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Abstract

Machine unlearning aims to eliminate the impact
of specific data on a trained model. Although
metrics like unlearning accuracy (UA) and mem-
bership inference attack (MIA) are commonly
used to evaluate forgetting quality, they fall short
in capturing the reliability of forgetting. In this
work, we observe that even when data are mis-
classified according to UA and MIA, their ground
truth labels can still remain within the predictive
set from an uncertainty quantification perspective,
revealing a fake unlearning issue. To better as-
sess forgetting quality, we propose two novel met-
rics inspired by conformal prediction that offer a
more faithful evaluation of forgetting reliability.
Building upon these insights, we further intro-
duce a conformal prediction-guided unlearning
framework that integrates the Carlini & Wagner
adversarial loss. This framework effectively en-
courages the exclusion of ground truth labels from
the conformal prediction set. Extensive experi-
ments on image classification tasks demonstrate
the effectiveness of our proposed metrics. By in-
corporating a tailored loss term, our unlearning
framework improves the UA of existing unlearn-
ing methods by an average of 6.6%.

1. Introduction

Machine unlearning is critical for ensuring data privacy,
particularly under regulations like the General Data Pro-
tection Regulation (GDPR) (Bourtoule et al., 2021), which
emphasize the right to erase personal data. It also serves as a
tool to remove harmful biases and stereotypes embedded in
models. Existing post hoc unlearning methods are broadly
categorized into training-based (Graves et al., 2021; Tarun
et al., 2023; Thudi et al., 2022; Warnecke et al., 2021) and
training-free (Foster et al., 2024; Golatkar et al., 2021; 2020;
Guo et al., 2019; Nguyen et al., 2020; Sekhari et al., 2021)
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Table 1: Grad-CAM maps of one original model in CIFAR-
10 with ResNet18 and two corresponding unlearning models.
The Prediction row indicates whether the model correctly
predicts the image’s true label, while the In Set row repre-
sents whether the true label is included in the prediction set.
Although the Finetune unlearning method, can misclassify
the forget data, Grad-CAM can still highlight key features
of the object under this model since the true label is included
in the prediction set. In contrast, our unlearning method
removes the true label from the set, with activation regions
shifting significantly away from the object’s key features.
This confirms that the forgetting quality is better if the true
label can be excluded from the prediction set.
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approaches, depending on whether they require retraining
during the unlearning process (Foster et al., 2024).

To assess unlearning quality and model performance, several
metrics have been proposed (Brophy & Lowd, 2021; Cao &
Yang, 2015; Chen et al., 2021; Kashef, 2021; Shokri et al.,
2017). However, widely used metrics such as unlearning
accuracy (UA) and membership inference attack (MIA) are
limited, as they mainly capture prediction correctness rather
than the extent of forgetting. In particular, misclassification
alone does not imply successful forgetting. To illustrate this,
we apply conformal prediction (Papadopoulos et al., 2002;
Lei & Wasserman, 2014) to unlearning models and observe
that over 50% misclassified forget data instances still appear
in the conformal prediction set. Grad-CAM visualizations
(Selvaraju et al., 2017) in Table 1 confirm that although
Finetune method misclassifies the forget data, the model
still activates key features of the forgotten object.

Based on these insights, we introduce two new metrics that
better quantify the uncertainty and robustness of unlearning.
Furthermore, motivated by Carlini & Wagner (C&W) attack



(Carlini & Wagner, 2017), we propose a general confor-
mal prediction-based framework to enhance training-based
unlearning methods. Grad-CAM maps in Table 1 show
that once the true label is excluded from the prediction set,
the model’s attention shifts significantly, indicating more
effective forgetting.

2. Enhancing Metrics for Machine Unlearning
via Conformal Prediction

2.1. Preliminaries and Notations

Machine Unlearning. We consider two scenarios, ran-
dom data and class-wise forgetting. Let Dy,qin be the train-
ing set for the original model 6,, which is split into forget
data Dy and retain data D, = Dyqi,, \ D In random forget-
ting, Dy..¢ denotes the test set. In class-wise forgetting, Dy
and Dy, are test samples from the forget and retain classes,
respectively. Let 8,, denote the model after unlearning D;.

Conformal Prediction. Conformal prediction quantifies
uncertainty by generating prediction sets with guaranteed
coverage (Angelopoulos & Bates, 2021). There are four
steps after unlearning:

1. Calibration Data. Prepare held-out data D, disjoint
from training and test sets.

2. Non-conformity Score. Calculate non-conformity score
S(x,y;) =1 — pi(x), where p;(x) is the probability
for class y;.

3. Threshold. Threshold § = Quantile; _ (S(x, y:)) us-
ing only ground truth’s non-conformity scores on D,
with miscoverage o € [0, 1].

4. Prediction Set. Set C(x) = {y; : S(=z,y;) < }.

2.2. Identifying Limitations in Existing Metrics

Inspired by uncertainty quantification, it is easy to recover
the data that is identified as forgotten by the metrics UA
and MIA. We propose a conformal prediction-based recov-
ery method. If the ground truth of forget data falls within
the conformal prediction set, we consider the recovery suc-
cessful. Thus, fake unlearning is defined as the scenario
where the data identified as forgotten by existing metrics
can be recovered by conformal prediction.

In Table 2, we calculate the number of data points that are
identified as truly forgotten by UA and MIA (marked as mis-
label) and calculate how many of these points can still be
recovered (marked as in-set) for retraining (RT), fine-tuning
(FT) and random labeling (RL) methods. The results of UA
reveal that even though the model misclassifies part of the
forget data, on average 54.6% of these misclassified data

Table 2: Mis-label count and in-set ratio of UA and MIA
metrics for RT, FT and RL on CIFAT-10 with ResNet-18
under 10% and 50% random data forgetting scenarios.

10% Forgetting 50% Forgetting
UAT Mis-labelt In-set] Ratiol | MIA|  Mis-labelt In-set| Ratiol

Mis-label and In-set Ratio of UA

Methods

RT 8.62% 431 132 30.6% | 10.98% 2,745 1,573 57.3%

FT 3.84% 192 112 583% | 2.59% 647 431 66.6%

RL 7.55% 380 173 45.5% | 10.48% 2,625 1,795  68.4%
Mis-label and In-set Ratio of MIA

RT 86.92% 654 209 32.0% | 82.79% 4,303 1,391 323%

FT 92.00% 400 216 54.0% | 92.92% 1,769 813 46.0%

RL 74.21% 1,289 1,011 78.4% | 61.15% 9,713 8,205 85.4%

instances are still recovered by conformal prediction. A
similar phenomenon occurs on results of MIA. The recover
ratio indicates that, although the MIA fails to identify an
average of 18.33% of the forget data as training membership,
conformal prediction can still recover 54.7% of these forget
data within prediction sets.

Overall, the high recover ratio across both UA and MIA in
Tables 2 highlights that these methods are not fully effective
at eliminating traces of the forget data from the uncertainty
quantification perspective and can still be recovered by con-
formal prediction. This encloses that the fake unlearning
issue arises when the ground truth label of misclassified
data falls within the conformal prediction set.

2.3. Designing Metrics via Conformal Prediction

Based on the limitation of UA and MIA metrics shown in
Section 2.2, we propose two novel metrics that can capture
fake unlearning.

Conformal Ratio (CR). To overcome the fake unlearning
inherent in UA, we introduce a novel metric, CR, which
incorporates both coverage and set size in conformal predic-
tion to provide a more comprehensive evaluation. Before
defining CR, we introduce Coverage and Set Size.

Given a dataset D, the definition of Coverage is as follows:
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where y; is the true label of data point x. Indicator func-
tion I(-) returns 1 if the enclosed condition is true and 0
otherwise. Coverage reflects the probability that the true
label falls within the prediction set C(x). For D = Dy,
high coverage indicates that the model retains significant
information about forget data, suggesting fake unlearning.

Given a dataset D, Set Size is defined as follows:
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where |C(x)| represents the prediction set size of a specific
instance. When y; € C(x), a small set size indicates that



fewer non-ground truth classes are included in the prediction
set, reflecting stronger fake unlearning.

Based on Coverage and Set Size, we introduce the definition
of CR for a dataset D as follows:
_ Coverage > (@,yep Ly € C(x))

CR := L G
Set Size > (@ynep [C(@)]

CR balances the information captured by Coverage and
Set Size. A lower CR value implies stronger unlearning
on a given dataset. CR is inspired by conformal prediction
which is proposed to assess the model’s behavior on new and
unseen data, not on the training data. Thus, we emphasize
that CR only measures forget data D and test data Dyc.

MIA Conformal Ratio (MIACR). MIACR is proposed to
address the limitation of MIA metric. Among three potential
conformal prediction sets {0}, {1} and {0, 1}, only set {0}
is ideal case for MIA, because the presence of ‘1’ represents
the data point can still be recognised as a training member.
Therefore, we introduce a new metric MIACR as:
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where C(x) = {0} denotes prediction set is {0}. A higher
MIACR score indicates a stronger forgetting. While MIA
consider a data point forgotten once the logit for label ‘0’
exceeds that for label ‘1°. MIACR applies a stricter rule by
also requiring that label ‘1’ be absent from the conformal
prediction set, giving a more rigorous check of membership
status and forgetting quality.

Evaluation Criteria. Similar to existing unlearning met-
rics, we consider two different criteria'to measure perfor-
mance with our metrics: @ Gap to RT Criterion: A lower
gap to the RT method is better for both CR and MIACR met-
rics. @ Limit-Based Criterion: A lower CR value on Dy
indicates stronger forgetting performance, while a higher
MIACR value reflects better unlearning effectiveness.

3. Enhancing Machine Unlearning via
Conformal Prediction

Existing unlearning methods are often optimized for loss
functions that do not ensure the exclusion of true labels from
the conformal prediction set. This motivates us to explore
advanced unlearning techniques to enhance unlearning.

We propose a conformal prediction-based unlearning frame-
work (CPU), which encourages pushing the ground truth
label’s non-conformity score beyond the CP threshold g.

!The appropriate evaluation criteria vary across unlearning
applications (Kurmanji et al., 2024): criterion @ is relevant for
user privacy, while criterion @ focuses on bias removal.

We first adapt the original C&W loss for unlearning:
»ch(wayt) = max{pt(w) - rg?'g(pz(w)v _A}v ©)

where max{-} is a maximum operator that selects the largest
value from the set. p.(x) is the probability for the true
label, and A controls the separation margin. We denote
max;.¢{p;(x)} as the highest probability value of the non-
ground truth classes. This loss tries to decrease the probabil-
ity of true class y; and further increase that of the class y;.
While L reduces p;(x), it doesn’t guarantee y; ¢ C(x).
To bridge this, we refine the loss based on conformal predic-
tion insight and define the loss as:

Lun]earn(ma yt) = max{(j - S(.’I), yt)7 _A}a (6)

where S(x,y;) is non-conformity score of true label y;.
This encourages S(x,y:) — ¢ > A. It helps to increase
non-conformity score S(x,y:) of true label y; to surpass
the threshold ¢ and push the true label out of conformal
prediction set. To preserve the original unlearning strategy,
our final loss is:

ACtotal = Eoriginal + A ‘Cunlearna @)

where )\ balances forgetting and original objectives.

4. Experiment

4.1. Experimental Setting

We report experiments on CIFAR-10 (Krizhevsky, 2009)
with ResNet-18 (He et al., 2016) and Tiny ImageNet (Le &
Yang, 2015) with ViT (Dosovitskiy et al., 2021). We employ
9 different unlearning methods, RT, FT (Warnecke et al.,
2021), RL (Graves et al., 2021), Gradient Ascent (GA)
(Thudi et al., 2022), Teacher (Tarun et al., 2023), SSD
(Foster et al., 2024), NegGrad+ (Kurmanji et al., 2024),
Salun (Fan et al., 2023) and SFRon (Huang et al., 2025).

