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Abstract

QUIC is experiencing phenomenal success as a low-latency,
secure, and flexible protocol, adopted and deployed by mul-
tiple hyperscale content providers. However, the throughput
of all its implementations remains remarkably low compared
to that of TCP + TLS. Approaches to accelerating QUIC’s
throughput remain scattered, applied to a single implemen-
tation at a time, and one approach at a time. In this paper,
we systematically identify the different bottlenecks that arise
in different implementations. We use our findings to pro-
pose an application-agnostic architecture to accelerate single-
connection throughput in QUIC. We demonstrate the value
of our proposal by accelerating two implementations: quicly
and mvfst, improving their throughput by 1.36x and 1.88%
respectively, compared to their baseline implementations.
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1 Introduction

QUIC has become one of the main standards for web appli-
cations [32], with a wide range of implementations that vary
in complexity and performance [10]. This flexibility in de-
signing the implementation of the protocol allows different
stakeholders to innovate independently and customize their
implementations for their use cases. The diversity in QUIC
implementations is more conspicuous compared to other
transport protocols because QUIC is fully implemented in
userspace, making it easier to develop new independent imple-
mentations compared to TCP which requires kernel changes.
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This flexibility comes at the expense of requiring each imple-
mentation to attempt to reinvent the wheel of performance
optimization and tweaking. In addition, it complicates ef-
forts to methodically examine QUIC-specific performance
bottlenecks. In fact, existing work on improving the perfor-
mance of QUIC focuses on a single implementation and one
or two optimizations [11, 15, 27, 29]. For example, MsQuic
and picoQUIC-DPDK demonstrate the benefits of bypassing
the kernel’s UDP implementation [11, 27]. Further, MsQuic
pipelines protocol processing and socket-based 10 using two
separate threads [11]. In contrast, TCP upgrades have been
slow but cumulative with a broad immediate impact on ap-
plication performance (e.g., [14]).

To reduce wasted effort, we believe that design guidelines
and best practices should be clearly defined for QUIC im-
plementations. For example, guidelines could be defined to
minimize CPU requirements, while others focus on specific
per-connection metrics like latency or throughput. Such an
approach would also allow users to pick the implementa-
tion that most suits their use cases based on the guidelines it
follows. To that end, this paper demonstrates the feasibility
of implementation-agnostic improvements in QUIC perfor-
mance, focusing on single-connection throughput defined as
the throughput achieved for the packets communicated un-
der a specific QUIC connection ID. This focus stems from the
surprisingly high variability in single-connection throughput
between different QUIC implementations, making it a good
use case for our objective. Moreover, we anticipate that as
the popularity of QUIC grows, some of its applications will
require achieving high single-connection throughput (e.g.,
file transfer between datacenters and AR/VR applications).

We examine five QUIC implementations and identify classes
of fundamental throughput bottlenecks, herein referred to as
speedbumps. First, we show that some implementations face
poor single-connection performance due to their own ineffi-
cient implementation. Then, we show that Linux’s UDP stack
is seldom a throughput bottleneck. Finally, the choice of the
crypto library can have a significant impact on performance.
Not only that, crypto represents a fundamental limitation on
the performance of all QUIC implementations.

Weleverage our analysis to propose implementation-agnostic
guidelines for designing high-throughput QUIC implemen-
tations. Our proposal improves the throughput of a QUIC
implementation through pipeline parallelism. In particular,
packets from the same connection are processed in parallel
by breaking stack processing into the following five stages:
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(i) IO, (ii) UDP/IP processing, (iii) QUIC protocol handling
(without crypto), and (iv) crypto. Each stage runs in its own
lightweight user threads that communicate asynchronously
through shared memory. To demonstrate the value of our pro-
posal, we modify the implementation of two popular QUIC
implementations, quicly [8] and mvfst [6], improving their
performance by 1.36x and 1.88X, respectively.

