
CloudQC: A Network-aware Framework for
Multi-tenant Distributed Quantum Computing

Ruilin Zhou∗, Yuhang Gan∗, Yi Liu, and Chen Qian
University of California, Santa Cruz

Abstract—Distributed quantum computing (DQC) that allows
a large quantum circuit to be executed simultaneously on multiple
quantum processing units (QPUs) becomes a promising approach
to increase the scalability of quantum computing. It is natural to
envision the near-future DQC platform as a multi-tenant cluster
of QPUs, called a Quantum Cloud. However, no existing DQC
work has addressed the two key problems of running DQC
in a multi-tenant quantum cloud: placing multiple quantum
circuits to QPUs and scheduling network resources to complete
these jobs. This work is the first attempt to design a circuit
placement and resource scheduling framework for a multi-tenant
environment. The proposed framework is called CloudQC, which
includes two main functional components, circuit placement and
network scheduler, with the objectives of optimizing both quan-
tum network cost and quantum computing time. Experimental
results with real quantum circuit workloads show that CloudQC
significantly reduces the average job completion time compared
to existing DQC placement algorithms for both single-circuit and
multi-circuit DQC. We envision this work will motivate more
future work on network-aware quantum cloud.

I. INTRODUCTION

Quantum computing technologies have shown great poten-
tial to solve complex problems and provide speedups such as
quadratic speed up in database search [1], and simulations for
physical sciences [2]. Current quantum computing techniques
are in the Noisy Intermediate-Scale Quantum (NISQ) era
[3], characterized by limited qubits, limited connectivity, and
prevalent noise. These challenges greatly hinder the usage of
quantum computing since it is commonly assumed that at least
millions of qubits are required according to the current qubits
error rates to execute a practical quantum algorithm [4]. Recent
advances show that increasing the number of qubits on a single
quantum processor is challenging due to hardware limitations
such as crosstalk errors [5], qubit addressability [5], and
fabrication difficulty [6]. More importantly, the significance
of these challenges usually increases with the size of quantum
hardware [7]. Instead of waiting for a powerful single quantum
computer, a promising approach to increase scalability is
distributed quantum computing (DQC) [7]–[15]. DQC makes
use of the resources of multiple quantum computers to per-
form large quantum computing jobs by separating each job
onto different quantum computers and using inter-processor
communication [8]. Quantum computers working on the same
DQC task rely on a quantum network to exchange quantum
bits (qubits) [7]–[11], [13]–[16].

It is natural to envision the near-future QDC platform as
a shared cluster of quantum computers [17], [18], called a

1Authors contributed equally to this research.

Quantum Cloud, similar to today’s cloud computing. This is
because quantum hardware is more expensive for individual
users. For example, industry companies like IBM [19], Mi-
crosoft [20], and NVIDIA [21] have already launched their
quantum cloud services. Recently developed quantum multi-
programming [18], [22], [23] enables multiple quantum com-
puting jobs (also called as quantum circuits) to be executed on
the same quantum computer simultaneously. This technology
further allows a multi-tenant quantum cloud that supports
DQC to become a reality in the near future.

One fundamental research problem of DQC is to divide a
quantum computing job, represented by a quantum circuit, into
sub-circuits and place them onto different quantum computers
such that each quantum computer has sufficient resources to
assign to these sub-circuits [7], [9], [11], [24]. Finding a
placement that optimizes inter-quantum-computer communi-
cation is crucial because sub-circuits on different quantum
computers will cause quantum network communication that
spends Einstein-Podolsky-Rosen (EPR) pairs (also called en-
tanglements), whose generation is known to be expensive [7],
[9], [11], [24]. However, the prior solutions [7], [9], [11], [24]
focus on placing a single circuit, and none considers a multi-
tenant cloud environment, where multiple users request their
quantum circuits to be executed in the cloud simultaneously.

We envision that circuit placement in a multi-tenant cloud
will become a new line of research because 1) it aligns
with the trend of developing a high-throughput, low-latency,
quantum cloud; 2) this problem significantly differs from
existing research on placing one single circuit in DQC and that
on placing virtual machines (VMs) in classic cloud computing.

Circuit placement in a multi-tenant cloud cannot directly
use single-circuit solutions [7], [9], [11], [24] because, 1) an
optimized placement for one circuit could leave difficult re-
maining resource to place other circuits. Hence, the process of
placing one circuit should include the consideration of whether
the remaining resource is difficult for other placements; 2)
prior solutions do not consider scheduling network resources
(EPR pairs) among different circuits, while network resource
contention should be a concern in a multi-tenant cloud.

On the other hand, existing network optimization methods
for VM placement in a classic cloud [25]–[27] do not fit
into a quantum cloud either. There are two main reasons: 1)
different separations of the same quantum circuit will cause
significantly different communication costs, while the network
traffic between different VMs will not change a lot by their
placement; 2) one key feature of quantum network operations

is its probabilistic nature [28]. EPR generation does not always
succeed. Hence the quantum communication in DQC could
fail even when sufficient resource is allocated. In a classic
cloud, network communication is assumed to be successful if
the bandwidth allows.

To our knowledge, there is no existing work that has ad-
dressed the above concerns for a multi-tenant quantum cloud.
This work is the first attempt to design a circuit placement
and resource scheduling framework for a multi-tenant
quantum cloud. Regardless of how the exact quantum
computing technologies will evolve, the research problem
studied in this work is a necessary step for multi-tenant
quantum computing platforms.

The proposed framework is called CloudQC, which includes
two main functional components: circuit placement and net-
work scheduler. The circuit placement function allows the
quantum cloud to assign resources to quantum circuits as a
bunch (at system initialization) or a sequence (when requests
from users come sequentially). The placement of one circuit
will optimize the remaining resources for other circuits. The
network scheduler function assigns network resources (EPR
pairs) among different sub-circuits. For important quantum
gates, CloudQC will assign them redundant network resources
to avoid potential backlogs that could cause long latency for
the entire circuit. CloudQC can also be used for single-circuit
placement and it improves existing methods. The implemen-
tation of our simulation is available to the public [29].

Our main contributions are summarized as follows:
• We are the first to model a multi-tenant quantum cloud ar-

chitecture that supports multiple QDC jobs and optimizes
both quantum network cost and quantum computing
performance.

• With the goal of improving both utilization, throughput,
and performance of the quantum cloud, we propose new
placement and scheduling methods that allow quantum
circuits to be executed on multiple QPUs. We design a
network scheduler that considers the quantum network’s
probabilistic nature and allocates communication qubits
to each remote quantum gate.

• Simulation results with real quantum circuit workloads
show that CloudQC significantly reduces the job com-
pletion time compared to existing DQC placement algo-
rithms for both single-circuit and multi-circuit DQC.

The rest of the paper is organized as follows: we first introduce
necessary background knowledge. Then, we will introduce
how we model components in our proposed quantum cloud
and how we model essential quantum operations in our work.

II. BACKGROUND

Qubits and entanglement. A quantum bit (qubit) is the fun-
damental unit in quantum computing and quantum networks.
A qubit can be in the superposition state of 1 and 0 [30]. Such
a state can expressed mathematically as: |Ψ⟩ = α|0⟩ + β|1⟩.
Upon the measurement on a qubit, the quantum state of the
qubit will become either state |0⟩ or state |1⟩ with probability
|α|2 or |β|2. An important feature of the quantum state is

q0
q1
q2
q3

H

H
H

H RZ H H Y

H
H

1-Qubit Gate 2-Qubit GateFront Layer

Fig. 1. Quantum circuit of a 4-qubit VQE algorithm

called an entanglement of two qubits. Two entangled qubits
are called an EPR pair [30], which is a fundamental unit in
quantum communication.

