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This paper presents a hierarchical autoencoder framework for multi-stream sensor data compression in resource constrained wireless 

sensor networks (WSNs). The proposed framework aims to manage computational consumption, and bandwidth usage, while ensuring 

acceptable task performance despite channel errors. The proposed compression process is divided into two phases: intra-stream and inter-

stream compression. In the first phase, a neural encoder compresses each individual data stream separately to eliminate intra-stream 

temporal redundancies, producing their compact individual representations. In the second phase, those representations of individual 

streams are combined and further compressed by another neural encoder to eliminate redundancies across streams and produce a single 

compressed latent representation for all the streams, which is sent to the receiver through a nosy channel. The neural decoder at the receiver 

uses a similar hierarchy for reconstructing individual original streams, and any subsequent task execution on those streams. To address 

the vulnerability of compressed data to channel errors, the framework integrates an error-resilient and learning-based transmission coding 

scheme. The proposed approach is demonstrated using a greenhouse micro-climate monitoring task involving multiple environmental 

sensors. Extensive simulations on real-world data validate the framework9s efficacy in balancing transmission cost, energy consumption, 

and task accuracy, marking it a significant advancement over existing methods. 

CCS CONCEPTS " Computer systems organization ³  Embedded and cyber-physical systems ³  Sensor networks" 

Computing methodologies ³ Machine learning  ³ Machine learning approach  ³ Neural Networks " Information System 

³ Data compression " Information System ³ Data encoding and canonicalization 

Additional Keywords and Phrases: Hierarchical Autoencoder, Bandwidth reduction, Error-resilient Coding, Feature 

compression, Transmitter Complexity, Wireless Communication, Machine Learning 

ACM Reference Format: 

First Author9s Name, Initials, and Last Name, Second Author9s Name, Initials, and Last Name, and Third Author9s Name, Initials, and 

Last Name. 2018. The Title of the Paper: ACM Conference Proceedings Manuscript Submission Template: This is the subtitle of the 

paper, this document both explains and embodies the submission format for authors using Word. In Woodstock 918: ACM Symposium 

on Neural Gaze Detection, June 03305, 2018, Woodstock, NY. ACM, New York, NY, USA, 10 pages. NOTE: This block will be 

automatically generated when manuscripts are processed after acceptance. 

 



2 

1 INTRODUCTION 

This paper presents the design of a neural network based autoencoder that can be used for combining multiple sensor data 

streams and reducing overall data dimensionality. Such reductions can lead to network bandwidth savings and reduce the 

transmission energy costs, thus making it suitable for a large slew of wireless sensor network applications including 

precision agriculture [1], smart infrastructure [2], healthcare [3], and smart manufacturing [4]. In most cases, the 

corresponding networks are required to transmit multiple independent data streams that are generated by various 

application-specific sensors (e.g., temperature, humidity, etc. for precision farming in a greenhouse). The proposed 

approach is to eliminate information redundancies within and across those data streams before transmission, resulting in a 

lossy compression mechanism. Any information in the original data that is unnecessary for the specific downstream tasks 

is purged out by the autoencoder during the compression process. This not only minimizes communication overhead but 

also lessens the transmission and computational load on sensor nodes. 

The proposed mechanism addresses another crucial aspect, which is unreliable channel and the resulting errors prevalent 

in sensors networks formed by low-complexity sensor transceivers. Apart from their usual shortcoming, channel errors can 

be particularly harmful for dimensionality-reduced data stream with high density of essential task-specific information. 

The problem is further compounded by the fact that computationally heavy error correction mechanisms are often not 

practically feasible for low-complexity sensor transceivers.   This challenge is addressed in this paper by integrating an 

error-resilient and neural network enabled transmission coding approach that operates in tandem with the autoencoder-

based compression mechanism itself. Through end-to-end training, the proposed framework learns to strategically encodes 

compressed information into binary codes such that the impact of channel errors is minimized.  

This paper demonstrates the proposed approach in the context of greenhouse micro-climate monitoring [5], where an 

integrated sensor system is equipped with multiple environmental sensors collecting multiple data streams. The 

application-layer objective is to transmit multiple sensor data streams to a centralized collection unit.  Due to strong 

temporal and spatial correlations within and across streams, the raw data exhibits significant redundancies. To address this, 

the paper introduces a hierarchical neural network-based autoencoding framework which puts an encoder at sensor node 

to compresses the high-dimensional, multi-stream data into a single low-dimensional representation that retains essential 

information. This compact stream is transmitted to the central unit, where a decoder reconstructs the original data streams. 

The encoder is organized hierarchically, with the initial layer capturing intra-stream temporal correlations to eliminate 

redundancies within individual streams. Subsequent layers focus on extracting inter-stream dependencies to further reduce 

data dimensionality. The decoder at the receiver contains a similar hierarchy, which is jointly trained with the encoder at 

the transmitters side sensor system to enable accurate reconstruction. The proposed architecture is tunable in that the trade-

off between transmission bandwidth reduction via task-specific compression and the complexity of the hierarchical 

autoencoder can be adjusted by tuning various system parameters. 

The key contributions of the paper are as follows. First, a hierarchical learning architecture is developed to compress 

multiple high-dimensional data streams into a single low-dimensional data stream, achieving efficient data compression. 

Second, a multidimensional trade-off is studied with respect to data transmission performance, bandwidth reduction, and 

transmitter computational complexity. Third, an innovative learning-based coding scheme is developed in order to to 

distribute the compressed data over communication channels with error. Finally, the proposed framework is validated using 

a real-world greenhouse dataset. Extensive simulation experiments with that dataset are conducted for functional validation 

and performance evaluation of the developed framework.  
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2 RELATED WORK 

Recent research on data compression techniques for wireless sensor networks (WSNs) has primarily emphasized methods 

suitable for devices with constrained computational power, memory, and energy resources. Traditional approaches include 

Huffman coding and Discrete Wavelet Transform (DWT)-based frameworks, both widely applied to sensor data to mitigate 

redundancy and reduce bandwidth usage [11][12]. Huffman coding effectively compresses data by assigning shorter codes 

to frequently occurring symbols; however, its efficiency significantly diminishes when dealing with sensor data 

characterized by low entropy, resulting in limited compression ratios. Meanwhile, DWT-based compression techniques 

typically leverage frequency domain transformations to selectively discard high-frequency coefficients if such components 

contain less meaningful information. However, this selective removal strategy can inadvertently eliminate subtle yet crucial 

task-specific features, causing irreversible data loss that negatively impacts downstream analysis and decision-making 

processes. 