4.2. Experimental Results

CR Metric. We present the CR and MIACR results on
CIFAR-10 in Table 3. See additional results on other set-
tings, datasets and architectures in Appendix B. For CR
metric, according to evaluation criterion @, the top 4 meth-
ods under the UA metric are NegGrad+, RL, SFRon, and
Salun, as their unlearning accuracy is closest to the RT
method. However, this ranking shifts slightly under the CR
metric, where the top 4 become Salun, NegGrad+, SFRon,
and RL. CR metric identifies that RL faces a fake unlearn-
ing situation and performs poorly on our metric CR. This
observation suggests that methods excelling in traditional
UA metric may not perform well under the CR metric. The
underlying rationale behind this is that the CR metric
takes into account the possibility that the true labels of



Table 3: Unlearning performance of 9 unlearning methods on CIFAR-10 with ResNet-18 in 10% random data forgetting. The sign 1
represents the greater is better, while | denotes ideally small. The results are average values from 3 independent trials and the standard
deviation values are reported in Appendix B. The performance gap relative to the RT method is represented in (¢) in results tables. It

shows the unlearning methods that excel under UA metric do not necessarily perform well under the CR metric.

Methods Existing Metrics Coverage Set Size CR MIACR
* ] uat | RAT | TAT | MIA| Dil | Duwt Dt | Duwd Dil | Duwt Dy 1

RT | 8.6%(0.0) 99.7%(0.0) 91.8%(0.0)  86.92(0.000) | 0.941(0.000) 0.944(0.000) | 1.089(0.000) 1.074(0.000) | 0.864(0.000) 0.879(0.000) | 0.091(0.000)
FT 3.8%(4.8)  98.1%(1.6) 91.6%(0.2)  92.00(5.08) | 0.994(0.053) 51(0.007) | 1.008(0.081)  1.026(0.048) | 0.986(0.122) 0.927(0.048) | 0.091(0.000)
RL 7.6%(1.0)  97.4%(2.3)  90.6%(1.2)  74.21(12.71) | 0.970(0.029) 0 049(0 005) | 1.242(0.153)  1.197(0.123) | 0.788(0.076) 0.796(0.083) | 0.083(0.008)
GA 0.6%(8.0)  99.5%(0.2)  94.1%(2.3)  98.80(11.88) | 0.994(0.053) 0.945(0.001) | 1.002(0.087) 1.009(0.065) | 0.994(0.130) 0.936(0.057) | 0.012(0.079)
Teacher 0.8%(7.8) 99.4%([).3) 93.5%(1.7) 87.24(0.32) | 0.991(0.050) 0.941(0.003) | 1.003(0.086) 1.021(0.053) | 0.993(0.129) 0.922(0.043) | 0.013(0.078)
SSD 0.5%(8.1)  99.5%(0.2)  94.2%(2.4)  98.78(11.86) | 0.996(0.055) 0.945(0.001) | 0.999(0.090) 1.008(0.066) | 0.994(0.130) 0.936(0.057) | 0.011(0.080)
NegGrad+ | 8.7%(0.1) 98.8%(0.9) 92.2%(0.4)  90.30(3.38) | 0.934(0.007) 0.948(0.004) | 1.068(0.021) 1.086(0.012) | 0.875(0.011) 0.873(0.006) | 0.076(0.015)
Salun 3.7%(4.9)  98.9%(0.8) 91.8%(0.0)) 57.58(29.34) | 0.987(0.046) 0 900(0 006) | 1.132(0.043) 1.143(0.069) | 0.872(0. 00‘4) 0.832(0.047) | 0.055(0.036)
SFRon 4.8%(3.8) 97.4%(2.3) 91.4%(0.4)  91.55(4.63) | 0.977(0.036) 53(0.009) | 1.100(0.011)  1.143(0.069) | 0.889(0.025) 0.834(0.045) | 0.017(0.074)

Table 4: Performance of our framework CPU. We show the performance on CIFAR-10 with ResNet-18 and Tiny ImageNet with ViT
in 10% random data forgetting. A = 0 represents the baseline without our framework applied. It shows our framework significantly
improves the forgetting quality, not only across our metric but also existing metric UA, while preserving stable predictive performance.

Methods A=0 A=0.2 A=05
* UA T RA T TA 1 CRp, | CRp,,., 1 UA T RA T TA CRp, | CRp,.., 1 UA T RA T TA ¢ CRp, | CRp,., 1
CIFAR-10 with ResNet-18
CPU-RT| 8.6%(0.0) 99.7%(0.0) 91.8%(0.0) 0.864(0.000) 0.879(0.000) | 10.8%(2.2) 98.3%(1.4) 91.0%(0.8) 0.788(0.076) 0.824(0.055)| 14.0%(5.4) 97.8%(1.9) 90.4%(0.4) 0.763(0.101) 0.825(0.054)
CPU-FT| 3.8%(4.8) 98.1%(1.6) 91.6%(0.2) 0.986(0.122) 0.927(0.048) | 6.8%(1.8) 97.0%(2.7) 90.8%(1.0) 0.844(0.020) 0.829(0.050)| 7.9%(0.7) 96.9%(2.8) 90.9%(0.9) 0.853(0.011) 0.843(0.036)
CPU-RL| 7.6%(1.0) 97.4%(2.3) 90.6%(1.2) 0.788(0.076) 0.796(0.083) | 9.7%(1.1)  96.6%(3.1) 89.4%(2.4) 0.709(0.155) 0.736(0.143)| 9.9%(1.3) 96.9%(2.8) 89.7%(2.1) 0.708(0.156) 0.731(0.148)
Tiny ImageNet with ViT
CPU-RT| 14.7%(0.0) 98.8%(0.0) 86.0%(0.0) 0.503(0.000) 0.516(0.000) | 19.3%(4.6) 98.8%(0.0) 86.0%(0.0) 0.458(0.045) 0.516(0.000)|26.4%(11.7) 98.7%(0.1) 85.8%(0.2) 0.396(0.107) 0.489(0.027)
CPU-FT| 6.9%(7.8) 97.9%(0.9) 84.1%(1.9) 0.466(0.037) 0.389(0.127) | 9.8%(4.9) 97.4%(1.4) 83.6%(2.4) 0.441(0.062) 0.399(0.117)| 13.6%(0.9) 97.2%(1.6) 83.6 0.401(0.115)
CPU-RL | 26.9%(12.2) 96.0%(2.8) 81.4%(4.6) 0.054(0.449) 0.111(0.405) | 31.8%(17.1) 95.3%(17.9) 80.9%(5.1) 0.051(0.452) 0.111(0.405) | 36.2%(21.5) 95.3%(3.5) 0.121(0.395)
some misclassified forget data points may still remain o 4=0 '11 0=00~2 e 2=05 o A=10
within the prediction set. This observation aligns with 8 s S e
. . . . . % % E oS
the insights we discussed in Section 2.2 regarding the fake 8 90 SInm g 90 g 90
> . g S - 2 2
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Regarding evaluation criterion @, a similar pattern is ob- Epoch Epoch Epoch
served as with criterion @. Under the UA metric, the top 4 (a) Dy (b) D, (©) Drest

methods are NegGrad+, RT, RL and SFRon. However, under
the CR metric, the top 4 shift to RL, RT, Salun and NegGrad.
This indicates that some unlearning methods, such as Neg-
Grad+ show weak forgetting quality when viewed from the
fake unlearning perspective. This also highlights that the CR
captures critical scenarios overlooked by UA, specifically
the potential retention of true labels within prediction sets
for the forget data points.

MIACR Metric. Under evaluation criterion @, the un-
learning methods considered superior under MIA metric,
such as Teacher and SFRon, fail to maintain their excep-
tional performance when evaluated using the MIACR crite-
rion. Similarly, under evaluation criterion @, Salun, which
is considered optimal according to MIA metrics, does not
demonstrate the best performance under MIACR evalua-
tion. While MIA fails to accurately predict approximately
50% of the forget data in Salun, MIACR can still identify
membership within the prediction set.

Performance of Our Unlearning Framework In this
experiment, we apply the RT, FT, and RL methods to
our framework, i.e., CPU-RT, CPU-FT, CPU-RL. Table 4
presents the results for CIFAR-10 with ResNet-18 and Tiny
ImageNet with ViT in 10% random data forgetting scenario.
We vary ) in the range [0, 0.2, 0.5], where A = 0 represents

Figure 1: CPU-FT performance under different A values across
each epoch on Tiny ImageNet. As A increases, accuracy on Dy
drops significantly, while retain and test accuracy remain stable.

the baseline without our framework applied. The exper-
imental results demonstrate a significant improvement in
UA and CRp ; metrics across all methods, reflecting im-
proved forgetting quality as A increases. Notably, the RA,
TA, and CRp,,, values remain relatively stable, indicating
that the substantial improvement in forgetting quality does
not compromise the model’s predictive performance. We
demonstrate the CPU-FT results across each epoch on Tiny
ImageNet in Figure 1, which also shows the same trend.

5. Conclusion

Motivated by conformal prediction, we introduce new met-
rics, CR and MIACR, to enhance the evaluation and reli-
ability of machine unlearning. In addiction, our unlearn-
ing framework, which incorporates the adapted C&W loss
with conformal prediction, improves unlearning effective-
ness. Together, we provide a more rigorous foundation for
privacy-preserving machine learning.
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A. Experimental Details

Setting Details. For CIFAR-10 with ResNet-18 architecture, we train the original model from scratch for 200 epochs using
SGD with a Cosine Annealing learning rate schedule, starting from an initial learning rate of 0.1. We set the momentum
to 0.9 and a batch size of 64. The RT model adopts the same training configuration. Other models are trained for the
following durations: FT for 20 epochs, RL for 10 epochs, SalUn for 10 epochs, GA for 1 epoch (to avoid over-forgetting
and significant RA degradation), NegGrad+ for 10 epochs (reduced to 2 epochs in class-wise scenarios), and SFRon for 10
epochs. All other hyperparameters match those of the original model.

For the ViT architecture, we initialize the original model by training a pretrained ViT model for 15 epochs on Tiny ImageNet.
We start with a learning rate of 0.001, while other training parameters match those used for ResNet-18. We use SGD and
set the momentum to 0.9 and a batch size of 64. The RT model follows the same training procedure as the original model.
Other models are trained for the following durations: FT for 5 epochs, RL for 5 epochs, SalUn for 5 epochs, GA for 1
epoch, NegGrad+ for 5 epochs, and SFRon for 5 epochs. All other hyperparameters are consistent with the original model’s
training.

For CIFAR-10/Tiny ImageNet, we randomly select 200/50 data points per class (2000/10000 data points in total) as
calibration data D, and DV, respectively. The calibration data D, does not participate in the model training or unlearning
processes and is only used for calibrating the threshold §, while D/, is used in the process of our unlearning framework to
generate g. All experiments are conducted on 1 Tesla V100-SXM2 GPU card with 32GB memory in a single node.

Confidence Level 1 — . A smaller miscoverage rate «, i.e., a higher confidence level 1 — «, guarantees more reliable
coverage, while a higher value of « results in a lower confidence level. In the conformal prediction related works (An-
gelopoulos & Bates, 2021; Papadopoulos et al., 2002; Romano et al., 2020), o = 0.05 has become the standard in most
cases. This value can be rooted in its widespread adoption in statistical hypothesis testing, where it balances the trade-off
between false positives and practical usability. Following previous work, we set « to 0.05, but we still report results for a
higher range of a values (0.10, 0.15, and 0.20) in Appendix B to account for scenarios where a more relaxed confidence
level may be needed. Unless otherwise stated, all subsequent analyzes use the recommended default of o = 0.05.