Quantum gates and quantum circuits. Most quantum
algorithms adopt a quantum circuit model, expressing quantum
operations as quantum gates. Mathematically, a quantum gate
can be considered as a matrix that works on the quantum state.
For example, one Hadmard gate (H gate) can be represented

by a unitary matrix 1√
2

[
1 1
1 −1

]
which transforms the

state |0⟩ to |0⟩+|1⟩√
2

, |1⟩ to |0⟩−|1⟩√
2

. In general, one gate that
works on n qubits can be represented by a 2n × 2n matrix.
Fig.1 shows an example of a 4-qubit variational quantum
eigensolver (VQE) circuit. Each horizontal line describes the
time evolution of the state of one qubit from left to right. Gates
operating independently on different qubits can be executed
simultaneously, for example, the H gates operating on q0
and q2. Gates on the same qubit have to respect the order
of the gates. For example, the CNOT gate (denoted as ⊕)
operating on q0 and q1 must wait until the H gate on q0 and
the CNOT gate on q1 and q2 are finished. As another important
term, a front layer is defined by the set of all gates that
have no unexecuted predecessors in the circuit. These gates
can be executed instantly and concurrently from a software
perspective. As shown in Fig. 1, the first three H gates on
q0, q2, q3 are the front layer.

Distributed quantum computing (DQC). DQC uses mul-
tiple quantum processing units (QPUs) to complete a large
quantum computing job jointly via a quantum network [12]–
[16]. When a gate is operated by two qubits on different QPUs,
called a remote gate, DQC uses remote communication to
establish an EPR pair between the QPUs.

III. QUANTUM CLOUD MODEL
This section introduces the system model for the quantum

cloud discussed in this work, an overview of our model is
shown in Fig. 2.

QPU model. Each QPU is also equipped with a classi-
cal computer, which is used to manipulate and manage the
quantum processor and transmit classical information such
as measurement results to other QPUs and the controller.
Each QPU includes two types of qubits: computing qubits to
perform quantum gates and communication qubits that assist
computing qubits for remote gates.

Controller. The main responsibility of the quantum cloud
controller is to find the placement for each submitted circuit,
and after that, it needs to decide resource allocation for

2

QPU B

Quantum
Link

QPU A

Communication
Qubit

Computing
Qubit

Fig. 2. Quantum Cloud

Operation Latency
Single-qubit gates t1q ∼ 0.1CX
CX and CZ gates t2q = 1CX
Measure tms ∼ 5CX
EPR preparation tiep ∼ 10CX

TABLE I
SUMMARY OF OPERATIONS AND LATENCY

all currently placed circuits to complete their execution. It
also monitors the status of each QPU, such as the available
computing and communication qubits.

Quantum links and network topology. In our model,
a quantum link is a channel for establishing entanglement
between QPUs. These links carry flying photonic qubits, with
devices such as beam splitters and photon detectors to realize
the entanglement process. Each QPU is assumed to have a
limited number of outgoing quantum links. Hence each QPU
is connected to several (but not all) other QPUs by quantum
links, forming a fixed topology of the QPU network.

Models for local gates and remote gates. In DQC, the
latency of a remote gate includes the time for EPR prepa-
ration, local gate, and measurement. To model the latency
of these operations, we use the measurement results of the
latency of different quantum operations from IBM’s quantum
platform [19] and recent experiments [16]. As shown in
Table I, We can see a remote gate consumes much longer
time than a local gate. In Table I, we compare different
operations to the execution time of one CX gate. Besides long
execution time, another property of EPR pair generation is
that its success is probabilistic. A failed EPR generation also
consumes communication qubits.

IV. PROBLEM FORMULATION
To execute multiple quantum circuits concurrently in a cloud

setting, we need to address the following questions:
1) Which circuits should we place if the current resource

cannot support all circuits? Given a quantum circuit,
which QPUs should the quantum cloud select to execute
the circuit?

2) After placing the circuits onto QPUs, how do we decide
the strategy for communication resource allocation?

These two sub-problems are the main focus of this work. We
define the first problem as multi-tenant circuit placement and
the second problem as quantum network scheduling.

A. Design Objectives

We outline some key considerations of achieving optimal
placement of quantum circuits and making resource allocation
decisions.

1) Minimizing the network cost: Remote gates that de-
pend on EPR pairs are much more expensive and time-
consuming than local gates. When partitioning a quan-
tum circuit, we need to ensure the sum of the cuts is
minimized so that the expensive remote communication
will also be minimized.

2) Dynamics in quantum cloud: The resource availability
in a quantum cloud changes dynamically with incoming
jobs. Thus, we need to enforce the capability constraint.
Moreover, we cannot focus solely on optimizing the
allocation of each single circuit, which might lead to
hard allocation for other circuits in the queue.

3) Minimizing job completion time and maximizing
quantum resource utilization: Reducing job comple-
tion time is essential for improving user experience. This
objective can also be reflected in improving resource
utilization and avoid wasting qubits.

Our main design aims to achieve these goals. Specifically,
during the multi-tenant circuit placement step, we strive to
minimize the number of remote operations while maximizing
quantum service utilization to avoid wasting qubits. In the
quantum network scheduling step, we aim to further improve
job completion time by effectively capturing the structure of
the quantum circuits. With these objectives in mind, we present
the formulation of our two problems.

B. The Multi-tenant Circuit Placement Problem

The model of the quantum cloud is depicted by G = (V,E),
where V represents the collection of QPUs and E denotes
the set of connections between them, with an edge e existing
between any two QPUs connected by a quantum link. Given
a batch of quantum circuits Tk = {T1, T2, . . . , TN}, we use
a binary variable xk to denote whether the k-th circuit will
be chosen to find placement in the current decision round. We
use Dk

ij to denote the number of 2-qubit gates between qki and
qkj . We use Cij to denote the communication cost of remote
gate operations between QPU i and QPU j. Cij can be defined
in many ways since executing one remote gate may require
multiple EPR pair generation attempts. It also depends on the
distance between two QPUs since it may require entanglement
swapping at intermediate nodes. For illustration, in our circuit
placement step, we define Cij as the length of the path between
QPU i and QPU j. Define π : [1, . . . , N] → [1, . . . , |V |],
where π(qki) indicates which QPU the i-th qubit of the k-th
circuit will be mapped to. Also, Rem(Vi) is the remaining
qubits on Vi. We formulate the multi-tenant circuit placement
as follows:

3

min
N∑

k=1

n∑
i=1

n∑
j=1

xkD
k
ijCπ(qki)π(q

k
j)

(1)

min
n∑

i=1

Rem(Vi) (2)

s.t.
∑

i:π(i)=j

|Qi| ≤ Capacity(Vj), ∀j ∈ {1, 2, . . . , n} (3)

xk ∈ {0, 1}, ∀k (4)
N∑

k=1

xk ≥ 1 (5)

R(Vj) ≤ ϵ, ∀j ∈ {1, 2, . . . , n} (6)

where

R(V) =
N∑

k=1

n∑
i=1

n∑
j=1

Dk
ij · δ(π(qki), π(qkj), Vj),

∀j ∈ {1, 2, . . . , n}

(7)

and δ(π(qki), π(q
k
j), Vj) is defined as:

