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Abstract

Bismuth is a good constituent element for many quantum materials due to its large atomic number,
the 6s°6p® orbitals, and strong spin-orbital coupling. In this work, three new bismuthides
NdZno.sBi2, (Lao.sPro.s)Zno.sBi2, and (Lao.sNdo.s)Zno.cBi2 were grown by a metal flux method and
their crystal structures were accurately determined by single crystal X-ray diffraction. These new
bismuthides belong to the RE-T-Pn2 (RE=La-Lu, T=Mn, Fe, Co, Ni, Zn, Pn=P, As, Sb, Bi) family,
which are isostructural and crystallize in the HfCuSiz structure type. The bismuth elements have
two possible oxidation states of Bi* and Bi", which were studied by X-ray photoelectron
spectroscopy (XPS). Two binding energy peaks of 155.91 eV and 161.23 eV were observed for Bi
atoms within NdZno.¢Bi2, and similar binding energy peaks were detected in NdBi and LiBi. XPS
also confirmed the trivalent nature of Nd, which was further verified by magnetic measurements.
Additionally, magnetic measurements found that NdZno.cBi> exhibits an antiferromagnetic
transition around 3K, while the mixed-cation compounds do not show any magnetic transition
down to 2K. Electronic transport measurements reveal weak magnetoresistance in all three

compounds, with a maximum value of 25% at 2K and 9T for (Lao.sNdo.5)Zno.cBia.
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Introduction

Zintl compounds, which were named after Eduard Zintl due to his significant contributions, have
remained at the forefront of solid-state chemistry research for many decades ''!'!. The
comprehensive interplay between crystal structure, chemical bonding, and electronic structure
within Zintl compounds is the 'double-edged sword' for solid-state chemists, which leads to
intriguing physical properties, but it adds complexity %8, The typical Zintl compounds constitute
elements from the left side of the periodic table such as alkali metals or alkali earth metals as
"electron donors" and elements from the right side of the periodic table such as groups 13-16 as
"electron acceptors". Generally, Zintl compounds are valence compounds. When electrons from
electropositive elements are deficient, the anions would form homoatomic bonds to compensate
for the electron deficiency. The study of the Zintl compounds fostered an important concept of the
Zintl-Klemm concept. The Zintl-Klemm concept states that the valence electrons are transferred
from the more electropositive to the more electronegative atoms within the crystal lattice, where
the more electronegative polyanions are isostructural to the structural motifs of isoelectronic
elements. The Zintl-Klemm concept was widely employed to interpret the nature of bonding of
and electronic properties of the Zintl compounds and even expanded to many polar intermetallic

compounds %%,

Zintl compounds are a subgroup of intermetallic compounds. The boundary of Zintl compounds
has been heavily expanded after intensive research 2**°. Among many Zintl compounds and polar
intermetallic compounds, bismuth-contained compounds are very interesting to us. Bismuth is the
heaviest non-radioactive element. Owing to its large atomic number and the 6s°6p° orbitals,
bismuth is a good constituent element for many quantum materials due to the presence of strong

spin-orbit coupling #!-43

. In this work, we report the synthesis, crystal and electronic structures,
and magnetic properties of three new bismuthides NdZno.cBi2 and (Lao.sREo.5)Zno.¢Bi2 (RE=Pr,
Nd). The newly discovered compounds belong to the RE-T-Pn2 (RE=La-Lu, T=Zn, Ni, Fe, etc.,
Pn=P, As, Sb, Bi) family **7°. One interesting observation would be there were 33 Sb-based
compounds reported within the RE-T-Pn2 family, compared to only 7 known Bi-based compounds
discovered according to the ICSD 2023-2 database. Due to the presence of rare earth elements,
transition metals, and Bi square nets, the study of the RE-T-Bi2 system might result in intriguing

materials. The RE-T-Pn2 family can be cataloged into polar intermetallic compounds. The Zintl-



Klemm concept can be utilized to understand the bonding pictures and predicate the physical

properties of the RE-T-Pn2 family, which was showcased in this work.
Experimental Details

Synthesis: All reactants were stored and operated in an argon-filled glovebox with an oxygen level
below 0.5 ppm. All starting materials were commercial grade and used as received: Bi pieces
(Fisher Scientific, 99.99%), La powder (ESPI Metals, 99.7%), Nd powder (ESPI Metals, 99.8%),
Pr powder (ESPI Metals, 99.7%), and Zn granules (Fisher Scientific, 99.8%).

