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Summary

We consider the generalized movers’ problem i.e. finding any path that moves an object to
a desired goal while avoiding collisions. Even relaxing optimality requirements, the any-path
problem is computationally challenging. Namely, exponential in the degrees of freedom of
the object. Due to the curse of dimensionality, applying traditional search algorithms to the
discretized state space becomes infeasible as the state space grows. This motivated the use of
sampling-based methods. These sampling-based methods are fabula rasa and require complete
re-learning on each problem instance. Existing learning-based methods that attempt to leverage
shared structure aim to handle arbitrary changes in the environment. Often, this still requires a
significant number of samples and / or expert demonstrations. In practice, many robotics appli-
cations or UAV routing do not need to handle these pathological cases, where the environment
undergoes drastic change. Rather, they must only be able to avoid a minor mismatch with the
training environment while their route remains largely unchanged. We allow pre-training in
an obstacle free environment and show that combining contrastive reinforcement learning with
classical game-inspired search algorithms enables zero shot performance to unseen obstacles.

Contribution(s)

1. Propose formulation for the motion-planning problem that allows pre-training in an obstacle
free simulator.
Context: Existing motion planning (Garrett et al., 2021) focuses on solving planning
problems fabula rasa. Learning-based approaches typically require expert demonstrations
or many sample problem configurations (Tamar et al., 2016; Chen et al., 2019).

2. Propose initial combination of combining contrastive reinforcement learning (Eysenbach

et al., 2022) and gumbel monte-carlo tree search (Danihelka et al., 2022) to show the poten-
tial for pre-training in an obstacle free environment.
Context: Recent advancements in goal-conditioned reinforcement learning (Eysenbach
et al., 2022) enabled learning goal reaching policies for robotics systems with a high num-
ber of degrees of freedom. Combining with search, is a promising avenue for path planning
with obstacles.
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Abstract

We consider the generalized movers’ problem i.e. finding any path that moves an object
to a desired goal while avoiding collisions. Even relaxing optimality requirements, the
any-path problem is computationally challenging. Namely, exponential in the degrees
of freedom of the object. Due to the curse of dimensionality, applying traditional search
algorithms to the discretized state space becomes infeasible as the state space grows.
This motivated the use of sampling-based methods. These sampling-based methods
are tabula rasa and require complete re-learning on each problem instance. Existing
learning-based methods that attempt to leverage shared structure aim to handle arbitrary
changes in the environment. Often, this still requires a significant number of samples
and / or expert demonstrations. In practice, many robotics applications or UAV routing
do not need to handle these pathological cases, where the environment undergoes drastic
change. Rather, they must only be able to avoid a minor mismatch with the training
environment while their route remains largely unchanged. We allow pre-training in an
obstacle free environment and show that combining contrastive reinforcement learning
with classical game-inspired search algorithms enables zero shot performance to unseen
obstacles.

1 Introduction

The generalized movers’ motion-planning problem (Lozano-Pérez & Wesley, 1979) aims to find
any path that moves an object to a desired goal while avoiding collisions. The problem has a wide
range of applications, including self-driving (Teng et al., 2023), robotics (LaValle, 2006; Kunchev
et al., 2006; Orthey et al., 2023), and UAVs (Quan et al., 2020). Due to the curse of dimensionality,
traditional path-planning such as A* (Hart et al., 1968) becomes infeasible as any-path-motion-
planning is exponential in the degrees of freedom (Kozen & Yap, 1985) and shortest-path is NP-
hard Canny & Reif (1987). If the obstacles are moving, then even the any-path problem is NP-
hard and PSPACE-hard (Reif, 1979). Therefore, for high-dimensional problems, sampling based
planning algorithms (Orthey et al., 2023) have become the standard in practice. Notably, traditional
sampling-based algorithms (Williams et al., 2016; Durrant-Whyte et al., 2012; Kavraki et al., 1996)
are fabula rasa, meaning that they must find a suitable path from scratch for each new configuration.
To remedy this, there has been substantial work on learning priors or policies to help guide the search
(Zucker et al., 2008; Kim et al., 2017; Ichter et al., 2018; Huh & Lee, 2018). These methods rely on
handcrafted features or expert demonstration and typically do not generalize to changes in obstacle
configurations.

Instead we observe that (1) many real world applications have access to a “map” of the deployment
environment without obstacles and (2) these applications primarily require the agent to be able to
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avoid sparse obstacles. For example, robots in a factory setting need to avoid occasional humans in
their path, or UAVs need to avoid a fallen tree. For these applications, the first observation motivates
us to leverage advancements in unsupervised reinforcement learning, particulary, contrastive rein-
forcement learning (Eysenbach et al., 2022). The second motivates us to avoid sample inefficient
trajectory based techniques and instead utilize heuristic based search methods common in reinforce-
ment learning for games (Silver et al., 2017; 2018; Schrittwieser et al., 2020; Danihelka et al., 2022).
This also provides the added advantages of these heuristics, such as support for stochastic / changing
dynamics and non-stationary obstacles over time.