A software-only approach. We focus on software-only im-
plementations of QUIC. We realize that offloading encryption
and decryption operations to hardware can dramatically im-
prove throughput. However, it is important to note that NICs
that support such offloads are costly and not widely deployed.
Considering QUIC’s growing popularity as a standard Inter-
net transport, we find it critical to develop performant and
portable software-only architectures, maintaining the porta-
bility of current stacks and enabling more users to receive the
benefits of high-throughput QUIC implementations.

2 QUIC’s Throughput Speedbumps

2.1 Overall Performance

We measure the throughput of five different QUIC imple-
mentations: mvfst, picoquic, quicly, picoquic-dpdk, and
MsQuic. To measure the throughput of each implementation,
we use an iperf-like tool that continuously attempts to send
data from a server to a client. All evaluation is done with
Generic Segmentation Offload (GSO) enabled on Linux ma-
chines with 25 Gbps NICs. All implementations use AES128_
GCM encryption using OpenSSL.

Figure 1 compares the overall throughput achieved by
the five implementations. We compare them to TCPLS, an
optimized implementation of TCP+TLS to provide similar
functionality to QUIC but using TCP while achieving high
throughput [25]. picoquic-dpdk and MsQuic provide com-
parably good performance out of the box, having been opti-
mized specifically for high throughput. picoquic-dpdk im-
plements picoquic on top of a bare-bone implementation
of a UDP stack using DPDK [27]. MsQuic pipelines QUIC
protocol processing and socket-based IO using two separate
threads [11]. Both implementations rely on batching to amor-
tize the cost of different stack operations. However, both im-
plementations achieve less than 60% of the TCPLS throughput:
picoquic-dpdk achieves 58% and MsQuic achieves 53%.

To better understand how CPU cycles are spent in QUIC im-
plementations, we profile three QUIC stacks: quicly, mvfst,
and picoquic. We chose quicly and mvfst because they rep-
resent two poles of QUIC implementations. quicly is light-
weight, while mvfst has many complex features. picoquic
and MsQuic optimize throughput. We focus on picoquic be-
cause it offers a convenient API for changing the underlying
network stack and encryption library in a Linux environ-
ment. MsQuic supports the same features. However, MsQuic
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Figure 1: Throughput of different QUIC implementations.

Numbers reported here are consistent with those publicly
reported by the MsQuic team [5]. The discrepancy between
numbers reported here for picoquic-dpdk and those reported
in [27] are due to using different crypto engines.
optimizations, including Schannel, are exclusive to Windows,
complicating our comparisons.

We use perf to record the CPU cycles spent by each func-

tion in each of the implementations. Table 1 shows a break-
down of the CPU cost for each component of a QUIC imple-
mentation. Our component breakdown is based on distinct
objects in an implementation’s binary as identified by perf.
In particular, we focus on three main components: (i) QUIC
protocol handling (without crypto), (ii) IO, representing the
network stack from calls at the driver level to the socket API,
and (iii) crypto. Due to our focus on QUIC, we ignore the cost
of the application deployed on top of QUIC (e.g., web server
or file server). Further, we ignore other libraries used in a
QUIC implementation whose combined CPU cost is less than
5% of the total CPU consumed by the stack, most of which is
consumed by libc.
QUIC implementation is a speedbump. One throughput
speedbump is self-evident: the implementation of the QUIC
protocol handling itself, excluding crypto. Indeed, in most of
our discussions with practitioners developing some of these
stacks, high throughput is mentioned as a non-goal because
current QUIC use cases require a few hundred Mbps in the
worst case. However, as discussed earlier, the phenomenal
success achieved by QUIC is likely to encourage its imple-
mentation in even more use cases (e.g., large file transfers
between datacenters or AR/VR gaming), motivating some
practitioners to look for ways to improve the throughput of
QUIC [11, 27]. In the data reported in Table 1, mvfst stands
out as an implementation where the QUIC protocol handling
components consume the majority of the CPU cycles. Next,
we examine the other two speedbumps.