The crystals of NdZno.cBi2, (Lao.sPro.5)Zno.sBi2, and (Lao.sNdo.s)Zno.cBi2 were grown by employing
a self-flux growth method using Zn-Bi flux. Stoichiometric ratio of RE:Zn: Bi = 1:12:20 was used
for synthesizing NdZnoeBi2. For mixed-cation samples (LaosPros)ZnosBi2 and
(Lao.sNdo.s)Zno.cBi2, La:RE:Zn:Bi = 0.5:0.5:12:20 were used. The reactants were placed in an
evacuated fused-silica tube, heated to 900 °C for 10 hours, annealed at this temperature for 48
hours, and cooled to 600 °C at a rate of 3 °C/h. At 600 °C, Zn and Bi flux was removed via
centrifuge. Plate-shaped silver color single crystals were obtained. These obtained crystals were

found to be sensitive to air and moisture.

Lab powder X-ray Diffraction: Due to the air instability of NdZno.¢Bi2, (Lao.sPro.5)Zno.cBi2, and
(Lao.sNdo.s)Zno.6Biz, air-sensitive holders were utilized to run data collection using a Rigaku Mini
Flex 6G diffractometer with Cu-Ka radiation (A =1.5406 A). A scan range of 20 = 10° — 40° was
used to avoid the strong peaks coming from Be holder, with a scan step of 0.04° and fifteen seconds

of exposure time.

Single Crystal X-ray Diffraction: The sample preparation for single crystal X-ray diffraction was
carried in a glovebox. Selected crystals were covered in Paratone oil and quickly transferred to a
diffractometer equipped with liquid N2. Single crystal diffraction experiments were carried out at
173 K using a Bruker D8 Venture diffractometer with a Bruker Photon100 CMOS detector
employing Mo-Ka radiation. All datasets were integrated using the Bruker SAINT software
package "!. The strong absorption of bismuth should take into account. In this work, a "multi-scan"
absorption correction method was employed. The solution and refinement of the crystal structures
were carried out using the SHELX suite of programs 7?. The refinement of NdZno.sBi2 found the

partial occupancy of Zn sites of occupancy of 61(3)%, which resulted in an experimental formula



of NdZno.s6Bi2. The occupancy of Zn sites were determined to be 60.5(2)% and 57.8(1)% for
(Lao.sPro.5)Zno.6Biz2 and (Lao.sNdo.s)Zno.cBiz, respectively. The refinement of occupancy of La/Pr
and La/Nd atom pairs is challenging due to their comparable atomic numbers. Energy dispersive
spectrum (EDS) verified the atomic ratio of La/Pr and La/Nd is close to 1:1 (Table S1), which
agrees well with the ratio of source materials for crystal growth as stated above. Because the
occupancy of Zn for all three samples is close to 60%, chemical formulas of NdZno¢Bia,
(Lao.sPro.5)Zno.sBi2, and (Lao.sNdo.5)Zno.sBiz are used in this work. Details of the data collection
and structure refinement are provided in Table 1. Atomic coordinates and selected bond distances
are listed in Tables S2 and S3. Crystallographic data for NdZno.¢Bi2, (Lao.sPro.5)Zno.sBi2, and
(Lao.sNdo.s)Zno.cBi2 have been deposited to the Cambridge Crystallographic Data Centre, CCDC,
12 Union Road, Cambridge CB21EZ, UK. Copies of the data can be obtained free of charge by
quoting the depository numbers CCDC- 2366796 (NdZnosBi2), CCDC- 2366795
((Lao.sPro.s)Zno.cBi2), and CCDC- 2366794 ((Lao.sNdo.s)Zno.cBi2).