1.1 Additional Related Work

Model Predictive Control: Similar to our approach, in MPC they consider a finite time horizon
to avoid the exponential explosion in the time horizon. Our method can be seen as using the goal
conditioned value function as a surrogate cost (Lowrey et al., 2019). However, in traditional MPC,
the optimization either has a closed form solution, or is differentiable and can perform gradient-
based optimization. We do not assume differentiable dynamics and therefore are most similar to
data-driven MPC, where they instead optimize with sampling based methods, such as (Williams
et al., 2016; Durrant-Whyte et al., 2012). However, these methods cannot fully leverage pre-trained
policies, so we suspect that they will be less sample efficient as we increase the degrees of freedom
of the system.

Goal-conditioned Planning: There has been a line of work concerned with using goal-conditioned
reinforcement learning with a hierarchical planner (Nasiriany et al., 2019; Dubey et al., 2021; Chane-
Sane et al., 2021), where in addition to a goal conditioned policy they learn a hierarchical planner
to plan intermediate subgoals. These works still focus on the same environment and aim to solve
the problem of horizon generalization (Park et al., 2025; Myers et al., 2025). Alternatively, in
Eysenbach et al. (2019a), they learn a goal-conditioned reinforcement learning to assign weights for
use in Djikstra’s algorithm (Dijkstra, 1959). However, this relies on low-dimensionality much like
the other previously discussed methods.

Learning-based motion planning: One approach to leverage structure across planning problems is
to learn a “work-space” conditioned policy (Tamar et al., 2016; Oh et al., 2017; Qureshi et al., 2019;
Chen et al., 2019). Here, a work-space is a 2D birds-eye view of the environment. These methods
can be seen as a representation learning methods, where they aim to jointly learn a representation
for the workspace and a policy on this latent representation. The final policy is used to guide existing
sampling-based motion-planning methods. These works require either expert demonstrations or be
trained incrementally interpolating from pure sample-based methods.

Unsupervised RL: Typically, unsupervised reinforcement learning consists of pre-training in a
reward-free environment with the hope of accelerating fine-tuning on the downstream task. Early
work aims to learn intrinsic rewards, which induce generally useful behavior (Pathak et al., 2017;
Eysenbach et al., 2019b; Pathak et al., 2019; Zhao et al., 2022). More related, recent work (Touati &
Ollivier, 2021; Machado et al., 2023; Touati et al., 2023; Carvalho et al., 2024; Agarwal et al., 2024)
is concerned with learning representations that linearly span all possible rewards. These methods
usually are related to the successor representation (Dayan, 1993) and aim to provide more stable al-
ternatives to successor features (Barreto et al., 2017; Borsa et al., 2018). Contrastive reinforcement
learning (Eysenbach et al., 2022) can be seen as an unsupervised reinforcement learning algorithm.
However, we immediately recover the goal-reaching policy without needing any additional learning
on the downstream task.

2 Problem

As previously discussed, as the state space grows (i.e. robots with a many degrees of freedom)
tabula rasa motion-planning algorithms become computationally intractable. Due to this, we must
allow for some inductive bias. In this work, we make the relaxation that the agent can undergo a pre-
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Figure 1: Train environment without obstacles (left) vs. eval environment with obstacles (right).
Similar to MPC, we assume that the task is solvable by only observing a finite horizon. Therefore, we
are more concerned with the second configuration, which more closely models real-world changes.

training phase, where they can learn in an environment without perfect knowledge of the downstream
deployment configuration.

Formally, we define the MDP problem studied in the paper below.

Definition 2.1. (MDP) We define an MDP as M = (S, A, p, po, T, ), where S is the set of states, A
is the set of actions, p : S X Ax 8 — [0, 1] are the transition dynamics, where p(s, a, s") represents
the probability of transitioning to state s’ given you are in state s and take action a, py : S — [0,1]
is the starting state distribution, v : S — R is reward function, and ~y is the discount factor. We say
the MDP is reward-free if it does not have a corresponding reward function.

Definition 2.2. (Obstacle-MDP) Given a set of obstacles Sops C S and an MDP M. The corre-
sponding Obstacle-MDP is the MDP M = (S, A, pobs, Do, T, 7Y), Where pops are the same transition
dynamics as p except all obstacles states s € S,y are now absorbing.

Definition 2.3. (Goal-Parametrized Family of MDPs) Given a reward-free MDP M =
(S, A, p,po,7) the goal-parametrized family of M is given by

g(M) = {<Sa AapapOa Tg77> | g€ S} )
where the MDPs of the family only differ from M in the reward function vy given by r4(s) = 1{s—g}
Definition 2.4. (Goal-Obstacle-Parametrized Family of MDPs) Given a reward-free MDP M =
(S, A, p,po,7) the goal-obstacle-parametrized family of M is given by

gO(M) = {<Sa“47p0bsvp07rga’7> ‘ ge S,Sobs C S} .
Goal-Conditioned Motion Planning Problem (GCMP): Given a reward-free MDP M, we want
to find the policy 7*, such that

7 = arg max Erregom) [Varls

our first insight can be seen as taking the expectation over a particular distribution on GO(M).
Note that we assume that the training and eval MDPs share the same dynamics outside of the states
containing obstacles. This is seen in Figure 1, where the goal-parametrized MDP is given by the left
gridworld environment, showing two possible goals without obstacles. On the right, are examples
of possible obstacle configurations.

