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Abstract

Many human diseases, including viral infections and cancers, are driven by the evolutionary dynamics of heterogeneous populations of genomic
variants. A major type of evolutionary behavior of these populations is migration including viral transmissions and cancer metastatic spread.
A common strategy for migration pathways reconstruction involves constructing a phylogenetic tree of observed genotypes and inferring its
ancestral states corresponding to migration sites. Key challenges here include determining the conditions when a phylogenetic tree topology
reflects the underlying migration tree structure, and balancing computational tractability, flexibility, and biological realism of inference algorithms
and models.

In this study, we address these challenges using the powerful machinery of graph homomorphisms, a mathematical concept that describes
how one graph can be mapped onto another while preserving its structure. We investigate how structural constraints on migration patterns and
migration tree topologies influence the relationship between phylogenies and migration trees, characterize trees compatible with a given phylogeny
and propose a series of algorithms to assess whether given phylogenetic and migration trees are compatible under various migration scenarios.

Leveraging our findings, we present a framework for inferring migration trees by sampling potential trees from a prior random tree distribution
and identifying a subsample compatible with a given phylogeny. By varying prior tree distributions, this approach expands upon several existing
models, offering a versatile strategy applicable to a variety of biological processes. We validate our methodology using simulated datasets and
real data from studies of viral outbreaks and cancer metastasis, demonstrating its effectiveness across different contexts.

Keywords: migration tree, phylogenetic inference, viral transmission, cancer metastasis

1. Introduction s extreme genomic diversity originates from error-prone replica-

) ) ) s tion processes, whether due to the lack of a proofreading mech-
Many human diseases are essentially evolutionary processes.

10 anism in RNA-dependent RNA polymerase or retroviral reverse
This includes viral infections, driven by evolving populations of

1 transcriptase in RNA viruses [3, 4, 5], or from the genetic in-
viral variants [1], as well as cancers associated with diversify-

12 stability of tumor cells manifesting itself in somatic mutations,
ing intra-tumor subclonal lineages [2]. Although the biological

13 chromosomal gain/loss/translocation, and aneuploidy [6, 7, 8,
mechanisms of these diseases are different, both are fueled by

1 9]. Consequently, the general phylogenetic methodologies ap-
highly mutable populations of disease-causing agents, whose

plied to these populations exhibit many similarities. From a

*Corresponding authors. s methodological standpoint, they form a unique segment of phy-
Email addresses: kkuzminl@gsu. edu (Kiril Kuzmin), . . .
pavel . skums@uconn . edu (Pavel Skums) 17 logenetics and phylodynamics, fostering a mutual exchange of
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concepts that enhances all areas of application [10, 11, 12]. 52

A major type of evolutionary behaviour of highly mutable s
populations is migration, wherein their members spread from s
initial sites, seeding new populations at newly invaded sites. For ss
infectious diseases, such migrations equate to pathogen trans- ss
missions, whereas in cancer this process is identified with me- s7
tastatic spread. Thus, accurate inference of migration networks ss
of heterogeneous populations is crucial for public health and ss
medical research [13, 14, 15, 16]. 60

The study of highly mutable population migration has been et
significantly enhanced by groundbreaking advancements in se- e
quencing technologies. State-of-the-art high-throughput targe-
ted sequencing and single-cell DNA sequencing enable the cap- e
ture of detailed population snapshots at exceptionally high res- s
olutions, facilitating fine-grained analysis down to the level of es
individual genotypes [16, 17, 18, 19]. In particular, this allows e
to examine population migration on the level of individual mi- es
gration events [20, 17, 21, 22]. 69

A wide array of methods has been developed specifically 7
for reconstructing viral and bacterial transmission trees, reflect- 71
ing the substantial interest in tracking the spread of infectious 7
diseases. The arsenal of tools available for reconstructing trans- 7
mission networks is extensive, including but not limited to Out- 7
breaker, Outbreaker 2 [23, 24], SeqTrack [25], SCOTTI [26], 75
SOPHIE [27], Phybreak [28], Bitrugs [29], BadTrIP [30], Phy- 7
loscanner [31], StrainHub [32], TransPhylo [33, 34] (along with 77
its extension TransPhyloMulti [35]), STraTUS [36], TreeFix- 7
TP [37], QUENTIN [38], VOICE [39], HIVTrace [40], GHOST 7
[41], MicrobeTrace [42], SharpTNI [43], TiTUS [12], TNeT e
[44], AutoNet [45], and others [46, 47, 34, 48, 49, 50, 51, 52, &
53]. These tools have been instrumental in investigation of out- s
breaks and monitoring the transmission dynamics of pathogens s
like HIV, hepatitis C (HCV), SARS, MERS and SARS-CoV-2 &
[54, 55, 56, 57, 20, 58]. &