More recently, statistical data compression methods, particularly Principal Component Analysis (PCA) and Singular 

Value Decomposition (SVD), have gained prominence as alternatives capable of overcoming some limitations of 

traditional compression schemes. PCA-based approaches have shown significant promise due to their ability to identify 

dominant patterns in high-dimensional datasets and project data onto a lower-dimensional subspace. For instance, PCA 

has been applied effectively to compress ultrasonic guided wave data in structural health monitoring, demonstrating 

substantial data reduction while preserving critical structural integrity information [2]. Similarly, SVD-based compression 

has been employed in the context of smart grid systems, efficiently capturing dominant spatial-temporal patterns in sensor 

measurements to reduce data transmission overhead [13]. Despite these strengths, both PCA and SVD rely on 

predetermined hyperparameters, such as the number of principal components or singular values retained, selected based 

on heuristic criteria or fixed thresholds. Consequently, these approaches often struggle to dynamically adapt to changing 

sensor data characteristics, especially in complex or multimodal scenarios. Moreover, PCA and SVD compression schemes 

typically do not explicitly incorporate task-specific criteria, thereby limiting their sensitivity to the unique application 

contexts and specific analytical goals inherent in various WSN deployments. 

In recent advancements, machine learning techniques have been applied to data compression within WSNs to improve 

performance beyond traditional data compression methods. Many works focus on single-modality compression, where 

models such as convolutional and recurrent autoencoders are used to compress structured data like images or speech while 

preserving perceptual quality. For instance, recurrent neural networks have been applied for full-resolution image 

compression [14][27], and variational frameworks with scale hyperpriors have been developed to enhance entropy 

modeling [15]. Deep generative models have also been explored for learning-based audio compression [16] [28]. More 

recently, efforts have expanded toward multi-stream compression, where multiple data streams, such as images, audio, and 

sensor measurements, are jointly encoded to exploit inter-stream correlations. Representative approaches include 

factorized representation learning across streams [17] and joint latent space translation frameworks [18], which aim to 

enhance compression efficiency by capturing shared structure among heterogeneous inputs. However, most of these 

methods are developed under idealized settings and do not consider the computational load, memory usage, and energy 

constraints faced by typical WSN systems, limiting their practicality in real-world scenarios. 

Parallel to compression, effective coding schemes are critical for ensuring robust data transmission over noisy wireless 

channels. Traditional handcrafted error-control coding methods, including convolutional codes [19], Turbo codes [20], and 

low-density parity-check (LDPC) codes [21], have been widely adopted. However, these approaches often fail to 

adequately address the unique bit-level error sensitivities characteristic of compressed sensor data. Recently, research has 

focused on learning-based coding schemes that jointly optimize data representations and error-correction mechanisms to 
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improve resilience against channel noise. A representative approach is the deep Joint Source-Channel Coding (JSCC) 

framework [22], developed specifically for wireless image transmission. JSCC integrates source coding, channel coding, 

and modulation into a single end-to-end trainable pipeline. While demonstrating effectiveness under controlled simulation 

environments, JSCC9s tightly integrated architecture significantly restricts its flexibility and practical interoperability. 

Particularly, JSCC complicates integration with established frequency-domain transmission techniques, such as 

Orthogonal Frequency-Division Multiplexing (OFDM), which are fundamental for efficient spectrum utilization and robust 

transmission in realistic wireless deployments. Additionally, due to the implicit learning of modulation, JSCC lacks 

adaptability to dynamic spectrum allocation and carrier selection. 

To mitigate these issues, a neural joint source-channel coding approach termed NECST (Neural Joint Source-Channel 

Coding) was proposed [23]. NECST optimizes source and channel coding jointly, explicitly modeling the probabilistic 

behavior of noisy channels. This method achieves lower reconstruction errors compared to traditional benchmarks under 

identical noise conditions and code lengths. Further enhancing NECST9s robustness, an Infomax Adversarial Bit Flip 

(IABF) regularization strategy was developed [24]. The IABF method integrates mutual information maximization and 

adversarial training to jointly refine source compression and error correction in an end-to-end neural setting. Nonetheless, 

those approaches assume symmetric transmitter and receiver complexities, limiting their ability to flexibly balance 

transmitter-side computational load with bandwidth usage. Furthermore, NECST relies on the Variational Inference for 

Monte Carlo Objectives (VIMCO) [25] estimator to handle the non-differentiable Bernoulli sampling process. Although 

VIMCO provides unbiased estimates, its high variance can significantly complicate and destabilize the training process. 

To overcome these identified limitations, this paper introduces a hierarchical and asymmetric Autoencoder framework 

tailored specifically for WSN deployments. Our proposed design clearly delineates intra- and inter-stream compression 

responsibilities, allowing flexible trade-offs between transmitter complexity and bandwidth utilization. It incorporates 

dedicated learning-based binary Code Generation and Interpretation modules, enhancing robustness against noisy channel 

conditions. Additionally, to effectively manage the non-differentiable binary representation operations, the framework 

utilizes a Straight-Through Estimator (STE), enabling seamless end-to-end training. Consequently, this proposed method 

offers a unified, adaptable, and practically deployable compression-coding solution explicitly designed for resource-

constrained wireless sensor networks. 