Calibration Set Size. As for calibration data, a portion of the validation

data is set aside as calibration data, ensuring it remains independent from 10% forget = 307% foreet

both the training and test data. A key requirement in selecting the calibration 10 oy

set size is to avoid producing an abnormal threshold g, as a small sample size 08

may introduce outliers and lead to unstable coverage estimates. Therefore, it !

is essential to ensure a sufficiently calibration set to obtain reliable and stable 06

estimates. Figure 2 illustrates the stability of ¢ across varying calibration 0.+ B
set sizes. The results are smoothed using B-spline. We implement them Calibration Set Size

on CIFAR-10 with ResNet-18 in 10% and 50% random data forgetting

scenarios. The results show that for different settings using ResNet-18 . : o .
. . .. tion set sizes. When the calibration set size is

on CIFAR-10, after the calibration set size is larger than 1000, abnormal greater than 2000, the fluctuations of § remain

¢ values do not occur anymore, and a stable threshold ¢ can be obtained.  within a stable range.

Similarly, we analyze the calibration set size of the class-wise forgetting

scenario and find that fewer calibration data points are required compared to random data forgetting. This is because the

targeted removal of specific classes reduces the complexity of the distribution, unlike the broader variability introduced by

random data removal.

Figure 2: The stability of ¢ in different calibra-

B. Evaluating MU methods
B.1. Mis-label Number and In-set Ratios

Conformal prediction is applied to UA and MIA predictions to determine the number of misclassified data points (mis-label)
and the number of these points that fall within the conformal prediction set (in-set) across 9 unlearning methods. We evaluate
both the UA and MIA metrics by counting the misclassified data points and calculating how many of them are included in
the conformal prediction set. The detailed results are presented in Table 5.
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Table 5: Mis-label number and in-set ratios of UA and MIA metrics for 9 unlearning methods.

10% Forgetting 50% Forgetting
Methods Mis-label T In-set | Ratio] | Mis-label T In-set| Ratio |
Mis-label and In-set Ratio of UA
RT 431 132 30.6% 2,745 1,573 57.3%
FT 192 112 58.3% 647 431 66.6%
RL 380 173 45.5% 2,625 1,795 68.4%
GA 30 2 6.7% 150 9 6.0%
Teacher 40 4 10% 400 37 9.3%
FF 2,995 2,751 91.9% 15,083 14,061  93.2%
SSD 25 2 8.0% 116 9 7.8%
NegGrad+ 435 115 26.4% 711 249 35.5%
Salun 185 117 63.2% 1065 695 65.3%
SFRon 240 125 52.1% 1000 610 61.0%
Mis-label and In-set Ratio of MIA
RT 654 209 32.0% 4,303 1,391 32.3%
FT 400 216 54.0% 1,769 813 46.0%
RL 1,289 1,011 78.4% 9,713 8,295 85.4%
GA 60 10 16.7% 284 31 10.9%
Teacher 638 586 91.8% 1,689 895 53.0%
FF 1,424 1,424 100% 5,996 4,850 80.9%
SSD 61 11 18.0% 282 24 8.5%
NegGrad+ 486 106 21.8% 1,545 415 26.9%
Salun 2,121 1,848 87.1% 10,221 9,121 89.2%
SFRon 423 121 28.6% 1,871 433 23.1%

B.2. Measuring Forgetting under Distribution Shifts

RL and Salun are unlearning methods employ label corruption in their unlearning strategy which can cause distribution shifts.
Here, we introduce how to better measure forgetting under these circumstances. Figure 3(a) shows the non-conformity score
distribution of calibration data D, and forget data Dy in unlearning model 6,, obtained by RL method in Tiny ImageNet
with ViT. It looks like there is a significant discrepancy between the distribution of the forget data and the calibration data.

To align the distribution of D, with that of Dy and minimize the differences between them, we design a shadow model. To
make the explanation clearer and more intuitive, we take RL as an example. In the RL unlearning method, the forget data is
assigned random labels. Therefore, we apply the same random labeling process to the calibration data and train a shadow
model accordingly. We designed two methods:

1. Shadow model. A shadow model replicates the behavior of forget data Dy throughout the unlearning process. A
shadow model is a two-step approach: (1) it firstly trains a shadow original model 0/ using train data D;,4;,, and clean
calibration data D, with the same epoch number as the original model 8,; (2) subsequently, we finetune the 6/ using
the random labeled calibration data.

2. Semi-shadow model. The semi-shadow model only adopts the second step in the shadow model. It finetunes the
original model 6, with random-labeled calibration data.

The results are presented in Figure 3, where (b)-(e) present the results of the semi-shadow model with different epochs and
(f) illustrates the shadow model’s result. Under the semi-shadow model, as the number of epochs increases, the distribution
of calibration data gradually moves to the right until it becomes consistent with the distribution of forget data. It also
shows that the shadow model demonstrates the best ability to handle distribution shifts compared to the semi-shadow model.
However, this comes at the cost of higher computational overhead. Overall, the semi-shadow model offers a balanced
trade-off between handling distribution shifts effectively and maintaining lower computational costs.
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Figure 3: Distribution shifting processing with different strategies. The distribution of calibration data gradually converges

with that of forget data.
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Figure 4: Non-conformity density of calibration data D, and forget data Dy without our unlearning framework in
CIFAR-10 with ResNet-18 under 10% random data forgetting scenario.
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Figure 5: Non-conformity score density of calibration data D, and forget data D; with our unlearning framework in
CIFAR-10 with ResNet-18 under 10% random data forgetting scenario. Our unlearning framework shifts the distribution of

the forget data to the right, demonstrating improved forgetting quality.



Table 6: Unlearning performance of 9 unlearning methods on CIFAR-10 with ResNet-18 in 10% random data forgetting
scenario. The results are reported in the format atb, where a is the mean and b is the standard deviation from 3 independent
trials. The performance gap relative to Retrain method is represented in (°).

Coverage Set Size CR

Methods N

) ‘ “ ‘ Dy Diest T Dy 1 Diest + Dyl Diest T q
0.05 | 0.94110.002(0.000)  0.94410.005(0-000) | 1.08940.002(0.000)  1.07440.011(0.000) | 0.86440.004(0.000) ~ 0.87940.004(0.000) | 0.883+0.007
RT 0.1 | 0.88110000(0.000)  0.89510010(0.000) | 0.93440.004(0.000)  0.94740.005(0.000) | 0.94340.011(0.000)  0.945 10,001 (0.000) | 0.1920.001
UAB.6%, RA99.7%, TA91.8% | 0.15 | 0.82040.002(0.000)  0.83910.008(0.000) | 0.8410.009(0.000)  0.8670.009(0.000) | 0.97540.001(0.000)  0.9680.003(0.000) | 0.01510.011
0.2 | 0.78010007(0.000)  0.8080004(0.000) | 0.78940.002(0.000)  0.82440,009(0.000) | 0.9880.006(0.000) 0.9810.007(0.000) | 0.003 10 02
0.05 | 0.994.10.001(0.053)  0.95110004(0.007) | 1.00820.003(0.081)  1.026.0.00(0.048) | 0.986.:0.003(0. 122) 0.92740,004(0.048) | 0.721 10,015
FT 0.1 | 0.96810001(0.087)  0.89910005(0.004) | 0.96940.001(0.035) 0.92440.005(0.023) | 0.998.0.001(0.055) 0.972.0.003(0.027) | 0.07910 013
UA3.8%, RA98.1%, TA91.6% | 0.15 | 0.91540.003(0.095)  0.848.+0.002(0.009) | 0.9160003(0.075)  0.8600.001(0.007) | 1.00040.000(0- 025) 0.986.10,002(0.018) | 0.008-0.000
0.2 | 0.86110010(0.081)  0.80610005(0.002) | 0.86140.010(0.072) 0.81140.009(0.013) | 1.0000.000(0.012)  0.9930.001(0.012) | 0.0020.000
0.05 | 0.97010.005(0.029)  0.94910.005(0.005) | 1.24210.151(0.153) 1.19740.005(0.123) | 0.788.40.080(0.076) 0.796.0.061(0.083) | 0.87710.057
RL 0.1 | 0.91310010(0.032)  0.89710007(0.002) | 0.97540.025(0.041)  0.98040.025(0.033) | 0.936.0.022(0.007)  0.9160.019(0.029) | 0.5720.050
UAT.6%, RA97.4%, TA90.6% | 0.15 | 0.82540.006(0.005)  0.84310.009(0.004) | 0.85410010(0.013)  0.88810017(0.021) | 0.96640.006(0.009)  0.949+0.009(0.019) | 0.329 0 021
0.2 | 0.75510.021(0.025)  0.79810005(0.010) | 0.77410.020(0.015)  0.83240.009(0.008) | 0.976.0.002(0.012)  0.95910.005(0.022) | 0.23410 25
0.05 | 0.994.0.003(0.053)  0.94510.005(0.001) | 1.002:0.010(0.087) 1.00920.010(0.065) | 0.994.10.016(0. 130) 0.93640,011(0.057) | 0.62110.015
GA 0.1 | 0.99010005(0.109)  0.90510010(0.010) | 0.99040.014(0.056)  0.92840.005(0.019) | 0.9980.002(0.055)  0.9730.012(0.028) | 0.06210.016
UAO.6%, RA99.5%, TA%4.1% | 0.15 | 0.96940.012(0.149)  0.84810.004(0.009) | 0.96910.014(0.128)  0.85810.019(0.009) | 1.00040.014(0. 020) 0.986.10,00 (0.018) | 0.0060.009
0.2 | 0.92540.012(0.145)  0.80540.022(0.003) | 0.92440.007(0.135)  0.81140.013(0.013) | 0.99840.013(0.010)  0.99240.012(0.011) | 0.00310.005
0.05 | 0.9911.022(0.050)  0.941 10,001 (0.003) | 1.00310.012(0.086) 1.02110.009(0.053) | 0.99310.021(0.120)  0.922.0.015(0.043) | 0.74410.015
Teacher 0.1 | 0.96710000(0.086)  0.89810007(0.003) | 0.96310.007(0.020)  0.92940,015(0.018) | 0.9980.000(0.055)  0.96910.013(0.024) | 0.591 10,05
UAO.8%, RA99.4%, TA93.5% | 0.15 | 0.91310.006(0.093)  0.8450.007(0.006) | 0.91240.014(0.071)  0.85920.005(0.008) | 0.99610.015(0.021)  0.98310.015(0.015) | 0.481 10,009
0.2 | 0.865+0.009(0.085)  0.80640.021(0.002) | 0.86640.009(0.077)  0.81640.012(0.008) | 0.99840.008(0.010)  0.988.40.016(0.007) | 0.42610.007
0.05 | 0.996.0.004(0.055)  0.94510.002(0.001) | 0.999:0.019(0.090)  1.0080.011(0.066) | 0.99410.006(0.130)  0.936.0.014(0.057) | 0.62210.010
SSD 0.1 | 0.98710.003(0.106)  0.90240.010(0.007) | 0.99040.003(0.056)  0.92640.017(0.021) | 0.998.40.020(0.055)  0.97340.002(0.028) | 0.06310.022
UA0.5%, RA99.5%, TA94.2% | 0.15 | 0.96710.016(0.147)  0.84940.009(0.010) | 0.96540.000(0.124)  0.862.0.012(0.005) | 1.00240.019(0.027)  0.9900.002(0.022) | 0.007+0.007
0.2 | 0.92240.006(0.142)  0.80310.000(0.005) | 0.92340.009(0.134)  0.81140.005(0.013) | 1.00240.020(0.014)  0.99210.009(0.011) | 0.00110.005
0.05 | 0.93410007(0.007)  0.94810.007(0-004) | 1.06810.017(0.021)  1.08620022(0.012) | 0.87510.005(0.011) 0.87310011(0.006) | 0.98910.013
NegGrad+ 0.1 | 0.89510.004(0.014)  0.898.40.008(0.003) | 0.96410.008(0.030)  0.95040.013(0.003) | 0.928.40.005(0.015)  0.946.40.005(0.001) | 0.04410.041
UAS.7%, RA98.8%, TA92.2% | 0.15 | 0.85110.015(0.031)  0.85110.016(0.012) | 0.89610.016(0.055)  0.87610.019(0.009) | 0.95010.003(0.025)  0.971.0.003(0.003) | 0.000+0.000
0.2 | 0.800+0.006(0.020)  0.799.40.001(0.009) | 0.83210.006(0.043)  0.81310.001(0.011) | 0.96110.002(0.027)  0.98310.001(0.002) | 0.000+0.000
0.05 | 0.98740.002(0.046)  0.950.£0.001(0.006) | 1.13240.007(0.043)  1.14310.002(0.069) | 0.87240.006(0.008)  0.832+0.003(0.047) | 0.867+0.001
Salun 0.1 | 0.936£0010(0.055)  0.8960.008(0.001) | 0.9560.012(0.022)  0.95440.011(0.007) | 0.97940.003(0.036)  0.93920003(0.006) | 0.48910 02
UA3.7%, RA98.9%, TA91.8% | 0.15 | 0.87140.005(0.051)  0.84940.00(0.010) | 0.8810.006(0.040) 0.886.0.010(0.019) | 0.98910002(0.014)  0.95810.002(0.010) | 0.31440.020
0.2 | 0.78810010(0.008)  0.79410001(0.014) | 0.79440.010(0.005)  0.82140,004(0.003) | 0.992.0.001(0.004)  0.9660.003(0.015) | 0.221 10,05
0.05 | 0.97710.003(0.036)  0.95310.004(0.009) | 1.10010.025(0.011) 1.14340.021(0.069) | 0.88910.015(0.025) 0.8340012(0.045) | 0.926.10.015
SFRon 0.1 | 0.94540.004(0.064)  0.90510.005(0.010) | 0.98640.005(0.052)  0.97710.008(0.030) | 0.958.40.001(0.015)  0.92710.003(0.018) | 0.43510.043
UA4.8%, RA97.4%, TA91.4% | 0.15 | 0.89540.002(0.075)  0.84740.002(0.008) | 0.912:0004(0.071)  0.87910.001(0.012) | 0.98240.002(0.007)  0.96340,003(0.005) | 0.082.0.007
0.2 | 0.85710005(0.077)  0.8080002(0.000) | 0.86840.007(0.079)  0.82640.005(0.002) | 0.988.0.002(0.000) 0.9780.004(0.003) | 0.02510 05
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Table 7: Unlearning performance of 9 unlearning methods on CIFAR-10 with ResNet18 in 50% random data forgetting