3 Preliminaries

3.1 Contrastive Reinforcement Learning

Goal-Conditioned RL: In goal conditioned reinforcement learning (Liu et al., 2022), one aims
to solve the multi-task reinforcement learning problem (Schaul et al., 2015; Borsa et al., 2016;
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Vithayathil Varghese & Mahmoud, 2020) where tasks refer to reaching states in the environment.
As presented in Eysenbach et al. (2022), goal-conditioned RL can be seen as RL with the reward
function

rg(se,as) = (1 —3)p(sev1 = g | 8¢, a1).

Contrastive RL: In traditional contrastive learning (Gutmann & Hyvirinen, 2010; Ma & Collins,
2018; Oord et al., 2019), one tries to learn the underlying data distribution by learning to distinguish
between positive (true) and negative (arbitrarily) generated samples. Explicitly, given distribution of
px(x), py(y) over datax € X, y € ) and the conditional distribution of positive pairs py,x (y | x)
over X x ), the InfoNCE loss (Oord et al., 2019) is
ef@yh)
LintoNE(f) = Boropy ().t ~py o (vla) [log ZN””_)] : M

_ ._q €
Y. NPy (?j) i=1

At the optimum, f* pxp';i((f)‘y) This maximizes a lower bound on the mutual information between

2 and yT. For more details, see Oord et al. (2019).

The key insight in Eysenbach et al. (2022) is that we can learn a goal-reaching policy by maximizing
the probablity of reaching the goal under the discounted state occupancy measure (Puterman, 1994;
Sutton et al., 1999), where the discounted state occupancy measure is given by

o0
p" (st |s,a)=(1-7) nyt_lpf;(s"r | 5,a).
t=1

Here, pI(s™ | s,a) is the probability density of reaching state s™ after exactly ¢ steps, starting at
state s, taking action a, and following policy 7 (a | s). Using a goal-conditioned policy 7 (a | s, g)
we get an analogous goal-conditioned state occupancy p™(s™ | s, a,g). We then want to optimize
the following objective

max By, (g).po(s),m(als.) 07 (s =g | 5,0, 9)].

Explicitly, we want to maximize the probability of reaching the goal state g under the policy (- |
$,g). To do so, we can modify (1). We introduce px(z) = p(s,a) as the data distribution and
py(y) = p(s™) as the distribution over the replay buffer i.e. sampling randomly picking some
previously visited state. Then

s,a,sT
LR mfonce(f) = E(S,Q)Np(sia)7s+~{,w(s+|37a) llOg M] : 2)
sTn~p(sT) i=1
Solving this for f*, we have that f* satisfies
. P91 s,a)
exp(f*(s,a,9)) = p(9)c(s,a)°
where ¢(s, a) is a normalizing constant. Therefore, we can learn a goal conditioned policy as
7 (s,a,9) = argmaaxexp(f*(s,a,g)). 3)

This can be done using classical RL methods for continuous action spaces, such as DDPG (Lillicrap
etal., 2015) or SAC (Haarnoja et al., 2018) (L, Algorithm 6).
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3.2 Reinforcement Learning with MCTS

With the remarkable success of AlphaGo (Silver
et al., 2017), the application of MCTS-based search
(Coulom, 2006; Chaslot et al., 2008) in combination
with reinforcement learning has been successfully ap-
plied to increasingly challenging domains (Silver et al.,
2018; Schrittwieser et al., 2020; Brown et al., 2020;
Hubert et al., 2021; Antonoglou et al., 2022; Danihelka
et al., 2022).

Tree Preliminaries: To understand what follows, we
first explain the components of the tree. A tree is com-
posed of nodes corresponding to each state encoun-
tered in the search. For each state s, the tree 7 contains

(1) children of state s: C(s),

(2) the parents of state s: P(s) with their action,

(3) the rewards R (s, a) for action a taken in state s,
(4) the visit counts N (s, a) for action a taken in state s,

(5) a considered actions set: A(s) i.e. the possible
actions in state s. Can be chosen arbitrarily via
actions.

Additionally, the the search is often initialized with a
learned value function vg4 and policy mg.

A key component of tree search is maintaining an em-
pirical value function v that is updated based on sim-
ulations and used to guide future simulations. The
value function v is normally computed via the Bellman
backup with nodes in the search tree (see Algorithm 2).

Variation across algorithms normally occurs in the
choice of search policy. This can be seen in Algorithm
1, where we use general root and nonroot to perform
action selection at the root and non-root nodes in the
tree. An explicit instantiation of these for our algorithm
will be provided below.

4 Methodology

Algorithm 1: simulate

Input: logits 7, value v, state s
Input: transition kernel p, reward
function r
Vv
T+« (C,P,R,N)
a < root(v,m,s¢,T)
sy p(s,a)
while NV (s,a) > 0 do
s+ s
a + nonroot(?, m,s,T)
s'yr <+ p(s,a)
N(s,a) + N(s,a) +1
end
N(s,a) + N(s,a)+1
C(s) «+C(s)Us
P(s") + P(s") U (s,a)
A(s") + actions(m, s, ...)
R(s,a) «+ R(s,a)Ur
¥ < backup(T)
Output: 7,7

Algorithm 2: backup

Input: Tree 7, value 0, state s
while s # root do
s a < P(s)

N(s') =32, N(s',a)

N _ N(sH3(s)+R(s,a)+7D(s)
U(S/) = N(s)+1
s+ s

end

Output: update value 0

Figure 2: General algorithm for a single
simulation of tree search using RL value

function v and policy 7.