3 SYSTEM MODEL 

Figure 1 depicts the architectural details of the proposed framework. The sensor unit is deployed at a greenhouse planting 

area [5]. The sensor modalities include   temperature (�), light intensity (�), photosynthetically active radiation (PAR) �, 

humidity (�), and voltage (�) of the sensor system power source. A microprocessor in the sensor unit performs data 

sampling (with rate �), compresses the multi-stream data, encodes it into an error-resilient binary format, and transmits it 

over a noisy wireless channel. At the monitoring station, the receiver reconstructs the original data streams from the 

received error-resilient binary representation for downstream analysis. It is assumed that the transmitter here operates under 

the constraints of limited energy and computational capacity. In contrast, the receiver is assumed to have no such 

constraints. This asymmetry motivates a design that ensures low computation at the sensor node, minimal transmission 

overhead to save energy and bandwidth, and robustness against channel noise, while maintaining accurate reconstruction 

of the original sensor data. The end-to-end data and processing pipeline can be summarized as follows.  
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3.1 Transmitter Side Pipeline 

The sensor unit with transmitter collects sensor modalities {�, �, �, �, �} at sampling rate �. In time duration �, each 

modality generates a � 2dimensional data stream, where � = � × �. Note that the sampling rates for different modalities 

do not need to be uniform.  

For data compression, the following steps are implemented in the transmitter side sensor unit. 

1. Intra-Stream Compression: Each � 2dimensional data stream is processed by a neural network (NN) to achieve 

compression, resulting in an � 2dimensional compressed representation �!, where � < �. Here, � = {�, �, �, /, �},  
�! ,	 represents the compressed representation of the temperature, PAR, light intensity, humidity, and voltage 

respectively.  

2. Inter-Stream Compression: A second NN-based encoder is employed to combine the � 2dimensional compressed 

representations for all the data modalities into a single unified � 2dimensional representation �  for efficient 

transmission.  

3. Code Generator: After obtaining the unified compressed representation �, an NN-based code generator module 

deployed in order to convert the compressed representation to an error-resilient binary representation �, where � *
�"×$ and m is the code size. Eventually, the transmitter sends the binary representation to the receiver through the 

noisy channel.  

3.2 Receiver Side Pipeline 

Receiver Side Pipeline: At the receiver, the received binary representation is first decoded by the NN-based code 

interpretation module to retrieve the unified compressed representation �> . To reconstruct the original multi-stream data for 

all modalities, the receiver implements hierarchical NN-based decoders as deployed at the transmitter. First, an NN-based 

inter-stream decoder processes the reconstructed unified representation �>	  to recover the individual � 2dimensional 

Fig. 1 Proposed System Architecture: Components, Workflow, and Data Flow  
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compressed representation  ��!	or each modality. Subsequently, each ��! is passed through another NN-based intra-stream 

decoders to reconstruct the original � 2dimensional data streams corresponding to the modalities, namely, temperature 

(�@), light intensity (�@), photosynthetically active radiation (�@), humidity (�B), and voltage (�@). Such reconstructed data is 

then passed on to any downstream data analysis task.  

4 FRAMEWORK FOR MULTI-MODAL COMPRESSION 

4.1 Multi-Modal Compression and Transmission Framework 

The primary functionality of the transmitter in the proposed framework is to read multi-modal data and send a compressed  

version that can be successfully decompressed at the receiver to retrieve data for all modalities. As the example use case 

in this work, data is collected from five separate streams, each sampled at � samples per second. The resolution for 

compression is t second long time window that contains � = � × � samples. This windowing is applied uniformly across 

all five data streams. As shown in Figure 1, these data streams are fed into an intra-stream compression module on a 

window-by-window basis. In this module, each data stream �!  is independently compressed by an NN encoder. The 

resulting compressed representation �! for each modality is given by: 

�! = �!",&(�!; »!)																																			(2)	
where �! * �", ���	� < � is the compressed variable capturing the essential temporal information of each data stream. 

Here, �!&,"(�!; »!) denotes the encoder parametrized by »!, with an �-dimensional output layer. The superscript 8�9 denotes 

the computational complexity of the model, which is quantified by the number of multiplications operations required per 

inference cycle. In the proposed framework, the complexity � is tunable by adjusting either the number of hidden layers 

or the number of neurons in the internal layers. The objective of this step is to extract intra-stream information that is 

essential for accurate reconstruction.  

Following the intra-stream compression stage, as discussed before (also refer Figure 1), the compressed representations 

from all individual modalities {�', �(, �) , �*, �+} are combined in the Inter-Stream Compression Module. In this module, an 

NN encoder is implemented to eliminate cross-modality correlations and further reduce the overall data volume, which 

produces a unified compressed vector. Specifically, let �! = {�!,,, �!,-, & , �!,"} denote the � 2dimensional compressed 

representation for modality �. The NN encoder process the �th element from all modalities simultaneously to generate the 

corresponding compressed value �". This operation not only preserves temporal alignment across modalities but also 

enhances compression efficiency by exploiting inter-modality correlations. Formally, this process can be written as:  

�" = �N�',", �(,", �),", �*,", �+,"; �P														(3)	
where �" * �, denotes the compressed value at index � in the unified representation �. The full compressed vector is given 

by � = {�,, �-, . . , �"} * �". �N�',", �(,", �),", �*,", �+,"; �P is the intra-stream encoder parametrized by �.  

Once the unified compressed vector � is obtained from the Inter-Stream Compression Module, it is transmitted over a 

noisy communication channel. Transmission impairments such as interference, power limitations, and path loss can 

compromise data integrity, making continuous-valued representations vulnerable to distortion and less robust against errors. 

To enhance reliability, � needs to be converted into a binary form before the transmission. A Key challenge in noisy 

communication channels is the occurrence of bit errors, where transmitted bits are corrupted, typically flipped from 0 to 1 

or vice versa, due to random noise in the channel. To model this behavior, we adopt a Binary Symmetric Channel (BSC), 
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where each bit has an independent probability Ã of being flipped. varying Ã allow us to simulate different levels of channel 

noise.  

To improve robustness to channel noise, we introduce a learning-based coding scheme jointly optimized with the overall 

system. By adapting the encoded structure to both feature content and channel characteristics, the model better preserves 

critical information under transmission errors. The process involves three main steps: generating logits, applying 

probabilistic mapping, and threshold-based binarization. These steps are illustrated in Equations 4 to 6.  