Table 1. Selected crystal data and structure refinement parameters for NdZnosBia,

(Lao.sPro.5)Zno.6Bi2, and (Lao.sNdo.s)Zno.cBia.

Compounds 1 2 3

Experimental NdZno.s6Bi2 (Lao.17Pro.s3)Zno.c1Bi2 | (Lao.s0Ndo.50) Zno.coBi2

Formula

Designated NdZno.cBi2 (Lao.sPro.5)Zno.cBi2 (Lao.so Ndo.s0) Zno.cBi2

Formula

Formula weight 599.13 598.08 598.76

Temperature 1732) K

Radiation, Mo Ka, 0.71073 A

wavelength




Crystal system Tetragonal

Space group P4/nmm (No.129)

a(A) 4.53190(14) 4.5636(2) 4.5616(2)
c(A) 9.7060(6) 9.8797(7) 9.8539(06)
Z 2 2 2

V(A?) 199.343(17) 205.76(2) 205.04(2)
De(g cm™) 9.982 9.653 9.698

w (mm') 103.952 99.913 100.142
Ri, 0.0595 0.0273 0.0190
wR2 (I>206(1)) 0.1347 0.0619 0.0397

Ri, 0.0617 0.0293 0.0206
wR2 (all data) 0.1534 0.0751 0.0527

Elemental Analysis: FElemental analysis of NdZnosBi2, (LaosPros)ZnosBi2, and
(Lao.sNdo.s)Zno.cBi2 was performed through EDX using a Phenom Pro Desktop SEM and Phenom

ProSuite Software.

X-ray photoelectron spectroscopy (XPS): The XPS testing was carried out in the instrument
ThermoFisher NEXSA model using Al Ka monochromatic, X-ray source with an analysis area of
400pum. The system is maintained on specification using Cu, Au, and Ag for regular calibration.
A regular calibration check of Ag 3dsat 386.2¢V is verified before experiments. The sample was
sputtered using Ar gas using monatomic sputtering to remove any oxygen and carbon
contamination from the surface. The pass energy of 50 eV, analyzer resolution of 0.1eV, and the

number of scans at 10 were set as parameters.



Calculations: Two model structures, NdZnosBi2 and NdZnBi2, were used in first-principle
calculations. They are both from the experimental structure determined from XRD. NdZnBi2
ignored the partial occupancy of Zn and assigned full occupancy. NdZno.sBi2 was built by
removing one of the two Zn sites in the unit cell, which reduced the symmetry from P4/nmm to P-
4m?2, to simulate the experimental 0.56 Zn occupancy. Vienna Ab-initio Simulation Package "7
was used for the calculations. The Perdew—Burke—Ernzerhof (PBE) functional within the
generalized gradient approximation (GGA) 7’ was adopted to calculate the exchange-correlation
potential. The Brillouin zone was sampled using a Monkhorst—Pack k-point mesh of 5 x 5 x 9 78,
Pseudopotentials generated with the projector augmented-wave (PAW) method were employed 7°.
To treat the highly correlated Nd 4f electrons, spin polarization and the on-site repulsion Hubbard

parameter, U = 5 eV, were employed *.

Physical properties. Electronic transport measurements were performed using a standard 4-probe
method in a Quantum Design Physical Property Measurement System (PPMS). Magnetization
measurements were carried out using a Quantum Design Magnetic Property Measurement System
(MPMS3 SQUID).