2

Similarly, the development of methods for deducing meta-
static spread histories is burgeoning, driven by advancements in
single-cell DNA sequencing and CRISPR-based lineage tracing
technologies. Currently, the repertoire of tools in this domain
includes MACHINA [22], FitchCount (as part of the Cassiopeia
suite) [21, 59], PathFinder [60], TCC, PCC, and PCCH [61].
Notwithstanding the relatively shorter list, the impact of these
tools is growing, with several studies published recently lever-
aging these methods to gain insights into the mechanisms of
metastatic spread [21, 62, 63, 64].

Despite significant progress in the field, the wide variety of
existing methods underscores that the challenge of accurately
inferring heterogeneous population migration remains unresol-
ved. This diversity of approaches indicates both the complex-
ity of the problem and the ongoing efforts to refine and im-
prove upon existing methods. Additionally, a major barrier to
advancement in the field is the relative isolation of viral and
cancer genomics fields. Some of the aforementioned tools are
based on conceptually similar techniques - this applies, for ex-
ample, to STraTUS (which focus on viral transmission) and
FitchCount (which addresses metastatic spread) that, as demon-
strated in this paper, yield virtually identical results when ap-
plied to the same datasets. This lack of interdisciplinary ex-
change of ideas often leads researchers to inadvertently dupli-
cate efforts, thereby impeding progress in both fields.

Phylogenetics and phylodynamics provide the most widely
used methodological frameworks for migration tree/network re-
construction [35, 22]. However, their application in this context
is not straightforward. A phylogenetic tree does not directly
equate to a migration tree [35], as the nodes in a phylogenetic
tree represent divergences of lineages rather than specific mi-
gration events [35, 65]. While some of these divergences may
result from migration, others occur within previously invaded

sites. Therefore, deriving a migration tree from a phyloge-
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netic tree essentially requires solving an ancestral trait infer-izo
ence problem, wherein the internal nodes of a phylogenetic treesas
are annotated with labels that indicate whether each divergence122
event occurred within a site or as a result of seeding of a new

123

site upon migration. Furthermore, it is crucial to effectively
124

leverage the full spectrum of intra-site (within-host or within-125
tumor) population diversity uncovered by high-throughput se-
quencing, that often provide a strong signal for migration in-127
ference. For example, the paraphyletic relationships between128
populations suggest recent migrations between corlresponding129
sites [66, 67, 39, 68]. ”

The challenges mentioned above highlight several crucial
131

questions that remain unresolved and warrant further explo-
132

ration. These questions include: .

1)To what extent and under which conditions does the topol-1s
ogy of a phylogenetic tree reflect the structure of the underly-1s
ing migration tree? This question becomes particularly impor-1ss
tant when the level of paraphyly in the labeled phylogeny isis
low, a situation not uncommon as the paraphyletic signal tendsiss
to diminish over time and with smaller sample sizes [66]. Az
number of studies have looked at this subject but their conclu-1
sions were mixed. Some studies have found that certain mi-14
gration patterns, such as super-spreading, migration chains, or,
more generally, migrations within networks formed by differ-1s
ent models like Erdos-Rényi [69], preferential attachment [70],144
or Watts-Strogatz models [71], lead to quantitatively distinctis
phylogenetic tree topologies [72, 73, 74]. Additionally, theis
spatial structure and dynamics of heterogeneous populations,is
which are directly related to migrations pathways, have beeniss
shown to affect the phylogeny structure of both viral and tumoriss
populations [75, 76, 77, 78]. On the other hand, other studiesiso
report that the direct impact of migration patterns on phyloge-1s

netic trees ranges from minimal to moderate [79, 80, 81, 82].1s

Finally, certain studies have drawn mixed conclusions, indicat-1ss

3

ing that while some migration characteristics are reflected in the

phylogeny, others are not [83].