δ(π(qki), π(q
k
j), Vj) =

1
if π(qki) ̸= π(qkj)

and (π(qki) = j or π(qkj) = j)

0 otherwise

The function δ(π(qki), π(q
k
j), Vj) is an indicator function that

returns 1 if qubits qki and qkj are mapped to different QPUs
and one of them is mapped to Vj , and 0 otherwise. The term
R(Vj) represents the number of remote operations involving
QPU Vj . It is calculated as the sum of all 2-qubit gates between
qubits mapped to different QPUs, where one of the QPUs is
Vj . Objective 1 minimizes the total communication cost for all
circuits. Objective 2 minimizes the sum of unused computing
qubits among all QPUs to maximize resource utilization.
Inequation 3 ensures that the sum of used qubits on each QPU
does not exceed its capacity. 4 ensures that xk is a binary
variable. Inequation 5 ensures at least one circuit must be
selected which avoids the case that all xk = 0. Inequation 6
enforces that the number of remote operations involving each
QPU does not exceed a threshold ϵ.

Complexity analysis and NP-hardness. We first consider
the simplest setting of our problem, where we only find
the placement of a single circuit with only compatibility
constraints. Given Cij and Dij are real values, the single
circuit placement problem we consider here falls into the
Quadratic Assignment Problem (QAP) [31], which is known
to be the most difficult problem in NP-hard class [32]. The
reduction can be constructed easily with the following: Given
one instance of the QAP problem with facilities F and
locations L, a weight function w : F × F −→ R, and a
distance function d : L×L −→ R. The corresponding circuit
placement problem can be constructed by: Q = F , E = L,
Dij = Wij and dij = Cij . And by this construction, we can
get an equivalent QAP problem.

To extend this problem to the multi-tenant setting, consider
multiple instances of the QAP, one for each circuit. For each
circuit k, we create qubits corresponding to the facilities in
the QAP instance and treat each circuit as an independent
QAP. We then define the communication costs Cij to model
interactions between qubits from different circuits. Then, we
can formulate the multi-circuit problem as one Multi-objective
Linear Programming problem. Due to the page limitation, we
omit the details here. This reduction shows that the multi-
tenant circuit placement problem is at least as hard as multiple
instances of the QAP. It easily gives that the multi-tenant
quantum circuit placement problem is also NP-hard.

C. Network Scheduling

Network scheduling example. Fig. 3 (a) shows all remote
gates of a 13-qubit multiplier circuit, and (b) shows the cor-
responding DAG. To be noticed, we ignore single-qubit gates
and only keep two-qubit inter-QPU remote gates, we With this
example, we can see various contentions on communication
qubits exist. For example, the first CX gate between q0 and q5
and the second CX gate between q1 and q6: These two gate
spans the same set of QPUs (QPU A and QPU B) and will
both rely on communication qubits on two QPUs. Also, the
CX gate between q6 and q12 and the CX gate between q0 and
q7, both gates will rely on the communication qubits on QPU
B. However, communication qubits on each QPU is limited,
and generating EPR pairs is a probabilistic operation. To
perform a remote gate, we must ensure that at least one
EPR pair between communication qubits on two QPU is
ready. Thus, we need to determine how many pairs of
communication qubits we need to prepare to perform EPR
pairs generation for each remote gate on the remote DAG.

1) Problem Formulation: The network scheduling problem
in our quantum setting can be formulated as follows. Let
Mi denote the number of communication qubits on QPU i.
After the circuit placement step, each job will be mapped to
a set of QPUs by a function: f : J → P(Q) where P(Q)
denotes the power set of QPUs. For each job Ji, we can get
a DAG G = (N ,A) where each node u ∈ N represents a
remote operation between two machines Qj , Qk, where j and
k depends on previous circuit placement step. Let xu be the
number of communication qubits allocated to remote operation
u. Let cu denote the makespan (total completion time) of node
u. Then, the objective is to minimize the makespan of all
remote operations while respecting the logical dependencies of
DAG G and communication resources constraint on each QPU.
The success probability of each remote operation u depends
on the allocated resources xu, denoted by pu(xu).

min max
u∈N

cu

s.t.
∑
u∈Ni

xu ≤Mi ∀i (8)

suj
≥ cui

∀(ui, uj) ∈ A (9)

cu = su + du(xu) ∀u ∈ N (10)

4

Fig. 3. (a) An example circuit spams three QPUs. (b)Corresponding remote DAG that only contains inter-QPU remote gates

Job
Batch

Cloud
Status

Batch Manager
Input: Job queue
Output: Chosen job

Graph Partition
Input: Chosen job
Output: Partitions of circuit

Community Detection
Input: Partitions of circuit, cloud status
Output: Detected communities

QPU Mapping
Input: Detected communities,
partitions of Circuit
Output: Mapping of partition to QPU

Circuit Placement
Generate Remote DAG

Input: Mapping of partition to QPU,
circuit
Output: Remote DAG

Priority Calculation
Input: Remote DAG
Output: Remote DAG with priority

Resources Allocation
Input: Selected paths, cloud status,
remote DAG with priority
Output: EPR pair allocation and
schedule

Network Scheduler

Fig. 4. Overview of our scheduler workflow

Inequation 8 denotes that, for each QPU i, the total allocated
resources at any time do not exceed the available communica-
tion qubits on each machine i. Here, Ni is the set of operations
involving machine i. Inequation 9 ensures that an operation
uj can only start after its predecessor ui has successfully
completed, respecting the logical dependencies in the DAG.
Eq. 10 denotes that the completion time of an operation u
is the start time plus the duration, which depends on the
allocated resources. It is important to note that when allocating
communication qubits to each remote gate that spans Qi

and Qj , the corresponding resources on both QPUs need to
decrease by the allocated amount to reflect the consumption
of communication resources on each involved QPU.

V. CLOUDQC’S DESIGN

A. Design Overview
We present the workflow of CloudQC in Fig. 4, which

encompasses two main steps: circuit placement and network
scheduling. CloudQC first determines the optimal placement
for a batch of circuits, which involves circuit partitioning and
assigning each partition to a suitable QPU to reduce remote
communication costs. This starts with determining several
partitioning strategies for a quantum circuit, followed by a

10

7

7

7

9

9

10

8 8

12

10

7

7

7

9

9

10

9 9

12Community
detection

QFT_n18
KNN_n31
VQE_n24

Batch
Manager KNN_n31

VQE_n24
QFT_n18

Graph
Partition

7 8

11 6

8

6 79 9

KNN_n31 QFT_n18 VQE_n24

Fig. 5. Example of a quantum cloud with three DQC jobs.

feasibility assessment to select a compatible set of QPUs
with the proposed community-detection method which will
be introduced in detail later. The optimal placement is then
selected through a scoring methodology. Upon finalizing the
partitioning approach and corresponding QPUs, the network
scheduler compiles the job and allocates the communication
resource to each remote operation. Leveraging the optimal
placement, CloudQC then calculates the network resource
allocation for the jobs based on the priorities we defined.
This includes determining the number of EPR pair generation
attempts required for each remote gate.