Results and Discussions
Crystal Structure

NdZno.cBi2, (Lao.sPro.s)Zno.cBiz, and (Lao.sNdo.s)Zno.¢Bi2 are isostructural and belong to the RE-T-
Pnz (RE=La-Lu, T=Mn, Fe, Co, Ni, Zn; Pn=P, As, Sb, Bi) family **7°. The RE-T-Pn2 family has
been extensively studied back to 1983 in the research of RNiSbz (R=Ce, Pr, Nd, Sm) 363646 n
recent years, exotic physical properties such as the Dirac fermions were found within materials

that host square pnictogens layers +3181-86

, which reignite the research interest of the RE-T-Pn2
family. In this work, we reported three bismuth-based materials. To simplify the discussion,

NdZno.sBi2 is selected as an example to present the crystal structure.

NdZno6Bi2 crystallizes in the tetragonal space group P4/nmm (no. 119) with unit cell parameters
of a = 4.53190(14) A, ¢ = 9.7060(6) A and a unit cell volume of 199.343(17) A3. NdZno.Bi>
crystallizes in the HfCuSiz structure type. The crystal structure of NdZno.¢Bi2 is shown in Figure
1. NdZni1xB1i2 is constructed by [Bi] square nets and [ZnixBi] layers that sandwich the Nd cations.
The Nd atoms are surrounded by eight Bi atoms within the bond distance range of 3.3156(11)-
3.389(2) A, which are comparable to (LaosPros)ZnosBiz (3.3424(5)- 3.4222(11) A),
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(Lao.sNdo.5)Zno.sBi2 (3.3398(3)- 3.4183(6) A) and many other bismuthides such as NdPdBi (3.389
A) ¥ Ca333Ndo67Bis (3.210-3.448 A) 38 NdsAusBis (3.484-3.571 A) 8, NdNio.64Bi2 (3.310-3.420
A) %, NdNi2Bi2 (3.351-3.584 A) °!, NdsMnBis (3.223-3.447 A) 2, NdsCuBis (3.222-3.478 A) %,
etc. The [Zni1xBi] layers are constructed by [ZnBi4] tetrahedra. The Zn-Bi bond length is
2.7074(14) A, which is comparable to that of (LaosPros)ZnosBiz (2.7410(7) A) and
(Lao.sNdo.5)Zno.sBi2 (2.7379(4) A). There are two independent bismuth atoms in NdZno.¢Biz. One
is linked to Zn and Nd atoms. Another independent bismuth atom is connected to four neighboring
bismuth atoms to form the [Bi] square net (Figure 1b). The Bi-Bi distance is 3.20454(10) A, which
agrees well with many known compounds with homoatomic Bi-Bi bonds such as
(Lao.sPro.5)Zno.sBi2 (3.22695(15)A), (Lao.sNdo.s)Zno.cBiz (3.22554(15) A), NdNio.64Bi2(3.200 A)°°,
NdNi2Bi2(3.197 A)*!, NdsMnBis(3.204A) 2, and LiBi(3.361 A)%4.

a) b)
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Figure 1. (a) Crystal structure of NdZno.¢Bi2 with unit cell outlined, (b) the square net layer of Bi
with Bi-Bi bond distance labeled. Nd: green, Zn: orange, Bi: black.

Applying Zintl-Klemm rules to count electrons reveals the importance of the Zn content and
oxidation state in NdZno.cBi2. The Bi atoms within the [Bi] square nets are assigned as 1° due to
their four-coordination nature, while Bi atoms within [Zn1xBi] layers are assigned as 3-23. Nd and
Zn are assigned as 3" and 27, respectively. Therefore, NdZno.6Bi2, [Nd]*"[Zno.c]*'[Bi]*[Bi]!" should
be an electron-rich metal, which was confirmed by transport property measurements (vide infra).
Based on the above analysis, the charge-balanced formula should be NdZnosBi2

(INd]**[Zno.s]**[Bi]*[Bi]'"), which however was not observed in our experiments. This leaves a



natural question of what are the actual oxidation states of constituent elements within NdZno ¢Bia.
A previous study on CeNio.s-xMnxBi2 has revealed the existence of Ni**/Ni*" and Mn**/Mn** *°. To

clarify the oxidation state, we employed XPS of constituent elements in NdZno.cBio.
XPS