2.2 10 and UDP/IP IO

A common notion is that the performance of QUIC is ham-
pered by inefficient implementations of UDP in modern oper-
ating systems [25, 27, 29, 31]. The idea is that, while the TCP
stack has several implementation optimizations and common
NIC offloads, UDP lacks either. The implication is that a high-
throughput stack is required to overcome that problem. For

mvfst
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Linux Kernel-bypass
quicly (no opt.) | quicly || mvfst || picoquic | picoquic (Fusion) | picoquic | picoquic (Fusion)
10 60.7% 21.3% 12.3% 19.9% 26.3% 56.3% 53.1%
Crypto 25.3% 55.9% 18.9% 43.2% 34.7% 20.5% 19.7%
Protocol 8.5% 14.2% 52.7% 26.5% 35.1% 16.7% 23.96%
libe 4.7% 8.5% 14.1% || 9.3% 3.4% 3.8% 1.8%
Throughput (Gbps) || 3.5 7.2 3.1 3.0 3.2 7.4 10.4

Table 1: Breakdown of the CPU cycle distribution of three QUIC sender implementations. The breakdown is based on the
shared object identified by perf. OpenSSL is the crypto engine used unless otherwise specified. When Fusion is used for crypto,
its CPU cost is identified by the cost of ptls_fusion* functions. Throughput values are similar to those in figures 1, 2, and 3.

Implementation UDP UDP UDP TCp
Variant (baseline) | (+ GSO) | (+ GSO & GRO)
Throughput (Gbps) | 4.33 14.5 21.4 23.5

Table 2: Throughput of UDP using iPerf3 for different
configurations of UDP with TCP throughput as a reference.
Results in red represent tuned implementations.

example, MsQuic’s implementation relies on Windows XDP
and picoquic-dpdk uses DPDK to bypass that overhead. As
mentioned earlier, we focus on Linux-based optimizations.
However, kernel bypass introduces significant CPU overhead
due to busy-polling (cf. picoquic-dpdk in Table 1), requiring
careful handling to ensure scalability. The UDP Linux stack
has seen significant optimization [16] which has been widely
demonstrated [18, 23]. We conduct some experiments to find
the maximum achievable UDP throughput.

UDP throughput is highly dependent on the optimizations
implemented by an application both at the sender and the
receiver, requiring more complicated code to achieve higher
throughput, unlike TCP, where high throughput can be achieved
using the normal socket APIL For example, the upstream im-
plementation of iperf3 has a maximum UDP throughput of
4.13 Gbps. We modified the implementation of iperf3, incre-
mentally adding Generic Segmentation Offload (GSO) support
at the sender and Generic Receiver Offload (GRO) support at
the receiver, comparing their combined performance to the
throughput of TCP. GSO and GRO enable batch processing
of transmitted and received packets, respectively. The opera-
tion is still performed in software, but requires fewer system
calls to transmit the same amount of data.! Figure 2 shows a
comparison between the different implementations of iperf.

There are two main observations. First, achieving high
throughput requires optimizations at both the sender and the
receiver. Thisis a persistent theme in QUIC stack optimization
as we will discuss later when dealing with crypto. Second,
the throughput of the UDP stack is much higher than that
achieved by many QUIC stacks, comparing Table 2 and Fig-
ure 1. To better highlight the impact, consider the comparison
between the two quicly implementations in Table 1: quicly
(no opt.) and quicly. Both use GSO at the server. The main dif-
ference between the two implementations is the use of GRO at
the client in the latter, allowing it to achieve 2X the throughput

ITCP GSO and GRO are typically offloaded to the NIC.
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. Overhead of Encryption | Total Overhead
Unit e .
Total Initialization | of Decryption
1500B X 6 | 5100ns | 1668ns 4128ns
3000B X 3 | 3741ns | 839ns 3229ns
4500B x 2 | 3147ns | 570ns 2792ns
9000B x 1 | 2578ns | 281ns 2466ns

Table 3: Latency of encryption and decryption in nanosec-
onds for different units of encryption, representing different
MTUs, keeping the total bytes encrypted at 9000 bytes.

reported in Figure 1 (i.e., 7.2 Gbps). More importantly, the per-
formance of quicly with GSO and GRO is only 2% lower than
the performance achieved by picoquic-dpdk which requires
kernel bypass. Moreover, using GSO and GRO reduces the I0
cost at the server from 60.7% to 21.3% of the total CPU con-
sumed by the stack, shifting the bottleneck from IO to crypto.

