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ABSTRACT

Data valuation is essential for quantifying data’s worth, aiding in assessing data
quality and determining fair compensation. While existing data valuation methods
have proven effective in evaluating the value of Euclidean data, they face limitations
when applied to the increasingly popular graph-structured data. Particularly, graph
data valuation introduces unique challenges, primarily stemming from the intricate
dependencies among nodes and the growth in value estimation costs. To address the
challenging problem of graph data valuation, we put forth an innovative solution,
Precedence-Constrained Winter (PC-Winter) Value, to account for the complex
graph structure. Furthermore, we develop a variety of strategies to address the
computational challenges and enable efficient approximation of PC-Winter. Ex-
tensive experiments demonstrate the effectiveness of PC-Winter across diverse
datasets and tasks.

1 INTRODUCTION

The abundance of training data has been a key driver of recent advancements in machine learning
(ML) (Zhou et al., 2017). As models and the requisite training data continue to expand in scale,
data valuation has gained significant attention due to its ability to quantify the usefulness of data
for ML tasks and determine fair compensation (Pei, 2020; Sim et al., 2022). Notable techniques
in this field include Data Shapley (Ghorbani & Zou, 2019) and its successors (Kwon & Zou, 2021;
Wang & Jia, 2023; Schoch et al., 2022), which have gained prominence in assessing data value.
Despite the promise of these methods, they are primarily designed for Euclidean data, where samples
are often assumed to be independent and identically distributed (i.i.d.). Given the prevalence of
graph-structured data in the real world (Fan et al., 2019; Shahsavari & Abbeel, 2015; Li et al.), there
arises a compelling need to perform data valuation for graphs. However, due to the interconnected
nature of samples (nodes) on graphs, existing data valuation frameworks are not directly applicable
to addressing the graph data valuation problem.

In particular, designing data valuation methods for graph-structured data faces several fundamental
challenges: Challenge I: Graph machine learning algorithms such as Graph Neural Networks
(GNNs) (Kipf & Welling, 2016; Veličković et al., 2017; Wu et al., 2019) often involve both labeled
and unlabeled nodes in their model training process. Therefore, unlabeled nodes, despite their absence
of explicit labels, also hold intrinsic value. Existing data valuation methods, which typically assess
a data point’s value based on its features and the associated label, do not readily accommodate the
valuation of unlabeled nodes within graphs. Challenge II: Nodes in a graph contribute to model
performance in an interdependent and complex way: (1) Unlabeled nodes, while not providing direct
supervision, can contribute to model performance by potentially affecting multiple labeled nodes
through message-passing. (2) Labeled nodes, on the other hand, contribute by providing direct
supervision signals for model training, and similarly to unlabeled nodes, they also contribute by
affecting other labeled nodes through message-passing. Challenge III: Traditional data valuation
methods are often computationally expensive due to repeated retraining of models (Ghorbani & Zou,
2019). The challenge is magnified in the context of graph-structured data, where samples contribute to

Code is released at https://github.com/frankhlchi/graph-data-valuation.
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model performance in multifaceted manners. Additionally, the inherent message-passing mechanism
in GNN models further amplifies the computational demands for model re-training.

In this work, we make the first attempt to explore the challenging graph data valuation problem, to
the best of our knowledge. In light of the aforementioned challenges, we propose the Precedence-
Constrained Winter (PC-Winter) Value, a pioneering approach designed to intricately unravel and
analyze the contributions of nodes within graph structures, thereby offering a detailed perspective on
the valuation of graph elements. Our key contributions are as follows:

• We formulate the graph data valuation problem as a unique cooperative game (Von Neumann &
Morgenstern, 2007) with special coalition structures. Specifically, we decompose each node in the
graph into several “players” within the game, each representing a distinct contribution to model
performance. We then devise the PC-Winter to address the game, enabling the accurate valuation
of all players. The PC-Winter values of these players can be conveniently combined to generate
values for nodes and edges.

• To tackle the computational challenges of calculating PC-Winter values, we develop a set of
strategies including hierarchical truncation and local propagation. These strategies together enable
an efficient approximation of PC-Winter values.

• Extensive experiments on various datasets and tasks, along with detailed ablation studies and
parameter analyses, validate the effectiveness of PC-Winter and provide insights into its behavior.

2 PRELIMINARY AND RELATED WORK

In this section, we delve into some fundamental concepts that are essential for developing our
methodology. More extensive literature exploration can be found in Appendix A. For ease of
reference, a comprehensive table of notations used throughout this paper is provided in Appendix N.

2.1 COOPERATIVE GAME THEORY

Cooperative game theory explores the dynamics where players, or decision-makers, can form alliances,
known as coalitions, to achieve collectively beneficial outcomes (Branzei et al., 2008; Curiel, 2013).
The critical components of such a game include a player set P consisting of all players in the game
and a utility function U(·), which quantifies the value or payoff that each coalition of players can
attain. Shapley Value (Shapley et al., 1953) is developed to fairly and efficiently distribute payoffs
(values) among players.

Shapley value. The Shapley value φi(P, U) for a player i ∈ P can be defined on permutations of P
as follows.

φi(P, U) =
1

|Π(P)|

∑

π∈Π(P)

[U (Pπ
i ∪ {i})− U (Pπ

i )] (1)

where Π(P) denotes the set of all possible permutations of P with |Π(P)| denoting its cardinality,
and Pπ

i is predecessor set of i, i.e, the set of players that appear before player i in a permutation π:

Pπ
i = {j ∈ P | π(j) < π(i)}. (2)

The Shapley value considers each player’s contribution to every possible coalition they could be a part
of. Specifically, in (1), for each permutation π, the marginal contribution of player i is calculated as
the difference in the utility function U when player i is added to an existing coalition Pπ

i . The Shapley
value φi(P, U) for i is the average of these marginal contributions across all permutations in Π(P).
The Shapley value has been widely applied in ML for various tasks such as data valuation (Ghorbani
& Zou, 2019; Jia et al., 2019) and model explanation (Liu et al., 2022b; Frye et al., 2020). In the
context of graph ML, it has been primarily used for GNN explainability (Duval & Malliaros, 2021;
Yuan et al., 2021; Mastropietro et al., 2022; Akkas & Azad, 2024). A more detailed discussion on
Shapley Value on graph ML can be found in Appendix A.3.

Winter Value. The Shapley value is to address cooperative games, where players collaborate
freely and contribute on an equal footing. However, in many practical cases, cooperative games,
exhibit a Level Coalition Structure (Niyato et al., 2011; Vasconcelos et al., 2020; Yuan et al., 2016),
reflecting a hierarchical organization. For instance, consider a corporate setting where different tiers
of management and staff contribute to a project in varying capacities and with differing degrees of
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decision-making authority. Players within such a game are hierarchically categorized into nested
coalitions with several levels, as depicted in Figure 1. The outermost and largest ellipse represents the
entire coalition and each of the smaller ellipse within the largest ellipse symbolizes a “sub-coaliation”
at various hierarchical levels. Collaborations originate within the smallest sub-coalitions at the base
level (illustrated by the innermost ellipses in Figure 1.

Figure 1: Level Coalition Struc-
ture

These base units are then integrated into the next level, facilitating
inter-coalition collaboration and enabling contributions to ascend
to higher levels. This bottom-up flow of contributions continues,
with each layer consolidating and passing on inputs to the next, cul-
minating in a multi-leveled collaborative contribution to the final
objective of the entire coalition. To accommodate such complex
Level Coalition Structure, Winter value (Winter, 1989) was intro-
duced. Winter value follows a similar permutation-based definition
as Shapley Value ((1)) but with only a specific subset of permutations
that respect the Level Coalition Structure. In these permutations,
members of the same sub-coalition, regardless of the level, must appear in an unbroken sequence
without interruptions. This ensures that the value attributed to each player is consistent with the level
structure of the coalition. A formal definition of the Winter value can be found in Appendix B.

2.2 DATA VALUATION AND DATA SHAPLEY

Data valuation quantifies the contribution of data points for machine learning tasks. The seminal
work (Ghorbani & Zou, 2019) introduces Data Shapley, applying cooperative game theory to data
valuation, where training samples are the players P , and the utility function U assesses a model’s
performance on subsets of these players using a validation set. With P and U , data values can be
calculated with (1). However, Data Shapley and subsequent methods (Ghorbani & Zou, 2019; Kwon
& Zou, 2021; Wang & Jia, 2023) primarily focus on i.i.d. data, overlooking potential coalitions or
dependencies among data points.

2.3 GRAPHS AND GRAPH NEURAL NETWORKS

Consider a graph G = {V, E} where V denotes the set of nodes and E denotes the set of edges. Each
node vi ∈ V carries a feature vector xi ∈ R

d, where d is the dimensionality of the feature space.
Additionally, each node vi is associated with a label yi from a set of possible labels C. We assume
that only a subset Vl ⊂ V are with known labels.

GNNs (Kipf & Welling, 2016; Veličković et al., 2017; Wu et al., 2019) are prominent models for
graph ML tasks. Specifically, from a local perspective for node vi, the k-th GNN layer generally

performs a feature averaging process as h
(k)
i = 1

deg(vi)

∑

vj∈N (vi)

Wh
(k−1)
j , where W is the parameter

matrix, deg(vi) and N (vi) denote the degree and neighbors of node vi, respectively. After a total of

K layers, h
(K)
i are utilized as the learned representation of vi. Such a feature aggregation process

can be also described with a K-level computation tree (Jegelka, 2022) rooted on node vi.

Definition 1 (Computation Tree). For a node vi ∈ V , its K-level computation tree corresponding to
a K-layer GNN model is denoted as T K

i with vi as its root node. The first level of the tree consists of
the immediate neighbors of vi, and each subsequent level is formed by the neighbors of nodes in the
level directly above. This pattern of branching out continues, expanding through successive levels of
neighboring nodes until the depth of the tree grows to K.

The feature aggregation process in a K-layer GNN can be regarded as a bottom-up feature propagation
process in the computation tree, where nodes in the lowest level are associated with their initial

features. Therefore, the final representation h
(K)
i of a node vi is affected by all nodes within its

K-hop neighborhood, which is referred to as the receptive field of node vi. The GNN model is trained

using the (h
(K)
i , yi) pairs, where each labeled node vi in Vl is represented by its final representation

and corresponding label. Thus, in addition to labeled nodes, those unlabeled nodes that are within
the receptive field of labeled nodes also contribute to model performance.
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3 METHODOLOGY

Machine learning models designed for Euclidean data traditionally assume independent and identically
distributed (i.i.d.) samples, where the contribution of each labeled sample to model performance
manifests through direct supervision signals. In contrast, graph-structured data presents fundamentally
different contribution patterns due to the interdependencies between nodes. Specifically, as discussed
in Section 2.3, both labeled and unlabeled nodes are involved in the training stage through the feature
aggregation. Next, we discuss how these nodes contribute to GNN performance.