B. Circuit Placement

Fig. 5 illustrates an example of the circuit placement al-
gorithm. Three circuits are submitted to the quantum cloud.
First, we determine the processing order of the jobs using the
batch manager discussed below. Next, for each job, CloudQC
determines how to partition the quantum circuit using a graph-
partitioning algorithm. CloudQC then applies a modularity-
based community detection algorithm [33] to identify a set of
QPUs capable of running the job. We then map each partition
to a QPU. For each circuit, we identify several possible
placements. We use a scoring-and-filtering method to evaluate
the quality of each placement and select the best one.

Batch manager. CloudQC works for two job processing
modes: The batch mode and the incoming job mode. In the
incoming job mode, jobs arrive one after another and CloudQC
processes them in a first-in-first-out order. In the batch mode,
multiple jobs arrive at the same time and CloudQC needs
to decide the optimal order of executing the jobs. One naive
approach will use a greedy approach: sorting the circuits based

5

Algorithm 1: Circuit Placement
Input: Job J , imbalance factor list

α = {α1, α2, . . . , αn}
Output: Best Placement for J

1 InteractionGraph,DAG← Preprocessing(J.circuit)
2 if J.circuit.size < min({QPU.available | QPU ∈

Cloud}) then
3 Allocate J to the QPU with sufficient available resources
4 else
5 Initialize an empty list for potential placements:

placement list← ∅
6 foreach αi in α do
7 for i in range(⌈J.circuit.size

QPU.num ⌉, number of QPUs in
Cloud) do

8 res← graph partition(αi, i)
9 placement← Find placement(res)

10 time← estimate time(DAG, res)
11 communication cost←

calculate cost(res, InteractionGraph)
12 placement.score←

score(time, communication cost)
13 Add placement to placement list
14 end
15 end
16 best placement←

Find highest score(placement list)
17 end
18 return best placement

on a metric and allocating as many circuits as possible. How-
ever, such a method may result in partitioning one circuit into
too many pieces which will result in massive communication
costs and thus will eventually result in longer JCT.

We determine the order of the circuits by this metric:

Ii = λ1 ·
#CNOTs

ni
+ λ2 · ni + λ3 · di (11)

where ni denotes the number of qubits in ith job in the circuit,
and di denotes the circuit depth of ith job. Our metric is
based on the following considerations: 1) #CNOTs

ni
denotes

how ’dense’ one circuit is in terms of 2-qubit interactions. One
circuit with more 2-qubit interaction will likely have more re-
mote gates when distributed to multiple QPUs. Consequently,
circuits with a higher density of 2-qubit gates are more likely
to suffer from increased latency and reduced fidelity due to
the overhead of managing these remote interactions. 2) ni

represents the number of qubits in the job, which directly
correlates to the job’s resource requirements. 3) di denotes
the depth of the circuit, which reflects the execution time of
the circuit. Deeper circuits will take longer to execute, and
thus their impact on overall throughput and job completion
time is significant. By incorporating these factors, the metric Ii
aims to balance the trade-offs between communication costs,
resource utilization, and execution time. The weights λ1, λ2,

and λ3 allow for tuning the importance of each factor based
on specific priorities and goals.

Circuit placement summary. After determining the job we
need to execute in the batch, we need to find the placement
of each job. The objective of job placement is to find the
best placement that distributes a quantum circuit to several
QPUs of the quantum cloud. Our method is summarized in
Algorithm. 1. Our method works in a filtering-and-scoring
fashion: For each circuit to be executed, we first find several
methods to partition the circuit by tuning the imbalance factor
of the graph partition algorithm, detailed later. Then, for each
part, we first use the community detection algorithm to find a
set of QPUs and apply a simple heuristic to map the partition
to select QPUs. Then, for each placement we find, we evaluate
it by the following scoring function: S = α× 1

T +β× 1
C , where

T is the estimated running time of the quantum circuit, C is
the communication cost, and with this function, we consider
both the performance and execution time of the circuit.

Preprocessing. CloudQC first generates a Directed Acyclic
Graph (DAG) representing the logical dependency of the
gates of each quantum circuit. Each single-qubit gate has to
wait until its parent gate is finished, and similarly, a remote
CNOT(qi, qj) gate can be executed only when all previous
gates on qi and qj have finished. The interaction graph is a
weighted graph where the vertices are qubits of the circuit
and the edge denotes the interaction of two qubits, the weight
describes how many 2-qubit gates two qubits have. As shown
in Fig. 3, (a) shows an example 13-qubit adder circuit, and (b)
shows the corresponding DAG.

Partitioning quantum circuit. When partitioning quantum
circuits, there are the following considerations: 1) Minimize
communication cost. A remote gate depends on the remote
EPR pair and is much more expensive and time-consuming
than a local 2-qubit gate. Thus, we want to minimize remote
communication. 2) Reduce execution time. The execution time
determines the job completion time.

We first apply a graph-partition algorithm [34] to the
interaction graph based on these considerations. The algorithm
aims to divide a graph into smaller, interconnected subgraphs,
with the goal of minimizing the number of edges across
different subgraphs while maintaining a certain load-balancing
level. This is because extremely uneven partitions may not fit
the resource availability on QPUs. Thus, in our implementa-
tion, we also tune the imbalance factor, which defines how
imbalanced the result of graph partitioning can be.

Finding feasible QPU sets. For each quantum circuit
partition result, CloudQC needs to find a set of QPUs with
available resources to accommodate such partition. This is
a challenging task because the choice of QPUs affects not
only the performance of the current circuit but also future
circuits. We need to consider the following factors in addi-
tion to resource avaiability: 1) Communication cost. When
mapping the partition to QPUs, we need to ensure that the
parts with large inter-communication costs should be placed
onto QPUs with short network distances, because multi-hop
communication will further increase the network cost and job

6

failure rate. 2) Future resource availability. When choosing a
set of QPUs, we hope such placement can provide resource
availability for future jobs. One good example is that after
the current placement, the remaining QPU resources are still
within short network distances. To achieve these goals, we
use a modularity-based community detection algorithm [33]
to find feasible QPU sets. A community detection algorithm
identifies groups of nodes in a network that are more densely
connected internally than with the rest of the network. A
modularity-based community detection algorithm optimizes
the modularity metric, which quantifies the quality of the
division by comparing the density of links within communities
to the density of links between communities.

Additionally, we can embed the number of computing qubits
into the edge weight. This ensures that the selected QPUs
have both strong connectivity and abundant computing qubits,
capturing the dynamics of the quantum cloud and reflecting
the capability of the selected QPUs. The community detection
method provides a powerful framework for profiling each
QPU. This profiling can help measure the performance of
QPUs in various aspects. For example, in future modular
quantum computer designs, we might consider the reliability
of quantum links between QPUs and the reliability of each
QPU. This information can be easily encoded into the edge
weights.

Mapping partitioned circuits to selected QPUs. We use
a heuristic algorithm to map the partitioned circuits to QPUs.
We calculate the graph center of the found community and the
interaction graphs, which minimizes the longest topological
distance to all other nodes. Then, we map the center of
the remote interaction graph to the center of the detected
community graph. The rest of the mapping will be expanded
from the node with the highest weight edge. We perform a
breadth-first search around the first logical center to place
each qubit of the circuit to an available QPU with the least
distance to the center. The details of the heuristic are shown
in the Algorithm. 2. This simple heuristic ensures that two
partitions with a high communication cost will be mapped
to two close QPUs in the cloud.
C. Network Scheduling

We would like to achieve the following desirable properties
of network scheduling:

• Effectiveness: More ‘important’ sub-jobs in the remote
DAG should receive more communication resources to
prevent subsequent tasks from being backlogged. When
multiple sub-jobs can be executed concurrently, more
important jobs should receive more resources.