As shown in Figure 1, first, a neural network �(�"; �) generates a real-valued logit matrix � from �. Specifically, for 

each element �" in unified compressed variable �, the neural network outputs a logit vector �", which can be expressed 

as: 

�" = �(�"; �)																															(4)	
where �" * �. , �  is the code size that is selected empirically based on the compression ratio, downstream task 

requirements, and the strength of channel noise. Collectively The logit matrix � = {�,, �-, & �"} 	* �"×.,  consists of 

real-valued scores that represent the unnormalized likelihood of each encoded bit being 1 before binarization, reflecting 

how strongly the model <believes= each bit should be activated based on the input. 

Next, this logit vector is passed through a sigmoid function which yields:  

� = �(�)																																										(5)	
where, 

� * �"×.																																								(5�)	
�(�) = 1

1 + �/0 																													(5�)	
 This step is crucial because the sigmoid function maps the logit values to the range [0,1] that represents the probability 

of each encoded bit being 1. Physically, this transformation allows the model to express uncertainty or confidence in each 

bit, which supports a probabilistic and learnable binarization process in the next stage.  

Finally, an element-wise threshold of � is applied to � to produce the binary code � * �"×$: 

�1,2 = `1,	if		�1,2 > �,
0,	otherwise. 																															(6)	

The threshold � is chosen based on the desired bit distribution. A lower � yields dense code with more redundancy, 

while a higher � leads to sparse code with lower overhead but increases vulnerability to channel errors. The resulting binary 

code � is then transmitted to the receiver through a noisy channel. In essence, by training the NN model �(�"; �), the 

compressed representation �	is converted to an error-resilient binary format, enhancing the robustness of the transmitted 

data and enables accurate reconstruction despite potential channel noise, which will be discussed next.  

During transmission, channel noise may cause bit flips in the binary code � , resulting in the corrupted binary 

representation �@ = {�@,, �@-, . . . , �@"}, where each �@" * �. ,  corresponding to corresponding to �th element of original 

compressed vector �. At the receiver, as shown in Fig. 1, the Code Interpretation Module uses a neural network decoder 

�2N	�@"	; �3P	, parametrized by �3, to reconstruct the unified compressed representation �> with each element computed as:  

�>" 	= �2N	�@"	; �3P																																	(7)	
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Here, �2Collectively the reconstructed unified data can be represented as �> = {�>,, �>-, . . . , �>"} * �".  

Once the unified compressed vector �>  is obtained, it is passed to the Inter-Stream Decompression Module, which 

reconstructs the individual compressed representations {��'	, ��(, ��) , ��*, ��+	} for each sensor modality from the unified vector 

�> . A neural network decoder �2N�>"; �2P, parameterized by  �2, is implemented and mirrors the Inter-Stream encoder at the 

transmitter, as shown in Fig 1. Formally, let �> = {�>,, �>-, . . . , �>"} * �" denote the decoded unified representation. For each 

element �>" in �>, the decoder outputs: 

N��',"	, ��(,"	, ��),", ��*,", ��+,"	P = �3N�>"; �3P												(8)	
where each ��!,"	 * R, represents the  �th element of recovered compressed representation ��!	 for modality � * {�, �, �, /, �}. 
This step ensures that the cross-modal information captured during inter-stream compression is accurately separated back 

into its respective modalities.  

The output of the Inter-Stream Decoding Module {��'	, ��(, ��) , ��*, ��+	}  are then passed to the Intra-Stream Decoding 

Module (see Figure 1). This module uses modality-specific neural network decoders  �!",&3(�5r; »2!), parameterized by »2!, 
to reconstruct the original data stream {�>', �>(, �>) , �>*, �>+}. The decoding process for each modality is expressed as: 

�>!=	�!",&!(�5r; �3!)																																	(9)	
where �>! * �6  represents the reconstructed �-dimensional data stream for modality �. The complexity �3 of each decoder 

can be tuned empirically, allowing flexibility to balance the reconstruction accuracy and computational cost. By mirroring 

the functionality of the Intra-Stream Compression process at the transmitter side, this module ensures high-fidelity recovery 

of the original multi-stream sensor data.  

 In practice, the transmitter and receiver store pretrained models of varying complexity and compression levels. At 

runtime, the system selects the most suitable encoder-decoder pair based on resource availability, and performance needs. 

Training details are provided in the next subsection. 

4.2 End-to-End Training Methodology for Robust Multi-Modal Compression 

To ensure efficient and robust performance under real-world conditions, the entire framework is trained end-to-end, as 

illustrated in Fig. 2. This approach allows all neural network modules (as shown in Fig. 1) to be jointly optimized to 

minimize the reconstruction error. 

The training objective is to minimize the Mean Absolute Error (MAE) between reconstructed sensor data S@! and the 

original sensor data �! for all modalities � * {�, �, �, /, �}:  
3(�! , �, �, �3, �3, �3!) = w 1

� xS@! 2 �!x
	!*{',(,),*,+}

												(10)	

where � is window size, and |;| denotes the �1-norm. By backpropagating the MAE loss through the entire pipeline, all 

components are jointly optimized to minimize reconstruction error, ensuring cohesive operation and robust performance. 

However, a key subtlety in this end-to-end pipeline is the thresholding operation in Equation 6 to produce binary codes. 

While crucial for generating noise-resilient codes, it introduces zero gradient and a non-differentiable point at 	�1,2 = ÷. 

Formally, the thresholding operation can be expressed as a Heaviside step function [6] �N	�1,2 2 �P, where: 

�(	�1,2 2 �) = }0,																											���	�1,2 2 � < 0		,
1,																													���	�1,2 2 � > 0.					(12)	
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The derivation of  �N	�1,2 2 �P with respect to 	�1,2 is zero almost everywhere and undefined at the threshold: 

��N	�1,2 2 �P
�	�1,2 = }0,																																for	�1,2 b �,

���������,												for	�1,2 = �. 					(11)	
We define � = {»! , �, �} as set of all trainable parameters at transmitter side, which include »!  in Instra-stream 

Compression Module, �  in Intra-Stream Compression Module, and �  in Code Generation Module. during 

backpropagation, the gradient of loss 3 with respect to the parameter set � is computed using chain rule: 

�3
�� =w �3

��!,11,2

× ��!,1�	�1,2 ×
�	�1,2�	�1,2 ×

�	�1,2�� 													(12)	

Since 
:;",$
:	<$,%

= :=>	<$,%/?@

:	<$,%
= 0 (or undefined at 	�1,2 = �), standard backpropagation yields zero or meaningless gradients, 

preventing updates to upstream parameters »! , �, �.  