The XPS spectrum of Nd-3d and Bi-4f are shown in Figures S2 and S3, respectively. The major
binding energy (BE) peaks of the Nd-3d are 981.56 eV and 1004.09 eV, which can be assigned as
Nd** %> The trivalent nature of Nd within NdZno.¢Biz2 was also verified by magnetic property
measurements (vide infra). Four BE peaks were detected for Bi-4f for NdZno¢Bi2 (155.91 eV,
161.23 eV, 157.9 eV, 163.21 eV). The two BE peaks of 157.9 eV and 163.21 eV originated from
surface Bi203, which can be removed by heave etch (Figure S4). The presence of both Bi** and
1

% and LiBi ** as reference materials. As shown in Figures

S5 and S6, the BE of Bi-4f within NdBi and LiBi are comparable with Bi-4f of NdZno.¢Bi2. It

Bi!" promoted us synthesizing NdBi

seems that the XPS peaks of Bi*" and Bi'~ overlap with each other within NdZno.¢Bio.

Electronic Structure
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Figure 2. The total and partial DOS and electronic band structure of NdZno sBi2 (left) and NdZnBi2
(right). The black DOS curves are the total DOS for majority and minority spins. The total DOS
is projected to the partial DOS to show the contribution by Nd-4f (red); Nd-5d&6s (dark gray);
Zn-3d (dark); Zn-4s&4p (light gray); and Bi-65&6p (white).

To study the electronic structures of NdZnixBi2, we calculated the DOS and electronic band
structures for two model structures, NdZno sBi2 and NdZnBi2. The computational details are in the
Experimental section above. The electronic structures of NdZno sBi2 are shown in Figure 2 left.
The Fermi level is located in a state-deficient region (pseudo-gap), indicating a weak metallic

nature of NdZnosBi2. Electrical property measurements verified the metallic nature of the
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experimental phase, NdZnosBi2 (vide infra). The states around the Fermi level are dominantly
from Bi so the metallicity originates from the Bi square nets. The Fermi level in a pseudo-gap
usually signifies electron-balancing. This is indeed the case for the composition of NdZno.sBi2 if

we simplistically count the valences as [Nd]**[Zno.s]*"[Bi]*[Bi]"".

Increasing the Zn content from NdZnosBi2 to NdZnBi> makes the phase electron-rich if we
simplistically assign the valences as [Nd]**[Zn]*"[Bi]*"[Bi]"", where Nd and Zn donate 5 electrons
while Bi accommodates 4 only. This is shown in the electronic structure of NdZnBi> that the Fermi
level is lifted ~0.5 eV above the pseudogap (Figure 2, right). Moreover, Nd-4f states dominates
the states around the Fermi level, indicating that, instead of Bi or Zn, the extra electrons mainly
populate Nd-4f states. This is not physically possible as Nd is the most electropositive element

among the three elements of Nd, Zn, and Bi.

The experimental composition, NdZno.¢Bi2, was grown by Zn-Bi flux and thus represents the Zn-
rich limit for samples obtained by flux methods. It is only slightly different from the first model
structure NdZno.sBi2. This indicates that the title phase, NdZnixBi2, is not a very strict valence
compound. The optimum composition is NdZnosBi2, which is electron exact. However, it can

accommodate more Zn and be electron-rich but only to a small extent by flux methods.
Magnetic Properties

The RE-T-Pn2 family is highly tunable due to structural flexibility. For NdZno.¢Bi2, the rare earth
metal (Nd), the 3d transition metal (Zn), and the Bi square-net, all can be substituted by other
elements. Nd generates magnetism which can be replaced by non-magnetic (such as La) and
magnetic rare earth with different f~electron numbers. Zn not only contributes electrons which is
tunable by occupancy as discussed above, but also can be substituted by other 3d metals including
magnetic ones like Mn '°192. The Bi square-net generates Dirac state which is tunable by spin-
orbital coupling and symmetry (like lattice distortion) '°!1%_ Such high chemical flexibility results
in tunable physical properties, which has been demonstrated in our recent nonlinear optical
materials studies '%!12. Previous work on the RE-T-Pn2 family has been focused on tuning

transition metal contents such as LaMnixSby %8

or mixing transition metals such as CeNios-
xMnxBi> #. Modifying the rare earth layers, however, is relatively less explored. This motivates
us to extend the study to two mixed-cation compounds of (Lao.sPro.s)ZnosBiz and