2) How can we limit the solution space to balance computa-
tional feasibility, accuracy of inference, generalizability, and
biological realism? The space of migration trees compatible
with given phylogenetic trees is often vast, and its properties are
not well understood [36, 12]. A sampling-consensus approach
is one method to address solution ambiguity, where feasible mi-
gration trees are sampled and summarized in a weighted con-
sensus graph, with weights reflecting posterior probabilities of
edges [44, 12, 43, 26, 21]. However, the size of solution space
may restrict the depth of sampling. As a response, it is common
practice to narrow down the solution space to a set of plausible
migration trees optimizing a specific objective function under
evolutionary-based constraints. Employing constrained models
also aids in preventing overfitting in presence of missing data
and errors.

Various objectives and constraints have been implemented
by existing methods. Limiting number of migration events,
sizes of bottlenecks or numbers of back-migrations [31, 12, 44,
22, 59, 21, 61, 36, 25] is more computationally efficient and
scalable due to utilization of dynamic programming [84, 85],
making such approaches practical in both molecular epidemiol-
ogy and computational oncology. These can also be formulated
as Integer Linear Programming (ILP) problems [86] and solved
with reasonable efficiency using existing ILP solvers. Models
with more complex Bayesian objectives with constraints regu-
larized as priors [35, 28, 26, 23, 30] offer a richer, biologically
nuanced perspective but suffer from scalability issues and usu-
ally rely on generic methods like Markov Chain Monte Carlo
(MCMC) sampling, which may not yield optimal solutions, in
part due to a lack of problem-specific mathematical strategies.
Balancing computational efficiency with biological comprehen-

siveness presents a notable challenge, compounded by the un-
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certainty of how much constraints and objectives truly limit the1ss

solution space [36, 12]. 189

3) How to incorporate a variety of models for phylogenetic190

. . . . . . 191
inference of migrations into a unified modular computational

framework?

Migration inference models draw on varied biological or”
epidemiological assumptions. For instance, viral transmission”"
inference often incorporates case-specific temporal data like in-""
fectious periods, exposure intervals, symptom onset, diagnosis196

or sample collection dates to establish order of infections and"”

eliminate unlikely transmission links [23, 47, 28, 33, 12, 26,"

199
29]. In some rare cases, contact networks are known and can be

used for the same purpose [87, 58]. While effective, such data™

is often unavailable, non-informative, or sensitive, particularly201
for endemic and pandemic diseases caused by HIV, Hepatitis202
C, SARS-CoV-2, or Influenza [27, 38, 53]. In situations where™”
case-specific data cannot be used, genomic epidemiology tools™
resort to broader assumptions, like the expected degree distri-"
bution of transmission networks implied by a structure of a sus-""
ceptible population [38, 27]. Similarly, methods for inferring207
metastatic spread use constraints defined by so-called migration208

. e . . . 209
patterns that reflect realistic cancer migration scenarios, such

as monoclonal, polyclonal or multi-source seeding [22, 61]. N

commonality across all these methods is the use of structural”
constraints on feasible transmission networks that are consid-"
ered as subgraphs of a larger "pattern" graph. It suggests a”
need for a versatile, modular migration inference framework™

that integrates these varied approaches on a unified algorithmic215

and mathematical basis, akin e.g. to the BEAST framework for”

217

Bayesian evolutionary analysis [88].

Addressing these challenges requires a comprehensive in-""
vestigation into the mathematical properties of migration trees”
compatible with a given phylogeny, a topic that is not yet fully220

understood [36]. Our study aims to advance this area by devel-™'

192

oping a novel methodology based on powerful techniques from
graph theory and combinatorics. Additionally, we will use this
methodology to introduce novel algorithmic approaches for in-
ferring migration trees.

A number of earlier studies has achieved important progress
in this area. Several studies noticed that migration trees compat-
ible with a given phylogeny correspond to partitions of the phy-
logeny’s node set or to coloring of its branches [51, 36, 33, 34].
These observations have informed the development of meth-
ods to enumerate and sample these trees, assuming a complete
migration bottleneck [36] and a known sequence of migrations
[89]. In fact, as we argue in this paper, the relation between a
phylogenetic tree and a migration tree is described by the con-
cept of a graph homomorphism that generalize both partitions
and colorings.

Graph homomorphism is essentially a mapping between the
vertices of two graphs that preserve their structure [90]. The
theory of graph homomorphisms is well-established area of dis-
crete mathematics, with deep results and rich methodology. All
types of migration trees discussed so far can be described by
a graph homomorphism with specific constraints. For exam-
ple, migration trees compatible with a given phylogeny under
the assumptions of complete sampling and complete bottleneck,
that has been studied in [51, 36] are minors [91, 92] of the phy-
logeny or, equivalently, its homomorphic images such that in-
verse images of all vertices are connected subtrees.