Observation 1. Unlabeled nodes influence GNN performance by affecting the final representation of
labeled nodes. On the other hand, labeled nodes can contribute to GNN performance in two ways:
(1) they provide direct supervision signals to GNN with their labels, and (2) just like unlabeled nodes,
they can impact the final representation of other labeled nodes through feature aggregation. Note
that both labeled nodes and unlabeled nodes can affect the final representations of multiple labeled
nodes, as long as they lie within the receptive field of these labeled nodes. Hence, a single node
can make multifaceted and heterogeneous contributions to GNN performance by affecting multiple
labeled nodes in various manners.

3.1 THE GRAPH DATA VALUATION PROBLEM

Based on Observation 1, due to the heterogeneous and diverse effects of labeled and unlabeled nodes,
it is necessary to perform fine-grained data valuation on graph data elements. In particular, we
propose to decompose a node into distinct “duplicates” corresponding to their impact on different
labeled nodes. The fundamental objective is to quantify the value of these duplicates in a way that
captures their unique roles in the message-passing process. Following existing literature (Ghorbani &
Zou, 2019; Wang & Jia, 2023; Yan & Procaccia, 2021), we approach the graph data value problem
through a cooperative game.

Definition 2 (Player Set). The player set P in a graph data valuation game is defined as the union
of nodes in the computation trees of labeled nodes. Duplication of nodes may occur within a
single computation tree T K

i or across different labeled nodes’ computation trees. In the graph data
valuation game, these potential duplicates are treated as distinct players, uniquely identified by their
paths to the corresponding labeled node. We define the player set P as the set of all these distinct
players across the computation trees of all labeled nodes in Vl.

Definition 3 (Utility Function). Given a subset S ⊂ P , we first generate a node-induced graph
Gin(S) using their corresponding edges in the computation trees. Then, a GNN model A is trained
on the induced graph Gin(S). Its performance is evaluated on a held-out validation set to serve as
the utility of S, calculated as U(S) = acc(A(Gin(S))), where acc measures the accuracy of the
trained GNN model A(Gin(S)) on a held-out validation set.

The goal of the graph data valuation problem is to assign a value to all players in P with the help
of the utility function U . When calculated properly, these values are supposed to provide a detailed
understanding of how players in P contribute to the GNN performance in a fine-grained manner.
Furthermore, these values can be flexibly combined to generate higher-level values for nodes and
edges, which will be discussed in Section 3.5.

3.2 PRECEDENCE-CONSTRAINED WINTER VALUE

As discussed in Section 2.3, the final representations of a labeled node vi come from the hierarchical
collaboration of all players in the computation tree T K

i . These labeled nodes with the updated
representations then contribute to the GNN performance through the training objective. Such a
contribution process forms a hierarchical collaboration between the players in P , which can be
illustrated with a contribution tree T as shown in Figure 2a. In particular, the contribution tree T is
constructed by linking the root nodes of the computation trees of all labeled nodes with a dummy
node representing the GNN training objective O. In Figure 2a, for the ease of illustration, we set
K = 2, include only 2 labeled nodes, i.e, v0, v1, and utilize wi, ui to denote the nodes in the lower
level. The subtree rooted at a labeled node vi ∈ V is the corresponding computation tree T 2

i . With
this, we observe the following about the coalition structure of the graph data valuation game.

Observation 2 (Level Coalition Structure). As shown in Figure 2a, the players in P hierarchically
collaborate to contribute. At the bottom level, the players are naturally grouped by their parents.
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Specifically, players with a common parent such as u0, u1, u2 with their parent w0, establish a
foundation sub-coalition. This sub-coalition is clearly depicted in Figure 2b. Moving up the tree,
these parent nodes, like w0, serve as “delegates” for their respective sub-coalitions, further engaging
in collaborations with other sub-coalitions. This interaction forms higher-level sub-coalitions, such
as the one between w0, w1, w2, and v0 in Figure 2b, indicating inter-coalition cooperation. This
ascending process of coalition formation continues until the root node O is reached, which represents
the objective of the entire coalition consisting of all players. The depicted hierarchical collaboration
process aligns with the Level Coalition Structure discussed in Section 2.1.

(a) Contribution Tree (b) Coalition Structure

Figure 2: Graph Data Valuation Game Structure

While the contribution tree shares similarities
with the Level Coalition Structure illustrated
in Section 2.1, a pivotal distinction lies in the
representation and function of “delegates” (high-
lighted in red in Figure 2b) within each coali-
tion. In the traditional Level Coalition Structure,
contributions within a sub-coalition are made
collectively, with each player or lower-level sub-
coalition participating on an equitable basis. In
contrast, the contribution tree framework distin-
guishes itself by designating a “delegate” within
each sub-coalition, a player that represents and
advances the collective contributions, establishing a directed and tiered flow of influence, hence
forming a Unilateral Dependency Structure.

Observation 3 (Unilateral Dependency Structure). In the contribution tree framework, a player
p ∈ P contributes to the final objective through a hierarchical pathway facilitated by its ancestors
(its “delegates” at different levels). Therefore, the collaboration between players in P exhibits a
Unilateral Dependency Structure, where a player p’s contribution is dependent on its ancestors.

According to these two observations, the players demonstrate unique coalition structures in the graph
data valuation game. We aim to propose a permutation-based valuation framework similar to (1)
to address the cooperative game with both Level Coalition Structure and Unilateral Dependency
Structure. In particular, instead of utilizing all the permutations as in (1), only the permissible
permutations aligning with such coalition structures are included in the value calculations. As we
described in Section 2.1, cooperative games with Level Coalition Structure have been addressed by
the Winter value (Winter, 1989; Chantreuil, 2001). Specifically, a permutation respecting the Level
Coalition Structure must ensure that players in the same (sub-)coalition, regardless of its level, are
grouped together without interruption from other players (Winter, 1989). In our scenario, any subtree
of the contribution tree corresponds to a sub-coalition as demonstrated in Figure 2. Hence, we need
to ensure that for any player p ∈ P , the player p and its descendants in the contribution tree should be
grouped together in the permutation. For example, the players w0, u0, u1, u2 should present together
as a group in the permutation with potentially different orders. On the other hand, to ensure the
Unilateral Dependency Structure, a permutation must maintain a partial order. Specifically, for any
player p in the permutation, its descendants must present in later positions in the permutation than
p. Otherwise, the descendants of p cannot make non-trivial contributions, resulting in 0 marginal
contributions.

We formally define the permissible permutations that align with both Level Coalition Structure and
Unilateral Dependency Structure utilizing the following two constraints.

Constraint 1 (Level Constraint). For any player p ∈ P , the set of its descendants in the contribution
tree is denoted as D(p). Then, a permutation π aligning with the Level Coalition Structure satisfies
the following Level Constraint: |π[i]− π[j]| ≤ |D(p)|, ∀i, j ∈ D(p)∪ p, ∀p ∈ P, where π[i] denotes
the positional rank of the i in π.

Constraint 2 (Precedence Constraint). A permutation π aligning with the Unilateral Dependency
Structure satisfies the following Precedence Constraint: π[p] < π[i], ∀i ∈ D(p), ∀p ∈ P .

We denote the set of permissible permutations satisfying both Level Constraint and Precedence
Constraint as Ω. Then, we define the Precedence-Constrained Winter (PC-Winter) value for a
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player p ∈ P with the permutations in Ω as follows.

ψp(P, U) =
1

|Ω|

∑

π∈Ω

(

U
(

Pπ
p ∪ p

)

− U
(

Pπ
p

))

, (3)

where U(·) is the utility function (see Definition 3), and Pπ
p denotes the predecessor set of p in π as

defined in (2).

3.3 PERMISSIBLE PERMUTATIONS FOR PC-WINTER

To calculate PC-Winter value, it is required to obtain all permissible permutations. A straightfor-
ward way is to enumerate all permutations and only retain the permissible permutations. However,
such an approach is extremely computationally intensive and typically not feasible in reality. In this
section, to address this challenge, we propose a novel method to directly generate these permutations
by traversing the contribution tree with Depth-First Search (DFS). Specifically, each DFS traversal
results in a preordering, which is a list of the nodes (players) in the order that they were visited by
DFS. Such a preordering naturally defines a permutation of P by simply removing the dummy node in
the contribution tree from the preordering. By iterating all possible DFS traversals of the contribution
tree, we can obtain all permutations in Ω, which is demonstrated in the following theorems.

Theorem 1 (Specificity). Given a contribution tree T with a set of players P , any DFS traversal
over the T results in a permissible permutation of P that satisfies both the Level Constraint and
Precedence Constraint.

Theorem 2 (Exhaustiveness). Given a contribution tree T with a set of players P , any permissible
permutation π ∈ Ω can be generated by a corresponding DFS traversal of T .

The proofs for two theorems can be found in Appendix C. Theorem 1 demonstrates that DFS
traversals specifically generate permissible permutations. On the other hand, Theorem 2 ensures
the exhaustiveness of generation, which allows us to obtain all permutations in Ω by DFS traversal.
Together, these two theorems ensure us to exactly generate the set of permissible permutations Ω.

Notably, the calculation of PC-Winter value involves two steps: 1) generating Ω with DFS
traversals; and 2) calculating the PC-Winter value according to (3). Nonetheless, it can be done in
a streaming way while we perform the DFS traversals. Specifically, once we reach a player p in a
DFS traversal, we can immediately calculate its marginal contribution. The PC-Winter values for
all players are computed by averaging their marginal contributions from all possible DFS traversals.

3.4 EFFICIENT APPROXIMATION OF PC-WINTER

Calculating the PC-Winter value for players in P is infeasible due to computational intensity,
arising from: 1) The exponential growth in the number of permissible permutations with more
players, rendering exhaustive enumeration intractable; 2) The necessity to re-train the GNN within
the utility function for each permutation, a process repeated |P| times to account for every player’s
marginal contribution; and 3) The intensive computation involved in GNN re-training, requiring
feature aggregation over the graph that increases in complexity with the graph’s size. These challenges
necessitate an efficient approximation method for PC-Winter valuation in practical applications.
We propose three strategies to address these computational issues.