(Lao.sNdo.s)Zno.cBio.
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Figure 3. (a, b, ¢c) Temperature dependence of dc magnetic susceptibility (y) measured under a
field of 1000 Oe applied within (H//ab) and perpendicular (H//c) to the ab plane for (a) NdZno ¢Bi2,
(b) (Lao.sNdo.5)Zno.6Bi2, and (c) (Lao.sPro.5)Zno.cBiz2. Only zero-field-cooling data is shown because
zero-field-cooling and field-cooling data overlaps perfectly (see supplementary Figures S7, S9,
and S11). The dotted lines in each panel is the fitting to the Curie-Weiss law. (d, e, f) Field
dependence of magnetization (M) at 2 K measured with magnetic field within (H//ab) and
perpendicular (H//c) to the ab plane for (d) NdZnoeBiz2, (e) (LaosNdos)ZnoeBiz2, and (f)

(Lao.sPro.s)ZnosBiz. Isothermal magnetization data at various temperatures up to 300 K are

provided in Figures S8, S10, and S12.

Table 2. Fitting parameters for NdZno.cBi2, (Lao.sNdo.s)Zno.¢Bi2, and (Lao.sPro.s)Zno.cBi2 obtained
from the modified Curie-Weiss fits, from which the effective moment for each sample is obtained.

The average moment is obtained by (2uastuc)/3, where ua» and pc are effective moments obtained

from in-plane (H//ab) and out-of-plane (H//c) susceptibility.

Compound Field %o C 6, (K) HUeft Average
(emu Oe™! per mol (emu Oe¢™! K per (us per et (uB)
RE) mol RE) RE)

NdZn ¢Bi, Hllab 0.0000496 2.029 -13.474 4.03 3.98
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Hlab 0.0003430 1.890 -21.238 3.89
(LaosNdos)ZnoeBi, | Hi/lab 0.001944 0.534 -7.514 207 | 225
HLab 0.0116 0.866 -54.918 2.63
(LaosPros)ZnoeBi, | Hilab 0.0104 1.622 -1.144 3.60 | 3.74
Hlab 0.000884 2.062 -26.649 4.06

The magnetic susceptibility (y = M/H) of each of NdZnoe¢Bi2, (LaosNdo.s)ZnosBi2, and
(Lao.sPro.5)Zno.cBi2 was measured on a large plate-like single crystal under a magnetic field of 1000
Oe as shown in Figures 3a-3c. Due to the plate-like single crystals with ab-plane as a cleavage
plane, both in-plane and out-of-plane susceptibilities were measured with in-plane (H//ab) and out-
of-plane (H//c) magnetic field configurations, respectively (Figures S7-S12). As shown in Figure
3a, NdZnoe¢Bi2 exhibits a sharp transition around 3 K, which should correspond to an
antiferromagnetic transition owing to the lack of irreversibility between zero-field-cooling (ZFC)
and field-cooling (FC) data. In the paramagnetic state, at temperatures well above the transition
temperature, magnetic susceptibility can be well-described by the modified Curie-Weiss law y =
xo+ C/(T - 6p), where yo is a temperature-independent constant, C is the Curie constant, 7 is the
absolute temperature, and O, is the paramagnetic Weiss temperature. The extracted fitting
parameters are summarized in Table 2. The negative Weiss temperature also implies predominate
antiferromagnetic correlations in NdZno.¢Bi2. The effective magnetic moment of 3.98 us per Nd**
is close to the theoretical value of 3.62 s for Nd**. The trivalent nature of Nd is further confirmed
by XPS analysis as indicated above. The magnetism in NdZno.cBi2 can be tuned by a magnetic
field. As shown in Figure S7, the antiferromagnetic transition is suppressed to a lower temperature
at the higher magnetic field. Such field-modulation of magnetism is also manifested in the
isothermal magnetization measurements. As shown in Figure 3d, at 7 = 2 K, a magnetization
upturn occurs near 3 T for H//ab. Such super-linear field dependence is reminiscent of a spin-flop
transition, but the broad magnetization upturn is distinct from a conventional spin-flop transition
characterized by abrupt magnetization jump. Therefore, the magnetic moment orientation might
be re-oriented in a more gradual way as compared to a spin-flop transition. Furthermore, at low
fields near zero field, the linear field dependence for magnetization again supports an