We use mathematical and algorithmic machinery of graph
homomorphism theory to delve into the details of migration in-
ference. Specifically, we provide necessary and sufficient con-
ditions describing trees compatible with a given phylogeny and
propose a series of algorithms that evaluate the compatibility
of phylogenetic and migration trees under various evolutionary
scenarios through the construction of corresponding homomor-

phisms. We examine particular structural constraints on migra-
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tion patterns and migration tree topologies to understand theirzss
influence on the relationship between a phylogeny and a migra-zss
tion tree. 257
Based on aforementioned insights, we propose a generalzss
framework for migration inference that samples candidate mi-zss
gration trees from a chosen prior random tree distribution, andzso
identifies a subsample of trees compatible with a given phy-zs
logeny. By varying prior tree distributions, this approach ex-z-
pands upon and generalizes several existing models, offering azes
versatile and computationally efficient strategy applicable to azss
variety of biological processes associated with heterogeneousass
population migration. Crucially, the proposed framework iszss
computationally fast, enabling biomedical and public health re-z7
searchers to quickly test different tree priors that represent com-zes
mon migration models. Beyond migration reconstruction, pro-zss
posed methods can be used for investigating how phylogenieszro
constrain the space of possible migration trees, for inferring anz
order of known or suspected migration events, and for deter-zr2
mining potential migration events that are definitively ruled outzrs
by a phylogeny [36]. 274
Proposed methodology was validated using both simulatedzrs
datasets and real experimental data gathered from studies of vi-zz
ral outbreaks and cancer metastasis, demonstrating its effective-zr7
ness and applicability across different contexts. 278
279

2. Methods 280

281
2.1. Basic definitions

282
Throughout this paper, we consider a pair of trees: a phyloge-

283
netic tree and a migration tree. For clarity, we refer to elements

284
of a phylogeny as nodes, and to elements of a migration net-

285
work as vertices, and denote them by Greek and Latin letters,

286
respectively.

287

The problem of migration network inference is set up as
288

follows. The input is a phylogenetic tree ¥ = (V(¥), E(Y)),

with the leaf set L(\V) representing genomic variants belonging
to different subpopulations (or demes), denoted by L. The tree
Y can be a standard binary phylogeny or non-binary mutation
tree used in most cancer studies. Each leaf A € L(¥) has an
assigned site label (or color) I, € L. The aim is to expand this
labeling from the leaves to all nodes in the tree, creating a full
labeling f : V(¥) — L. In this model, any multi-colored tree
edge af represents a migration of genomic variants between
demes f(a) and f(B). The migration tree T = T'(¥, ) and with
vertices V(T) = L, is then formed by contracting the nodes
with the same color [51].

As mentioned in the introduction, researchers often seek
migration trees satisfying particular constraints restricting types
of migration or tree topologies. These constraints can be en-
coded using a transition pattern graph G that describes permis-
sible patterns of migration (specific examples are provided in
the following subsection). We will first consider the situation
when G is a simple graph; later on, it will be extended to the
cases when G is a random graph characterized by some prob-
ability distribution. In this model, a migration tree should be
isomorphic (i.e. identical up to relabeling of vertices) to a sub-
graph of the transition pattern. Any corresponding labeling will
be called feasible.

The relations between the phylogeny ¥, the migration tree
T and the transition pattern G can be captured using the con-
cept of a graph homomorphism. A homomorphism f: ¥ — G
[90] is an adjacency-preserving mapping between vertex sets of
these graphs, i.e. f(u)f(v) € E(G) if uv € E(¥). For the sake of
mathematical rigor, here and throughout this paper we assume
that a transition pattern is reflexive, i.e. every vertex is adja-
cent to itself. With this condition in place, any feasible labeling
f is a homomorphism from ¥ to G, making the migration in-
ference problem essentially a problem of finding such a homo-

morphism. In graph theory, this type of problems is sometimes
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Figure 1. SMiTH: Sampling MIgration Trees with Homomorphisms. A: Input phylogenetic tree. B: Distribution of possible migration trees. Parallel rectangles
depict a probability density function, with each rectangle’s width proportional to the corresponding probability. In practice, the distribution is represented either by
a random graph model or by a stochastic graph generation procedure. C: Candidate migration trees sampled from the distribution B. D: Homomorphisms from the
phylogeny to three sampled trees. In the phylogenies, nodes are color-coded by their homomorphic images in a migration tree. The phylogeny layouts in the middle
of each subfigure showcases how homomorphism transforms them into sampled trees. E: consensus solution derived from homomorphisms in D. The solution
is shown as potential color distributions for the phylogeny’s nodes (left) or as a graph where possible migration edges are weighted according to the number of

supporting solutions (right), with the edge thickness indicating weight.