2.3 Crypto

The other source of overhead extraneous to a QUIC implemen-
tation is the overhead of the crypto library (e.g., OpenSSL [7],
Fusion [4], or Schannel [9]). Optimizing IO shifts the majority
of the CPU overhead to crypto for most implementations.
Changing the behavior of the crypto library or its overhead
can have a dramatic effect on the performance of a QUIC
implementation. For example, consider the impact of replac-
ing OpenSSL with Fusion in picoquic. Although it does not
improve the throughput of picoquic on Linux by much, it
improves picoquic-dpdk’s throughput by 40%, allowing it
to achieve 10.4 Gbps in the median. Earlier work has also
identified crypto as a QUIC bottleneck [25, 26]. [25] mentions
that “QUIC packets are smaller units than TLS records for
encryption and decryption.” Our goal is to better understand
this overhead, including the impact of increasing the MTU.
We use Google’s benchmark library to evaluate the latency
of the encryption function call [1]. In particular, we evaluate
the latency of encrypting 9000 bytes of data, passed to the en-
cryptionlibrary in different unit sizes, starting from 1500-byte
MTU to 9000-byte jumbo frames. The time for encrypting a
batched set of six 1500-byte packets is 5100 ns, leading to a
maximum encryption throughput of 14.1 Gbps. Increasing
the encryption unit size improves throughput, reaching 27.9
Gbps for 9000-byte jumbo frames, representing a fixed up-
per limit on QUIC’s throughput, lower than that available
in TCP + TLS stacks. The difference stems from the fact that
QUIC applies crypto on a per-MTU-packet basis. Thus, the
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cost of encryption cannot be further amortized by increasing
the encryption unit size beyond jumbo frames. TLS operates
on top of TCP and can have larger record sizes (i.e., units of
encryption), enabling higher throughput.

Ideally, the cost of encrypting 9000 bytes should be the

same regardless of the encryption unit size, aside from mi-
nor overheads caused by the additional function calls. We
investigated the difference between operating on 1500-byte
MTUs and 9000-byte MTUs. We found that the major source
of added overhead is the overhead of cipher initialization,
which is done per packet. For example, when using OpenSSL
and AEAD ciphers, we benchmark the overhead of aead_do_
encrypt_init and ptls_cipher_init, shown in Table 3 as
initialization latency. The difference between the initializa-
tion latency for the 9000-byte case and the 1500-byte case
accounts for 54% of the difference in overall encryption la-
tency. This overhead is hard to overcome as the initialization
depends on packet-specific attributes. For example, aead_do_
encrypt_init uses a packet’s sequence number. Decryption
has an overhead comparable to encryption, limiting receiver
throughput. Thus, we find that simply optimizing the server
by improving encryption performance yields modest through-
put improvements but pushes the bottleneck to the client
(i.e., limited by decryption throughput). Improving overall
throughput requires symmetrical optimization of the encryp-
tion and decryption paths for a connection (i.e., optimizing
the implementation of both client and server).
Crypto as afundamental QUIC speedbump. The through-
put of the crypto engine is limited by its fixed per-packet over-
head. While different crypto engines yield different perfor-
mances, the overhead per packet (e.g., initialization, memory
operations, function calls, etc) forms a fundamental roadblock.
Increasing the unit size of crypto is impossible in the current
QUIC standard as crypto is done per packet.