scenario.
Coverage Set Size CR

Methods .

s ‘ « ‘ Dy | Dicat 1 D 1 Dieat | Dyl Dicat q
0.05 | 0.955+0.004(0.000)  0.94740.005(0.000) | 1.28710.001(0.000)  1.21410.010(0.000) | 0.742+0.005(0.000)  0.78040.006(0.000) | 0.98440. 002
RT 0.1 0 898.40.011(0.000)  0.90410.010(0.000) | 1.02310.005(0.000)  1.021.40.003(0.000) | 0.87840.003(0.000)  0.88610.003(0.000) | 0.65010 004
UA11.0%, RA99.8%, TA89.2% | 0.15 | 0.83340.007(0.000)  0.84740.005(0.000) | 0.883.40.002(0.000)  0.90640.003(0.000) | 0.943.+0.010(0.000)  0.934.+0.005(0.000) | 0.090.£0.004
0.2 | 0.78240.005(0.000)  0.81440.004(0.000) | 0.81240.010(0.000)  0.850-0.009(0.000) | 0.96440 005(0.000)  0.958-0.003(0.000) | 0.0181¢.006
0.05 | 0.996+0.000(0.041)  0.95240.002(0.005) | 1.00710.000(0.280)  1.02910.004(0.185) | 0.989+0.001(0.247)  0.92510.002(0.145) | 0.73840.014
FT 0.1 | 0.97540.006(0.077)  0.89610.013(0.008) | 0.97610.006(0.047)  0.92140017(0.100) | 0.99940.000(0.121)  0.97210.004(0.086) | 0.0811¢.033
UA2.6%, RA99.1%, TA91.8% | 0.15 | 0.93640.004(0.103)  0.85440.004(0.007) | 0.93640.004(0.053)  0.867+0.006(0.039) | 1.00040.000(0.057)  0.98540.002(0.051) | 0.011.4¢.002
0.2 | 0.8594+0.010(0.077)  0.790+0.010(0.024) | 0.859+0.010(0.047)  0.79540.011(0.055) | 1.0004+0.000(0.036)  0.993+0.001(0.035) | 0.001+0.000
0.05 | 0.976+0.001(0.022)  0.94940.002(0.002) | 1.97310.306(0.686) 1.97110.406(0.757) | 0.508+0.100(0.234)  0.49510.005(0.285) | 0.89910.012
RL 0.1 | 0.94240.011(0.043)  0.90710.009(0.003) | 1.22710103(0.204) 1.235.40.107(0.214) | 0.77140.064(0.107)  0.73810.064(0.147) | 0.83710.016
UA10.5%, RA93.9%, TA85.8% | 0.15 | 0.89140.013(0.058)  0.85640.012(0.009) | 1.00940.047(0.125)  1.01140.045(0.105) | 0.884.40.039(0.059)  0.847+0.037(0.087) | 0.770.0.022
0.2 | 0.83440.003(0.051)  0.799+0.005(0.016) | 0.89710.026(0.086)  0.89340.025(0.043) | 0.92940.024(0.034)  0.89510.022(0.063) | 0.7131¢ 008
0.05 | 0.996+0.000(0.041)  0.94510.005(0.002) | 1.00310.007(0.284)  1.00510.007(0.209) | 1.050+0.007(0.308)  0.94510.007(0.165) | 0.61640.00s
GA 0.1 | 0.985.0.006(0.087)  0.90240.009(0.002) | 0.98940.006(0.034)  0.92610.006(0-095) | 1.095.0.004(0-217) ~ 0.91640.006(0.030) | 0.057+0.005
UAO0.6%, RA99.5%, TA94.3% | 0.15 | 0.96640.006(0.133)  0.848.40.007(0.001) | 0.96640.002(0.083)  0.85740.009(0.049) | 1.14140.001(0.198)  0.87940.006(0.055) | 0.005.40.007
0.2 | 0.92940.004(0.147)  0.809+0.007(0.005) | 0.932+0.000(0.120)  0.817+0.005(0.033) | 1.1504+0.002(0.186)  0.87110.001(0.087) | 0.001+9.007
0.05 | 0.985+0.015(0.030)  0.94440.015(0.003) | 1.06610.003(0.221)  1.14310.012(0.071) | 0.92310.010(0.181)  0.82310.017(0.043) | 0.85710.013
Teacher 0.1 | 0.94940.012(0.051)  0.90940.016(0.005) | 0.97010.006(0.053)  0.986.40.014(0.035) | 0.98040.001(0.102)  0.918.10.009(0.032) | 0.83410.005
UA1.6%, RA98.3%, TA91.7% | 0.15 | 0.88540.010(0.052)  0.84940.015(0.002) | 0.89440.017(0.011)  0.89340.010(0.013) | 0.99240.002(0.049)  0.95040.013(0.016) | 0.813.40.013
0.2 | 0.81840.014(0.036)  0.79810.014(0.016) | 0.82310.009(0.011)  0.826.40.002(0.024) | 0.997+0.015(0.033)  0.97140.007(0.013) | 0.79310.012
0.05 | 0.993+0.005(0.038)  0.94440.011(0.003) | 0.99910.007(0.288)  1.001+0.009(0.213) | 0.995+0.000(0.253)  0.94140.013(0.161) | 0.58510.014
SSD 0.1 | 0.99140.015(0.093)  0.90410.014(0.000) | 0.99110.001(0.032) 0.92940.011(0.092) | 1.00040.011(0.122)  0.97510.010(0.089) | 0.06010.011
UA0.5%, RA99.5%, TA94.3% | 0.15 | 0.96440.016(0.131)  0.85040.011(0.003) | 0.967+0.009(0.084)  0.860+0.014(0.046) | 1.00040.001(0.057)  0.98840.003(0.054) | 0.005.+0.010
0.2 | 0.93040.018(0.148)  0.807+0.002(0.007) | 0.92910.002(0.117)  0.81440.017(0.036) | 1.00040.003(0.036)  0.992+0.001(0.034) | 0.002+0.005
0.05 | 0.986+0.000(0.031)  0.94940.001(0.001) | 1.03940.008(0.248)  1.062+0.011(0.152) | 0.949+0.008(0.207)  0.89310.008(0.113) | 0.85510.028
NegGrad+ 0.1 | 0.95140.005(0.053)  0.90310.004(0.001) | 0.96410.005(0.059) 0.94440010(0.076) | 0.987+0.003(0.109)  0.956.0.007(0.070) | 0.17710.055
UA2.8%, RA99.6%, TA92.9% | 0.15 | 0.88940.004(0.056)  0.845+0.003(0.002) | 0.89240.004(0.009)  0.86140.003(0.045) | 0.996+0.000(0.053)  0.98140.001(0.047) | 0.01240 002
0.2 | 0.825+0.003(0.043)  0.79610.004(0.018) | 0.82710.003(0.015)  0.805+0.004(0.045) | 0.99940.000(0.035)  0.989+0.000(0.032) | 0.002+0.000
0.05 | 0.988+0.001(0.034)  0.95140.003(0.004) | 1.31440.113(0.027)  1.38110.121(0.167) | 0.756+0.064(0.014)  0.69240.055(0.088) | 0.87140.013
Salun 0.1 | 0.95640.003(0.058)  0.89710.005(0.007) | 1.01510.003(0.008)  1.02140.001(0.001) | 0.94140.006(0.064) 0.878.10.004(0.007) | 0.77610.002
UA4.3%, RA97.7%, TA89.4% | 0.15 | 0.910+0.005(0.078)  0.8470.006(0.000) | 0.9370.000(0.054)  0.9160.008(0.010) | 0.972:0.004(0.029)  0.92410.003(0.010) | 0.71410.010
0.2 | 0.85640.008(0.074)  0.79620.010(0.019) | 0.872+0.008(0.060)  0.84440 00s(0.006) | 0.98240003(0.019)  0.94310.004(0.015) | 0.669+0.008
0.05 | 0.977+0.003(0.022)  0.95340.004(0.006) | 1.10040.023(0.188)  1.14310.021(0.071) | 0.889+0.015(0.147)  0.83440.012(0.054) | 0.92610.018
SFRon 0.1 | 0.94540.004(0.047)  0.90510.005(0.001) | 0.98610.005(0.037)  0.97740.008(0.044) | 0.95840.001(0.081) 0.92710.003(0.042) | 0.43510.043
UA4.0%, RA97.3%, TA91.6% | 0.15 | 0.89540.002(0.062)  0.84740.002(0.000) | 0.91240.004(0.029)  0.87940.001(0.027) | 0.98240.002(0.039)  0.963+0.003(0.029) | 0.082.0.007
0.2 | 0.857+0.008(0.075)  0.808+0.002(0.006) | 0.86810.007(0.056)  0.826.10.005(0.024) | 0.98840.002(0.024)  0.97810.004(0.020) | 0.0251¢.005

Table 8: Unlearning performance of 9 unlearning methods on CIFAR-10 with ResNet18 in class-wise forgetting scenario.