3.4.1 PERMUTATION SAMPLING

Following Data Shapley (Ghorbani & Zou, 2019), we adopt Monte Carlo (MC) sampling to randomly
sample a subset of permissible permutations denoted as Ωs. This sampling approach maintains the
structural properties of permutations while significantly reducing computational overhead. Then, we
utilize Ωs to replace Ω in (3) for approximating PC-Winter value.

3.4.2 HIERARCHICAL TRUNCATION

While permutation sampling reduces the number of evaluations, the computational cost for each
evaluation remains substantial. GNN models often demonstrate a phenomenon of neighborhood
saturation, i.e, these models achieve satisfactory performance even when trained on a subgraph
using only a small subset of neighbors, rather than the full neighborhood (Hamilton et al., 2017;
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Liu et al., 2021; Ying et al., 2018; Chen et al., 2017), indicating diminishing returns from additional
neighbors beyond a certain point. This indicates that for a player p in a permissible permutation π
generated by DFS over the contribution tree, the marginal contributions of its late visited child players
are insignificant. Thus, we propose hierarchical truncation for efficiently obtaining the marginal
contributions by directly approximating insignificant values as 0.

Specifically, during the DFS traversal, given a truncation ratio r, we only compute actual marginal
contributions for players in the first 1− r portion of each node’s child subtrees, approximating the
marginal contributions of players in the remaining subtrees as 0. For example, in Figure 2a, given a
truncation ratio r = 2/3, when DFS reaches player v0, we only calculate marginal contributions for
players in the subtree rooted at w0. Furthermore, in the subtree rooted at w0, due to the hierarchical
truncation, only the marginal contribution of u0 is evaluated, those for node u1 and u2 are set to 0.

This approach is further optimized by adjusting truncation ratios based on the tree level, accommodat-
ing varying contribution patterns across levels. In particular, we organize the pair of truncation ratio
as r1-r2, indicating we truncate r1 (or r2) portion of subtrees (or child players) of vi (or wi). We show
how the hierarchical truncation helps tremendously reduce the model re-training in Appendix D.

3.4.3 LOCAL PROPAGATION

To enhance scalability, we leverage SGC (Wu et al., 2019) in our utility function, which simplifies
GNNs by aggregating node features before applying an MLP. According to the Level Constraint
(Constraint 1), the players within the same computation tree are grouped together in the permutation.
Therefore, the induced graph of any coalition Pπ

p defined by a permissible permutation consists of
a set of separated computation trees (or a partial computation tree corresponding to the last visited
labeled node in Pπ

p ).

A key observation is that the feature aggregation process for the labeled nodes can be done indepen-
dently within their own computation trees. Hence, instead of performing the feature propagation for
the entire induced graph, we propose to perform local propagation only on necessary computation
trees. In particular, the aggregated representation for a labeled node is fixed after we traverse its
entire computation tree in DFS. Therefore, for evaluating a player p’s marginal contribution, only
the partial computation tree of the last visited labeled node requires local propagation, minimizing
feature propagation efforts.

To summarize, the PC-Winter values for all players are efficiently approximated using a combina-
tion of three strategies in a streaming manner. In particular, we randomly traverse the contribution
tree with DFS for |Ωs| times. During each DFS traversal, the marginal contributions for all players
in P are efficiently obtained with the help of hierarchical truncation and local propagation. The
marginal contributions calculated through these |Ωs| DFS traversals are averaged to approximate the
PC-Winter value for all players. In Appendix I.5, we provide a detailed complexity analysis of the
PC-Winter algorithm. More details of the PC-Winter framework, including its visual overview
of its approximation procedure, are presented in Appendix M.

3.5 FROM PC-WINTER TO NODE AND EDGE VALUES

The PC-Winter values for players in P can be flexibly combined to obtain the values for elements
in the original graph. This section illustrates how to derive both node-level and edge-level valuations
from our player-centric framework.

As discussed in Section 3.1, multiple “duplicates” of a node v ∈ V in the original graph may
potentially present in P . To capture a node’s overall contribution, we define the node value for
node v by summing the PC-Winter values of all its “duplicates” in P . This aggregation naturally
combines the different roles a node plays in contributing to model performance.

From a structural perspective, each player (except for the rooted labeled players) in P corresponds to
an “edge” in the contribution tree, identified by the player and its parent. For instance, in Figure 2a,
the player u0 corresponds to the “edge” connecting u0 and w0. Through this lens, DFS traversals
generate permutations not just for players, but implicitly for these “edges” as well. The marginal
contribution calculated for a player p through a DFS traversal can thus be interpreted as the marginal
contribution of its corresponding edge, viewing the process as gradually adding “edges” to connect
the players in P .
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Similar to nodes, an edge e ∈ E in the original graph may have multiple “duplicates” in the
contribution tree, each representing a different pathway of influence. Therefore, we define the edge
value for e ∈ E by taking the summation of the PC-Winter value for all its “duplicates” in the
contribution tree. This aggregation captures the total impact of each edge in facilitating information
flow across the graph.

4 EXPERIMENT

Datasets and Settings. We assess the proposed approach on six real-world benchmark datasets: Cora,
Citeseer, and Pubmed Sen et al. (2008), Amazon-Photo, Amazon-Computer, and Coauther-Physics
Shchur et al. (2018). The detailed statistics of datasets are summarized in Table 2 in Appendix G.
Our experiments focus on the inductive node classification task. The detailed setup of the inductive
setting can be found in Appendix G.1. To obtain the PC-Winter values, we run permutations in a
streaming way as described in Section 3.4. This process terminates with a convergence criterion as
detailed in Appendix G.4. PC-Winter typically terminates with a different number of permutations
for different datasets. The other hyper-parameters are detailed in Appendix G.5.

4.1 DROPPING HIGH-VALUE NODES

In this section, we aim to evaluate the quality of data values produced by PC-Winter via dropping
high-value nodes from the graph. Dropping high-value nodes is expected to significantly diminish
performance, and thus the performance observed after removing high-value nodes serves as a strong
indicator of the efficacy of graph data valuation. Notably, PC-Winter values values are calculated
as described in Section 3.5.
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Figure 3: Dropping High-Value Nodes

To demonstrate the effectiveness of
PC-Winter, we include Random value,
Degree value, Leave-one-out (LOO) value,
and Data Shapley value as baselines. A
more detailed description of these baselines
is included in Appendix G.6. To conduct
node-dropping experiments, nodes are ranked
by their assessed values for each method and
removed sequentially from the training graph
Gtr. After each removal, we train a GNN model
based on the remaining graph and evaluate
its performance on the testing graph Gte.
Performance changes are depicted through a
curve that tracks the model’s accuracy as nodes
are progressively eliminated. Labeled nodes
often contribute more significantly to model
performance than unlabeled nodes because
they directly offer supervision. Thereby,
with accurately assigned node values, labeled
nodes should be prioritized for removal over
unlabeled nodes. We empirically validate
this hypothesis in Figure 6, discussed in
Appendix E. Specifically, in nearly all datasets,
our observations reveal that the majority of labeled nodes are removed prior to the unlabeled nodes
by both PC-Winter and Data Shapley. This leads to a plateau in the latter portion of the
performance curves since a GNN model cannot be effectively trained with only unlabeled nodes.
Consequently, this scenario significantly hampers the ability to assess the value of unlabeled nodes.
Therefore, we propose to conduct separate assessments for the values of labeled and unlabeled
nodes. Here, we only inlcude the results for unlabeled nodes, while the results for labeled nodes are
presented in Appendix F.

Results and Analysis. Figure 3 illustrates the performance comparison between PC-Winter

and other baselines across various datasets. From Figure 3, we make the following observations.
First, the removal of high-value unlabeled nodes identified by PC-Winter consistently results
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in the most significant decline in model performance across various datasets. This is particularly
evident after removing a relatively small fraction (10%-20%) of the highest-value nodes. This
trend underscores the importance of high-value nodes. Notably, in most datasets PC-Winter
outperforms the best baseline method, Data Shapley, by a considerable margin, highlighting its
effectiveness. Second, the decrease in performance caused by our method is not only substantial
but also persistent throughout the node-dropping process, further validating the effectiveness of
PC-Winter. Third, the performance curves of PC-Winter and Data Shapley eventually
rebound towards the end. This rebound corresponds to the removal of unlabeled nodes that make
negative contributions. Their removal aids in improving performance, ultimately reaching the MLP
performance when all nodes are excluded. This upswing not only evidences the discernment of
PC-Winter and Data Shapley in ascertaining node values but also showcases the particularly
acute precision of PC-Winter. These insights collectively affirm the capability of PC-Winter
in accurately assessing node values. For a detailed quantitative analysis of these results, including
minimum and mean accuracies across all datasets, please refer to Tables 4 and 5 in Appendix H.
Furthermore, we extend our evaluation to regression tasks and class-balanced accuracy metrics in
Appendices J and K respectively, demonstrating the effectiveness of PC-Winter across different
learning scenarios.

4.2 ADDING HIGH-VALUE EDGES

In this section, we explore the impact of adding high-value elements to a graph, providing an
alternative perspective to validate the effectiveness of data valuation. Notably, adding high-value
nodes to a graph typically involves the concurrent addition of edges, which complicates the addition
process. Thus, we target the addition of high-value edges, providing a complementary perspective to
our analysis. As described in Section 3.5, the flexibility of PC-Winter allows for obtaining edge
values without a separate “reevaluation” process for edges.
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Figure 4: Adding the High-Value Edges

Here, we keep all nodes in Gtr and sequen-
tially add edges according to the edge values
in descending order, starting with the highest-
valued ones. Similar to the node-dropping ex-
periments, the effectiveness of the edge addi-
tion is shown through performance curves. We
include Random value, Edge-Betweeness,
Leave-one-out (LOO) as baselines. Notably,
here, Random and LOO specifically pertain to
edges, and while we use the same terminology
as in the prior section, they are distinct methods,
which are detailed in Appendix G.6.