3 Design Guidelines

We use our observations to develop implementation-agnostic
design guidelines to maximize single-connection through-
put of QUIC. Our design guidelines are centered on the basic
idea of fine-grain pipeline parallelism of packet processing.
In particular, we separate the busy-polling IO from UDP/IP
processing into their own stages. In addition, we separate the
handling of the QUIC protocol from the crypto processing.
This fine-grain definition of pipeline stages implies increased
communication between threads handling each stage. To min-
imize the overhead created by this design, we leverage ideas
developed for low-latency data center network stacks. In par-
ticular, we use lightweight user threads that are cheap to
preempt and that can voluntarily yield at low cost, allowing
the threads to communicate over pinned shared memory.
Pipelining. We define the pipeline stages as follows:
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o JO: This stage is responsible for interrupt handling or busy
polling to fetch packets from the NIC or transmit packets
through the NIC. The most basic form of pipelining sepa-
rates this stage on a dedicated core, while having all other
stages processed serially on a single stage. Such separation
is feasible in both Linux-based stacks and kernel-bypass
stacks.

e UDP/IP: This stage is responsible for network stack oper-
ations including the link layer, network layer, transport
layer, and socket operations. The overhead of this stage
can be reduced when using kernel-bypass stacks, by avoid-
ing the overhead of systems calls and crossing into kernel
space. Moreover, kernel-bypass stacks have even higher
throughput than the Linux UDP stack.

o Crypto: This stage keeps track of all crypto metadata needed
for the encryption and decryption of packets belonging to
connections handled by this stage. The stage simply looks
up crypto metadata for an incoming packet and invokes
the crypto engine. To simplify the implementation of the
crypto stage, we limit its role to the encryption and de-
cryption of short-header packets (i.e., packets exchanged
after connection establishment). This limitation also main-
tains the connection establishment latency of the original
implementation.

e QUIC Protocol Handling: This stage is where all QUIC-specific
logic is implemented. The only modification needed for
implementation in order to fit into our architecture is to
support crypto offload. This requires two minor modifica-
tions. First, on connection establishment, crypto secrets
are communicated asynchronously with the Crypto stage.
Second, rather than passing all packets to crypto process-
ing, the implementation checks if a Crypto stage is active,
and if it is, it handles the packet appropriately (i.e., tags the
packet with necessary metadata for encryption or skips the
decryption step).

o Application: This stage handles the logic of the application
that uses QUIC for communication (e.g., web server logic).

Communication between stages. Inter-stage communica-

tion can be split into a data plane and a control plane. Com-

munication in the data plane includes passing data packets
between stages along with any metadata specific to that packet

(e.g., connection information or a packet number). Control

plane communication includes communicating crypto secrets

between the QUIC Protocol Handling stage and the Crypto
stage. All communication is performed using a lightweight

RPC library based on shared memory. All messaging is lock-

free, where data in both data-plane and control-plane mes-

sages are queued between stages and processed in a FIFO man-
ner. Under some pipeline stage configurations, some stages
might have higher throughput than their subsequent stages,
potentially creating congestion inside the system. To avoid
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this problem, we create stalls by forcing the thread responsi-
ble for the higher-throughput stage to sleep when it detects
that the length of the queue to the subsequent stage exceeds
a configurable threshold.

Pipeline Configuration. We define a Pipeline Configuration
as the order in which stages are executed and their parallelism
configuration (i.e., which ones are executed in series and
which are executed in parallel). The best-performing Pipeline
Configuration is implementation-dependent. It depends on
the nature of the bottleneck and the benefits added by parallel
execution compared to the added communication cost. We
manually identified the best Pipeline Configuration for the
two implementations we studied. We leave automatically and
dynamically adapting Pipeline Configuration to future work.

4 Implementation

Our implementation requires light-weight threads that sup-
port efficient inter-thread communication library, on top of an
optimized network stack. While we can achieve these require-
ments on top of Linux, Shenango libOS provides a runtime that
supports all these features out of the box [24]. In particular,
Shenango offers a lightweight and efficient implementation of
a UDP/IP stack and a lightweight threading library. Moreover,
Shenango pipelines packet processing, dedicating a core to
IO processing. This IOKernel passes packets to lightweight
threads that handle UDP/IP and application processing. We
extend that paradigm to separate packet processing into the
stages discussed above.