Methods « Coverage Set Size ‘ CR ‘

’ Dy Dyl Dy, 1 Dyt Dy 1 Dy, | Dyl Dy | Dy 1 s Great
0.05 | 1.000-0.001(0-000) 10000001 (0.000) ~ 0.964..005(0.000) | 10.00040.000(0.000)  10.000:0.000(0.000)  1.1480.015(0.000) | 0.100£0.000(0-000)  0.10040.000(0.000) ~ 0.840-0.002(0.000) | 1.0000.000 ~0.982:0.00
RT 0.1 | 1.000:0,000(0.000)  1.0000.001(0.000)  0.882:0,011(0.000) | 10.000£0.000(0.000) 10.000£0.000(0.000)  0.922.:0.009(0.000) | 0.10040.000(0.000) ~ 0.100£,001(0.000) ~ 0.95640.007(0.000) | 1.000£0.001 0.080:0.003
UA100%, UA¢£100%, | 0.15 | 1.000+0.000(0-000) ~ 1.0000.000(0.000)  0.856.0.012(0.000) | 10.00040.000(0.000)  10.0000.000(0-000) U 882.0.007(0.000) | 0.10040.001(0-000)  0.100-0.001(0-000)  0.970-,004(0.000) | 1.000+0.000 0-018:0.010
RA99.9%, TA924% | 0.2 | 1.000£0.000(0.000)  1.000.£0.000(0.000)  0.81410,010(0.000) | 10.000.£0.000(0.000)  10.000.10.000(0.000) ~ 0.830.£0.001(0.000) | 0.10040.001(0.000) ~0.100.£0.001(0.000) ~ 0.98110.002(0.000) | 1.000£0.000 0.0030.001
0.05 | 0.994.0.003(0.006)  0.962.40.022(0.038)  0.944.0.011(0.020) 9 sn 40,127 (0. 1-16) 9.403.1.0.501 (0. 407) 1.045:0.010(0.103) | 0.10140.001(0.001)  0.102,003(0.002)  0.904.0.025(0.065) | 1.000£0.000 0.731:0.166
FT 0.1 | 0.96920,011(0.031)  0.882.0020(0.118)  0.908:0,010(0.026) 8.52810.571(1.472) 0 0.006(0.034) | 0.102.0,002(0.002)  0.10440,005(0.004)  0.950+0.007(0- Uﬂb) 1.00040.000 031420010
UA100%, UA(;100%, | 0.15 | 0. OJl £0.014(0.049)  0.84040,011(0.160)  0.851.49,031(0.005) 7o 8.13140.525(1.869) 0. 039(0.010) | 0.10340.003(0.003)  0.10310.007(0.003)  0.9760.009(0.006) | 1.00010.000 0.073.0.054
RA96.7%, TA08% | 0.2 | 0.942:0.014(0.058)  0.81810.072(0.182)  0.838.0.016(0.023) 45(0. 7.934.10.533(2.066)  0.854.00,019(0.024) | 0.10310,003(0.003)  0.103.0.010(0.003)  0.98140,005(0.000) | 1.00040.000 0.039:0.017
0.05 | 0.995:0,002(0.005)  0.95410.000(0.046)  0.9590,015(0.005) 03(0. nu.) 9.90040.011(0- mu) 1.17040.155(0.022) | 0.10040.000(0.000)  0.096.0.001(0.004)  0.828.0,097(0.012) | 1.000£0.000 0.8700.145
RL 0.1 | 0.98410.003(0.016)  0.90740.015(0.093)  0.918.0,021(0.036) 04(0.022)  9.80040.019(0.200)  0.982:0,036(0.059) | 0.099.10.000(0.001)  0.093.0.002(0.007)  0.936.0.022(0.021) | 1.00040.000 0.469.250
UA100%, UA(;100%, | 0.15 | 0.961+0.000(0-039)  0.859:0.014(0.141)  0.8700,010(0.014) n(“ 050)  9.7000,066(0-300) u 904,0 015(0.021) | 0.09710.001(0.003)  0.08940.001 (0.011) ~ 0.96440.027(0.006) | 1.00040000 0.14420.163
RA98.0%, TA92.7% | 0.2 | 0.935.0.027(0.065) 0.815:0.012(0.185) 0.804.0.016(0-010) | 9.919:0.035(0.081)  9.637.0.076(0-363) 026(0.010) | 0.09440.002(0.006)  0.085.0.001(0.015)  0.981.40,012(0.000) | 0.99910.001  0.014:0.015
0.05 | 1.000-0.003(0-000)  1.000.0 005 (0.000) 11(0.016) | 10.000-£0.009(0.000)  10.000-£0.003(0.000) 02(0.056) | 0.100£0.007(0.000)  0.100.£.011(0.000)  0.7870.011(0.053) | 1.000£0.010  0.988:0.000
GA 0.1 | 1.0000,003(0.000)  1.0000.010(0.000) (0.017) | 10.0000,005(0.000)  10.000-+0.006(0-000) 03(0.083) | 0.10020.012(0.000)  0.10040,006(0.000)  0.89410.002(0.062) | 1.000£0.000 0.5620.003
UA84.6%, UA¢;82.5%, | 0.15 | 1.000-0.006(0.000)  1.000+0.001(0.000) 0. (0.013) | 10.0009.005(0-000)  10.000.0.006(0-000) 0. 0. um(O 011) | 0.1004,004(0-000)  0.1000.008(0-000)  0.944.+0.007(0.026) | 1.00010.001  0.051:50.002
RA96.4%, TA89.6% | 0.2 | 0.82810003(0.172)  0.78240.011(0.218) 0. xzx,om(u 024) | 9.55020,007(0.450)  9.366.40.002(0.634)  0.884.20.000(0.054) | 0.08710.008(0.013)  0.08410,005(0.016)  0.9480.010(0.033) | 1.000.0.002  0.0380.003
0.05 | 0.994.0,003(0.006)  0.95940.002(0.041)  0.93910.003(0.025) | 9. 3774, 000(0.123)  9.50210.003(0.498)  1.0000,004(0.148) | 0.101.0.001(0. mu) 0.1010.004(0.001)  0.9390.001(0.099) | 0.95510.005 0.58820.001
Teacher 0.1 | 0.931:0.000(0.069)  0.9040.001(0.096) (0.008) | 9.199:0.002(0-801)  8.604.0.004(1.396) 004(0-008) | 0.1019,004(0.001)  0.105:0.004(0-005)  0.974:£0.003(0.018) | 0.92610.004  0.11610.005
UA0.1%, UA186.5%, | 0.15 | 0.879.0,001(0.121)  0.8811.001(0.119) (0.022) x.?; (1.270)  8.081.10.001(1.919) 5(0.037) | 0.1010.004(0. mu) 0.109.£0.002(0.009)  0.986 10,001 (0. mn) 0.9210.001  0.017.0.002
RA99.5%, TA94.0% 0.2 | 0.809:0.004(0.191)  0.841:£9.004(0.159) (0.002) | 8.14 3(1.859)  7.52540,003(2.475) 3(0-006) | 0.09910.002(0.001)  0.11240.003(0.012)  0.99040.002(0.009) | 0.916:0.005  0.010+0.003
0.05 | 0.995:0.014(0.005)  0.935:0.013(0.065)  0.940-0.007(0.024) | 1.03 (8.970)  1.067:0.015(8.933) (0.157) | 0.966:0.010(0.866)  0.87610.007(0.776)  0.9490.010(0.109) | 0.804x0.015  0.4470.007
SSD 0.1 | 0.9840,021(0.016)  0.9100,009(0.090) 0.£0,001(0.002) | 0.99 (9.008)  0.9824.0.005(9.018) 5(0.026) | 0.992.40.003(0.892)  0.92650.017(0.826)  0.98150.012(0.025) | 0.43420.007  0.0220.005
UAL16%, UA7.75%, | 0.15 | 0.960:0,012(0.040)  0.876.011(0.124) 7(0.009) | 0.96: 7(9.038)  0.931.10.006(9- WJ) . 5(0.025) | 0.99840.016(0.898)  0.94110.002(0.841)  0.98940.002(0.019) | 0.21540.007  0.00520.017
RA99.5%, TA94.3% | 02 | 0.895:0020(0.105) 0.816.0.010(0.184) 5(0.009) | 0.8952001(9.105)  0.85020,004(9-150)  0.83120,002(0-001) | 0.9991.001(0.899)  0.960.0 014(0.860)  0.99110,005(0.010) | 0.078 10005 0.002-0,00
0.05 | 0.989.0,016(0.011)  0.961.40.056(0. nm) n 0.10,(, 027(0.019) | 9.432:0.503(0.568)  9.038.1.360(0.962)  1.05310.020(0.096) | 0.10510.007(0.005)  0.10740,010(0.007)  0.89710.005(0.058) | 1.000£0.000 0.835:0.055
NegGrad+ 0.1 | 0.980.0.020(0. ozo) 0.954.50.065(0.046) 0.028(0.001) u 250 1.061(0.750)  8.836.1.647(1.164) 3:0.015(0.009) | 0.10640.000(0.006)  0.109.0.013(0.009)  0.96510.012(0.009) | 1.000:£0.000 0.0570.021
UA96.2%, UA(195.2%, | 0.15 | 0.95210.065(0.048)  0.90810.130 (0. nfm n.sf 0.026(0.007) 1o80(1.400)  8.07712.710(1.923)  0.86810.016(0.014) | 0.11310.015(0.013)  0.116.40,025(0.016)  0.97710.012(0.007) | 1.000£0.000 0.01220.003
RA97.6%, TA92.8% | 0.2 | 0.958:0.060(0.042) 0.92150.111(0.079)  0.81410,007(0.001) 1876(1.327)  8.21942,519(1.781)  0.828:0.020(0.002) | 0.11240.017(0.012)  0.11510.022(0.015)  0.983£0.015(0.001) | 1.00040.000  0-004£0.003
0.05 | 0.996:0.001(0.004)  0.94110.008(0.059)  0.9520.001(0.012) | 9.996+0.002(0.004)  9.89240.003(0.108)  1.0280.00s(0.121) | 0.10040.000(0.000)  0.095.0.001(0.005)  0.92640.008(0.087) | 1.00040.000 0.785:0.019
Salun 0.1 | 0.988:0,004(0.012)  0.90610.011(0.094)  0.901:0.002(0.020) | 9.985:0.003(0.015)  9.81710.045(0.183)  0.928.:0.005(0.006) | 0.099.10.000(0.001)  0.092.0,001(0.008)  0.971.40.004(0.015) | 1.00020.000 0.042:0.011
UA100%, UA,;100%, | 0.15 | 0.960:0,003(0.040)  0.85110.005(0.149)  0.8780,006(0.022) | 9.952:0.000(0.048)  9.677:0.,085(0.323)  0.896.10.005(0.013) | 0.0960,000(0.004) ~ 0.08810.000(0.012)  0.9800.001(0.010) | 1.00050.000 0.0090.001
RA99.6%, TA94.3% | 02 | 0.915:0.010(0.085)  0.80710.035(0.193)  0.82020.,035(0.005) | 9.89310.024(0.107)  9.51110.102(0.489)  0.82810,030(0.002) | 0.09210.002(0.008)  0.085.10.002(0.015)  0.990£0.004(0.009) | 1.000£0.000 0.001 0,001
0.05 | 1.000:0.000(0.000)  1.000.19.000(0-000) 0 0J2 £0.005(0.013) | 10.000.0.000(0.000)  10.000.10.000(0.000) L0224 030(0-127) | 0.100-9,000(0-000)  0.100+0.000(0.000)  0.93240,024(0.092) | 1.00010.000 ~0.677:x0.206
SFRon 0.1 | 1.0000,000(0-000)  1.000-£0.000(0-000)  0.9080.013(0.026) | 10.000-.000(0-000)  10.000-0.000(0.000) (0.014) | 0.100.0.000(0.000)  0.10010.000(0.000) ~ 0.9700,015(0.014) | 1.000.0.000 0.0890.092
UA100%, UA;100%, | 0.15 | 1.000.£0.000(0.000)  1.0000.000(0.000) ~ 0.8400.026(0.016) | 10.00010.000(0.000)  10.000.40.000(0.000) 0. 026(0.033) | 0.100.40.000(0.000)  0.100.0.000(0.000)  0.989.:0.00(0.019) | 1.00040.000 0.002:0.001
RA99.3%, TA94.4% | 0.2 | 1.000£0.000(0.000)  1.00040.000(0.000)  0.807.024(0.008) | 10.00040.000(0-000)  10.000+0.000(0.000)  0.8132.025(0.017) | 0.100.000(0-000)  0.10040,000(0-000)  0.992.003(0.010) | 1.0000.000 0-0010.001
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Table 9: Unlearning performance of 9 unlearning methods on Tiny ImageNet with ViT in 10% random data forgetting