Our algorithm consists of two components (1) pre-training a goal conditioned @-function
Q¢,4(8,a, g) and policy 74(s, g) using contrastive reinforcement learning (Eysenbach et al., 2022)
(see Section 3.1) and (2) using Q4. and 7 to guide a tree search (see Section 3.2). Throughout
this section, we consider a given evaluation MDP M g with goal g.

4.1 Initializing the Tree

As presented in Section 3.2, we can only populate the search tree with finitely many actions. To do
so, we follow a similar procedure to Hubert et al. (2021). Namely, we sample actions A, according
to the policy network 7y (:|s, g).

Exploratory actions: We found that sampling from 7(+|s, g) even when adding noise did not pro-
vide diverse enough actions to properly avoid obstacles. Therefore, we added “fallback™ actions,
where we divide the number of actions by four and sample that many actions
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from the goal-conditioned policy conditioned on  Algorithm 3: actions
each of the cardinal directions with respect to the ~ Input: policy 7y, goal g, state s, num

goal. This is similar to safe reinforcement learn- actions n

ing, where it is often the case that they have asafe ~ A(s) < A(s) U { % actions ~ my(s, )}
“fallback” policy in the event that they cannot pro-  A(s) = A(s) U {7 actions ~ mg(s,gx)}
duce a safe action (Wagener et al., 2021; Liuetal.,  A(s) < A(s) U {Z actions ~ my(s, gr)}
2023). We then use the fallback actions and the A(s) < A(s)U{ ] actions ~ my(s, 37“)}

sampled actions Ayt as if it were the complete Output: A(s)
set of discrete actions according to the previous

section. This is shown in Algorithm 3. Algorithm 3: gg denotes a goal 6 degrees ro-
tated from g with respect to the agent.

Similar to the reasoning for deterministic non-root action selection, it is important that the ()-values
in the search correspond to a policy that the agent will actually take. Therefore, we found it best
to not randomly sample the goals but keep them fixed to ensure that the agent would have similar
actions available as during simulation. Additionally, the value of each node is initialized as the
average of the action produced soley by the actions generated from the true goal conditioned policy
i.e. The values of each state are computed as

ZQ¢¢SCL9)

aEAg

Since we are sampling from 7y with replacement, E 4, ~x,[0(5)] = vx(s). This is because in our
search we still want states to be valued based on their potential for reaching the goal and this is best
conveyed through the value function corresponding to the goal-reaching policy.

Obstacle penalty: Similar to safe RL, we also observe that inducing a large obstacle hitting penalty
is esssential in order to properly guide the search. This is consistent with what has been found in
safe reinforcement learning (Massiani et al., 2023). In our experiments, hitting an obstacle induces
a reward of —50.

4.2 Performing the Search

Root Action Selection: Similar Danihelka et al. (2022), to utilize the updated (-values in our tree
policy we construct and use the completed (Q-values defined as

~ 0 if A >0
Completed () — Q(s,a), i (57' a)
Qy,4(s,a), otherwise
Here Q(s,a) = R(s,a) + 'ym 2 srec(s) 0(8'). We can utilize these completed Q-values to
construct what is hopefully a better policy

root (s, 7) = softmax(o(Completed(Q)) 4)

This is similar to root sampling in Danihelka et al. (2022), but we do not use Gumbel vectors
(Gumbel, 1954) because we are not distilling a policy and the exploration is not beneficial within a
single episode. Note that exploratory actions are primarily taken after the actions in A, have resulted
in collisions because their initial Q(s, a) is much lower.

Non-Root Action Selection: Sampling from root(s, 7°) in non-root nodes incurs additional variance
that increases with the depth of the search. Inspired by Grill et al. (2020), in Danihelka et al. (2022),
they utilize a deterministic policy to avoid this additional variance. Namely,

N(s,a)

S, NG b) ©)

nonroot(s,7) = argmax |root(als, T) —
a
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Algorithm 4: CRL-MCTS

Input: Reward-free mdp M, evaluation
MDP Mg € GO(M)
0,0,
(S AT, po, ) M
while pre-training do
o, f1/),¢ A CRL(Q, ¥, 9, M)
end
q=exp fy,¢
foreach M € GO(M) do
M + <Sa Avpobsvrgap0»7>
5~ po(s)
while goal not reached do
a ~ selection(7g, ¢, S, Pobs, T'g)
S ~ Pobs (37 a)
end

Algorithm 5: selection

Input: policy 7y, value v
Input: state s, transition kernel p, reward r
while m > 1 do
visits = LWJ
for visits times do
foreach a € A,,.,; do
T = simulate(s, a, .. .)
end
end
m < m/2
Apext < m samples ~ root(s, T)
end
Aygy1 < argmax, completed(Q(s, a))
Output: A;

end

We adopt this non-root policy for our corresponding root. The derivation can be found in Danihelka
et al. (2022, Appendix E).

Sequential Halving: Similar to Danihelka et al. (2022), we can support stochastic dynamics via
sequential halving (Cazenave, 2014; Pepels et al., 2014; Fabiano & Cazenave, 2021). This is shown
in Algorithm 5. For the deterministic setting considered in this work, we take m = 1. A nice
illustration can be found in Danihelka et al. (2022, Figure 1).