To address, we use Straight-Through Estimator (STE) [7] to approximates the corresponding gradients during training. 

The forward pass remains the same (as shown in Figure 2): each element in the logit vector � is pushed through a hard 

threshold to obtain a binary output. However, during back propagation, the thresholding operation9s derivative, which is 

normally zero or undefined, is replaced by the simple identity (i.e., 
:;",$
:	<$,%

	= 1).. While this approximation is biased and 

ignores the true derivative, it enables end-to-end training of proposed framework, preserving the advantages of binarization 

while still updating the parameters via gradient-based optimization.  

To further improve robustness, in the training process, we randomly flip a subset of bits in the coded compressed 

representation �. This controlled noise injection improves the model9s resilience to channel errors without significantly 

degrading reconstruction accuracy. The effectiveness of this strategy is analyzed in Section V. The overall training 

algorithm for our proposed framework is summarized in Algorithm 1  

Fig. 2 End-to-end training procedure of proposed framework  
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ALGORITHM 1: Training algorithm for the proposed framework  

1: Initialization:  

1.1 Define the Intra-Stream Compression module  �!",& with a compressed dimension � and complexity �. 

1.2  Define the Intra-Stream Decompression module �!",&!, with a compressed dimension � and complexity �3.  
1.3 Initialize all parameters {�! , �, �, �3, �3, »3!} with random weights value.  

1.4 Set learning rate �,  

1.5 Set number of flipped bits 1.  
1.6 Set total epochs �.  

1.7 Set current epoch � = 0. 

2: While � < �:  

  //Intra-stream compression at transmitter side                    

3:     for each modality � * {�, �, �, /, �} do: 

  �! ± �!",&(�!; »!) 
 end for 

  //Intra-stream compression at transmitter side 

4:   �	 ± 	�(�', �(, �) , �*, �+; �) 
 //Code generation at transmitter side 

5:   � ± �(�;�) 
6:   � ± �(�), where � * �.×", �(�) = ,

,AB&'
 

7:    � ± zero matrix of dimension (m,n)  
 //Binarize � with threshold �: 

8:    for each element 	�1,2 in � do: 

  if 	�1,2 > � then: 

   �1,2 = 1 

  else: 

   �1,2 = 0 

  end if   

 end for           

 //Random Bit-Flipping 

9:   ���_���� ± 0 

10:    �@ ± � 

11:    �������_�������� ± ' 

12:    while ���_���� < 	1 do: 

13:     Repeat: randomly select (�, �) 
14:     Until (�, �) not in �������_�������� 

15:     �@1,2 ± 12 �@1,2 

16:     Add (�, �) to �������_�������� 

17:     ���_���� ± ���_���� + 1 

  //Decoding at receiver side 

18:   �> 	± �2N�@	; �2P 
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19:    (�'r , �(r , �)r, �*r , �+r ) ± �2N�>; �2P 
20:     for each modality � * {�, �, �, /, �} do: 

  �5B ± �!",&3(�5r; »2!) 
 //Compute loss and Backprop 

21:    3(»! , �, �, �3, �3, »3!) ± 3 ,

6
xS@! 2 �!xC

!   

  // Update the parameter set p	 * {�! , �, �, �3, �3, »3!}  
22:    � ± � 2 �'(3(»! , �, �, �3, �3, »3!) 
23:    � ± � + � 

4.3 Single-Head vs. Multi-Head Autoencoders for Intra-Stream Compression 

In our proposed framework, the Intra-Stream Compression module utilizes an independent encoder �!&,"(;; »!) for each 

modality � * {�, �, �, /, �}, effectively creating a multi-head architecture that compresses each modality separately (see 

Figure 1). Similarly, on the receiver side, the Intra-Stream Decompression module employs an independent 

decoder�!&3,"(;; »!) for each modality to reconstruct them individually. This mechanism allows proposed framework to be 

more tunable. The model complexity of each encoder and decoder can be adjusted independently based on the data 

properties. For example, for the sensing modalities that exhibits weak temporal dependency, the extraction of temporal 

feature can be difficult. In this scenario, implementing a more complex encoder and decoder architectures tailored to these 

modalities could enhance both compression and reconstruction efficiency. Moreover, this mechanism compresses and 

reconstruct each modality independently without assuming the correlations exists in different data streams. 

However, this approach also increases the number of learnable parameters due to the need for multiple encoders and 

decoders, which can place a heavier burden on resource-constrained transmitters. Moreover, large number of trainable 

parameters can complicate model convergence, often leading to higher variance, especially when employing STE during 

training, given the model9s non-differentiability. An alternative solution is to employ a single encoder-decoder pair in the 

Intra-Stream Compression and Decompression modules, thereby compressing and reconstructing all modalities with fewer 

parameters. The encoding process can be written as: 

�! = �",&(�!; �!)																														(13)	
where � is the compressed dimension and � is the model complexity. Similarly, on the receiver side, the decoding 

process is: 

�5B=	�",&!(�5r; �3!)																															(14)	
where �2 also determined empirically under similar constraints. 

In our implementation, when strong inter-modal dependencies exist, a single-head design can improve performance by 

simplifying training and enhancing convergence. A detailed comparison with the multi-head setup is provided in Section 

V. 

5 EXPERIMENT SETUP AND EVALUARION METRICS 

5.1 Dataset Development 

The proposed framework was validated using data from a greenhouse micro-climate monitoring system [5][8], where IoT 

sensor nodes measured temperature, light intensity, PAR, humidity, and system voltage, then transmitted the data for 
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analysis. The dataset was collected from a custom-built, solar-powered agricultural sensing platform [5][8], deployed at 

Michigan State University Greenhouses. Two such platforms have been operating continuously for several years. This 

study analyzes a subset of the collected data, comprising 338,860 samples per parameter. 