antiferromagnetic ground state.

11



The magnetization measurements under the out-of-plane field (H//c) reveal anisotropic magnetism.
First of all, unlike the sharp magnetic transition seen with the in-plane field, the temperature-
dependent magnetic susceptibility (Figure S9) does not display a well-defined susceptibility peak.
In addition, the field-dependent magnetization under H//c is also featureless, showing linear
dependence up to 7 T, as shown in Figure 3d. These observations suggest that the magnetic easy

axis might be within the ab-plane.

Since magnetism in NdZno.sBi2 derives from the Nd 4f electrons, it is expected to be tunable by
substituting Nd. Indeed, diluting magnetism by substituting non-magnetic La suppresses
magnetism. Though a similar susceptibility upturn is seen at low temperatures, (Lao.sNdo.s)Zno.cBi2
displays no clear magnetic transition down to 2 K for both magnetic field orientations H//ab
(Figure 3b) and H//c (Figure S11). The effective moment obtained from the Curie-Weiss fit is
2.25 us per Nd**, which is smaller than the theoretical value (3.62 us/Nd**). The reduced effective
moment has been proposed to be associated with various mechanisms such as crystal field effect
that split the energy levels, spin-orbit coupling that mixes spin and orbital angular momentum and
partially quench the magnetic moment, and hybridization of 4f electrons with conduction electrons.
In addition, the isothermal field-dependent magnetization at 2 K is strongly modified: under in-
plane field H//ab, magnetization displays a tendency toward saturation, suggesting possible
ferromagnetic correlations at higher fields that might be due to magnetic moment canting.
Replacing Nd by Pr, i.e., (Lao.sPro.s)ZnosBiz2, similar field-dependent magnetization absence of
well-defined magnetic transition are observed, as shown in Figures 3c, and 3f. The effective
moment obtained from the Curie-Weiss fit is 3.74 us per Pr**, which is close to the theoretical
value of 3.58 us for Pr**. In addition, the uncertainty in composition determination in this
substituted compound, especially the content of Pr, would also result in some errors in calculating
effective per rare earth ion. To fully understand it, further theoretical and experimental (such as

neutron scattering) would be helpful.
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Figure 4. (a, b, ¢c) Temperature dependence of resistivity measured at zero magnetic field for (a)
NdZno.6Bi2, (b) (LaosNdo.s)Zno.sBiz2, and (c) (Lao.sPro.s)ZnosBiz. (d, e, f) Magnetoresistance (MR)
normalized to the zero-field resistivity value at different temperatures for (d) NdZno.sBi2, (e)

(Lao.sNdo.5)Zno.6Bi2, and (f) (Lao.sPro.5)Zno.cBi2.