The complete algorithm is given in Algorithm 4. We note that the final action is taken as the arg max
instead of sampling from root because we only have one episode in the evaluation MDP.

5 Experiments

5.1 Environments

We build upon JAX (Bradbury et al., 2021), MCTX (DeepMind et al., 2020), JaxGCRL (Bortkiewicz
et al.), and Stoix (Toledo, 2024). For our environment, we use the ant (Fu et al., 2020) BRAX (Free-
man et al., 2021), Mujoco (Todorov et al., 2012) environment. It has an 8-dimensional continuous
action space and 29-dimensional continuous state space. The reward is only on success, where
success is the same as prior work (Bortkiewicz et al.; Eysenbach et al., 2022; Zheng et al., 2024).

Task: In the static ant environment, both the goals and the obstacles are randomly generated. For a
given instance, we generate a goal position and randomly intialized starting position for the ant. We
then generate an obstacle between the agent and the goal by randomly selecting a point on the line
connecting the goal and starting position and then perturbing the coordinates by a small margin. An
example configuration can be seen in Figure 4.

5.2 Results

Across 10 seeds, we train Q-functions with contrastive RL in the obstacle-free environment and
then do evaluation in the static ant environment. Only 10 seeds were ran because little variation
was observed. We run 256 evaluations and take the percentage of success. In Figure 3 (1), we
see that with only 64 samples, we are able to reach 70% success rate, where the pretrained goal-
conditioned policy or pure search both fail dramatically. Furthermore, in (2) and (3), we see that as
we increase the number of samples to 256 we observe a greater than 90% success rate while still
taking less than 10 ms to make a decision.
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Figure 3: (1): Success rate as a function of 15 different checkpoints taken throughout pre-training
the goal-conditioned policy and Q-function for 64 simulations. Random -values still uses the final
policy to ensure reasonable actions are sampled. Results are averaged over 10 seeds for pre-training
and 256 evaluation environments. (2)-(3): We take the final checkpoint of our Q-function and scale
the number of simulations. In (2), we see as the number of simulations increases so does the success
rate. In (3), we see that this comes at the cost of steps per second.

Figure 4: A sample environment configuration and subsequent trajectory where the ant is able to
properly avoid the obstacle and reach the goal.

5.3 Discussion

We found there is an implicit tradeoff between the number of actions in each node in your search
tree and the depth of the tree. A key limitation of tree search in continuous action spaces is that we
need a good policy distribution to sample good actions to populate our tree. However, we found that
when the policy network is too good, even with a large number of samples, there are no actions in
the search tree that can avoid the obstacle. If you add noise to the distribution, the corresponding
noisy low-level actions are not meaningful and can cause the agent to enter an unrecoverable state.
Due to this, we found that the exploratory actions were a decent heuristic to introduce meaningful
alternative actions to the goal-reaching policy. However, this is still a relatively naive heuristic. A
promising avenue would be to sample the goals according to a hierarchical controller.

6 Future Work

A key limitation of tree search in continuous action spaces is that we need a good policy distribu-
tion to sample good actions to populate our tree. As discussed in the previous section, it would be
an interesting direction to try to leverage existing goal-conditioned planning to produce subgoals
(Nasiriany et al., 2019; Dubey et al., 2021; Chane-Sane et al., 2021) that avoid obstacles. Perform-
ing experiments with stochastic environment dynamics or even changing environment dynamics
between the test and evaluation MDP, would be very interesting and potentially a major advantage
of this line of research over traditional MPC and control methods. Additionally, we also hope to ex-
tend to more realistic models potentially learning a world model in the obstacle free environment in
combination with a map as defined in Chen et al. (2019), or obstacle detection. Ultimately, we hope
that this work introduces a new paradigm for motion-planning problems, leveraging obstacle-free
information.

Acknowledgment: The work is supported in part by NSF under grants 2112471, 2240981, and
2331780.



RLJ | RLBRew Workshop @ RLC 2025

References

Siddhant Agarwal, Harshit Sikchi, Peter Stone, and Amy Zhang. Proto Successor Measure: Repre-
senting the Space of All Possible Solutions of Reinforcement Learning, November 2024. URL
http://arxiv.org/abs/2411.19418. arXiv:2411.19418 [cs].

Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas K Hubert, and David Silver. Plan-
ning in stochastic environments with a learned model. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=X6D9bAHhBQI.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Diana Borsa, Thore Graepel, and John Shawe-Taylor. Learning shared representations in multi-task
reinforcement learning, 2016. URL https://arxiv.org/abs/1603.02041.

Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado Van Hasselt,
David Silver, and Tom Schaul. Universal successor features approximators. arXiv preprint
arXiv:1812.07626, 2018.

Michat Bortkiewicz, Wtadystaw Patucki, Vivek Myers, Tadeusz Dziarmaga, Tomasz Arczewski,
Lukasz Kucinski, and Benjamin Eysenbach. Accelerating goal-conditioned reinforcement learn-
ing algorithms and research. In The Thirteenth International Conference on Learning Represen-
tations.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. Jax:
Autograd and xla. Astrophysics Source Code Library, pp. ascl-2111, 2021.

Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep reinforcement
learning and search for imperfect-information games. Advances in neural information processing
systems, 33:17057-17069, 2020.

John Canny and John Reif. New lower bound techniques for robot motion planning problems. In
28th Annual Symposium on Foundations of Computer Science (sfcs 1987), pp. 49-60. IEEE, 1987.