• Starvation freedom: When multiple jobs compete for
communication resources on the same QPU, no job
should be starved forever.

We use the same example in n Fig. 3 to show our observations:
q0 and q5 and the second CX gate between q1 and q6: These
two gates span the same set of QPUs and can be processed in
parallel. However, these two gates have different ’importance’
on the DAG: the first gate is on the critical path, and there are
also more gates on its corresponding paths meaning that the

Algorithm 2: Find Placement
Input: Partition P = {P1, P2, . . . , Pn}, Quantum

Cloud QPU Topology Graph Gc, Remote
Partition Interaction Graph Gp

Output: Partition to QPU Mapping:mapping[]
1 Initialize mapping[] = -1
2 C ← CommunityDetection(Gc)
3 Cc ← GraphCenter(C)
4 Cp ← GraphCenter(Gp)
5 mapping[Cp]← Cc

6 q ← BfsQueueGen(Gc)
7 while q is not empty do
8 qi ← q.front()
9 Cc ← GraphCenter(C)

10 if mapping[qi] = -1 then
11 mapping[qi]← Cc

12 end
13 N(qi)← GetNeighbors(qi)
14 N(Cc)← GetKClosestNode(Cc)
15 mapping[N(qi)]← N(Cc)
16 q.pop()
17 end

Algorithm 3: Network Scheduler
Input: Remote DAG

1 Compute priorities for all nodes in the DAG
2 Initialize front layer based on in-degree and out-degree
3 while Remote DAG is not empty do
4 Define resource availability for each partition
5 Identify competing sets for resource allocation
6 Allocate resources between competing sets
7 foreach node in front layers do
8 Determine resources allocation based on the

priority of node
9 if node is successfully executed then

10 Update status table
11 Prepare for node deletion and successor

addition
12 end
13 end
14 Update front layer and DAG based on node

execution
15 end

failure of this gate may cause more gates to be backlogged.
Thus, we should assign redundant resources to the first gate
to increase failure tolerance. Another example is the seventh
gate between q6 and q11, which crosses QPUs B and C, and
the eighth gate between q1 and q8, which crosses QPUs A
and B. Both gates will use communication qubits on QPU
B, but we can see the gate between q1 and q8 is far less
important than the first gate. Thus, CloudDC will allocate more
communication resources to the ninth gate than the eighth gate.

With these observations, CloudDC first quantifies the impor-

7

tance of each node on remote DAG with the priority we define.
We denote the priority of node ni as pi and P(ni) as the set
of paths connecting node ni with any remote DAG leaves. The
priority pi can now be computed by: pi = maxP∈P(ni) |P |,
where P represents any path from ni to a leaf node, and |P |
is the length of path P in terms of the number of edges. This
priority calculation is based on the depth of the longest path
from node ni to any leaf node in the DAG. With this priority
value, we can determine whether the node is on the critical
path of remote DAG and how many nodes will be blocked if
the execution of the node is unsuccessful.

With these observations and our definition on priority,
we summarize our method for network scheduling in Algo-
rithm. 3. The network scheduling algorithm first calculates the
priority of each node. Then, it initializes the front layer, which
is defined by the remote operations that can be processed in
parallel. It then identifies contentions between different QPU
partitions and then allocates resources to them. The network
scheduler repeatedly checks the current front layer on whether
each gate is executed successfully and updates the front layer
in the graph if some gates are completed. The above process
repeats until the remote DAG is empty.

VI. EVALUATION

In this section, we use experimental evaluations to answer
the following questions:

• How does the proposed job placement method compare
to existing algorithms (Sec. VI. B)?

• How much can network scheduling improve compared
to other resource allocation strategies in terms of job
completion time (VI. C)?

• How is CloudQC’s general performance in a multi-tenant
setting (VI. D)?

A. Evaluation Setting
Workloads. We use the quantum circuits from an existing

benchmark [35], whose characteristics are shown in Table II.
Implementation. Since there is no publicly available quan-

tum cloud simulator, we developed a customized discrete-event
simulator in Python. For quantum circuit analyzing, we use
PytKet [36]. We use PyMetis, a Python version package for
Metis [34] for graph partition. The simulation code is available
to the public [29].

Topology setting. We set the default number of QPUs
in a quantum cloud to be 20; each QPU is equipped with
20 computing qubits and 5 communication qubits. We use a
random topology, and we set the probability of generating an
edge to be 0.3. We set the success probability of generating
an EPR pair to be 0.3, consistent to existing work and the
experiments [16], [37].

B. Evaluation on Circuit Placement
We first evaluate how CloudQC performs on placing

single circuits. The metric is the communication cost∑n
i=1

∑n
j=1 D

k
ijCπ(qki)π(q

k
j)

(In single circuits case we omit xk

term) defined in Section III. We use the following baselines
in comparison for circuit placement.

TABLE II
QUANTUM CIRCUIT CHARACTERISTICS

Name # of Qubits # of 2-Qubit Gates Circuit Depth
ghz n127 127 126 128
bv n70 70 36 40
bv n140 140 72 76
ising n34 34 66 16
ising n66 34 130 16
ising n98 98 194 16
cat n65 65 64 66
cat n130 130 129 131

swap test n115 115 456 60
knn n67 67 264 36
knn n129 129 512 67
qugan n71 71 418 72
qugan n111 111 658 112

cc n64 64 64 195
adder n64 64 455 78

adder n118 118 845 132
multiplier n45 45 2574 462
multiplier n75 75 7350 1300

qft n63 63 9828 494
qft n160 160 25440 1270
qv n100 100 15000 701

TABLE III
NUMBER OF REMOTE OPERATIONS OF SINGLE-CIRCUIT PLACEMENT

Circuit SA Random GA CdQC-BFS CdQC
ghz n127 145 161 90 10 8
bv n70 41 38 17 26 18
bv n140 96 98 54 101 53
ising n34 38 36 6 2 2
ising n66 100 110 36 6 8
ising n98 214 250 96 10 10
cat n65 52 44 20 5 3
cat n130 153 145 92 10 8

swap test n115 398 472 294 352 192
knn n67 158 230 106 168 100
knn n129 528 720 374 376 220
qugan n71 334 482 278 180 144
qugan n111 838 1080 718 404 248

cc n64 45 44 44 46 44
adder n64 269 450 142 33 33

adder n118 748 1225 613 60 37
multiplier n45 596 1452 493 611 462
multiplier n75 2100 6809 2255 1993 1766

qft n63 2504 3202 2368 3012 2358
qft n160 12326 15514 14246 14814 11132

• Random Placement: It starts with a random node and
does a random search to select a set of QPUs that meet
computing constraints.

• Simulated Annealing (SA): SA is a meta-heuristic that is
widely used in optimization problems and placement in
the cloud. Here, we use the strategy of a recent work [11],
which uses SA for qubit allocation for a single DQC job.

• Genetic Algorithm (GA) [38]: GA is also a meta-heuristic
that is widely used in optimization problems.

• CloudQC-BFS: Also a method proposed by us. It differs
from CloudQC in using a BFS search to find feasible
QPU for each partition instead of community detection.