Figure 4 shows the electrical transport properties of the three compounds. As shown in Figures
4a-4c, all samples exhibit metallic character with decreasing resistivity up on cooling, which is
consistent with the electronic band structure calculations as stated above. At 300 K, NdZno.¢Bi2,
(Lao.sNdo.5)Zno.coBi2, and (Lao.sPro.5)Zno.c1Bi2 possess comparable resistivity values within 0.11 —
0.21 mQ cm. The variations between samples might be attributed to the property variation or some
uncertainty in estimating the sample dimensions for converting resistivity. Compared to the
absolute resistivity values, the residual resistivity ratio (RRR), defined as the ratio of the
resistivities at 300 K and 2 K, rules out uncertainties in sample dimension measurements and hence
better reflects the evolution of the electronic properties. RRR is 3.4, 4.1, and 3.3 for NdZno.cBiz,
(Lao.sNdo.s)Zno.coBi2, and (Lao.sPro.s)Zno.c1Biz2, respectively, indicating that these compounds are

not good metals.

Upon applying magnetic fields, all compounds display positive magnetoresistance (MR)

characterized by increased resistivity. The normalized MR, defined as resistivity change
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normalized to the zero-field value MR = [p(H)- p(H=0T)]/p(H=0T), reaches ~12% at 2 Kand 9 T
for NdZno.¢Bi2, as shown in Figure 4d. MR is enhanced to ~25% in (Lao.sNdo.5)Zno.cBi2 (Figure
4e), while reduced to ~6% in (LaosPros)Znoe¢Bi2 (Figure 4f). Rather than a quadric field
dependence expected for orbital MR in simple metals, here MR in all three compounds display a
clear dip at zero field, which is reminiscent of weak antilocalization and suggests the involvement
of quantum effect in electronic properties. Weak antilocalization originates from quantum
interference of time-reversal symmetric backscattering electron trajectories. The interference is
destructive in the presence of strong spin-orbital coupling, which suppresses backscattering rate
and consequently the resistance. The suppression of such interference by magnetic field effectively
enhances the resistance, leading to an MR dip near zero field. Such weak antilocalization effect
appears to be the strongest in (Lao.sNdos)ZnosBi2 while the weakest in (Lao.sPro.s)Zno.s1Bi2.
Considering that MR is also strong in (Lao.sNdo.5)Zno.cBi2 while weak in (Lao.sPro.5)Zno.c1Bi2, weak

antilocalization might dominate the MR behavior.
Conclusions

Three new bismuthides, NdZno.¢Bi2, (Lao.sNdo.s)Zno.sBi2, and (Lao.sPro.5)Zno.sBi2 were grown as
millimeter-sized crystals by Zn-Bi flux. Structure studies revealed that these new bismuthides
crystallize in the HfCuSi2 structure type and belong to the RE-T-Pn2 (RE=La-Lu, T=Mn, Fe, Co,
Ni, Zn; Pn=P, As, Sb, Bi) material family. The existence of vacancies at the Zn site made
experimental NdZnosBi2 an electron-rich composition according to the Zintl principles. The
importance of Zn contents was verified by DFT calculation. Varying Zn contents can form both
electron-balanced composition NdZnosBi2 and electron-rich composition NdZnBi2. XPS was
employed to study the oxidation states of constituent elements of NdZnosBi2. There are two
binding energy peaks of 155.91 eV and 161.23 eV detected for Bi atoms within NdZno.¢Bi2. NdBi
and LiBi were synthesized as reference materials. The binding energy peaks of Bi within NdBi
and LiBi are very similar to NdZnosBi2. The two oxidation states of Bi*" and Bi cannot be
distinguished by XPS. The trivalent nature of Nd was further confirmed by magnetic
measurements. Furthermore, magnetic measurements reveal an antiferromagnetic ground state for
NdZnosBi2 below 3 K with an in-plane magnetic easy axis, whereas La and Pr substitutions can
suppress magnetic ordering temperature. NdZno.sBi2 possesses a small magnetoresistance of 12%

at 2K with a magnetic field of 9T. (Lao.sPro.s)Zno.sBi2 show reduced magnetoresistance compared

14



with NdZnosBi2 under identical conditions (6%). (LaosNdo.s)ZnoeBi2 possesses enhanced

magnetoresistance of 25% at 2K with a magnetic field of 9T.
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