Wilka Carvalho, Momchil S. Tomov, William de Cothi, Caswell Barry, and Samuel J. Gershman.
Predictive representations: building blocks of intelligence, July 2024. URL http://arxiv.
org/abs/2402.06590. arXiv:2402.06590 [cs].

Tristan Cazenave. Sequential halving applied to trees. IEEE Transactions on Computational Intel-
ligence and Al in Games, 7(1):102-105, 2014.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning
with imagined subgoals. In International conference on machine learning, pp. 1430-1440.
PMLR, 2021.

Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-carlo tree search: A
new framework for game ai. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 4, pp. 216-217, 2008.

Binghong Chen, Bo Dai, Qinjie Lin, Guo Ye, Han Liu, and Le Song. Learning to plan in high
dimensions via neural exploration-exploitation trees. arXiv preprint arXiv:1903.00070, 2019.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72—83. Springer, 2006.

Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improvement by planning
with gumbel. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=bERaNdoegnO.


http://arxiv.org/abs/2411.19418
https://openreview.net/forum?id=X6D9bAHhBQ1
https://arxiv.org/abs/1603.02041
http://arxiv.org/abs/2402.06590
http://arxiv.org/abs/2402.06590
https://openreview.net/forum?id=bERaNdoegnO
https://openreview.net/forum?id=bERaNdoegnO

Reinforcement Learning Journal 2025

Peter Dayan. Improving generalization for temporal difference learning: The successor representa-
tion. Neural Computation, 5(4):613-624, 1993. DOI: 10.1162/nec0.1993.5.4.613.

DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Clau-
dio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel,
Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch,
Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John
Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider, Eren
Sezener, Stephen Spencer, Srivatsan Srinivasan, Milo” s Stanojevi¢, Wojciech Stokowiec, Luyu
Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL http:
//github.com/deepmind.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:
269-271, 1959.

Rohit K. Dubey, Samuel S. Sohn, Jimmy Abualdenien, Tyler Thrash, Christoph Hoelscher, André
Borrmann, and Mubbasir Kapadia. SNAP:Successor Entropy based Incremental Subgoal Dis-
covery for Adaptive Navigation. In Proceedings of the 14th ACM SIGGRAPH Conference on
Motion, Interaction and Games, MIG 21, pp. 1-11, New York, NY, USA, November 2021. As-
sociation for Computing Machinery. ISBN 978-1-4503-9131-3. DOI: 10.1145/3487983.3488292.
URL https://dl.acm.org/doi/10.1145/3487983.3488292.

Hugh Durrant-Whyte, Nicholas Roy, and Pieter Abbeel. Cross-Entropy Randomized Motion Plan-
ning, pp. 153-160. 2012.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. Advances in neural information processing systems, 32,
2019a.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Learning Representa-
tions, 2019b. URL https://openreview.net/forum?id=SJx63JRgFm.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Ruslan Salakhutdinov. Contrastive learn-
ing as goal-conditioned reinforcement learning. In Alice H. Oh, Alekh Agarwal, Danielle Bel-
grave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=vGQiU5sqUe3.

Nicolas Fabiano and Tristan Cazenave. Sequential halving using scores. In Advances in Computer
Games, pp. 41-52. Springer, 2021.

C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax—a differentiable physics engine for large scale rigid body simulation. arXiv preprint
arXiv:2106.13281, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack
Kaelbling, and Tomds Lozano-Pérez. Integrated task and motion planning. Annual review of
control, robotics, and autonomous systems, 4(1):265-293, 2021.

Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioannis
Antonoglou, and Rémi Munos. Monte-carlo tree search as regularized policy optimization. In
International Conference on Machine Learning, pp. 3769-3778. PMLR, 2020.

Emil Julius Gumbel. Statistical theory of extreme values and some practical applications: a series
of lectures, volume 33. US Government Printing Office, 1954.


http://github.com/deepmind
http://github.com/deepmind
https://dl.acm.org/doi/10.1145/3487983.3488292
https://openreview.net/forum?id=SJx63jRqFm
https://openreview.net/forum?id=vGQiU5sqUe3

RLJ | RLBRew Workshop @ RLC 2025

Michael Gutmann and Aapo Hyvirinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, pp. 297-304. IMLR Workshop and Conference Proceed-
ings, March 2010. URL https://proceedings.mlr.press/v9/gutmannlOa.html.
ISSN: 1938-7228.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861-1870. Pmlr, 2018.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100-107,
1968. DOI: 10.1109/TSSC.1968.300136.

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 4476-4486. PMLR, 18-24 Jul
2021. URL https://proceedings.mlr.press/v139/hubert2la.html.

Jinwook Huh and Daniel D. Lee. Efficient sampling with g-learning to guide rapidly exploring
random trees. IEEE Robotics and Automation Letters, 3(4):3868-3875, 2018. DOI: 10.1109/
LRA.2018.2856927.

Brian Ichter, James Harrison, and Marco Pavone. Learning sampling distributions for robot motion
planning. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 7087—
7094. IEEE, 2018.

L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation,
12(4):566-580, 1996. DOI: 10.1109/70.508439.

Beomjoon Kim, Leslie Pack Kaelbling, and Tomas Lozano-Perez. Guiding the search in continuous
state-action spaces by learning an action sampling distribution from off-target samples. arXiv
preprint arXiv:1711.01391, 2017.