We implement our design to accelerate two QUIC imple-
mentations: mvfst and quicly. As discussed earlier, we chose
mvfst and quicly because they provide two opposite points
in the QUIC implementation design space. quicly provides
a very lightweight implementation where most of the CPU
time is spent on IO and crypto. Further,quicly is already stack
agnostic, making it trivial to create a separate pipeline for IO
and UDP/IP processing. Moreover, quicly provides an API to
offload crypto operations, making it easy to implement it in a
separate thread. On the other hand, mvfst’s implementation
has a high overhead, making it the main bottleneck, allowing
us to demonstrate the value of pipelining. For both implemen-
tations, we use a baseline pipeline configuration, referred to
as Simple Pipelining, which has only two stages, one for IO
and one for all other packet processing operations, including
UDP/IP, crypto, and protocol handling. Note that our simple
pipelining configuration uses kernel bypass for handling IO.
We manually identify the best pipeline configuration for each
QUIC implementation, which we discuss next.
quicly. On the server side, quicly has only two stages: (i)
IO and (ii) all other stages performed sequentially in a sin-
gle thread. On the client side, it has three stages: (i) IO, (ii)
UDP/IP and QUIC header parsing, and (iii) Crypto and QUIC
Protocol Handling. All other configurations yielded poorer
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performance. We use quicly’s gperf application. Modifica-
tions included changes of socket calls and event processing.
Moreover, at the client, we launch a dedicated thread for re-
ceiving and parsing the header of packets.

mvfst. We created symmetrical pipelines for mvfst’s client
and server. The first stage has IO and Crypto running on a
busy-polling thread. The second stage has the UDP/IP and
QUIC protocol handling. Modifying mvfst is much more in-
volved than quicly. mvfst uses folly [3] as a wrapper around
the socket API and fizz [2] TLS implementation. Our imple-
mentation makes modifications to mvfst, fizz, and folly. We
use mvfst’s tperf benchmarking application.

5 Evaluation

This evaluation aims to answer the following questions, fo-
cusing on single-connection performance:
(i) How much benefit does each implementation gain from
simply optimizing its use of Linux’s UDP stack?
(if) How much does pipelining improve performance? Can
it be done incrementally?
(iii) How much performance improvement can we achieve by
increasing the size of the unit of crypto?
Evaluation setup: We use two pairs of machines in Cloud-
lab [17]. The first pair are x1170 machines with an Intel E5-
2640v4 CPU and two dual-port Mellanox ConnectX-4 25 Gbps
NICs each. We use only a single port on a single NIC. We used
this pair to produce all results reported earlier in this paper as
well as all mvfst experiments in this section. To experiment
with larger MTUs, we use the second pair of machines with an
AMD 7302P CPU and two dual-port Mellanox ConnectX-5 25
Gbps NICs each. We use a single port. We use that pair for all
quicly experiments in this section. quicly performed com-
parably in both setups. All experiments used Ubuntu 20.04
with Linux 5.4 kernel and DPDK 22.03. Our setup can support
a maximum MTU size of 4000 bytes. All implementations use
OpenSSL for crypto.
mvfst. Figure 2 shows the throughput of mvfst under dif-
ferent configurations. The baseline implementation of mvfst
supports GSO and GRO, which are natively supported. Simple
pipelining improves throughput by 31.4%. The moderate im-
provement demonstrates that the Linux stack is not a major
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bottleneck for QUIC throughput. The best pipeline configura-
tion improves throughput by an additional 43% (or 88% com-
pared to the baseline). The best pipeline configuration also has
only two stages. However, the IO stage also handles Crypto.
Using the best pipeline configuration only on the server or
client does not yield performance improvements compared
to simple pipelining. One way to interpret these results is that
mvfst, with the best pipeline configuration, achieves only
73% the throughput of MSQuic or picoquic-dpdk. However,
our point is that a user that relies on mvfst-specific features
can achieve 88% improvement in performance by using its
best pipeline configuration.