5.2 Implementation 

In our implementation, time series data is divided into windows of size � , where �  is ranges from 100  to 200  in 

increments of 10. Then employ a series of neural network (NN) models (see Fig. 1) is applied to perform intra-stream 

compression, inter-stream compression, code generation, code interpretation, inter-stream decompression, and intra-stream 

decompression in sequence. Table 1 summarizes the architectures of these NN models, specifying the number of hidden 

layers and the number of neurons in each layer. 

Table 1: The Architecture of models 

Modules Number of Hidden Layers Number of Neurons in Each Layer 

Intra-Stream Compression 2 
� × Compressed	Dimension 

Inter-Stream Compression 1 
1 

Code Generation 3 
32 × 64	 × Code	Size 

Code Interpretation 3 
128 × 64	 × 	32 

Inter-Stream Decompression 1 
5 

Intra-Stream Decompression 2 
� × Compressed	Dimension 

 

To adjust transmitter complexity, the number of neurons in the first hidden layer of the Intra-Stream Compression 

module (�, ) can be changed. Similarly, to adjust receiver complexity, the corresponding layer in the Intra-Stream 

Decompression module (�-) can be modified. We examine the impacts of the compressed dimension by varying its value 

from 10 to 100 in increments of 10. We also investigate the effects of code size by setting it to 32, 64, and 128 

respectively. During experimental phase, all modules are trained jointly. The training parameters are shown in Table 2. 

 

Table 2: The Training Parameters 

Parameter Value 

Optimizer Adam 

Learning Rate 0.0001 

K-fold Validation 10 

Train-test split 90:10 (%) 

 

To investigate the proposed framework9s robustness to the channel noisy, we introduce bit flips (from 0 to 1 or from 1 

to 0) during testing stage. Specifically, when the code size is �, and compressed dimension is �, transmitting a single 

window yield � ×� bits. for BSC channel with BER �, the probability that exactly � bits are flipped is given by: 

�(�) = � �
� ×���2(1 2 �)("×.)/2																									(15)	
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According to equation 15, we test the proposed framework for all possible number of flips (i.e., for which �(�)>0) 

using10-fold validation, and then compute the average results across these trials.  

5.3 Evaluation Metric 

The system is evaluated using normalized reconstruction error (NER), model complexity, and compression ratio. In 

addition, expected normalized reconstruction error is used to measure the framework9s robustness to channel noise. The 

equations for each metric are outlined as follows: 

Normalized Reconstruction Error: Let �>! denote the reconstructed stream for modality  �, and �! is the ground truth. 

The normalized reconstruction error for modality � is calculated as: 

���! = 1
�

x�>! 2 �!x
�.F0
(!) 2 �.!"

(!) 																																							(16)	

where |;| denote �1-norm. �! , �>! * �6,  � is the window size. �.F0
(!)

 and �.!"
(!)

 are the global maximum and minimum values 

for modality �. To quantify the overall reconstruction quality, we define the Normalized Reconstruction Error (NRE) as 

the mean value of normalized reconstruction error of all modalities: 

���	 = 1
�	 w 1

�
|�>! 2 �!|

�.F0
(!) 2 �.!"

(!)
	!*{',(,),*,+}

																						(17)	

where � is the total number of sensing modalities. 

Model Complexity: Runtime complexities at the transmitter and the receiver are quantified by the number of 

multiplication operations required for each inference cycle. This metric indicates the computational load of neural network 

and is crucial for assessing their feasibility in practical scenarios. 

Compression Ratio: Assume each element in a �-dimensional sample is represented using �-bits, transmitting the 

uncompressed sample in � seconds requires bandwidth: 

� = 6×G

H
	 																																									(18)	

 In the proposed framework, data are compressed to �-dimensions, where � < �, and each data point is coded to �-

bits. the resulting transmission bandwidth is: 

�2 = "×.

H
	< 	�	 																												(19)	

The compression ratio � can be quantified as:  

� = I	/	I3

I
		= 	6×G	/	"×.

6×G
	= 1 2	 	"×.

6×G
																																	(20)	

This formulation highlights how reducing both dimensionality and bit-width lowers the required bandwidth 

proportionally. 

Expected Normalized Reconstruction Error: Given BSC channel with BER �, the probability that exactly � bits are 

flipped during the transmission of a single window is given by equation 15. For � windows, the expected number �2 of 

transmissions that have � bits flipped is given by: 

�2 	= 	� � �
� ×���2(1 2 �)("×.)/2																						(21)	
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When �2  transmissions have � bits flipped, the expected NER contributed by those �2 transmissions are calculated 

as: 

���2C = � � �
� ×���2(1 2 �)("×.)/2���2							(22)	

Where ���2C  is the expected NER from �  bits flipped in �  transmissions. ���2  denotes the expected NER 

corresponding to � bits flipped during a single transmission, which can be estimated from results aggregated over multiple 

runs. 

Then the expected NER for given BER � is calculated as the mean of expected NER caused by all possible number of 

bit flips divided by the total number of transmissions: 

�(���) = 1
� w �� �

� ×���2(1 2 �)("×.)/2���2
"×.

2J,

 

= w � �
� ×���2(1 2 �)("×.)/2���2

"×.

2J,

		(22) 

Thus, by evaluating �(���)for different values of �, one can comprehensively assess how bit errors affect overall 

system performance.  

5.4 Relevant Benchmarks 

We evaluated the proposed framework9s performance in multi-stream compression and robustness to channel noise against 

three benchmarks. First, we compared it to a naïve autoencoder that directly compresses concatenated streams, assessing 

model complexity, compression ratio, and reconstruction error. 

To test noise robustness, we used two additional baselines: 1) raw data encoded via IEEE754 and protected using 

convolutional coding; 2) compressed data from the proposed framework, also IEEE754-encoded and convolutionally 

coded. Both benchmarks use a convolutional code with memory 3 and Viterbi decoding. All methods were tested under 

equal data rate conditions for fairness. 