scenario.
Coverage Set Size CR
Methods R
i ‘ "‘ ‘ Dy | Dyest 1 Dy 1 Diest 4 Dy | Drest 1 q
0.05 | 0.94410,006(0.000)  0.949.0.026(0.000) | 1.876.0.009(0.000)  1.840.40.014(0. 000) 0.50340.015(0.000)  0.516.0.015(0.000) | 0.984.0.002
RT 0.1 | 0.89210.006(0.000)  0.900-0.025(0.000) | 1.15140.002(0.000)  1.1440,015(0.000) | 0.775+0.016(0.000)  0.7860.026(0.000) | 0.853+0.003
UA14.7%, RA98.8%, TA86.0% | 0.15 | 0.841.0.024(0.000)  0.850+0.017(0.000) 0.956.40.014(0.000) 0.95640.017(0.000) | 0.880+0.014(0.000)  0.889+0.019(0.000) | 0.53940.001
0.2 | 0.79010.015(0.000)  0.799.0.023(0.000) | 0.846.0.004(0.000)  0.8540.014(0.000) | 0.93440.012(0.000) 0.93510.015(0.000) | 0.23810.012
0.05 | 0.99410.005(0.050)  0.95020.010(0.001) | 2.13310.008(0.257)  2.44010,011(0.600) | 0.46640.000(0.037)  0.3890.016(0.127) | 0.994.10 020
FT 0.1 0.97840.007(0.086)  0.903.40.003(0.003) 1.234.40.010(0.083) 1.31740.001(0.173) | 0.79240.018(0.017)  0.685+0.001(0.101) | 0.93540.012
UA6.9%, RA97.9%, TA84.1% | 0.15 | 0.93840.001(0.097) 0.85110.010(0.001) | 1.01410.005(0.058)  1.01710.016(0.061) | 0.925.0.007(0.045)  0.83610.016(0.053) | 0.681.0.003
0.2 | 0.88810.000(0.098)  0.801.0.012(0.002) | 0.915.0.006(0.069)  0.88540.000(0.031) | 0.97040.020(0.036)  0.905+0.005(0.030) | 0.32610.011
0.05 | 0.969+0.021(0.025)  0.95240.008(0.003) | 17.890+0.003(16.014)  8.57240.010(6.732) | 0.054+0.013(0.449)  0.111.40.002(0.405) | 0.99640.019
RL 0.1 | 0.892:0.017(0.000) 0 902+0.015(0.002) | 2.63940.017(1.488)  1.84310,019(0.699) | 0.33810.022(0.437)  0.48940.015(0.297) | 0.97140.014
UA26.9%, RA96.0%, TA81.4% | 0.15 | 0.79310.021(0.048)  0.85510.008(0.005) | 1.22510.013(0.269)  1.164.40.000(0. 208) 0.648.40.002(0.232)  0.734.0.000(0.155) | 0.894.10.022
0.2 | 0.6814+0.010(0.109) U 8030.003(0.004) 0.83110.006(0.015) 0.94610.011(0.092) | 0.82040.022(0.114)  0.84910.006(0.086) | 0.71540.013
0.05 | 0.99610.003(0.052)  0.947-0.002(0.002) | 1.53910.004(0.337)  2.01840.007(0.178) | 0.64740.003(0.144)  0.4690.002(0.047) | 0.9880.004
GA 0.1 | 0.986:0.006(0.094)  0.900.£0.000(0.000) | 1.10440.006(0.047)  1.224.0,005(0. 080) 0.89440.003(0.119)  0.736.0.006(0.050) | 0.899+0.001
UA3.2%, RA97.4%, TA84.9% | 0.15 | 0.9670.002(0.126)  0.85240.005(0.002) | 1.00310.008(0-047)  0.99310.004(0.037) | 0.964-0.005(0.084)  0.85940.006(0.030) | 0.6320.000
0.2 | 0.934.40.001(0.144)  0.800.£0.007(0.001) 0.946.19.00s(0.100) 0.87140.008(0. 017) 0.98740.008(0.053)  0.91940.005(0.016) | 0.296.10.009
0.05 | 0.97710,004(0.033)  0.956-0.003(0.007) | 5.47310.006(3.597)  5.08040.004(3.240) | 0.17940.005(0.324)  0.1880.002(0.328) | 0.9870.00s
Teacher 0.1 | 0.930+0.003(0.038)  0.902-£0.008(0.002) | 1.99140.004(0.840)  1.95910.002(0.815) | 0.467-0.004(0.308)  0.46010.002(0.326) | 0.971+0.007
UA17.3%, RA86.7%, TA79.0% | 0.15 | 0.873.0.003(0.032)  0.8500.009(0.000) 1.295.0.006(0.339) 1.31940.005(0.363) | 0.67440.007(0.206)  0.6454+0.003(0.244) | 0.944.0.006
0.2 | 0.81610.007(0.026)  0.803.10.009(0.004) | 1.02040.006(0.174)  1.0580.004(0. 204) 0.80040.005(0.134)  0.7580.005(0.177) | 0.910+0.006
0.05 | 0.99810,004(0.054)  0.950-0.006(0.001) | 1.35410.008(0.522)  1.82740.002(0.013) | 0.73740.008(0.234)  0.520+0.00s(0.004) | 0.98510.005
SSD 0.1 0.99340.008(0.101)  0.89740.008(0.003) 1.03940.002(0.112) 1.134.40.00s (0. 010) 0.95640.007(0.181)  0.79140.002(0.005) | 0.852.0.001
UA1.5%, RA98.5%, TA86.1% | 0.15 | 0.98140.005(0.140)  0.85310.001(0.003) | 0.99310.001(0.037)  0.962-0.005(0.006) | 0.988.0.004(0.108)  0.887+0.004(0.002) | 0.5424.007
0.2 | 0.95610.002(0.166)  0.805.0.003(0.006) | 0.960.0.003(0.114)  0.8640.009(0.010) | 0.9960.005(0.062)  0.932+0.002(0.003) | 0.24910 006
0.05 | 0.99940.000(0.055)  0.890+0.002(0.059) 0.94910.002(0.927) 1.614.40.023(0.227) | 2.18440.052(1.681)  2.49910.059(1.984) | 0.99540.000
NegGrad+ 0.1 | 0.99510.001(0.103)  0.848.0.000(0.052) | 0.898.10.000(0.253)  1.09340.005(0.051) | 1.22540.007(0.450)  1.2870.003(0.501) | 0.93310.002
UA19.4%, RA98.3%, TA84.0% | 0.15 | 0.98740.000(0.146)  0.814:0.001(0.036) | 0.85010.001(0.106)  1.009.10.000(0.053) | 1.01710.002(0.137)  1.0230.003(0.133) | 0.685.10.002
0.2 0.966+0, u(n(ﬂ 176)  0.783+0.003(0.016) 0.80240.002(0.044) 0.97240.000(0.118) | 0.922, 004(0 012)  0.89140.001(0.043) | 0.32040.001
0.05 | 0.99540.003(0.051)  0.96440.026(0.015) 2.80341.607(0.927) 2.7264.0.727(0.886) | 1.31141.810(0.808)  1.157+7.451(0.641) | 0.988.49.001
Salun 0.1 | 0.97710.014(0.085)  0.92440.040(0.024) | 1.2294¢ 556(0.078) 1 281.40.120(0. 137) 0.91840.557(0.143)  0.884.0.574(0.097) | 0.93910.005
UA9.2%, RA97.7%, TA83.6% | 0.15 | 0.936+0. 041(() 095)  0.87440.041(0. (]24) 0.97240.103(0 (]1()) 1.032.£0.005(0.076) 0.935i0_057(() 055)  0.89310.124(0. (](]-L) 0.819+0.003
0.2 | 0.87040.081(0.080)  0.810.0.017(0.011) 0.84540.036(0.001) 0.925.40.046(0.071) | 0.924.10.047(0.009)  0.894.1.006(0.041) | 0.630+0.003
0.05 | 0.98910,001(0.045)  0.948.0.001(0.001) | 2.0000.050(0.124)  2.20840.037(0.368) | 0.49540,014(0.008)  0.42910.007(0.086) | 0.986.0.000
SFRon 0.1 | 0.96010.003(0.068) 0.899.0.002(0.001) | 1.227:0.017(0.076)  1.26840.007(0.123) | 0.78340.010(0.008)  0.709+0.003(0.077) | 0.902+0.003
UA9.3%, RA97.0%, TA83.9% | 0.15 | 0.917.+0.002(0.076)  0.849.0.002(0.001) 1.024.49.006(0.068) 1.01540.005(0.059) | 0.896.40.007(0.016)  0.837+0.004(0.053) | 0.68910.012
0.2 | 0.8660.006(0.076)  0.802.0.003(0.003) | 0.916.0.004(0.070)  0.89240.005(0.037) | 0.94640.002(0.012)  0.899:0.003(0.036) | 0.42610 015
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Table 10: Unlearning performance of 9 unlearning methods on Tiny ImageNet with ViT in 50% random data forgetting

scenario.
Coverage Set Size CR

Methods .

