Max Depth | DA-K [2] DA-N[2] M3D-vl[14] M3D-v2[64] UD-C[10] UD-V[I0] OD[I1] ZD-NK[I2] MfH (Ours)
Short-range 10m-15m 4.0% 14.4% 0.0% 18.8% 6.0% 12.8% 1.6% 3.6% 38.8%
Medium-range  20m-40m 17.7% 3.1% 2.0% 16.6% 6.0% 2.6% 0.3% 4.9% 46.9%
Long-range 80m 13.5% 2.0% 11.0% 21.0% 6.0% 2.5% 0.5% 3.5% 40.0%
Overall 10m-80m | 12.4% 6.4% 3.6% 18.4% 6.0% 5.8% 0.8% 4.1% 42.6%

' (a) Input (b) DA-K (¢) DA-N (d) M3D-v1 (€) M3D-v2 (f) UD-C (2) UD-V (h) 0D (i)ZD-NK  (j) MfH (Ours) Meters

Figure 11: In-the-wild qualitative results for DSLR camera or smartphone captured images.

rate. In contrast, other methods show variability in performance across different depth ranges. For
example, DepthAnything-N has a high selection rate for short-range inputs but is not selected for
inputs with larger maximum depths. This is probably due to its scene dependency. Since it is trained
on NYUV2, an indoor scene dataset, its MMDE ability focuses more on short-range scenes.

D.3 Zero-shot Qualitative Results

We demonstrate more metric depth predictions and pixel-wise AbsRel in Figs. 12 to 16.
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Figure 12: Zero-shot qualitative results on NYU Depth v2.
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Figure 13: Zero-shot qualitative results on KITTI.
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Figure 14: Zero-shot qualitative results on Diode (Indoor).
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Figure 15: Zero-shot qualitative results on iBims-1.
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Figure 16: Zero-shot qualitative results on ETH3D.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We discuss the paper’s contributions and scope in Sec. 1.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Sec. 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: There are no theoretical results in our paper.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed experimental settings for our main experiment in Sec. 4.1,
and details of our pilot experiments in Appendix A.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Our code is available at https://github.com/Skaldak/MfH.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed experimental settings for our main experiment in Sec. 4.1,
and details of our pilot experiments in Appendix A.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We plot the results with error bars in Fig. 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide information on the computer resources in Sec. 4.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper conforms to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both positive societal impacts and negative societal impacts
in Sec. 5.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all used public datasets and pre-trained models in Sec. 4.1.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not introduce new assets in the paper.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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