1) Circuit Placement for Single Circuit with Default Set-
ting: We show the results on circuit placement in Table III.
We can see that: 1) CloudQC (and CloudQC-BFS) signif-
icantly outperforms other baselines for most circuits. For

8

10 15 20 25 30 35 40 45 50
of computing qubits per QPU

200

400

600

800

1000

1200
Co

m
m

un
ica

tio
n

Ov
er

he
ad

Random
Annealing
GA
CloudQC-BFS
CloudQC

Fig. 6. Overhead vs # of computing
qubits: qugan n111

10 15 20 25 30 35 40 45 50
of computing qubits per QPU

6000
8000

10000
12000
14000
16000

Co
m

m
un

ica
tio

n
Ov

er
he

ad

Random
CloudQC-BFS
GA
Annealing
CloudQC

Fig. 7. Overhead vs # of computing
qubits: qft n160

10 15 20 25 30 35 40 45 50
of computing qubits per QPU

0

2000

4000

6000

8000

Co
m

m
un

ica
tio

n
Ov

er
he

ad

Random
GA
Annealing
CloudQC-BFS
CloudQC

Fig. 8. Overhead vs # of computing
qubits: multiplier n75

10 15 20 25 30 35 40 45 50
of computing qubits per QPU

6000
8000

10000
12000
14000
16000
18000
20000
22000

Co
m

m
un

ica
tio

n
Ov

er
he

ad

Random
CloudQC-BFS
GA
Annealing
CloudQC

Fig. 9. Overhead vs # of computing
qubits: QV n100

5 6 7 8 9 10
of Communication Qubits

200

220

240

260

280

M
ea

n
Jo

b
Co

m
pl

et
io

n
Ti

m
e Greedy

Average
Random
CloudQC

Fig. 10. Job Completion Time vs # of
communication qubits: qugan n111

5 6 7 8 9 10
of Communication Qubits

4000

6000

8000

10000

12000

M
ea

n
Jo

b
Co

m
pl

et
io

n
Ti

m
e Greedy

Average
Random
CloudQC

Fig. 11. Job Completion Time vs # of
communication qubits: qft n160

5 6 7 8 9 10
of Communication Qubits

800
900

1000
1100
1200
1300
1400

M
ea

n
Jo

b
Co

m
pl

et
io

n
Ti

m
e Greedy

Average
Random
CloudQC

Fig. 12. Job Completion Time vs # of
communication qubits: multiplier n75

5 6 7 8 9 10
of Communication Qubits

3000

4000

5000

6000

7000

8000

M
ea

n
Jo

b
Co

m
pl

et
io

n
Ti

m
e Greedy

Average
Random
CloudQC

Fig. 13. Job Completion Time vs # of
communication qubits: QV n100

2000 3000 4000 5000 6000 7000 8000 900010000
Completion Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pl
et

io
n

Ti
m

e
CD

F

CloudQC
CloudQC-BFS
CloudQC-FIFO

Fig. 14. Job Completion CDF Time
with Mixed Workloads

1000015000200002500030000350004000045000
Completion Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pl
et

io
n

Ti
m

e
CD

F CloudQC
CloudQC-BFS
CloudQC-FIFO

Fig. 15. Job Completion Time CDF
with QFT Workloads

800 1000 1200 1400 1600 1800 2000
Completion Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pl
et

io
n

Ti
m

e
CD

F CloudQC
CloudQC-BFS
CloudQC-FIFO

Fig. 16. Job Completion Time CDF
with Qugan Workloads

2000 3000 4000 5000 6000 7000 8000
Completion Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pl
et

io
n

Ti
m

e
CD

F CloudQC
CloudQC-BFS
CloudQC-FIFO

Fig. 17. Job Completion Time CDF
with Arithmetic Workloads

cc n64, bv n70, knn n96, cat n65, cat n130, ising n34 and
ghz n127, CloudQC provides similar results to CloudQC-
BFS. The reason is that these circuits have fewer 2-qubit
gates, and graph partition contributes most to the final result.
However in larger circuits with more complicated inter-QPU
interactions, such as qft n63, qft n160, multiplier n75, and
swap test n115, CloudQC performs significantly better than
CloudQC-BFS, which shows the effectiveness of the proposed
mapping method and community detection. 3) SA works better
than random placement but much worse than CloudQC. The
reason is that the performance of SA highly depends on the
initial placement. We also observed a long running time (>1
hour) of SA and GA while CloudQC finishes within 2 minutes
for most circuits.

2) Effect of Number of Computing Qubits: We vary the
number of computing qubits on each QPU by 20, 30, 40, and
50. Due to the page limit, we select the following representa-
tive quantum circuits as benchmarks: qv n100, multiplier n75,
qft n160, and qugan n111. We show the results in Figs. 6 to
9. We can see CloudQC performs the best for these circuits,
and CloudQC-BFS also performs better than other baselines.
Although it also tends to select close connected QPUs it may
fail to capture the topology information of the cloud. SA and
GA perform worse than our methods in that it fails to capture
the communication information between different qubits in the
circuit. GA performs better than SA, but we also observe a
much longer running time.
C. Evaluation on Network Scheduling

We compare the following methods to evaluate the flowing
scheduling in CloudQC.

• Greedy: It always allocates the maximum resources to the
remote operation with the highest priority.

• Average: It distributes communication resources evenly
among all remote operations.

• Random: Each remote operation has an equal probability
of receiving communication resources.

1) Network Scheduling with Default Setting: Figure 22
illustrates the network scheduling results with default settings.
CloudQC significantly achieves the least job completion time
for most quantum circuits especially with more complex and
random structures such as Quantum Fourier Transform (QFT),
Multiplier, and Quantum Volume (QV) circuits. This is due to
their ability to utilize the DAG topology. For circuits without
complex DAG topology, such as BV, Qugan, KNN, and Swap
test, CloudQC performs similarly to others. Greedy has the
worst job completion time.

2) Effect of Number of Communication Qubits: We vary the
number of communication qubits from 5 to 10 and show the
corresponding results in Figs. 10 to 13. We use qugan n111,
qft n63, multiplier n75 and QV n100 as representative bench-
marks. From all results, we can see the number of communica-
tion qubits has a large impact on the completion time. Similar
to previous observations for circuits with a more complicated
structure, CloudQC achieves a significantly shorter completion
time compared to other methods.

3) Effect of EPR success Probability: We vary the EPR
success probability from 0.1 to 0.5, and the corresponding
results are shown from Figs.18 to 21. We observe that in-
creasing the EPR probability decreases job completion time.
Across all scenarios, CloudQC consistently achieves shorter
job completion time except for one data point (probability 0.1
for qugan n111). With these results, we can see that improving
the success rate of EPR pairs will be a crucial step in the future
DQC hardware.