6 RESULTS AND DISCUSSION 

To evaluate the proposed framework, we compare multi-head and single-head autoencoders on greenhouse data, showing 

simplification is possible with correlated streams. We then assess hierarchical compression under ideal channels, analyzing 

trade-offs among reconstruction error, compression ratio, and model complexity. Finally, we evaluate robustness by adding 

the coding modules and testing under varying BERs. 

6.1 The comparison between multi-head Autoencoder and Single-head Autoencoder 

Figure 3 compares multi-head and single-head Autoencoders across compression ratios, while Figure 4 shows the 

correlation matrix among data streams, revealing clear inter-stream correlations. In Fig. 3, We maintain identical model 

complexity for both multi-head and single-head Autoencoders. However, due to architectural differences, the number of 

trainable parameters differs significantly. The multi-head Autoencoder uses separate encoder-decoders for each stream in 

the Intra-Stream Compression and Decompression Modules, leading to five times more parameters in these modules. Other 

modules have identical parameter counts. Results show that the single-head Autoencoder achieves lower reconstruction 
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error for the same transmitter complexity by leveraging shared patterns across streams, making it efficient for correlated 

data.  

 
Fig. 3. Comparison of single-head and multi-head Autoencoders on a highly correlated greenhouse monitoring dataset.  

 

Fig. 4: Correlation matrix illustrating positive and negative correlations among different sensor data streams (Voltage, Light, PAR, 

Temperature, and Humidity). 

 

Table 3: The comparison between proposed hierarchical Autoencoder and Naïve Autoencoder 

Architecture Complexity 

Normalized 

Reconstruction 

Error (%) 

Normalized 

Voltage 

Error (%) 

Normalized 

Light  

Error (%) 

Normalized 

PAR 

Error (%) 

Normalized 

Temperature 

Error (%) 

Normalized 

Humidity 

Error (%) 

Compression 

Ratio (%) 

Hierarchical 72400 0.46 1.41 0.05 0.80 0.03 0.01 0.84 

Naive 72500 0.89 3.09 0.05 1.23 0.06 0.01 0.84 
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Naive 145000 0.87 3.11 0.05 1.13 0.06 0.01 0.84 

Hierarchical 72400 0.48 1.46 0.06 0.82 0.03 0.01 0.88 

Hierarchical 72400 0.60 1.86 0.06 1.02 0.04 0.01 0.92 

Hierarchical 72400 0.93 2.98 0.09 1.50 0.05 0.01 0.96 

6.2 The comparison between multi-head Autoencoder and Single-head Autoencoder 

We compare the hierarchical Autoencoder with a naïve approach that merges and compresses all streams as a single input. 

To ensure fairness, each stream is independently normalized using a Min-Max Scaler. Table 3 presents the normalized 

reconstruction errors for both approaches under various transmitter complexities and compression ratios, with receiver 

complexity fixed. The hierarchical Autoencoder consistently outperforms the naïve approach, achieving lower 

reconstruction error even with reduced model complexity and more aggressive compression. This is attributed to its 

separate handling of intra-stream and inter-stream compression, which better captures per-stream and cross-stream 

correlations. 

 

Fig. 5. The trade-off between compression ratio and normalized MAE under different window size 



17 

6.3 The trade-off between model complexity, compression ratio, and reconstruction error 

Fig. 5 illustrates the trade-off between compression ratio and normalized reconstruction error for various window sizes. A 

key observation is that incremental compression can be achieved with minimal performance degradation within a certain 

sustainable range of compression ratios. Beyond this range, further compression leads to a noticeable increase in 

reconstruction error. Comparisons across different window sizes show that larger windows can yield better performance 

by capturing more temporal information. However, this improvement comes at the cost of higher computational expense.  

It is also important to emphasize that larger window sizes increase system latency, as it takes more time to collect a 

complete window of data at a given sampling frequency. 

Fig. 6 illustrates the trade-off between compression ratio and transmitter complexity. Fig. 6(a) shows that increasing 

transmitter complexity initially reduces reconstruction error. However, beyond a threshold, further increases yield no 

additional gains, and the system enters a stable regime. The gray shading marks the 95% confidence interval for a 

representative point in this plateau, indicating the optimal performance range. This occurs because both transmitter 

complexity and compressed dimension affect how much information is captured; once the encoder is sufficiently powerful, 

the fixed compressed dimension becomes the bottleneck. Fig. 6(b) further shows that, in the stable regime, reducing the 

compression ratio leads to noticeable performance improvement, highlighting the influence of compression ratio 

Fig. 6(c) shows the minimum transmitter complexity needed to reach the stable regime in Fig. 6(a), across different 

window sizes and compression ratios with fixed receiver complexity. A key observation is that Higher compression ratios 

require more transmitter complexity, and this difference grows with window size. Achieving target performance requires 

encoding enough information within the compressed variable. Higher compression ratios reduce dimensionality of the 

compressed data, demanding a more complex transmitter to capture key features with limited dimensionality. As window 

size increases, more temporal data must be processed, and although compressed dimensionality also grows, it lags behind 

the rising input volume, widening the complexity gap between high and low compression ratios.   

6.4 The trade-off between transmitter complexity, receiver complexity and reconstruction error 

Fig. 7 illustrates the trade-offs among transmitter complexity, receiver complexity, and reconstruction error.  Fig. 7(a) and 

7(c) show that after reaching a stable regime with sufficient transmitter complexity, increasing receiver complexity initially 

reduces reconstruction error. However, beyond a threshold, the benefit saturates, as the compression ratio limits the total 

transmittable information. Figure 7(b) shows that when both transmitter and receiver complexities are high, lowering the 

compression ratio significantly improves reconstruction by enabling the compressed variable to carry more information. 

These results highlight that when transmitter resources are constrained, performance can still improve by increasing 

receiver complexity. Once both sides reach saturation, further improvement relies on reducing the compression ratio. 