eros ‘ i ‘ Dyl Dyet 1 Dyt Dyt | Dy | Dieat q
0.05 | 0.94640.001(0.000)  0.94840.003(0.000) | 2.14640.006(0.000)  2.106.10.002(0.000) | 0.441.0004(0.000)  0.4500.005(0.000) | 0.987-40 004
RT 0.1 | 0.892.0007(0.000)  0.89940.00s(0.000) | 1.22240.002(0.000)  1.2110,007(0.000) | 0.7300.004(0.000)  0.742.10.002(0.000) | 0.8890.000
UA16.0%, RA98.8%, TA84.9% | 0.15 | 0.83810.004(0.000)  0.84740.001(0.000) | 0.97740.002(0.000)  0.97710.006(0.000) | 0.858.0.008(0.000)  0.868.49.006(0.000) | 0.60719.001
0.2 | 0.786.40.005(0.000)  0.79640.002(0.000) | 0.85640.007(0.000)  0.8630.001(0.000) | 0.9180.007(0.000)  0.922.1000s(0.000) | 0.304-0.008
0.05 | 0.995.40.013(0.051)  0.94940.024(0.000) | 1.87940.014(0.003)  2.216.40.003(0.376) | 0.5270.025(0.024)  0.428.0.020(0.088) | 0.9920.019
FT 0.1 | 0.979.40.021(0.087)  0.90140.014(0.001) | 1.18340015(0.032)  1.28110,020(0.137) | 0.82810.020(0.053)  0.701.40.010(0.085) | 0.9260.025
UAS.4%, RA97.1%, TA84.4% | 0.15 | 0.95310,024(0.112)  0.850.0.022(0.000) | 1.01440.011(0.058)  1.01740.026(0.061) | 0.94040.027(0.060)  0.8390.004(0.050) | 0.68110.020
0.2 | 0.91040.020(0.120)  0.80640.024(0.007) | 0.93710.015(0.091)  0.895.20.001(0.041) | 0.9770.020(0.043)  0.90240.007(0.033) | 0.34510.016
0.05 | 0.97440.011(0.028)  0.95310.001(0.005) | 26.03210.007(23.886)  23.369.10.008(21.263) | 0.038.0.015(0.403)  0.03810.016(0.412) | 0.99440 010
RL 0.1 | 0.93040016(0.038)  0.90240.013(0.003) | 5.27740.001(4.055)  4.62110,007(3.410) | 0.17810.011(0.552)  0.197.10.001(0.545) | 0.9870.008
UA22.5%, RA93.5%, TA77.1% | 0.15 | 0.875.0.011(0.037)  0.85640.008(0.009) | 1.75840.004(0.781)  1.657.40.005(0.680) | 0.496.0.006(0.362)  0.51640.009(0.352) | 0.970.0.017
0.2 | 0.81040.006(0.024)  0.80540.013(0.009) | 1.14740.005(0.291)  1.144.0,005(0.281) | 0.7070.004(0.211)  0.707.10.013(0.215) | 0.94510.005
0.05 | 0.99840.007(0.052)  0.94940.001(0.001) | 1.80710.001(0.339)  2.338.0.001(0.232) | 0.552.00.006(0.111)  0.40740.006(0.043) | 0.992.40.006
GA 0.1 | 0.98640.009(0.094)  0.89640.007(0.003) | 1.14740.003(0.075)  1.278.10.007(0.067) | 0.86310.008(0.133)  0.703.40.002(0.039) | 0.918.0.010
UA3.9%, RA96.1%, TA84.2% | 0.15 | 0.9680.008(0.130)  0.850-0.002(0.003) | 1.01540.008(0.038)  1.02040.002(0.043) | 0.95440.009(0.096)  0.83510.002(0.033) | 0.69610.000
0.2 | 0.93140011(0.145)  0.80440.004(0.008) | 0.94840.000(0.092)  0.89310,003(0.030) | 0.983:0.006(0.065)  0.900.0004(0.022) | 0.3630.002
0.05 | 0.96740.013(0.021)  0.95040.017(0.002) | 6.46510.007(4.319)  6.233.00.004(4.127) | 0.151.0.002(0.290)  0.15140.006(0.299) | 0.99040 014
Teacher 0.1 | 0.922.0008(0.030)  0.89940.002(0.000) | 2.20240012(0.980)  2.16710.005(0.956) | 0.418.0.009(0.312)  0.419.0.024(0.323) | 09770001
UA22.1%, RA85.7%, TA76.2% | 0.15 | 0.86940.025(0.031)  0.85240.002(0.005) | 1.46740.015(0.490)  1.459.10.004(0.482) | 0.591.10.005(0.267)  0.581.0.001(0.287) | 0.958.0.021
0.2 | 0.81440.020(0.028)  0.80140.017(0.005) | 1.12510.005(0.269) 1.138.40.001(0.275) | 0.71840.017(0.200)  0.7040.009(0.218) | 0.92710.017
0.05 | 0.99940.001(0.053)  0.95240.001(0.004) | 1.34640.001(0.800)  1.824.0.000(0.282) | 0.742.0.000(0.301)  0.522.40.001(0.072) | 0.9860.001
SSD 0.1 | 0.995.40.001(0.103)  0.89740.000(0.002) | 1.03340.001(0.189)  1.13510.001(0.076) | 0.95910.000(0.229)  0.790.40.000(0.048) | 0.8470.001
UA1.3%, RA98.4%, TA86.1% | 0.15 | 0.98210.001(0.144)  0.847-0.000(0.000) | 0.987-0.000(0.010)  0.95640.000(0.021) | 0.98940.001(0.131)  0.890+0.001(0.022) | 0.51710.001
0.2 | 0.959.40.001(0.173)  0.80440.001(0.008) | 0.96140.000(0.105)  0.8620,000(0.001) | 0.99510.001(0.077)  0.932.40.001(0.010) | 0.2430.001
0.05 | 0.999:0.000(0.053)  0.97940.001(0.031) | 0.94640.002(1.200)  1.44310.025(0.663) | 2.248.0,063(1.807)  2.358.10.005(1.908) | 09920001
NegGrad+ 0.1 | 0.99640000(0.104)  0.94640.002(0.047) | 0.90040.003(0.322)  1.07810.006(0.134) | 1.29520.010(0.565)  1.332.40.008(0.590) | 0.9330.003
UA11.5%, RA98.7%, TA83.8% | 0.15 | 0.99040.000(0.152)  0.90040.003(0.052) | 0.85310.004(0.124)  1.008.0.002(0.031) | 1.032.0.010(0.174)  1.03310.011(0.165) | 0.71240.015
0.2 | 0.97740.000(0.191)  0.84840.003(0.052) | 0.80540.002(0.052)  0.982.0.000(0.119) | 0.9090.004(0.009)  0.898.10.007(0.024) | 0.381.0.009
0.05 | 0.993:0.003(0.047)  0.96240.026(0.014) | 3.28449045(1.138)  4.11210,513(2.007) | 1.5469.200(1.105)  1.55845536(1.108) | 0.989-0.001
Salun 0.1 | 0.97640011(0.084)  0.92440.039(0.026) | 1.38640.425(0.164)  1.57910130(0.368) | 0.922:0.566(0.192)  0.896.10.607(0.154) | 0.97310.002
UA9.2%, RA95.7%, TA81.9% | 0.15 | 0.944.10,024(0.106)  0.876.0.046(0.029) | 1.051.40175(0.074)  1.13940.017(0.162) | 0.91940.104(0.061)  0.8710.226(0.003) | 0.94240 002
0.2 | 0.90040044(0.114)  0.82540.049(0.029) | 0.91040.097(0.054)  0.96910,037(0.105) | 0.92810.040(0.011)  0.876.10.063(0.045) | 0.8930.002
0.05 | 0.99440.001(0.048)  0.94710.003(0.001) | 2.01040.183(0.136)  2.327.0.087(0.222) | 0.497-0.045(0.057)  0.40740.016(0.043) | 0.98340 002
SFRon 0.1 | 0.980.40.006(0.087)  0.90040.003(0.001) | 1.24540.060(0.023)  1.33810.039(0.126) | 0.7880.041(0.058)  0.673.10.020(0.069) | 0.909-0.003
UA6.3%, RA96.8%, TA82.9% | 0.15 | 0.95150.011(0.113)  0.84940.003(0.001) | 1.04140.020(0.065) 1.044.40.023(0.067) | 0.91340.028(0.055)  0.813.0.016(0.055) | 0.738.10.020
0.2 | 0.91040.011(0.125)  0.80340.003(0.008) | 0.94710.006(0.091)  0.910.0.022(0.046) | 0.961.0.017(0.044)  0.88410.017(0.038) | 0.52310.065

Table 11: Unlearning performance of 9 unlearning methods on Tiny ImageNet with ViT in class-wise forgetting scenario.