Results and Analysis. Figure 4 illustrates that
the Random, LOO, and Edge-Betweeness

baselines achieve only linear performance im-
provements with the addition of more edges,
failing to discern the most impactful ones for
a sparse yet informative graph. In contrast, the
inclusion of edges based on the PC-Winter
value results in a steep performance climb, af-
firming the PC-Winter’s efficacy in pinpoint-
ing key edges. Notably, the Cora dataset reaches
full-graph performance using merely 8% of the
edges selected by PC-Winter. Moreover, with
just 10% of PC-Winter-selected edges, the accuracy climbs to 72.9%, outperforming the full
graph’s 71.3%, underscoring PC-Winter’s capability to identify valuable edges. This trend is
generally consistent across other datasets as well. A comprehensive quantitative analysis of the edge
addition results, including maximum and mean accuracies for all methods and datasets, can be found
in Tables 6 and 7 in Appendix H.
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4.3 ABLATION STUDY, PARAMETER AND EFFICIENCY ANALYSIS

In this section, we conduct an ablation study, parameter analysis, and efficiency analysis to gain
deeper insights into PC-Winter using node-dropping experiments.

Ablation Study. We conduct an ablation study to understand how the two constraints in Section 3.2
affect the effectiveness of PC-Winter. We introduce two variants of PC-Winter by lifting
one of the constraints for the permutations. In particular, we define PC-Winter-L using the
permutations satisfying the Level Constraint. Similarly, PC-Winter-P is defined with permutations
only satisfying Precedence Constraint. As shown in Figure 5, PC-Winter value outperforms the
PC-Winter-L and PC-Winter-P on both datasets, which demonstrates that both constraints are
crucial for PC-Winter. Additional results on other datasets are provided in Appendix I.1.
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Figure 5: Ablation Study

Parameter Analysis. We conduct parame-
ter analyses to investigate the impact of per-
mutation number and truncation ratios on
PC-Winter’s performance. The results reveal
that PC-Winter achieves robust performance
even with a significantly reduced number of per-
mutations and high truncation ratios. Detailed
findings are presented in Appendix I.2 and Ap-
pendix I.3, respectively.

Efficiency Analysis. We compare the efficiency
of PC-Winter and Data Shapley. Anal-
ysis of converged permutation count and time per permutation across 6 datasets underscores
PC-Winter’s significantly higher efficiency. A comprehensive breakdown is available in Ap-
pendix I.4.

5 CONCLUSION

In this paper, we introduce PC-Winter, an innovative approach for effective graph data valuation.
The method is specifically designed for graph-structured data and addresses the challenges posed by
unlabeled elements and complex node dependencies within graphs. Furthermore, we introduce a set of
strategies for reducing the computational cost, enabling efficient approximation of PC-Winter. Ex-
tensive experiments demonstrate the practicality and effectiveness of PC-Winter in various datasets
and tasks. While PC-Winter demonstrates improved efficiency compared to Data Shapley, we
acknowledge that further efficiency enhancements are crucial to fully unlock the potential of graph
data valuation in real-world applications. Our work can be seen as a foundation for future research in
this direction.
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A ADDITIONAL RELATED WORK

This section presents an extended review of related works, offering a broader and more nuanced
exploration of the literature surrounding Data Valuation and Graph Neural Networks.

A.1 DATA VALUATION

Data Shapley is proposed in (Ghorbani & Zou, 2019) which computes data values with Shapley
values in cooperative game theory. Beta Shapley (Kwon & Zou, 2021) is a further generalization of
Data Shapley by relaxing the efficiency axiom of the Shapley value. Data Banzhaf (Wang & Jia, 2023)
offers a data valuation method which is robust to data noises. Data Valuation with Reinforcement
Learning is also explored by (Yoon et al., 2020). KNN-Shapley (Jia et al., 2019) estimates the shapley
Value for the K-Nearest Neighbours algorithm in linear time. CS-Shapley (Schoch et al., 2022)
provides a new valuation method that differentiate in-class contribution and out-class contribution.
Data-OOB (Kwon & Zou, 2023) proposes a data valuation method for a bagging model which
leverages the out-of-bag estimate. Just, Hoang Anh, et al (Just et al., 2023) introduce a learning-
agnostic data valuation framework by approximating the utility of a dataset according to its class-wise
Wasserstein distance. Another training-free data valuation method utilizing the complexity-gap score
is proposed at the same time (Nohyun et al., 2022).

However, these methods are primarily designed for traditional i.i.d. data, assuming independence
and identical distribution among data points, and are not specifically designed to evaluate graph
data. The latter presents higher complexity due to the interconnections and dependencies among
individual nodes. P-Shapley (Xia et al., 2024) extends Shapley values by leveraging probabilistic
classifier outputs, proposing an alternative utility function that replaces standard accuracy metrics.
While this innovation improves valuation accuracy for traditional i.i.d. data, it remains orthogonal to
the structural challenges in graph data valuation.

A.2 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) generate informative representations from graph-structured data
and facilitate the solving of many graph-related tasks. Bruna et al. (Bruna et al., 2013) first apply the
spectral convolution operation to graph-structured data. From the spatial perspective, the spectral
convolution can be interpreted to combine the information from its neighbors. GCN (Kipf & Welling,
2016) simplified this spectral convolution and proposed to use first-order approximation. Since then,
many other attention-based, sampling-based and simplified GNN variants which follow the same
neighborhood aggregation design have been proposed (Veličković et al., 2017; Hamilton et al., 2017;
Gasteiger et al., 2018; Wu et al., 2019).Theoretically, those Graph neural networks typically enhance
node representations and model expressiveness through a message-passing mechanism, efficiently
integrating graph data into the learning of representations (Xu et al., 2018).

A.3 SHAPLEY VALUE IN GRAPH MACHINE LEARNING

The Shapley value has found several applications in graph machine learning, primarily in the domain
of explainability for Graph Neural Networks. GraphSVX (Duval & Malliaros, 2021) is one of
the early works that utilizes the Shapley value to explain the predictions of GNNs. It identifies
influential nodes and features for a particular prediction by treating them as players in a cooperative
game. However, GraphSVX focuses on local explanations for individual predictions of a fixed GNN.
SubgraphX (Yuan et al., 2021) takes a different approach by explaining GNN predictions through
identifying important subgraphs, rather than individual nodes or edges. It uses Monte Carlo tree
search to efficiently explore different subgraphs and proposes to use Shapley values as a measure
of subgraph importance. EdgeSHAPer (Mastropietro et al., 2022) is another method that assesses
edge importance for GNN predictions using the Shapley value concept. It is particularly relevant
for molecular graphs where edges represent chemical bonds. GNNShap (Akkas & Azad, 2024)
extends upon previous Shapley value based GNN explanation methods by providing explanations for
edge, leading to better fidelity scores and faster explanations. SAME (Ye et al., 2024) proposes a
structure-aware Shapley-based multipiece explanation method for GNNs that can identify important
substructures and provide explanations composed of multiple connected components.
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In addition to explainability, Shapley has also been widely adopted for data valuation for conventional
machine learning methods as discussed in Section 2. However, it has rarely been utilized for data
valuation on graph data. In this work, we pioneer the exploration of graph data valuation, a challenging
and previously unexplored problem. Although a recent survey (Zheng et al., 2023) inadvertently
refers to GraphSVX as a graph data valuation method, it does not align with the traditional definition
of data valuation. We clarify the key differences between graph data valuation (such as our method)
and graph explainability (such as GraphSVX) as follows.

1. In general, data valuation (such as our method) aims to understand how graph elements
contribute to the model training process, while explainability methods (such as GraphSVX)
provide post-hoc explanations for a fixed, pre-trained model.

2. Specifically, our method differs from GraphSVX in several aspects:
(a) GraphSVX focuses on the explainablity of a local prediction for a single sample, while

our method aims to quantify the global contribution of graph elements to the overall
model performance.

(b) GraphSVX operates post hoc, analyzing the contributions of features and nodes in the
testing graph to the predictions of an already-trained GNN model, while our approach
focuses on the global contribution of each data element in the training graph to the
GNN model’s training process.

(c) GraphSVX employs the standard Shapley value formulation, which assumes free
collaboration among players, while our work introduces the PC-Winter value to
handle the unique hierarchical coalition structures inherent in graph data valuation.

To the best of our knowledge, our investigation constitutes the first foray into graph data valuation,
pioneering research in this previously uncharted domain.

A.4 DATA-CENTRIC LEARNING ON GRAPHS

Data-centric graph learning encompasses various approaches, with data valuation and data-efficient
learning sharing similar motivations but distinct methodologies. Data-efficient learning on graphs
primarily addresses the challenge of limited labeled data through two main paradigms. Graph self-
supervised learning develops rich representations without relying on extensive labels. Within this
approach, contrastive methods like Deep Graph Infomax (Velickovic et al., 2019) and GRACE (Zhu
et al., 2020) learn by discriminating between different views of the same graph, while more recent
non-contrastive techniques including BGRL (Thakoor et al., 2021) and Graph Barlow Twins (Bielak
et al., 2022) achieve competitive performance without requiring negative samples. Contemporary
research has focused on developing sophisticated feature augmentation strategies Zhang et al. (2023).
Chi & Ma (2024) propose enhancing contrastive learning through node similarity metrics, while
Ma et al. (2024) establish comprehensive evaluation frameworks. The alternative paradigm, graph
active learning, optimizes the selection of nodes for labeling to maximize model performance with
minimal annotation effort. Representative approaches include AGE (Cai et al., 2017), which combines
multiple selection criteria, GPA (Hu et al., 2020), which reformulates selection as sequential decision-
making, and GRAIN (Zhang et al., 2021c), which treat selection as influence maximization problems.
More sophisticated techniques have emerged, such as ALG (Zhang et al., 2021b), which balances
both representativeness and informativeness, and GALclean (Chi et al., 2024), which addresses
active learning challenges in graphs with structural noise. In addition to these data-efficient learning
strategies, another key aspect of data-centric graph learning lies in understanding and mitigating
biases in GNNs. Fairness-focused studies investigate how GNNs may exhibit biased predictions
towards certain demographic subgroups resulted from certain input graph components. For example,
recent works have explored to attribute the unfairness exhibited by GNNs to input graph components,
such as specific training nodes (Dong et al., 2023), edges (Zhu et al., 2023; Dong et al., 2022a), and
subgraphs (Dong et al., 2022b; Wang et al., 2022). Beyond these approaches, data-centric graph
learning also encompasses other important branches such as graph structure learning (Jin et al., 2020;
Ma et al., 2021; Liu et al., 2022a), which focuses on jointly learning optimal graph structures and
node representations; graph condensation (Jin et al., 2021; Zhang et al., 2024; Gong et al., 2025),
which aims to distill large-scale graphs into smaller yet information-preserving counterparts for
efficient training; and data quality-aware learning (Wang et al., 2024), which develops techniques
to identify and mitigate the effects of noisy or corrupted graph data on model performance. In
contrast to these approaches that focus on either maximizing performance with limited data or
addressing fairness concerns, our work on graph data valuation addresses the fundamental challenge
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of quantifying the contributions of graph data elements to model performance through a novel
cooperative game-theoretic framework.