quicly. Figure 3 shows the incremental improvement ob-
served in quicly’s implementation. The baseline only uses
GSO at the server. We optimize the client to support GRO,
improving throughput by 2x. Like with mvfst, we find that
a significant improvement in throughput typically requires
changes at both the client and the server. Moreover, simple
pipelining yields a modest improvement 31%, almost identical
to the improvement achieved by simple pipelining in mvfst.
However, the best pipeline configuration of quicly is only 3%
better than the simple configuration. The best pipeline config-
uration of quicly is 32% and 22% better than picoquic-dpdk
and MSQuic, receptively. MSQuic uses coarse-grain pipelining,
limiting the possibility of performance improvements in Linux
compared to the best configuration of quicly. On the other
hand, picoquic-dpdk can be improved if it is pipelined. Note
that the objective of this paper is not to exhaustively pipeline
all implementations. Instead, our objective is to demonstrate
the value of pipelining.

Impact of the crypto unit size. Table 1 shows that most of
the CPU in quicly’s optimized implementation is spent on
crypto. Thus, optimizing crypto is likely to have the biggest
impactonquicly.To observeitsimpact, we changed the MTU
size used in our experiments from 1500 bytes to 4000 bytes. In-
creasing the MTU size improves performance, achieving 14.6
Gbps under the simple pipelining configuration and 15.4 Gbps
under the best pipeline configuration. This is the only config-
uration that allows us to outperform TCPLS, only marginally
by 2%. This improvement comes at the cost of using additional
CPU cores to pipeline QUIC processing. We predict that these

83

Saubhik Mukherjee, Demi Lei, Mostafa Ammar and Ahmed Saeed

improvements can be achieved by other implementations as
well, but leave tuning them to future work.

6 Related Work

There has been interest in improving the throughput of QUIC
using novel software architectures [11, 27] and hardware of-
floads [29]. It is also important to note that aside from the
work on picoquic-dpdk [27], earlier work has dealt with
older implementations of QUIC that yielded substantially
lower throughput [25, 29] than the state of the art.There have
been efforts to analyze the performance of multiple QUIC
implementations, comparing them to TCP in different low-
throughput settings [19, 22, 28, 30] and examining the impact
of encryption acceleration in CPUs [21]. However, such set-
tings are out of scope for this work because our main focus
is improving single-connection throughput using a software-
only implementation. Pipelining the stack over two stages is
a pretty common tactic. TAS decouples application process-
ing from network stack processing [20]. For QUIC, MsQuic
has two stages, one for the application and protocol handling
(including crypto), and the other for IO and UDP/IP [11, 12].
NetChannel proposes breaking the stack into finer-grained
stages [13]. This work identifies the stages and demonstrates
their value in different QUIC implementations.

7 Conclusion

Current QUIC implementations emphasize following the pro-
tocol standard while offering different levels of performance.
Optimizing performance requires understanding the funda-
mental bottlenecks in the QUIC protocol and following best
practices that mitigate their effect. This paper demonstrates
the value of such guidelines, focusing on single-connection
throughput. We find that the throughput of the crypto engine
is limited by its fixed per-packet overhead. While different
crypto engines yield different performance, the overhead per
packet (e.g., initialization, memory operations, function calls,
etc) forms a fundamental roadblock. Increasing the unit size
of crypto is impossible under the current standard. If QUIC’s
throughput improves, the community needs to start exploring
alternative designs for high-throughput QUIC connections.
For example, encryption can be done on large MTUs that are
then fragmented at the sender and reassembled at the receiver.
Alternatively, the QUIC standard can be modified to imple-
ment crypto on larger units of data (e.g., at the stream level).

We hope that this paper will serve as an example that im-
plementation guidelines can be developed for QUIC, to help
the users of the implementation, as well as developers, cater
to specific application needs. Moreover, it can help highlight
shortcomings in the protocol design, potentially leading to
further refinements of the protocol. We hope that this work
will encourage more such guidelines as well as further im-
provements to the single-throughput performance of QUIC.
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