Dexter Kozen and Chee-Kang Yap. Algebraic cell decomposition in nc. In 26th Annual Symposium
on Foundations of Computer Science (sfcs 1985), pp. 515-521. IEEE, 1985.

Voemir Kunchev, Lakhmi Jain, Vladimir Ivancevic, and Anthony Finn. Path Planning and Obstacle
Avoidance for Autonomous Mobile Robots: A Review. In Bogdan Gabrys, Robert J. Howlett,
and Lakhmi C. Jain (eds.), Knowledge-Based Intelligent Information and Engineering Systems,
pp. 537-544, Berlin, Heidelberg, 2006. Springer. ISBN 978-3-540-46539-3. DOI: 10.1007/
11893004_70.

Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: Prob-
lems and solutions. arXiv preprint arXiv:2201.08299, 2022.

Tao Liu, Ruida Zhou, Dileep Kalathil, P. R. Kumar, and Chao Tian. Learning Policies with Zero or
Bounded Constraint Violation for Constrained MDPs, January 2023. URL http://arxiv.
org/abs/2106.02684. arXiv:2106.02684 [cs].


https://proceedings.mlr.press/v9/gutmann10a.html
https://proceedings.mlr.press/v139/hubert21a.html
http://arxiv.org/abs/2106.02684
http://arxiv.org/abs/2106.02684

Reinforcement Learning Journal 2025

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control, January
2019. URL http://arxiv.org/abs/1811.01848. arXiv:1811.01848 [cs].

Tomds Lozano-Pérez and Michael A Wesley. An algorithm for planning collision-free paths among
polyhedral obstacles. Communications of the ACM, 22(10):560-570, 1979.

Zhuang Ma and Michael Collins. Noise Contrastive Estimation and Negative Sampling for Condi-
tional Models: Consistency and Statistical Efficiency, September 2018. URL http://arxiv.
org/abs/1809.01812. arXiv:1809.01812 [cs].

Marlos C Machado, Andre Barreto, Doina Precup, and Michael Bowling. Temporal abstraction in
reinforcement learning with the successor representation. Journal of machine learning research,
24(80):1-69, 2023.

Pierre-Frangois Massiani, Steve Heim, Friedrich Solowjow, and Sebastian Trimpe. Safe Value Func-
tions. IEEE Transactions on Automatic Control, 68(5):2743-2757, May 2023. ISSN 0018-9286,
1558-2523, 2334-3303. DOI: 10.1109/TAC.2022.3200948. URL http://arxiv.org/abs/
2105.12204. arXiv:2105.12204 [eess].

Vivek Myers, Catherine Ji, and Benjamin Eysenbach. Horizon Generalization in Reinforcement
Learning, January 2025. URL http://arxiv.org/abs/2501.02709. arXiv:2501.02709
[cs].

Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned
policies. Advances in neural information processing systems, 32, 2019.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. Advances in neural
information processing systems, 30, 2017.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with Con-
trastive Predictive Coding, January 2019. URL http://arxiv.org/abs/1807.03748.
arXiv:1807.03748 [cs].

Andreas Orthey, Constantinos Chamzas, and Lydia E Kavraki. Sampling-based motion planning: A
comparative review. Annual Review of Control, Robotics, and Autonomous Systems, 7, 2023.

Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, and Sergey
Levine. Horizon Reduction Makes RL Scalable, June 2025. URL http://arxiv.org/abs/
2506.04168. arXiv:2506.04168 [cs].

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778-2787.
PMLR, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In International conference on machine learning, pp. 5062-5071. PMLR, 2019.

Tom Pepels, Tristan Cazenave, Mark HM Winands, and Marc Lanctot. Minimizing simple and cu-
mulative regret in monte-carlo tree search. In Workshop on Computer Games, pp. 1-15. Springer,
2014.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., USA, 1st edition, 1994. ISBN 0471619779.

Lun Quan, Luxin Han, Boyu Zhou, Shaojie Shen, and Fei Gao. Survey of uav motion planning. /IET
Cyber-systems and Robotics, 2(1):14-21, 2020.


http://arxiv.org/abs/1811.01848
http://arxiv.org/abs/1809.01812
http://arxiv.org/abs/1809.01812
http://arxiv.org/abs/2105.12204
http://arxiv.org/abs/2105.12204
http://arxiv.org/abs/2501.02709
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/2506.04168
http://arxiv.org/abs/2506.04168

RLJ | RLBRew Workshop @ RLC 2025

Ahmed H Qureshi, Anthony Simeonov, Mayur J Bency, and Michael C Yip. Motion planning
networks. In 2019 International Conference on Robotics and Automation (ICRA), pp. 2118-2124.
IEEE, 2019.

John H. Reif. Complexity of the mover’s problem and generalizations. In 20th Annual Symposium on
Foundations of Computer Science (sfcs 1979), pp. 421-427, 1979. DOI: 10.1109/SFCS.1979.10.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312-1320. PMLR, 2015.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588
(7839):604-609, December 2020. ISSN 1476-4687. DOI: 10.1038/s41586-020-03051-4. URL
http://dx.doi.org/10.1038/s41586-020-03051—4.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354-359, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,
Karen Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362(6419):1140-1144, 2018. DOI: 10.1126/
science.aar6404. URL https://www.science.org/doi/abs/10.1126/science.
aar6404.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks.
Advances in neural information processing systems, 29, 2016.