B MATHEMATICAL FORMULATION OF WINTER VALUE

The Shapley value offers a solution for equitable payoff distribution in cooperative games, assuming
that players cooperate without any predefined structure. In reality, however, cooperative games often
have inherent hierarchical coalitions. To accommodate these structured coalitions, the Winter value
(Winter, 1989) extends Shapley value to handle this extra coalition constraints.

Specifically, considering level structures B, with B = B0, . . . , Bn representing a sequence of player
partitions. Here, a partition, Bm, subdivides the player set P into a set of disjoint, non-empty subsets
T1, T2, . . . , Tk. These disjoint subsets satisfy the condition that their union reconstructs the original
player set P , which means T1 ∪ T2 ∪ . . .∪ Tk = P . This partition sequence forms a hierarchy where
B0 represents individual players as the leaves of the structure and Bn functions as the root of this
hierarchy.

We then determine Ω(B), the set of all permissible permutations, starting with a single partition Bm:

Ω(Bm) = {π ∈ Π(P) : ∀T ∈ Bm, ∀i, j ∈ T and k ∈ P,

if π(i) < π(k) < π(j) then k ∈ T}.

Ω(B) can be further defined as the set of permutations which satisfy all constraints of all levels,
Ω(B) =

⋂n

t=0 Ω (Bt).

A permissible permutation π from the set Ω(B) requires that players from any derived coalition of B
must appear consecutively. Given the defined set of permissible permutations Ω(B), the Winter value
Φ for player i is calculated as:

Φi(P, U,B) =
1

|Ω(B)|

∑

π∈Ω(B)

(U (Pπ
i ∪ i)− U (Pπ

i ))

where Pπ
i = {j ∈ N : π(j) < π(i)} is the set of predecessors of i at the permutation σ and U is the

utility function in the cooperative game.

C PROOFS OF THEOREMS

Theorem 1 (Specificity). Given a contribution tree T with a set of players P , any DFS traversal
over the T results in a permissible permutation of P that satisfies both the Level Constraint and
Precedence Constraint.

Proof. We validate the theorem by demonstrating that a permutation obtained through pre-order
traversal on T meets Level Constraints and Precedence Constraints. (1) Level Constraints: During a
pre-order traversal of T , a node p and its descendants D(p) are visited sequentially before moving
to another subtree. Thus, in the resulting permutation π, the positions of p and any i, j ∈ D(p)
are inherently close to each other, satisfying the condition |π[i]− π[j]| f |D(p)|. This contiguous
traversal ensures that all descendants and the node itself form a continuous sequence in π, meeting
the Level Constraint. (2) Precedence Constraints: In the same traversal, each node p is visited before
its descendants. Therefore, in π, the position of p always precedes the positions of its descendants,
i.e., π[p] < π[i] for all i ∈ D(p). This traversal pattern naturally embeds the hierarchy of the tree
into the permutation, ensuring that ancestors are positioned before their descendants, in line with the
Precedence Constraint.

Theorem 2 (Exhaustiveness). Given a contribution tree T with a set of players P , any permissible
permutation π ∈ Ω can be generated by a corresponding DFS traversal of T .

Proof. To prove the theorem of exhaustiveness, consider a contribution tree T with a set of players
P and any permissible permutation π ∈ Ω. We apply induction on the depth of T . For the base case,
when T has a depth of 1, which means there are no dependencies among players, any permissible
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permutation of players is trivially generated by a DFS traversal since there are no constraints on the
order of traversal. For the inductive step, assume the theorem holds for contribution trees of depth k.
For a contribution tree of depth k + 1 T k+1, consider its root node and subtrees of depth k rooted
at the child nodes of the root node. For any given permissible permutation π corresponding to the
T k+1, according to the Level Constraint, it is a direct composition of the permissible permutations
corresponding to the subtrees of depth k rooted at the child nodes of the root node. Now we can
construct a DFS traversal over the contribution tree T k+1 that can generate π. Specifically, the order
of composition defines the traversal order of the child nodes of the root node. Furthermore, by the
inductive hypothesis, any permissible permutations corresponding to the subtrees can be generated
by DFS traversal over the subtrees. Hence, at each child node of the root node, we just follow the
corresponding DFS traversal of its corresponding tree. This DFS traversal can generate the given
permutation π, which completes the proof.

D HIERARCHICAL TRUNCATION

In Table 1, we present data comparing the number of model re-trainings on the all six dataset with
and without the application of truncation. For the Citeseer dataset, the truncation ratios are defined as
1st-hop: 0.5 and 2nd-hop: 0.7. For the remaining datasets, the truncation ratios are set at 1st-hop: 0.7
and 2nd-hop: 0.9. The results clearly indicate that the number of model re-trainings is substantially
reduced when truncation is applied. For instance, focusing on the Citeseer dataset the application
of truncation significantly reduces the number of retrainings from 1388 to 535. This significant
decrease, especially in larger datasets like Amazon-Photo and Amazon-Computer, where retraining
instances decrease from 147664 to 6258 and from 317959 to 12139 respectively, can be attributed to
the substantial number of 2-distance neighbors present in these datasets. The application of truncation
effectively reduces the computation by omitting a considerable portion of these neighbors. This
finding also implies that overall training time is decreased while still maintaining the ability to
accurately measure the total marginal contribution.

Table 1: Retraining Number Comparison Per Permutation

Dataset w.o. Truncation w.t. Truncation

Cora 2241 756
Citeseer 1388 535
Pubmed 3683 887

Amazon-Photo 147664 6258
Amazon-Computer 317959 12139
Coauther-Physics 11178 852

E MIXED NODE DROPPING EXPERIMENT

As mentioned in the experiment, labeled nodes will dominate the performance curve when both
labeled nodes and unlabeled nodes. The corresponding experiment result is shown in the Figure 6.
This experiment validates the assumption that a effective data valuation method would naturally rank
labeled nodes for earlier removal over their unlabeled counterparts. For instance, in the Cora dataset,
we can observe that the initial drop in accuracy is significant, indicating the removal of high-value
labeled nodes. As the experiment progresses and more nodes are removed, the accuracy barely
changes, reflecting the removal of unlabeled nodes which has a minimal impact on performance
when most labeled nodes are unavailable. The observed pattern across all datasets is consistent: there
is a substantial drop in performance at the beginning, followed by a plateau with minimal changes.
This suggests that the initial set of nodes removed, predominantly high-value labeled nodes, are
those critical to the model’s performance, whereas the subsequent nodes show less influence on the
outcome.
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Figure 6: Mixed Node Dropping Experiment

F LABELED NODE DROPPING EXPERIMENT

Here, we perform node dropping experiment employing the aggregated value define in the main-body
of paper, to demonstrate that PC-Winter can capture the heterogeneous influence of labeled nodes.
As shown in the Figure 7, both PC-Winter and Data Shapley demonstrate effectiveness in
capturing the diverse contributions of labeled nodes to the model’s performance. Particularly in the
Pubmed and Amazon-Photo datasets, PC-Winter exhibits better performance compared to Data
Shapley. In other datasets, such as Cora, Citeseer, and Coauthor-Physics, PC-Winter shows
results that are on par with Data Shapley.
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Figure 7: Labeled Node Dropping Experiment
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G EXPERIMENTAL DETAILS

G.1 INDUCTIVE SETTING

Our experiments focus on the inductive node classification task, which aims to generalize a trained
model to unseen nodes and is commonly adopted in real-world graph applications (Hamilton et al.,
2017; Van Belle et al., 2022; Jendal et al., 2022; D’Amico et al., 2023). Unlike the transductive
setting (Kipf & Welling, 2016) which incorporates the test nodes in the model training process, the
inductive setting separates them apart from the training graph. Such a separation allows us to measure
the value of the graph elements in the training graph solely based on their contribution to GNN model
training. Following (Hamilton et al., 2017), we split each graph G into 3 disjoint subgraphs: training
graph Gtr, validation graph Gva, and test graph Gte. The training graph Gtr is constructed without
any nodes from the validation or test set. Correspondingly, edges connecting to a validation node or a
testing node are also removed from the training graph. For the validation graph Vva and the testing
graph Vte, only edges with both nodes within the respective node sets are retained, which is aligned
with the inductive setting in prior work (Zhang et al., 2021a). We utilize Gtr to train the GNN model,
which is evaluated on Vva for obtaining the data values for elements. The test graph Vte is utilized to
evaluate the effectiveness of the obtained values.

G.2 DATASETS

We assess the proposed approach on six real-world benchmark datasets. These include three citation
graphs, Cora, Citeseer and Pubmed (Sen et al., 2008) and two Amazon Datasets, Amazon-Photo and
Amazon-Computer, and Coauther-Physics (Shchur et al., 2018). The detailed statistics of datasets are
summarized in Table 2.

The statistics presented in Table 2 characterize both the structural properties and experimental settings
of each dataset. The first four columns present basic graph statistics: the total number of nodes (#
Node), edges (# Edge), classes (# Class), and node feature dimensions (# Feature). These statistics
together provide a comprehensive view of each dataset’s scale and complexity. The last column
(# Train/Val/Test) specifies our experimental setup following the inductive learning setting, where
we split the nodes into three mutually exclusive sets: training, validation, and testing nodes. For
example, in the Cora dataset (140/500/1,000), we select 140 nodes for training, 500 for validation,
and 1,000 for testing. The training graph Gtr is constructed using only training nodes and their 2-hop
neighbors, explicitly excluding any validation or testing nodes. Separate subgraphs Gva and Gte are
created using only validation and testing nodes respectively, maintaining strict separation between
splits. This inductive setting ensures no information leakage between splits, as the graph elements
(nodes and edges) are mutually exclusive between training, validation, and testing graphs. A detailed
visualization of this split setting can be found in Section M, which illustrates both the inductive graph
split and the PC-Winter value estimation procedure.