9

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
EPR Probability

200
250
300
350
400
450
500

M
ea

n
Jo

b
Co

m
pl

et
io

n
Ti

m
e Greedy

Average
Random
CloudQC

Fig. 18. Job Completion Time vs EPR
probability: qugan n111

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
EPR Probability

0
10000
20000
30000
40000
50000
60000
70000

M
ea

n
Jo

b
Co

m
pl

et
io

n
Ti

m
e Greedy

Average
Random
CloudQC

Fig. 19. Job Completion Time vs EPR
probability: qft n160

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
EPR Probability

1000
2000
3000
4000
5000
6000
7000
8000

M
ea

n
Jo

b
Co

m
pl

et
io

n
Ti

m
e Greedy

Average
Random
CloudQC

Fig. 20. Job Completion Time vs EPR
probability:multiplier n75

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
EPR Probability

0

10000

20000

30000

40000

50000

M
ea

n
Jo

b
Co

m
pl

et
io

n
Ti

m
e Greedy

Average
Random
CloudQC

Fig. 21. Job Completion Time vs EPR
probability: QV n100

kn
n_1

29

qu
ga

n_n
11

1

qft
_n6

3

qft
_n1

60

vq
e_u

ccs
d_n

28

10
0.q

asm

ad
de

r_n
64

ad
de

r_n
11

8

mult
ipli

er_
n4

5

mult
ipli

er_
n7

5

Circuit Name

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Jo
b

Co
m

pl
et

io
n

Ti
m

e

CloudQC
Average
Random
Greedy

Fig. 22. Network Scheduling with Different Methods with Default Setting

D. Evaluation on Multi-Tennant Settings
1) Evaluation Setting: For multi-tenant experiments, we

use the following workloads of different types of quantum
circuits with different numbers of qubits:

• Mixed workloads: It contains different types of quantum
circuits with different numbers of qubits: knn n129,
qugan n111, qugan n71, qft n63, multiplier n45, mul-
tiplier n75.

• QFT workloads: It contains QFT circuits with different
numbers of qubits: qft n29, qft n63, qft n100.

• Qugan workloads: It contains Qugan circuits with
different numbers of qubits:qugan n39, qugan n71,
qugan n111.

• Arithmetic workloads: It contains different types of quan-
tum arithmetic circuits with different numbers of qubits:
adder n64, adder n118, multiplier n45, multiplier n75

We compare CloudQC with the following methods:
• CloudQC-BFS: It uses the same batch manager as

CloudQC but uses the BFS method in each circuit place-
ment.

• CloudQC-FIFO: It uses the same placement and network
scheduling methods as CloudQC but a First-In-First-Out
processing order for batched jobs.

For each workload, we generate 50 batches, each of which
includes 20 circuits selected randomly from the workload.
Each batch is run 20 times with different network topologies.

We show the results from Figs. 14 to 17 as the CDF of the
job completion time. We find that CloudQC performs better
than other methods, followed by CloudQC-FIFO. In mixed
workloads, CloudQC finishes around 88% in around 5000
units of time, and CloudQC-FIFO only finishes around 70%
at the same time. In circuits with complicated patterns and
longer depths, we can see CloudQC still performs significantly

better than CloudQC-BFS and CloudQC-FIFO. However for
circuits with shorter depths(Qugan), the differences are small.
CloudQC-BFS does not perform well in multi-tenant scenarios
although in placing single circuits, it achieves the smaller cost.
Hence we find that CloudQC is the best choice for both single-
circuit and multi-circuit placement and network scheduling.

VII. RELATED WORK

Distributed Quantum Computing. Distributed quantum
computing has been studied in recent years. Some of the works
focus on qubit allocation and compilers [7], [11], [39]–[41].
Mao et al. [11] proposed to use a hybrid simulated annealing
algorithm to determine the qubits allocation in distributed
quantum computing. Andres-Martinez and Heunen [40] used
partitioning hypergraph to minimize communication costs.
Baker et al. [42] used remote SWAP gates to replace all
remote CX gates in distributed quantum programs and obtain
higher throughput. Autucomm [7] identified burst communi-
cation patterns in DQC and determined the best choice for
using the cat-entangler method or teleportation method. These
works mainly focus on optimizing communication of a single
circuit and do not take the probabilistic nature of quantum
communication into consideration.

Quantum Multi-programming and Quantum Cloud.The
idea of quantum multi-programming was proposed in [22]; it
considers fairness when allocating multiple quantum programs
on one single QPU. [23] use similar ideas and evaluate their
methods on various benchmarks on real devices. Liu et al.
[43] proposed a quantum data center architecture composed
of quantum random access memory and quantum networks
and visioned three quantum applications. Ravi et al. [44]
also surveyed various applications and resource utilization
problems in a cloud environment for quantum computing.

VIII. CONCLUSION

This work presents a network-aware framework for DQC
in a multi-tenant quantum cloud. The framework, called
CloudQC, consists of two critical components: circuit place-
ment and network scheduling. CloudQC is the first work
to consider the placement and network scheduling for mul-
tiple concurrent DQC circuits. In addition, it incorporates
the probabilistic nature of quantum networks to allow re-
dundant network resources for important quantum gates in
each circuit avoiding backlogs of later circuits and reducing
the job completion time. The simulation results show that
CloudQC significantly reduces the job completion time and
cost for both single-circuit and multiple-circuit placement and
scheduling. We believe our work is a valuable step in quantum

10

computing and networks as it envisions a practical quantum
cloud infrastructure that will surely emerge in the near future.

ACKNOWLEDGMENT

The authors were partially supported by NSF Grants
2322919, 2420632, 2426031, 2426940, 2114113, and DoE
Grant DE-SC0022069.

REFERENCES

[1] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, 1996, pp. 212–219.

[2] R. P. Feynman et al., “Simulating physics with computers,” Int. j. Theor.
phys, vol. 21, no. 6/7, 2018.

[3] Y. Ding and F. T. Chong, “Quantum computer systems: Research for
noisy intermediate-scale quantum computers,” 2020.

[4] D. Monroe, “Building a practical quantum computer,” Communications
of the ACM, vol. 65, no. 7, pp. 15–17, 2022.

[5] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-
ion quantum computing: progress and challenges,” Appl. Phys. Rev.,
2019.

[6] M. Brink, J. M. Chow, J. Hertzberg, E. Magesan, and S. Rosenblatt,
“Device challenges for near term superconducting quantum processors:
frequency collisions,” in Proceedings of the IEEE International Electron
Devices Meeting (IEDM), 2018.

[7] A. Wu, H. Zhang, G. Li, A. Shabani, Y. Xie, and Y. Ding, “Autocomm:
A framework for enabling efficient communication in distributed quan-
tum programs,” in 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2022, pp. 1027–1041.

[8] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M.
Duan, and J. Kim, “Large-scale modular quantum-computer architecture
with atomic memory and photonic interconnects,” Physical Review A,
vol. 89, no. 2, p. 022317, 2014.

[9] A. Wu, Y. Ding, and A. Li, “Qucomm: Optimizing collective com-
munication for distributed quantum computing,” in Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture,
2023, pp. 479–493.

[10] D. Cuomo, M. Caleffi, K. Krsulich, F. Tramonto, G. Agliardi, E. Prati,
and A. S. Cacciapuoti, “Optimized Compiler for Distributed Quantum
Computing,” ACM Transactions on Quantum Computing, vol. 4, no. 2,
pp. 1–29, Jun. 2023.

[11] Y. Mao, Y. Liu, and Y. Yang, “Qubit allocation for distributed quantum
computing,” in IEEE INFOCOM 2023-IEEE Conference on Computer
Communications. IEEE, 2023, pp. 1–10.

[12] S. Hermans, M. Pompili, H. Beukers, S. Baier, J. Borregaard, and
R. Hanson, “Qubit teleportation between non-neighbouring nodes in a
quantum network,” Nature, vol. 605, no. 7911, pp. 663–668, 2022.