referred to as an G-coloring of the tree ¥ [90]. 300
Throughout this paper, we use standard graph theory no-so
tations. We denote by ¥, a subtree of ¥ rooted at the nodeso
a. For any graph G, G[X] represents the subgraph induced byaos
the subset of vertices X. We use u ~ v to indicate that ver-so
tices u and v are adjacent. The set of neighbors of a vertex uaos
in G is denoted as Ng(u), deg;(u) = [Ng(u)| is the degree ofae
u, Ng[u] = Ng(u) U {u} and Ng[X] is the union of the neigh-s7
borhoods of all vertices in a set X. Additionally, the distance
between any two vertices u and v in G is denoted by dg(u,v),

and Pg(u, v) refers to the corresponding shortest path between

them. When the graph is clear from a context, we may omit the
subscripts in these notations. In the case of a phylogeny P, all
distances and paths are undirected.

Additionally, to simplify the notation, we will apply set-
theoretical operations (e.g. intersection and union) directly to
subgraph of G, with the understanding that the resulting sub-
graph is induced by the set obtained from applying these oper-

ations to the vertex sets of the original subgraphs.
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321

322

323

324

325

326

327

328

329

330

332

333

Figure 2. Solutions for the Migration History Inference Problem under
various constraints. For each scenario, a phylogenetic tree is illustrated in two
different layouts on the left and in the middle, with the corresponding migration®*
tree displayed on the right. In the phylogenies, nodes are color-coded by their
homomorphic images in the migration tree. The layout in the middle showcases
how homomorphism transforms a phylogeny into a migration tree. (a) Uncon-
strained solution. Subtrees formed by blue and red nodes are not connected,
indicating a violation of the convexity constraint. (b) Convex solution. Each336
color-coded subtree is connected, but compactness is violated in the subtree
rooted at node 7. (c) Convex and compact solution.

335

337

338

2.2. Migration inference under structural constraints
339

The simplest form of the migration inference challenge appears
340

when the vertices of the transition pattern graph G directly cor-
341

respond to the labels of the phylogenetic tree leaves, that is,
342

V(G) = L. This variant is referred to as labeled inference. The
34

3

transition pattern G can be an unweighted graph or a random
344

graph with specified edge probabilities. Several scenarios ex-
345

emplify this problem:

346

e For viral transmissions, G could reflect a contact network
347

of potential hosts [87, 58], where an infection spreads
348

through direct interactions within this network.
349

e Another viral transmission model assumes that transmis-sso

sion is only possible between hosts with overlapping ex-sst
7

posure intervals [30, 12]. In this case G is an interval
graph [93], i.e. a graph with vertices representing time
intervals and edges connecting vertices whose intervals

intersect.

e For metastatic spread inference, G may represent a cir-
culatory network [94, 95, 96], with vertices representing
organs and edges reflecting the prior probabilities of can-

cer spreading between organs.

Problem 1 (Iabeled migration inference)

Input:

(al) a phylogenetic tree ¥ with leaf labels (/1) ezw) forming

the label set L;
(bl) atransition pattern G with V(G) = £;
Output:

(c1) a homomorphism f : ¥ — G such that f(1) = [, for

every A € L('P).

In practical settings, however, Problem 1 might be too re-
strictive or not fully reflective of reality. The main issue is
the absence of a known mapping between the leaf labels and
the vertices of the transition pattern. In other words, the pat-
tern G represents the permissible topology of migration rather
than specific allowed migration links. For instance, we may
expect that a viral transmission network likely includes a super-
spreader, but the exact subpopulation associated with this su-
perspreader is not known. The following models to this variant

of the problem:

e Viral transmission: The transition pattern G could repre-
sent a random graph that describes expected characteris-
tics of transmission trees, like being scale-free or having
a particular expected degree distribution. Such models

draw on known expected properties of contact networks
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essential for infection spread [97, 98, 99, 100] withoutsss
requiring actual host contact information, and have beensss
explored in several studies [38, 27]. 385

386
e Metastatic spread inference: In this case, a transition pat-

tern G may describe plausible evolutionary scenarios of**”
cancer migration, such as monoclonal or polyclonal se-*%®
eding from single or multiple sources [22, 61]. A re-**
lated idea has been applied in studies analyzing CRISPR-_
based lineage tracing phylogenies, where G specifies a_,

so-called star homoplasy model [101].