Table 2: Dataset Summary

Dataset # Node # Edge # Class # Feature # Train/Val/Test

Cora 2,708 5,429 7 1,433 140 / 500 / 1,000
Citeseer 3,327 4,732 6 3,703 120 / 500 / 1,000
Pubmed 19,717 44,338 3 500 60 / 500 / 1,000

Amazon-Photo 7,650 119,081 8 745 160 / 20% / 20%
Amazon-Computer 13,752 245,861 10 767 200 / 20% / 20%
Coauthor-Physics 34,493 247,962 8 745 100 / 20% / 20%

G.3 DATASET SPLIT

In the conducted experiments, we split each graph G into 3 disjoint subgraphs: training graph Gtr,
validation graph Gva, and test graph Gte. The training graph Gtr is constructed without any nodes
from the validation or test set. Correspondingly, edges connecting to a validation node or a testing
node are also removed from the training graph. For the validation graph Vva and the testing graph
Vte, only edges with both nodes within the respective node sets are retained, which is aligned with
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the inductive setting in prior work (Zhang et al., 2021a). We utilize Gtr to train the GNN model,
which is evaluated on Vva for obtaining the data values for elements. The test graph Vte is utilized
to evaluate the effectiveness of the obtained values. In the case of the specific split for each dataset,
for the citation networks, we adopt public train/val/test splits in our experiments. For the remaining
datasets, we randomly select 20 labeled nodes per class for training, 20% nodes for validation and
20% nodes as the testing set.

G.4 CONVERGENCE CRITERIA

Convergence Criterion. For permutation-based data valuation methods such as Data Shapley

and PC-Winter, we follow convergence criteria similar to the one applied in prior work (Ghorbani
& Zou, 2019) to determine the number of permutations for approximating data values:

1

n

n
∑

i=1

∣

∣vti − vt−20
i

∣

∣

|vti |
< 0.05

where vti is the estimated value for the data element i using the first t sampled permutations.

Time Limit. For larger datasets, sampling a sufficient number of permutations for converged data
values could be impractical in time. To address this and to stay within a realistic scope, we cap the
computation time at 120 GPU hours on NVIDIA Titan RTX, after which the calculation is terminated.

G.5 TRUNCATION RATIOS AND HYPER-PARAMETERS

Table 3 includes the hyper-parameters and truncation ratios used for value estimation.

Table 3: Truncation Ratios and Hyper-parameters

Dataset Truncation Ratio Learning Rate Epoch Weight Decay

Cora 0.5-0.7 0.01 200 5e-4
Citeseer 0.5-0.7 0.01 200 5e-4
Pubmed 0.5-0.7 0.01 200 5e-4

Amazon-Photo 0.7-0.9 0.1 200 0
Amazon-Computer 0.7-0.9 0.1 200 0
Coauthor-Physics 0.7-0.9 0.01 30 5e-4
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Figure 8: Ablation Study
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G.6 BASELINES

G.6.1 DROPPING HIGH-VALUE NODES

Here, we introduce the baselines used for comparison to validate the effectiveness of the proposed
method in the dropping node experiment:

• Random Value: It assigns nodes with random values, which leads to random ranking without
any specific pattern or correlation to the node’s features.

• Degree-based Value: A node is assigned its degree as its value, assuming that a node’s
importance in the graph is indicated by its degree.

• Leave-one-out (LOO): This method calculates a node’s value based on its marginal contri-
bution compared to the rest of the training nodes. Specifically, the value v(i) assigned to each node

i is its marginal utility, calculated as v(i) = U (Gtr)− U
(

G−i
tr

)

, where G−i
tr denotes the training

graph excluding node i. The utility function U measures the model’s validation performance when
trained on the given graph. In essence, the drop in performance due to the removal of a node is
treated as the value of that node.

• Data Shapley: The node values are approximated with the Monte Carlo sampling method of
Data Shapley (Ghorbani & Zou, 2019) by treating both labeled nodes and unlabeled nodes as
players. Notably, we only include those unlabeled nodes within the 2-hop neighbors of labeled
nodes in the evaluation process. There are two approximation methods: Truncated Monte Carlo
approximation and Gradient Shapley in (Ghorbani & Zou, 2019). We adopt the Truncated Monte
Carlo approximation as it consistently outperforms the other variants in various experiments.

Notably, there is a recent work (Chen et al., 2022) that aims at characterizing the impact of elements
on model performance. Their goal is to approximate LOO value. Thus, we do not include it as a
baseline as LOO is already included.

G.6.2 ADDING HIGH-VALUE EDGES

Here are the detailed descriptions on the baselines applied in the edge adding experiment.

• Random Value: it assigns edges with random values, reflecting a baseline where no information
are used for differentiating the importance of edges.

• Edge-Betweeness: the Edge-Betweeness of an edge e is the the fraction of all pairwise
shortest paths that go through e. This classic approach assesses an edge’s importance based on its
role in the overall network connectivity.

• Leave-one-out (LOO): This method calculates a edge e’s value v(e) based on its marginal

contribution compared to the rest of the training graph. In specific, v(e) = U(Gtr) − U
(

G−e
tr

)

Here, e ∈ Gtr represents an edge in the training graph Gtr, and G−e
tr refers to the training graph

excluding the edge e.

H DETAILED QUANTITATIVE RESULTS

This appendix presents detailed quantitative results for the node dropping and edge addition experi-
ments discussed in the main text. To provide a more rigorous evaluation of our method’s effectiveness,
we introduce four key metrics that quantify the insights from Figures 3 and 4 in the main text:

For the node dropping experiment:

• Minimum Accuracy: The lowest accuracy reached during node removal.

• Mean Accuracy: The average accuracy across all node removal steps.

For the edge addition experiment:

• Maximum Accuracy: The highest accuracy reached during edge addition.

• Mean Accuracy: The average accuracy across all edge addition steps.

The rationale behind these metrics is as follows: (1) For node dropping, the Minimum Accuracy refers
to the lowest accuracy reached during node removal. A lower value for this metric indicates better
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identification of the most critical nodes, whose removal causes the largest performance drop. This
metric is designed to capture the method’s ability to identify the most influential nodes in the graph.
Similarly, the Mean Accuracy measures the average accuracy across all node removal steps. A lower
mean accuracy suggests the method consistently identifies important nodes throughout the removal
process, maintaining lower performance overall. This reflects the method’s ability to consistently
pinpoint valuable nodes across different stages of the removal process. (2) For edge addition, the
Maximum Accuracy corresponds to the highest accuracy achieved during edge addition. A higher
value for this metric signals better identification of the most valuable edges, whose addition results in
the largest performance improvement. This metric captures the method’s capacity to identify edges
that significantly enhance the graph’s information content. The Mean Accuracy measures the average
accuracy across all edge addition steps, with a higher mean accuracy suggesting that the method
consistently identifies important edges throughout the process, maintaining higher performance
overall. This reflects the method’s ability to recognize valuable edges across different stages of the
addition process. These metrics allow us to quantitatively assess each method’s effectiveness in
identifying high-value graph elements. They provide concrete measures of how well each method
causes the accuracy curve to drop deeply and consistently in node dropping experiments, and how
quickly and sustainedly it raises the accuracy curve in edge addition experiments.

Tables 4 and 5 show the minimum and mean accuracies for the node dropping experiment, while
Tables 6 and 7 present the maximum and mean accuracies for the edge addition experiment. These
results provide a comprehensive quantitative basis for evaluating the performance of our PC-Winter
method compared to other baselines across various graph datasets.

Table 4: Node Dropping - Minimum Accuracy

Method Cora Citeseer Pubmed Amazon-Photo Amazon-Computers Coauthor-Physics

Random 0.6600 0.6130 0.7110 0.7176 0.5676 0.9164
Degree 0.6600 0.6040 0.6990 0.6752 0.5625 0.9135
LOO 0.6580 0.6130 0.6920 0.6778 0.5582 0.9039
Data Shapley 0.6200 0.5910 0.6230 0.6255 0.4891 0.8863
PC-Winter 0.5990 0.5870 0.6150 0.5340 0.4207 0.8710

Table 5: Node Dropping - Mean Accuracy

Method Cora Citeseer Pubmed Amazon-Photo Amazon-Computers Coauthor-Physics

Random 0.6903 0.6411 0.7294 0.8140 0.6807 0.9249
Degree 0.6814 0.6354 0.7156 0.7377 0.6637 0.9215
LOO 0.6832 0.6349 0.7020 0.7296 0.6012 0.9197
Data Shapley 0.6421 0.6124 0.6437 0.7049 0.5467 0.8988
PC-Winter 0.6248 0.6034 0.6362 0.6306 0.5075 0.8793

Table 6: Edge Addition - Maximum Accuracy

Method Cora Citeseer Pubmed Amazon-Photo Amazon-Computers Coauthor-Physics

Random 0.7160 0.6550 0.7410 0.8621 0.7975 0.9266
Edge Betweenness 0.7220 0.6630 0.7470 0.8791 0.7996 0.9255
LOO 0.7140 0.6610 0.7350 0.8582 0.7953 0.9243
PC-Winter 0.7310 0.6750 0.7600 0.8739 0.8145 0.9297

The results in Tables 4 and 5 demonstrate that PC-Winter consistently achieves the lowest minimum
and mean accuracies across all datasets in the node dropping experiment. This indicates that
PC-Winter is more effective at identifying critical nodes whose removal significantly impacts
model performance. The performance gap is particularly notable in larger and more complex datasets
such as Amazon-Photo and Amazon-Computers.

For the edge addition experiment, Tables 6 and 7 show that PC-Winter achieves the highest
maximum and mean accuracies across all datasets. This suggests that PC-Winter is superior at
identifying valuable edges whose addition leads to the most significant performance improvements.
The advantage of PC-Winter is consistent across different graph structures and sizes, from smaller
networks like Cora to larger ones like Coauthor-Physics.
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Table 7: Edge Addition - Mean Accuracy

Method Cora Citeseer Pubmed Amazon-Photo Amazon-Computers Coauthor-Physics

Random 0.6894 0.6330 0.7227 0.8438 0.7823 0.9226
Edge Betweenness 0.6855 0.6217 0.7287 0.8475 0.7752 0.9202
LOO 0.6809 0.6339 0.7146 0.8452 0.7599 0.9186
PC-Winter 0.7197 0.6616 0.7511 0.8640 0.8023 0.9266

These quantitative results corroborate the visual trends observed in Figures 3 and 4 of the main text.
They provide strong evidence for the effectiveness of PC-Winter in both identifying critical nodes
for removal and valuable edges for addition, outperforming other baseline methods across various
graph datasets.