Methods N Coverage Set Size CR
i Dsl Dis | Der 1 Dyt Dy 1 Dy | Dyl Dy | Do 1 [ Grest
0.05 | 1.0000.000(0.000)  1.000£0.000(0-000)  0.950-£0,005(0-000) | 200.00040.000(0-000)  200.000:0.000(0-000)  1.785:4.056(0.000) | 0.0050.000(0-000) 0.005:10.000(0-000)  0.532.10.009(0.000) | 1.000z0.000 0.984x0.002
RT 0.1 | 0.93610,011(0.000)  0.960.£0.016(0.000)  0.90310.009(0.000) | 192.88240.612(0.000)  193.3405.620(0.000) 1 14640.002(0.000) | 0.00510.000(0.000)  0.005:0,000(0.000)  0.78810.005(0.000) | 1.00010.000 0.859:0.004
UA100%, UA(£100%, | 0.15 | 0.90410.030(0.000)  0.96040.046(0.000)  0.85310.005(0.000) | 186.79112175(0.000)  188.88011.502(0.000)  0.95710.010(0.000) | 0.00510.000(0.000) ~0.005:0.000(0.000) ~ 0.892.10.005(0.000) | 1.000+0.000 0.5350.002
RA98.7%, TAB6.4% | 0.2 | 0.78710.061(0.000)  0.86040.024(0.000) 0.80510,003(0.000) | 171.05145155(0.000) 1744805 511(0.000) o 860.£0.010(0.000) | 0.0050.000(0.000)  0.00510,000(0.000)  0.936.40.002(0.000) | 1.0000000 0.232:0.001
0.05 | 0.99320.006(0.007)  0.96040.009(0.040)  0.9520,006(0.002) | 8.3600.007(191.640)  8.28020.006(191.720)  2.44240,011(0.657) | 0.11940.015(0. 11.1 0.11620,001(0.111)  0.39040.023(0.142) | 0.99940.006  0.99320.005
FT 0.1 | 0.9840,009(0.048)  0.86020.013(0.100)  0.89840.005(0.005) | 1.80220.000(191.080)  1.660-0.015(191.680)  1.28740.009(0.141) | 0.5460.00s(0.5 ) 0.51820,004(0.513)  0.69840.019(0.090) | 0.97140010  0.92420.016
UAI3.8%, UA122.0%, | 0.15 | 0.90250,019(0.002)  0.800.0.004(0.160)  0.852.0.017(0.001) | 1.120.0,021(185.671)  1.0400,006(187.840)  1.02140.017(0.064) | 0.806.10.012(0- ésm) 0.7690.013(0.764)  0.83540.022(0.057) | 0.80920.010 0.6860.001
RA975%, TA84.1% | 0.2 | 0.86010.021(0-073)  0.760:0003(0-100)  0.800+0.015(0-005) | 0.969:0.005(170.082)  0.960+0.003(173.520)  0.882+0.010(0-022) | 0.888.0.005(0-883)  0.792:0002(0.787)  0.907-0.006(0-029) | 0.59540.002 0-3380.010
0.05 | 0.9980.005(0.002)  0.980:0.003(0-020)  0.95210.049(0.002) | 199.48910,512(0.511)  195.2201 005(4. 750) 2.317:40.000(0.532) | 0.00540.000(0.000)  0.005.0.000(0.000)  0.4110.000(0.121) | 1.000+0.000 ~ 0.995:0.032
RL 0.1 | 0.97140.015(0.035)  0.900.0,017(0.060)  0.90040,002(0.003) | 180.442.0.710(12.440)  170.96040.045 (223 1.23740.050(0.991) | 0.00510.000(0.000)  0.0050,000(0.000)  0.7271.0.016(0.061) | 1.00010.000 0.925%0.024
UA100%, UA1£100%, | 0.15 | 0.92240,011(0.018)  0.90040.011(0.060)  0.85240,015(0.001) | 165.884. 037(20.907)  159.980.1 012(2 1.00140,003(0.044) | 0.00640.001(0.001)  0.0060,000(0.001)  0.851.0.025(0.041) | 1.00040.000 0.641.0.035
RAY8.2%, TA84.6% 0.2 | 0.882.0,007(0.095)  0.8600,007(0.000)  0.80740,007(0.002) | 154.896.2 025(16.155)  149.280.3 013 0.88640.032(0.026) | 0.00640.000(0.001)  0.00640,001(0.001)  0.912.00.013(0.024) | 1.00040.000 0.262:0.022
0.05 | 1.000+0,001(0-000)  0.980+0.002(0.020)  0.94840,026(0.002) | 22.83610.045(177-164)  20.6000.011 (17 1.78140.017(0.004) | 0.04410.017(0.019)  0.0480,025(0.043)  0.53210.015(0.000) | 1.00040.000 0.98420.033
GA 0.1 | 0.991:+0.022(0.055)  0.900+0.014(0.060)  0.89710.016(0.006) | 1.631+0.031(191.251)  1.720:0.005(191.620)  1.133.0.044(0.013) | 0.60810.006(0.603) ~ 0.52310.007(0.518)  0.792.0.037(0.004) | 0.97210.035 0.849:0.030
UA9.1%, UA120.0%, | 0.15 | 0.95810.002(0.054)  0.820+0.010(0.140)  0.8500.006(0.003) | 1.1510.030(185.640)  1.14020,042(187.740)  0.95810.026(0.001) | 0.83240.005(0.827)  0.71920.021(0.714)  0.8870,044(0.005) | 0.86810.023 0.535x0.011
RA98.6%, TA86.1% | 0.2 | 0.88040.047(0-093)  0.80040.051(0.060)  0.80310.025(0.002) | 0.929:0.002(170.122)  0.900:0.009(173.580)  0.86110.006(0-001) | 0.9470.036(0-942)  0.889:0.020(0.884)  0.93310.027(0.003) | 047310.016  0.23820.000
0.05 | 0.982.0,014(0.018)  1.00040.007(0.000)  0.9524,025(0.002) | 199.971.0,009(0. nzw) 200.00040,000(0.000)  5.09540.020(3.310) | 0.00510.000(0.000)  0.0054.000(0.000)  0.1870.008(0.345) | 1.00040.000  0-9890.001
Teacher 0.1 | 0.909-0,013(0.027)  0.94040,015(0.020)  0.90340,032(0.000) | 199.813.0,009(6.93 199.90040,013(6.560)  2.033.0.031(0.887) | 0.005.40.000(0.000)  0.00510,000(0-000)  0.444.40.006(0.344) | 10000000 0.96520.008
UA100%, UA¢£100%, | 0.15 | 0.88710.014(0.017)  0.88040.011(0.080)  0.854-0,003(0.001) | 199.6670.030(12 m) 199.76040.026(10.880)  1.331.00,012(0.374) | 0.00440.000(0- um) 0.0040,001(0.001)  0.64140.010(0.251) | 1.000£0.000 0-91920.001
RAS8.8%, TAT8.6% 0.2 | 0.83840,022(0.051)  0.84010,002(0.020)  0.79940,017(0.006) | 199.41310.024(28.362)  199.62010,030(25.140)  1.02240.017(0.162) | 0.00410.001(0.001)  0.0040,001(0.001)  0.781.0.019(0.155) | 1.00040.000 0.825:0.002
0.05 | 1.000-£0.000(0.000)  1.000:0.000(0-000)  0.950+0.017(0.000) 197.3201.010(2.680)  1.866+0.019(0.081) | 0.005.0.000(0.000)  0.005:0.000(0-000)  0.50910.013(0.023) | 1.000+0.000 ~ 0.986-0.006
SSD 0.1 | 0.94940.017(0.013)  0.90040.012(0.060)  0.89710.007(0.006) | 171.073.¢ m("l 8 >‘J) 169.360+2.002(23.980)  1.14140.014(0.005) | 0.006.£0.000(0.001) ~ 0.005:0.000(0.000) ~ 0.786.+0.021(0.002) | 1.000+0.000 0-854+0.006
UAL00%, UA(;100%, | 0.15 | 0.91310,007(0.009)  0.88010.020(0.080) 0.852.0.015(0.001) 2 51)  154.960.0.007(33.920)  0.959.0,011(0.002) | 0.0060.001(0.001) ~0.00610.000(0.001)  0.88840.012(0.004) | 1.00010.000 053820007
RAY8.4%, TA86.1% 0.2 | 0.833.10.007(0.046)  0.80040.013(0.060)  0.806.40,022(0.001) | 136.502.3.022(34.549)  136.42042.420(38.060)  0.864.40.002(0.004) | 0.00610.000(0.001)  0.00640.000(0.001)  0.932.0.015(0.004) | 1.00040.000 0.25420.005
0.05 | 1.00040,000(0.000)  1.0000.000(0.000)  0.9474.002(0.003) | 200.000-0.000(0.000)  200.0000,000(0.000) 8500.036(0.065) | 0.005.40.000(0.000)  0.0050,000(0-000)  0.51240.009(0.020) | 1.000£0.000 0.9870.001
NegGrad+ 0.1 | 0.92750,104(0.009)  0.95010.071(0.010)  0.89440,001(0.009) | 193.99415 405(1.112)  197.49043.550(4.150)  1.14040.007(0.006) | 0.00510.000(0.000) ~ 0.0050.000(0.000)  0.78440.004(0.004) | 1.00040.000 0.859:0.003
UA100%, UA(1100%, | 015 | 0.862+0.013(0.042)  0.870:0042(0.090)  0.8490,000(0-004) | 188.68610.054(1.894)  195.590.40863(6.710)  0.9610,001(0.004) | 0.0050000(0-000)  0.0040.000(0-001)  0.88440,000(0-008) | 1.000+0000 0-5370.008
RAY99.0%, TA85.8% 0.2 | 0.830+0.027(0.043)  0.840+0.085(0.020)  0.80240.002(0.003) | 187.219:0.064(16.168)  194.310+0.945(19.830)  0.861:0.001(0.002) | 0.00410.000(0.000)  0.0040.000(0-001)  0.931.£0.001(0-005) | 1.00040.000 0.220:0.002
0.05 | 0.99710,003(0.003)  0.99340.,012(0.007)  0.9491,001(0.001) | 199.59910.207(0.401)  197.440;244(2.560)  1.98040.050(0.196) | 0.005.10.000(0.000)  0.005:0.000(0.000) 0.47910.012(0.053) | 1.000.40.000 0.989.0.001
Salun 0.1 | 0.97510.019(0.039)  0.92710.023(0.033)  0.89940,001(0.003) | 191.97341.616(0.910)  185.22040.015(8.120)  1.16940.002(0.023) | 0.00510.000(0.000)  0.00540.000(0.000)  0.769.0.001(0.019) | 1.00040.000 0.8840.001
UA100%, UA¢£100%, | 0.15 | 0.96140,022(0.057)  0.86040.040(0.100)  0.8500,001(0.004) | 18782545 461(1.034)  180.30742.908(8.573)  0.969.10.002(0.012) | 0.00540.000(0.000)  0.005.0,000(0.000)  0.8770.002(0.015) | 1.00040.000  0.562.20.003
RAY8.4%, TAR6.1% 0.2 | 0.96040,015(0.173)  0.84040,020(0.020)  0.80140,0p1(0.004) | 184.83813 475 (13.787)  177.64T12,627(3.167)  0.86340.004(0.003) | 0.00510.000(0.001)  0.0050.000(0.000)  0.92840.003(0.008) | 1.00040.000  0-2300.000
0.05 | 1.000£0.000(0.000)  1.0000,000(0.000)  0.948 10,001 (0.002) | 200.00040,000(0.000)  200.0000,000(0.000) 2264 10,254(0.479) | 0.005.£0,000(0.000)  0.005:0.000(0.000) 0.42310.050(0.110) | 1.00040.000 0.990:0.003
SFRon 0.1 | 1.00040.000(0-064)  1.0002,000(0-040) ~ 0.900+,001(0-003) | 200.000:40.000(7-118)  200.000£0,000(6.660)  1.266.20.044(0.120) | 0.0050.000(0-000) ~ 0.0050.000(0-000) ~ 0.7111.026(0-077) | 1.000x0000 0.912:0.017
UAI00%, UAvs100%, | 0.15 | 1.00050,000(0.096)  1.00010.000(0.040)  0.85010,002(0.003) | 200.000.£0.000(13.209) ~ 200.00010.000(11.120)  1.009:0,012(0.051) | 0.005.50.000(0.000) 0.0050.000(0.000)  0.84350.011(0.049) | 1.000x0.000 0.668 10,020
RA96.1%, TA84.3% | 0.2 | 1.00010.000(0.213)  1.0000.000(0.140)  0.80210.003(0.003) | 200.000:0.000(28.949)  200.00010.000(25.520)  0.886.10.006(0.026) | 0.005.10,000(0.000) ~ 0.005:0.000(0.000) 0.90510.007(0.031) | 1.000.40.000 0.35810.017
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Table 12: MIACR performance on CIFAR-10 with ResNet-18.

10% Forgetting

50% Forgetting

Methods o MIACR 1 q MIACR 1 q
0.05 | 0.09140.001(0.000)  0.877+0.004 | 0-11710.010(0.000)  0.899. 007
RT 0.1 | 0.1470.000(0.000)  0.58910.008 | 0.20110.011(0.000)  0.57010.001
MIA86.92% (10% Forgetting) | 0.15 | 0.20310.010(0.000)  0.48510.005 | 0.-27210.011(0.000)  0.47240 009
MIA82.79% (50% Forgetting) | 0.2 | 0.24610.000(0.000) 0.47310.001 | 0.31840.006(0.000)  0.45910.003
0.05 | 0.03940.011(0.052)  0.74510.013 | 0.03640.001(0.081)  0.78040.011
FT 0.1 | 0.077+0.008(0.070)  0.627£0.000 | 0.10310.011(0.098)  0.55810.012
MIA92.00% (10% Forgetting) | 0.15 | 0.128,10.007(0.075)  0.517+0.008 | 0-15940.011(0.113)  0.4944¢.011
MIA92.92% (50% Forgetting) | 0.2 | 0.19610.003(0.050) 0.48310.003 | 0.24410.010(0.074)  0.47610.004
0.05 | 0.08310.010(0.008)  0.6270.011 | 0.05010.016(0.067)  0.5470.000
RL 0.1 | 0.17840.027(0.031)  0.57210.005 | 0.13740.030(0.064)  0.5474+0.001
MIA74.21% (10% Forgetting) | 0.15 | 0.27210.006(0.069)  0.49210.015 | 0.19440.031(0.078)  0.54710.001
MIAG61.15% (50% Forgetting) | 0.2 | 0.32040.025(0. 074) 0.48540.011 | 0.26140.001(0.057)  0.54640.000
0.05 | 0.01240.002(0.079)  0.86210.016 | 0.01210.019(0.105)  0.77140.008
GA 0.1 | 0.03240.003(0.115)  0.50240.016 | 0.05510.003(0.146)  0.4860.005
MIA98.80% (10% Forgetting) | 0.15 | 0.07610.000(0.127)  0.47710.007 | 0.10710.016(0.165)  0.47410.015
MIA98.86% (50% Forgetting) | 0.2 | 0.14610.016(0.100) 0.47610.019 | 0.16410.016(0.154) 0.47310.011
0.05 | 0.01340.006(0.078)  0.75040.014 | 0.03140.003(0.086)  0.635+0.018
Teacher 0.1 | 0.03840.023(0.109)  0.67240.028 | 0.06510.021(0.136)  0.58210.013
MIA87.24% (10% Forgetting) | 0.15 | 0.07210.013(0.131)  0.62510.020 | 0.11040.017(0.162)  0.54810.007
MIA93.24% (50% Forgetting) | 0.2 | 0.11310.00s(0.133)  0.58810.019 | 0.15940.017(0.159)  0.53210.006
0.05 | 0.01140,011(0.080)  0.861+0.012 | 0.01240.002(0.105)  0.748.+0.011
SSD 0.1 | 0.03110.010(0.116) 0.51140.011 | 0.05140.005(0.150)  0.48810.001
MIA98.78% (10% Forgetting) | 0.15 | 0.07710.005(0.126)  0.48040.013 | 0.10410.006(0.168)  0.47740.015
MIA98.87% (50% Forgetting) | 0.2 | 0.13910.011(0.107)  0.47510.013 | 0.16810.012(0.150)  0.47740.006
0.05 | 0.07640.025(0.015)  0.84440.024 | 0.04540.008(0.072)  0.863+0.025
NegGrad+ 0.1 | 0.12840.015(0.019)  0.48140.009 | 0.10940.007(0.092)  0.51110.008
MIA90.30% (10% Forgetting) | 0.15 | 0.17410.022(0.029)  0.48040.005 | 0.16740.017(0.105)  0.477+0.010
MIA93.82% (50% Forgetting) | 0.2 | 0.21310.012(0.033)  0.48040.004 | 0.23040.014(0.088)  0.4724 08
0.05 | 0.05540.014(0.036)  0.69110.011 | 0.04410.001(0.073)  0.67040.008
Salun 0.1 | 0.11310.009(0.034)  0.68140.013 | 0.11540.009(0.086)  0.63010.000
MIA57.58% (10% Forgetting) | 0.15 | 0.19810.006(0.005)  0.64210.015 | 0.17010.009(0.102)  0.61040 003
MIAS59.12% (50% Forgetting) | 0.2 | 0.26710.009(0.021)  0.60810.011 | 0.22010.005(0.098)  0.58610.005
0.05 | 0.01740.001(0.074)  0.71140.009 | 0.01740.002(0.100)  0.7150.008
SFRon 0.1 | 0.04040.004(0.107)  0.62610.025 | 0.04640.002(0.155)  0.562.40.013
MIA91.55% (10% Forgetting) | 0.15 | 0.11310.003(0.090) 0.51710.003 | 0.-13410.013(0.138)  0.498.0.003
MIA92.52% (50% Forgetting) | 0.2 | 0.18410.002(0.062) 0.48710.002 | 0.20610.014(0.112)  0.48340.002
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