[13] J. Niu, L. Zhang, Y. Liu, J. Qiu, W. Huang, J. Huang, H. Jia, J. Liu,
Z. Tao, W. Wei et al., “Low-loss interconnects for modular supercon-
ducting quantum processors,” Nature Electronics, vol. 6, no. 3, pp. 235–
241, 2023.

[14] P. Magnard, S. Storz, P. Kurpiers, J. Schär, F. Marxer, J. Lütolf, T. Walter,
J.-C. Besse, M. Gabureac, K. Reuer et al., “Microwave quantum link be-
tween superconducting circuits housed in spatially separated cryogenic
systems,” Physical Review Letters, vol. 125, no. 26, p. 260502, 2020.

[15] Y. Li and J. Thompson, “High-rate and high-fidelity modular inter-
connects between neutral atom quantum processors,” arXiv preprint
arXiv:2401.04075, 2024.

[16] M. Pompili, S. L. Hermans, S. Baier, H. K. Beukers, P. C. Humphreys,
R. N. Schouten, R. F. Vermeulen, M. J. Tiggelman, L. dos Santos Mar-
tins, B. Dirkse et al., “Realization of a multinode quantum network of
remote solid-state qubits,” Science, vol. 372, no. 6539, pp. 259–264,
2021.

[17] G. S. Ravi, K. N. Smith, P. Gokhale, and F. T. Chong, “Quantum
computing in the cloud: Analyzing job and machine characteristics,”
in Proceedings of IEEE International Symposium on Workload Charac-
terization (IISWC), 2021.

[18] L. Liu and X. Dou, “Qucloud: A new qubit mapping mechanism
for multi-programming quantum computing in cloud environment,” in
2021 IEEE International symposium on high-performance computer
architecture (HPCA). IEEE, 2021, pp. 167–178.

[19] “Utility-scale quantum computing on ibm cloud,”
2024. [Online]. Available: https://ibm.com/blog/announcement/
new-ibm-quantum-systems-on-the-ibm-cloud/

[20] “Azure quantum cloud service: Get innovative quantum hardware,
software, and solutions in a single cloud service.” 2024. [Online].
Available: https://azure.microsoft.com/en-us/products/quantum

[21] “Nvidia launches cloud quantum-computer simulation microser-
vices.” 2024. [Online]. Available: https://nvidianews.nvidia.com/news/
nvidia-launches-cloud-quantum-computer-simulation-microservices

[22] P. Das, S. S. Tannu, P. J. Nair, and M. Qureshi, “A case for multi-
programming quantum computers,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
291–303.

[23] S. Niu and A. Todri-Sanial, “Enabling multi-programming mechanism
for quantum computing in the nisq era,” Quantum, vol. 7, p. 925, 2023.

[24] P. Andres-Martinez, T. Forrer, D. Mills, J.-Y. Wu, L. Henaut, K. Ya-
mamoto, M. Murao, and R. Duncan, “Distributing circuits over hetero-
geneous, modular quantum computing network architectures,” Jul. 2023,
arXiv:2305.14148 [quant-ph].

[25] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
Proceedings of IEEE INFOCOM, 2010.

[26] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proceedings of ACM SIGCOMM,
2011.

[27] M. Masdari, S. S. Nabavi, and V. Ahmadi, “An overview of virtual
machine placement schemes in cloud computing,” Journal of Network
and Computer Applications, 2016.

[28] R. Van Meter, Quantum networking. John Wiley & Sons, 2014.
[29] https://github.com/embersax/CloudQC.
[30] M. A. Nielsen and I. Chuang, “Quantum computation and quantum

information,” 2002.
[31] E. M. Loiola, N. M. M. De Abreu, P. O. Boaventura-Netto, P. Hahn, and

T. Querido, “A survey for the quadratic assignment problem,” European
journal of operational research, vol. 176, no. 2, pp. 657–690, 2007.

[32] S. Sahni and T. Gonzalez, “P-complete approximation problems,” Jour-
nal of the ACM (JACM), vol. 23, no. 3, pp. 555–565, 1976.

[33] M. E. Newman, “Modularity and community structure in networks,”
Proceedings of the national academy of sciences, vol. 103, no. 23, pp.
8577–8582, 2006.

[34] G. Karypis and V. Kumar, “Metis: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices,” 1997.

[35] A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, “Qasmbench: A low-
level quantum benchmark suite for nisq evaluation and simulation,” ACM
Transactions on Quantum Computing, vol. 4, no. 2, pp. 1–26, 2023.

[36] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and
R. Duncan, “t— ket¿: a retargetable compiler for nisq devices,” Quantum
Science and Technology, vol. 6, no. 1, p. 014003, 2020.

[37] S. Shi and C. Qian, “Concurrent entanglement routing for quantum
networks: Model and designs,” in SIGCOMM, 2020, pp. 62–75.

[38] J. H. Holland, “Genetic algorithms,” Scientific american, vol. 267, no. 1,
pp. 66–73, 1992.

[39] J. M. Baker, C. Duckering, A. Hoover, and F. T. Chong, “Time-sliced
quantum circuit partitioning for modular architectures,” in Proceedings
of the 17th ACM International Conference on Computing Frontiers,
2020, pp. 98–107.

[40] P. Andres-Martinez and C. Heunen, “Automated distribution of quantum
circuits via hypergraph partitioning,” Physical Review A, vol. 100, no. 3,
p. 032308, 2019.

[41] S. DiAdamo, M. Ghibaudi, and J. Cruise, “Distributed quantum com-
puting and network control for acc elerated vqe,” arXiv preprint
arXiv:2101.02504, 2021.

[42] J. M. Baker, C. Duckering, A. Hoover, and F. T. Chong, “Time-sliced
quantum circuit partitioning for modular architectures.” Catania Sicily
Italy: ACM, May 2020, pp. 98–107.

[43] J. Liu, C. T. Hann, and L. Jiang, “Data centers with quantum random
access memory and quantum networks,” Physical Review A, vol. 108,
no. 3, p. 032610, 2023.

[44] G. S. Ravi, K. N. Smith, P. Gokhale, and F. T. Chong, “Quantum
computing in the cloud: Analyzing job and machine characteristics,”
in 2021 IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 2021, pp. 39–50.

11

https://ibm.com/blog/announcement/new-ibm-quantum-systems-on-the-ibm-cloud/
https://ibm.com/blog/announcement/new-ibm-quantum-systems-on-the-ibm-cloud/
https://azure.microsoft.com/en-us/products/quantum
https://nvidianews.nvidia.com/news/nvidia-launches-cloud-quantum-computer-simulation-microservices
https://nvidianews.nvidia.com/news/nvidia-launches-cloud-quantum-computer-simulation-microservices
https://github.com/embersax/CloudQC

	Introduction
	Background
	Quantum Cloud Model
	Problem Formulation
	Design Objectives
	The Multi-tenant Circuit Placement Problem
	Network Scheduling
	Problem Formulation

	CloudQC's Design
	Design Overview
	Circuit Placement
	Network Scheduling

	Evaluation
	Evaluation Setting
	Evaluation on Circuit Placement
	Circuit Placement for Single Circuit with Default Setting
	Effect of Number of Computing Qubits

	Evaluation on Network Scheduling
	Network Scheduling with Default Setting
	Effect of Number of Communication Qubits
	Effect of EPR success Probability

	Evaluation on Multi-Tennant Settings
	Evaluation Setting

	Related Work
	Conclusion
	References