I ABLATION STUDY AND PARAMETER ANALYSIS

I.1 ABLATION STUDY

This Appendix Section offers an in-depth ablation analysis across full six datasets to investigates
the necessity of both Level Constraint and Precedence Constraint in defining an effective graph
value. The results, as shown in Figure 8, consistently demonstrate across all datasets that the absence
of either constraint leads to a degraded result when compared to the one incorporating both. This
underscores the importance of both two constraints in capturing the contributions of graph elements
to overall model performance.

I.2 THE IMPACT OF PERMUTATION NUMBER

This part expands upon the permutation analysis presented in the main paper. It provides comprehen-
sive results across various datasets, illustrating how different numbers of sample permutations impact
the accuracy of PC-Winter. The results of full datasets are shown in Figure 9. The results reveals
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Figure 9: The Impact of Permutation Numbers

that increasing the number of permutations generally improves the performance and accuracy of the
valuation. PC-Winter also show robust results even with a limited number of permutations, high-
lighting its effectiveness. The phenomenon is consistent across all datasets where our approach with
just 50 to 100 permutations manages to compete closely with the fully converged Data Shapley,
emphasizing the efficiency of PC-Winter in various settings.
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I.3 THE IMPACT OF TRUNCATION RATIOS

Our approach involves truncating the iterations involving the first and second-hop neighbors of a
labeled node during value estimation. Here, we investigate the impact of truncation proportion
on overall performance, using the same number of permutations as in our primary node-dropping
experiment. As shown in Figure 10, we adjusted the truncation ratios for the Citation Network
datasets. The ratios ranged from truncating 50% of the first-hop and 70% of the second-hop neighbors
(0.5-0.7), up to 90% truncation for either first-hop (0.9-0.7) or second-hop (0.5-0.9) neighbors. For
the Cora and Citeseer datasets, increasing truncation at the first-hop level had a minimal impact on
performance, and PC-Winter still significantly outperformed Data Shapley. In the case of
the Pubmed dataset, more extensive truncation at the first-hop level notably reduced performance.
Regarding large datasets such as the Amazon, while truncation at either the first or second-hop levels
had a marginal negative effect on performance, PC-Winter ’s estimated data values generally
remained superior to results of Data Shapley.

In addition, we provide a detailed analysis of our truncation strategy across other datasets. It includes
results not presented in the main text, focusing on the impact of limiting model retraining times
to the first and second-hop neighbors in value estimation. We investigate the impact of truncation
proportion on overall performance, using the same number of permutations as in our primary
node-dropping experiment. The findings on full datasets are illustrated in Figure 10. Specifically,
our findings reveal that in datasets like Cora and Citeseer, adjusting truncation primarily at the
first-hop level has a negligible impact on the accuracy of node valuation, with PC-Winter still
maintaining a considerable advantage over Data Shapley. For large datasets such as the Amazon-
Photo, Amazon-Computers and Coauther-Physics, while truncations had a marginal negative effect on
performance, PC-Winter ’s estimated data values generally remained better than Data Shapley. This
analysis indicates that PC-Winter can afford to employ larger truncation, enhancing computational
efficiency without substantially sacrificing the quality of data valuation.
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Figure 10: The Impact of Truncation Ratios
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Table 8: Permutation Number and Time Comparison

Dataset Truncation PC-Winter Data Shapley

Perm Number Perm Time (hrs) Perm Number Perm Time (hrs)

Cora 0.5-0.7 325 0.013 327 0.024
Citeseer 0.5-0.7 291 0.018 279 0.037
Pubmed 0.5-0.7 316 0.025 281 0.285

Amazon-Photo 0.7-0.9 418 0.211 109 1.105
Amazon-Computer 0.7-0.9 181 0.662 33 3.566
Coauthor-Physics 0.7-0.9 460 0.119 45 2.642

I.4 EFFICIENCY ANALYSIS

Here, we compare the computational efficiency of our proposed method PC-Winter and the Data
Shapley approach in terms of permutation number and time per permutation. As detailed in
Table 8, the results indicate that PC-Winter requires significantly less time to compute each
permutation across various datasets. Specifically, for the Cora dataset, PC-Winter completes
each permutation in approximately half the time required by Data Shapley. Moving to larger
datasets, the efficiency of PC-Winter becomes even more pronounced. For instance, in the
Amazon-Computer dataset, PC-Winter’s permutation time is only a fraction of what is required by
Data Shapley —PC-Winter takes slightly over half an hour per permutation whereas Data
Shapley exceeds three and a half hours. This consistent reduction in permutation time demonstrates
the computational advantage of PC-Winter, particularly when handling large graphs. Combining
the insights from the Permutation Analysis shown in Figure 9 with the Permutation Comparison
Table 8, we observe that for datasets such as Cora, Citeseer, Amazon-Photo, and Amazon-Computer,
around 50 permutations are sufficient for PC-Winter to achieve performance comparable to that
of Data Shapley. Simple calculations demonstrate that our method is significantly faster than
Data Shapley in achieving similar performance levels. For instance, in the Cora dataset, the
speedup factor is 327×0.024

50×0.013
= 12.07, and for the Citeseer dataset, it is 279×0.037

50×0.018
= 11.47. The

speedup factors for Amazon-Photo and Amazon-Computer are 109×1.105
50×0.211

= 11.42, and 33×3.566
50×0.662

=
3.57, respectively. For Coauthor-Physics, it takes about 100 permutations for PC-Winter to
match the performance of Data Shapley, which implies a speedup factor of 45×2.642

100×0.119
= 10.00.

In conclusion, PC-Winter can achieve stronger performance than Data Shapley using the
same or even less time. Furthermore, it takes PC-Winter much less time to achieve comparable
performance as Data Shapley. Notably, though PC-Winter is significantly more efficient than
Data Shapley, its scalability is still limited, and future work in further improving its efficiency is
desired.

I.5 COMPLEXITY ANALYSIS

We analyze the complexity of the PC-Winter. For convenience, we assume that we are dealing
with a d-regular graph. There are a total of L labeled nodes in the graph. As described in the
paper, we deal with a GNN model with 2 layers. Without loss of generality, we use F to denote
the dimensionality of node representations in each layer. We assume the number of classes in the
dataset is C. For hierarchical truncation, we assume we adopt a truncation ratio of r1 − r2, which
is consistent with the description in Section 3.4. Then, the number of nodes in a computation tree
for any labeled node is Nfull = 1 + d+ d2. With hierarchical truncation, the number of nodes in the
truncated computation tree is Ntrun = 1+ d · (1− r1) + d2 · (1− r1)(1− r2). When the truncation
ratios are large, Ntrun j Nfull. For instance, when r1 = r2 = 0.9, Ntrun could be less than 5Time
Complexity Analysis: We now analyze the time complexity of a single permissible permutation
of the PC-Winter algorithm. We begin by examining the time complexity of generating a single
permissive permutation. Then, we investigate the complexity of a single model retraining and
provide the total retraining number for a single permutation. Finally, we combine these analyses to
derive the overall time complexity for generating one permissible permutation and going through
it for calculating the marginal contributions. Time complexity of generating a single permissive
permutation: The time complexity of traversing the truncated contribution tree to generate a single
permissive permutation is O(L ·Ntrun). In particular, there are L ·Ntrun+1 nodes in the contribution
tree (including the dummy node). Hence, the cost of a DFS traversal over the contribution tree is
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O(L ·Ntrun + 1 + L ·Ntrun) = O(L ·Ntrun). Time complexity of one model retraining: As described
in Section 3.4, with local propagation, for each model retraining, we only need to perform feature
aggregation on a single partial computation tree. The size of a partial computation tree is, on average,
Ntrun

2
. Therefore, the feature aggregation complexity for each retraining step is O(Ntrun

2
· F ), where F

is the dimension of node features. The feature transformation complexity for each model retraining
is O(F · F + F · C)=O(F 2), where C is the output dimension (number of classes) of the GNN

model. Therefore, the total time complexity of a single retraining is O(Ntrun

2
· F + F 2). Without local

propagation, the feature aggregation complexity for each model retraining would be much larger,
since the propagation needs to be performed on the entire graph. The number of model retraining in a
single permutation: In a permissible permutation, we need to perform retraining for each node in the
truncated contribution tree, which has L ·Ntrun nodes in total. Therefore, L ·Ntrun model retrainings
are needed for a single permutation. Total time complexity for a single permissible permutation:
With local propagation and hierarchical truncation, the total time complexity of a single permissible

permutation in PC-Winter is: O(L·Ntrun+L·Ntrun·(
Ntrun

2
·F+F 2)) = O(L·Ntrun·(1+

Ntrun

2
·F+F 2))

= O(L ·Ntrun ·(
Ntrun

2
·F+F 2)). Notably, the time complexity of generating a permissible permutation

is negligible compared to the cost of model retraining. The proposed strategies, hierarchical truncation,
and local propagation, help reduce the overall time complexity of the PC-Winter algorithm. In
particular, hierarchical truncation makes Ntrun much smaller than Nfull, greatly decreasing the total
number of model retraining required for a single permutation. On the other hand, Local propagation
reduces the feature aggregation complexity, greatly reducing the cost of each retraining.

The proposed strategies, hierarchical truncation, and local propagation, help reduce the overall time
complexity of the PC-Winter algorithm. In particular, hierarchical truncation makes Ntrun much
smaller than Nfull, greatly decreasing the total number of model retraining required for a single
permutation. On the other hand, Local propagation reduces the feature aggregation complexity,
greatly reducing the cost of each retraining.

It is worth noting that, similar to traditional Shapley value computation and its variants such as
S-Shapley, computing the exact PC-Winter value remains #P-complete (Xia et al., 2023). Our
analysis above specifically describes the time complexity of our approximation framework, which
achieves polynomial-time efficiency through Monte Carlo permutation sampling, hierarchical trunca-
tion, and local propagation. This approach is aligned with the polynomial-time permutation-based
approximation methods in the literature (Xia et al., 2023).

J ADDITIONAL REGRESSION TASK EVALUATION

To validate our method’s effectiveness beyond classification tasks, we conducted additional exper-
iments on node regression using the US election 2012 dataset from (Jia & Benson, 2020). We
employed a 2-layer SGC model in an inductive setting, sampling 30% of nodes in the training graph
as labeled nodes.
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Figure 11: Comparison of PC-Winter and Data Shapley on node regression task. The y-axis
shows negative MSE (higher is better) as nodes are progressively removed based on their computed
values.
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For rigorous comparison, we configured both PC-Winter and Data Shapley under consistent
experimental settings. PC-Winter was implemented with a truncation ratio of 0.5-0.7, while both
methods used 50 permutations for value computation. The evaluation protocol involved dropping
unlabeled training nodes sequentially based on their computed values, from most to least important,
to assess each method’s ability to identify influential nodes.