Fig. 6. The trade-off between window size and transmitter complexity for different compression ratio. 
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Fig. 8. Comparison of channel noise robustness with baseline approaches 

6.5 Robustness to the channel error 

To assess robustness to channel errors, we compare the proposed framework with Code Generation and Interpretation 

Modules (as shown in Fig. 1) against two benchmarks from Section IV. As shown in Fig. 8, when BER less than 10/K raw 

data transmission yields the lowest reconstruction error but requires high bandwidth and introduces latency. The 

Fig. 7. Trade-off relationship between transmitter complexity and receiver complexity and reconstruction error for different 

compressed dimension. 
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hierarchical autoencoder reduces bandwidth by discarding redundancy, introducing minor errors even at low BER. Adding 

the coding modules slightly increases reconstruction error when BER lower than 10/L due to quantization, which limits 

representational capacity.  

However, these modules significantly improve robustness by learning error-resilient binary encoding and decoding. At 

higher BERs, standard coding fails and leading to sharp performance drops, even with convolutional correction. It is 

important to note that the proposed method maintains low error rates with only 64-bit codes per value, compared to 105 

bits in the baselines, demonstrating greater efficiency and robustness. To provide a more in-depth comparison among the 

three methods, Fig. 9 shows the transmitted and received binary sequences, and corresponding decoded information, under 

15 flipped bits, with all methods using 105-bit codes. It is observed that the proposed method maintains the same trend in 

the decoded output as the transmitted data, while benchmarks suffer from severe reconstruction errors. 

6.6 The influence of code size 

Fig 10 shows the influence of code size on the reconstruction error under various BER with compression ratio of 0.9. The 

observation is that for given BER, larger code size gives lower reconstruction error. This is because, with a larger code 

Fig 9. Comparison of transmitted binary code, received binary code, and decoded data under 15 bits flips. (Top) 

Proposed Coding Scheme, (Mid) Hierarchical Autoencoder and standard coding scheme, (Bottom) Standard 

coding scheme without data compression 
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size, the proposed framework encodes information in a way that reduces the impact of individual bit errors, improving 

robustness to channel noise. 

Fig 11 shows the cumulative distribution functions (CDF) of the number of flipped bits at a fixed channel BER for 

various code size, demonstrating the improved resilience with larger codes. In this experiment, the compressed dimension 

is set to 50, which means each transmission consists of 50 floating-point numbers, which yields totally � = � × 50 bits, 

where � is the code size. We define �.F0
.  as the minimal number of flips for which the CDF exceeds 0.99 at code size �,  

 

Fig. 10. The influence of code size 

 

Fig. 11. the cumulative distribution functions of the number of flipped bits 
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which indicates an upper bound of number of flips for single transmission when code size is �, beyond which additional 

flips are extremely unlikely. The practical maximum BER when code size is �  can be calculated as �.F0
. = "()'

(

C
. 

According to Fig 11, the �.F0
.  and �.F0

.  for various code size is shown in Table 4. 

 

Table 4: The Training Parameters 

Code Size (bits) �  (bits) �  (%) 

32 5 0.0031 

64 8 0.0025 

128 13 0.0020 

 

According to Table IV, the �.F0
.  is lower for larger code size, indicating that a larger code size can improve the 

proposed framework9s robustness to the channel error, which is consistent with Shannon's capacity theorem [23], which 

states that reliable communication is achievable up to a certain limit when sufficient redundancy is added.  

6.7 The impact of flips in training stage 

As introduced in section 4, during training stage, randomly flipping a subset of bits in the coded compressed representation 

can enhance the model9s robustness to channel. Fig 12 presents the performance of models trained with different number 

of flips under various BER, the observation is that the model trained with larger number of flips gives a lower reconstruction 

error. The model trained with bit flipping effectively learns how to decode corrupted representations. Consequently, a 

model trained with a larger number of flips becomes more robust to channel error, resulting in lower reconstruction errors.  

 

Fig. 12. The influence of random flips in training stage 



22 

 

Fig. 13. The influence of compressed dimension under various BER 

 

Fig. 14. The influence of code size under various BER 

6.8 The influence of compression ratio under noisy channel 

As defined in equation 22, the compression ratio can be adjusted by adopting the compressed dimension or code size. Fig 

13 demonstrates the influence of compressed dimension on the reconstruction error under various BER and fixed code size 

of 32. The observation is that for a given BER, a larger compressed dimension yields better reconstruction. Conversely, to 

meet a fixed performance level, a larger compressed dimension tolerates higher BERs. This is because, with fixed code 

size, increasing compressed dimension spreads information across more bits, reducing per-bit information density and 

minimizing the impact of bit errors. 

As shown in Equation 22, the compression ratio can be adjusted by changing either the code size or the compressed 

dimension. Figure 14 compares their effects with a fixed window size of 100. Starting from a compressed dimension of 40 
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and code size of 32, halving the compression ratio can be achieved by doubling either parameter.  The key observation is 

that when BER is low, increasing code size can give lower reconstruction error. However, when BER is high, a larger 

compressed dimension can give the lowest reconstruction error. This is because at low BER, fewer bit flips occur, so 

increasing code size reduces per-bit information density and limits the impact of errors. At high BER, errors are widespread, 

increasing compressed dimension lowers per-variable information density, enhancing system9s robustness. 

7 SUMMARY AND CONCLUSION 

This paper presents a hierarchical autoencoder framework for bandwidth-efficient and error-resilient data transmission in 

wireless sensor networks. By decoupling intra-stream and inter-stream compression, the architecture captures both 

modality-specific features and cross-stream correlations, achieving higher compression ratios with lower model complexity 

than naïve autoencoders. System-level analysis shows that transmitter complexity should be increased only up to a 

performance plateau, beyond which improvements arise from enhancing receiver complexity or reducing the compression 

ratio. The proposed binary code generation and interpretation modules significantly outperform conventional convolutional 

coding under channel noise. Overall, the framework enables accurate reconstruction with reduced bandwidth and enhanced 

robustness, offering a practical solution for resource-constrained and error-prone sensing scenario. 
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