Siyu Teng, Xuemin Hu, Peng Deng, Bai Li, Yuchen Li, Yunfeng Ai, Dongsheng Yang, Lingxi Li,
Zhe Xuanyuan, Fenghua Zhu, et al. Motion planning for autonomous driving: The state of the art
and future perspectives. IEEE Transactions on Intelligent Vehicles, 8(6):3692-3711, 2023.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026-5033.
IEEE, 2012.

Edan Toledo. Stoix: Distributed single-agent reinforcement learning end-to-end in jax, April 2024.
URL https://github.com/EdanToledo/Stoix.

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. Advances in
Neural Information Processing Systems, 34:13-23, 2021.

Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does Zero-Shot Reinforcement Learning Exist?,
March 2023. URL http://arxiv.org/abs/2209.14935. arXiv:2209.14935 [cs].

Nelson Vithayathil Varghese and Qusay H Mahmoud. A survey of multi-task deep reinforcement
learning. Electronics, 9(9):1363, 2020.

Nolan C. Wagener, Byron Boots, and Ching-An Cheng. Safe Reinforcement Learning Using
Advantage-Based Intervention. In Proceedings of the 38th International Conference on Ma-
chine Learning, pp. 10630-10640. PMLR, July 2021. URL https://proceedings.mlr.
press/v139/wagener2la.html. ISSN: 2640-3498.


http://dx.doi.org/10.1038/s41586-020-03051-4
https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://github.com/EdanToledo/Stoix
http://arxiv.org/abs/2209.14935
https://proceedings.mlr.press/v139/wagener21a.html
https://proceedings.mlr.press/v139/wagener21a.html

Reinforcement Learning Journal 2025

Kevin Wang, Ishaan Javali, Michal Bortkiewicz, Tomasz Trzcinski, and Benjamin Eysenbach. 1000
Layer Networks for Self-Supervised RL: Scaling Depth Can Enable New Goal-Reaching Ca-
pabilities, March 2025. URL http://arxiv.org/abs/2503.14858. arXiv:2503.14858
[cs].

Grady Williams, Paul Drews, Brian Goldfain, James M. Rehg, and Evangelos A. Theodorou. Ag-
gressive driving with model predictive path integral control. In 2016 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 1433-1440, 2016. DOI: 10.1109/ICRA.2016.
7487277.

Andrew Zhao, Matthieu Lin, Yangguang Li, Yong-jin Liu, and Gao Huang. A mix-
ture of surprises for unsupervised reinforcement learning. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 26078-26090. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/a7667ee5d545a43d2f0fda98863c260e-Paper—-Conference.pdf.

Chongyi Zheng, Ruslan Salakhutdinov, and Benjamin Eysenbach. Contrastive difference predic-
tive coding. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=0akLDTFRIx.

Matt Zucker, James Kuffner, and J. Andrew Bagnell. Adaptive workspace biasing for sampling-
based planners. In 2008 IEEE International Conference on Robotics and Automation, pp. 3757—
3762, 2008. DOI: 10.1109/ROBOT.2008.4543787.


http://arxiv.org/abs/2503.14858
https://proceedings.neurips.cc/paper_files/paper/2022/file/a7667ee5d545a43d2f0fda98863c260e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a7667ee5d545a43d2f0fda98863c260e-Paper-Conference.pdf
https://openreview.net/forum?id=0akLDTFR9x

RLJ | RLBRew Workshop @ RLC 2025

Supplementary Materials

The following content was not necessarily subject to peer review.

A Experiment Details

For learning the goal conditioned policy and value function, we used the default hyperparameters
provided in Bortkiewicz et al. We used a deeper architecture as recommended by Wang et al. (2025).
Specifically,

Hyperparameter Value | Description

Activation function swish | Activation function.

Number of layers 8 Number of layers in the neural network.
Hidden units per layer | 1024 | Number of neurons in each hidden layer.
Skip connections 2 Number of skip connections

Table 1: Hyperparameter settings used in the experiments.

We provide the search hyperparameters below

Hyperparameter | Value | Description

Num simulations 64 Number of simulations used in the search.

Num samples 8 Number of actions available at each node
in search.

Obstacle penalty -50 | Reward penalty for hitting an obstacle

Table 2: Hyperparameter settings used in the experiments.

B Failed Experiments

» Exploratory Bonus: Instead of Gumbel we tried to add a UCB bonus to encourage visits at the
root node of unvisited actions.

e Deterministic Actions: We tried the deterministic action selection around the unit circle around
the agent. We did not observe a substantial difference.

C Algorithms
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Algorithm 6: CRL

Input: Critic parameters v, ¢, policy parameters 6, reward-free MDP M
(S, A, p,po,7) < M
while not converged do
g~ p(9)
50 ~ Do
foreach environment step do
at ~ mg(s¢, 9)
St+1 ~ D(S¢, ar)
D «+ DU (at, 8¢, 7(se,at))
end
foreach gradient step do
¥ <= 9 — aVyp LRL nfoNcE ([0 (D))
¢ ¢ — aV  LRL mfoNCE(f,6(D))
0+ 0—aVyL,(0)
end
end