We evaluated performance using negative MSE, calculated as the negative of the mean squared
error between predicted and actual values. This metric choice serves dual purposes - it maintains
consistency with our classification experiments where higher values indicate better performance,
while enabling direct interpretation of performance drops. When removing crucial nodes, we expect
to see a decline in negative MSE, with steeper declines indicating better identification of important
nodes.

Figure 11 shows the comparative results between PC-Winter and Data Shapley. PC-Winter
achieves a better mean negative MSE of -0.1147 compared to Data Shapley’s -0.0993. The
steeper drops in PC-Winter’s curve demonstrate its superior ability to identify nodes crucial for
model performance. This performance advantage remains consistent across different stages of node
removal, indicating robust valuation quality throughout the evaluation process.

This regression task evaluation strengthens our original findings in several significant ways. First, it
validates our method’s effectiveness on continuous-valued predictions, extending beyond the discrete
classification setting. Second, the inductive setup tests the method’s generalization capability. Third,
the successful application with an SGC architecture demonstrates robustness across different model
types. Together with our classification results, this comprehensive evaluation provides compelling
evidence for both the effectiveness and generality of our approach in graph data valuation.

K CLASS-BALANCED ACCURACY ANALYSIS

To provide a more comprehensive evaluation perspective, we analyze PC-Winter’s performance
using class-balanced accuracy. This metric helps assess whether our method can effectively identify
important nodes across all classes without bias. Class-balanced accuracy is particularly important for
datasets with imbalanced class distributions, as it gives equal weight to each class regardless of its
size.
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Figure 12: Class-balanced accuracy comparison between PC-Winter and Data Shapley across
different datasets. The x-axis shows the number of nodes removed, and the y-axis shows the class-
balanced accuracy. From left to right: (a) Cora, (b) Citeseer, (c) Pubmed.

Figure 12 presents the comparison between PC-Winter and Data Shapley using class-balanced
accuracy on three benchmark datasets. On the Cora dataset, PC-Winter demonstrates a more
substantial drop in balanced accuracy from 0.72 to 0.64, compared to Data Shapley’s more
gradual decline, indicating better identification of crucial nodes across all classes. Similar patterns
are observed on Citeseer, where PC-Winter’s balanced accuracy drops from 0.62 to 0.57, showing
consistent performance across different class distributions. For Pubmed, PC-Winter achieves a
significant drop from 0.74 to 0.65, further validating its effectiveness in identifying important nodes
without class bias.

The steeper drops in balanced accuracy across all datasets demonstrate that PC-Winter effectively
identifies nodes crucial for model performance while maintaining fairness across different classes.
This analysis complements our main results by showing that PC-Winter’s superior performance
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extends to class-balanced metrics, suggesting its robustness and applicability in scenarios where class
balance is particularly important.

L INTEGRATION WITH P-SHAPLEY

Recent work by (Xia et al., 2024) proposed P-Shapley, which innovates on utility function design by
utilizing probabilistic classifier outputs. We investigate how this utility-focused innovation interacts
with our structural approach to graph data valuation by integrating P-Shapley’s probability-based
utility function with both Data Shapley and PC-Winter frameworks.
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Figure 13: Performance comparison using different utility functions. The results show PC-Winter

maintains its advantages regardless of utility function choice, while demonstrating complementary
benefits from P-Shapley’s probability-based utility. From left to right: (a) Cora, (b) Citeseer, (c)
Pubmed.

Our experimental results, shown in Figure 13, reveal several important insights about the relation-
ship between structural innovations and utility function design in graph data valuation. Most no-
tably,PC-Winter consistently outperforms Data Shapley regardless of utility function choice.
On the Cora dataset, PC-Winter achieves minimum accuracies of 0.599 and 0.608 with standard
and P-Shapley utilities respectively, compared to Data Shapley’s 0.620 and 0.625. This pattern
holds across datasets, though with varying magnitudes.

The consistent performance advantage demonstrates that PC-Winter’s core innovation - its
precedence-constrained formulation for handling graph dependencies - provides fundamental benefits
independent of utility function design. The steeper performance drops in PC-Winter variants indi-
cate more effective identification of crucial nodes, validating that our structural approach addresses
fundamental challenges in graph data valuation.

Interestingly, P-Shapley’s probability-based utility function shows complementary benefits that
vary by dataset. On Cora and Citeseer, integrating P-Shapley’s utility with PC-Winter leads to
slightly improved node importance identification, while on Pubmed, the standard accuracy utility
performs better. This dataset-dependent behavior suggests that while both structural and utility-based
innovations offer benefits, they operate on different aspects of the data valuation problem.

These findings highlight the modularity of innovations in data valuation: improvements in handling
graph structure (like PC-Winter) can be effectively combined with advances in utility function
design (like P-Shapley). While both approaches contribute to better data valuation, our results suggest
that addressing the structural challenges of graph data provides consistent benefits across different
evaluation frameworks.

M PC-WINTER FRAMEWORK OVERVIEW

Figure 14 presents an overview of the PC-Winter framework for graph data valuation. The
framework operates on an inductive setting, where the input graphs are divided into three mutually
exclusive structures: the Training Graph, the Validation Graph, and the Testing Graph.

The Training Graph contains the elements to be evaluated and is the main focus of the PC-Winter
algorithm. Within this graph, nodes labeled as l (l0, l1) represent labeled nodes, nodes labeled as w
(w0 - w3) represent 1-distance neighbors of labeled nodes, and nodes labeled as u (u0 - u6) represent
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Figure 14: PC-Winter Framework Overview

2-distance neighbors of labeled nodes. This hierarchical structure aligns with the concept of the
Computation Tree introduced in Definition 1 (Section 2.3).

The Validation Graph is used for calculating the accuracy of the GNN model, which serves as the
utility function in the PC-Winter framework (Definition 3, Section 3.1). The Testing Graph is
reserved for downstream tasks, such as the node dropping experiments conducted in Section 4.2.

PC-Winter Value Estimation Steps:

1. Perform a Preorder Traversal with hierarchical truncations on the Computational Tree
T . This step generates permissible permutations that respect the Level and Precedence
Constraints (Section 3.3, Theorems 1 and 2). The hierarchical truncation strategy (Section
3.4.2) is applied to reduce computational complexity while maintaining valuation quality.

2. Retrieve a permissive Permutation π from the Preorder Traversal. Each permutation repre-
sents a unique ordering of the players (nodes) in the Training Graph.

3. Calculate the marginal contribution of each player based on the validation accuracy differ-
ence. This step involves retraining the GNN model on subgraphs induced by the permutation
and measuring the change in accuracy when a player is added (Definition 3, Section 3.1).
The local propagation strategy (Section 3.4.3) is employed to efficiently compute these
marginal contributions.

4. Estimate the PC-Winter Value by averaging the marginal contributions of each player
over multiple permutations. The permutation sampling strategy (Section 3.4.1) is used to
approximate the PC-Winter value (Equation 3, Section 3.2) by considering a subset of
permutations.

The PC-Winter framework provides a comprehensive approach to graph data valuation by incor-
porating graph-specific constraints and efficient approximation strategies. The framework’s design
allows for the accurate quantification of the importance of individual graph elements (nodes and
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edges) while considering their complex interdependencies and contributions to the GNN model’s
performance.

Table 9: Key Notations Used in the Paper

Notation Definition Description

G = {V, E} Graph Original graph with node set V and edge set E
Vl ⊂ V Labeled Node Set Set of nodes with known labels
P Player Set Union of nodes from computation trees of all la-

beled nodes (Definition 2)

TK
i K-level Computation Tree Computation tree of depth K rooted at node vi

(Definition 1)
D(p) Descendants Set of descendants of player p in the contribution

tree
Ω Permissible Permutations Set of permutations satisfying both Level and

Precedence constraints
Pπ
i Predecessor Set Set of players appearing before player i in permu-

tation π
U(·) Utility Function Model performance on validation set (Definition

3)
ψp(P, U) PC-Winter Value Value of player p based on permissible permuta-

tions
r1-r2 Truncation Ratios Hierarchical truncation ratios for first and second-

hop neighbors
vi Node A node in the original graph G
xi Node Features Feature vector of node vi
yi Node Label Label of node vi
C Label Set Set of possible labels for nodes
d Feature Dimension Dimensionality of node feature vectors

h
(k)
i Node Representation Learned representation of node vi at the k-th GNN

layer
W Weight Matrix Learnable weight matrix in GNN layers
N(vi) Neighbors Set of neighboring nodes of node vi
deg(vi) Node Degree Number of edges connected to node vi
Gin(S) Node-Induced Graph Graph induced by a subset of players S ⊂ P
A(·) GNN Model Graph Neural Network model trained on a given

graph
acc(·) Accuracy Function Function measuring the accuracy of a trained GNN

model
T Contribution Tree Tree structure representing hierarchical contribu-

tions of players
Π(P) Permutations Set of all possible permutations of player set P
π Permutation A specific permutation of players
π[i] Permutation Rank Positional rank of player i in permutation π
Ωs Sampled Permutations A subset of permissible permutations sampled for

approximation

N NOTATION TABLE

To facilitate a better understanding of our methodology and theoretical framework, we present a
comprehensive table of notations at Table 9 used throughout this paper. The notations cover various
aspects of our work, including graph structures, neural network components, computational trees,
and permutation-related concepts. This systematic organization of notations aims to help readers
track and understand the mathematical formulations and algorithmic components more effectively.
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Additionally, we provide detailed descriptions for each notation to ensure clarity and precision in our
mathematical expressions.

The notations are organized into several conceptual categories. The first category includes basic graph
structural elements (G, V , E) and node attributes (xi, yi). The second category covers computation
tree-related notations (TK

i , D(p)), which are essential for understanding our hierarchical valuation
framework. The third category encompasses permutation-related notations (Ω, π, Pπ

i ), which are

crucial for the PC-Winter value computation. Finally, we include model-specific notations (h
(k)
i ,

W ) and evaluation metrics (U(·), acc(·)) that are used throughout our theoretical analysis and
experimental validation.
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