392

In this version of migration inference problem, is no ex-sss
plicitly given mapping between the set of leaf labels and thess
vertices of the transition pattern. Instead, a feasible homomor-as
phism should map leaves with distinct labels to distinct ver-ass
tices of G and vice versa, i.e. for any A;,4;, € L(¥Y) we havess
f() # f(Ap) whenever [, # [, (Fig. 2 (a)). We will call ass
homomorphisms satisfying this requirement a label-distinctivess
homomorphism. It should be noted that finding such a homo-sw
morphism seems to be a non-standard variant of a graph homo-so1
morphism problem, that, to the best of our knowledge, has notae
been studied previously. 403

In such context, the first question to be asked is whether asos
given subtree T of the transition pattern G is compatible withaos
the phylogeny P, i.e. whether there exist a label-distinctive ho-e
momorphism ¥ — T. a07
408

Problem 2 (unlabeled migration inference)

409

Input:
410

(a2) aphylogenetic tree ¥ with leaf labels (/1) erp);

411

(b2) atree T, a12

413

Output:

b

4
(c2) alabel-distinctive homomorphism f : ¥ — T.
415

A more restricted version of Problem 3 includes an addi-
tional convexity constraint [102, 103], where tree nodes map-
ping to the same vertex of G form a connected subtree of ¥
(Fig. 2 (b)):

Problem 3 (convex unlabeled migration inference)
Input: (a2) and (b2)

Output:

(c3) a label-distinctive homomorphism f : ¥ — T such that
induced subgraphs W[ f~'(v)] are connected for all v €

V(T).

We will refer to a homomorphism satisfying (c3) as a convex
homomorphism. Convex homomorphisms to trees describe mi-
grations with a complete bottleneck; such migration trees were
the focus of extensive research in previous studies [51, 36, 89].

To define another type of constraints, consider a labeling
[ of nodes of the phylogeny ¥. The labeling [ is compact if
the label of the most recent common ancestor (MRCA) for any
group of leaves matches one of the labels within that group.

The rationale for this is based on the understanding that mi-
grations within any given subtree could follow one of the fol-
lowing scenarios: either (i) migrations involve only the demes
represented by the leaves of the subtree, or (ii) migrations in-
clude external demes, but lineages from these demes were not
sampled due to extinction or incomplete collection. Although
both scenarios are feasible, the first is more parsimonious, es-
pecially when sampling is dense and migration events span a
short period of time. Hence, homomorphisms that align with

this compact labeling are referred to as compact.

Problem 4 (compact unlabeled migration inference)
Input: (a2) and (b2)
Output:

(c4) a label-distinctive homomorphism f : ¥ — T such that

for any node @ € V(¥) we have f(a) € f(L(¥,)).
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Finally, it is often desirable to produce a sample of poten-
tial solutions rather than a single solution. Such approach offers
statistical backing for potential migration network edges and
logically shifts the migration inference problem to a Bayesian
paradigm. Potential solutions can be sampled from a random
graph distribution or, if a transition pattern is a deterministic
graph, from the uniform distribution of its subgraphs with spec-
ified properties (e.g. subtrees). The sampling-based version of

the migration inference problem can be formulated as follows:

Problem 5 (unlabeled migration sampling)

Input:

(a5) a phylogenetic tree ¥ with leaf labels (/1) ez0p);

(b5) arandom transition pattern G with edge probabilities p :
E(G) — [0, 1] that define a distribution D of subtrees of

G.

Output: 446

447

(c5) asample S = {Ty,...,T,} from the distribution D, whe-
448

re each subtree 7; is a homeomorhic image of ¥, and
the corresponding label-distinctive homomorphisms f; :*°

Y — T; are possibly convex and/or compact. 450

2.3. Labeled migration inference

451
Problem 1 can be efficiently solved in polynomial time using

dynamic programming, as detailed in Algorithm 1. Despite itsss2
simplicity, we include the algorithm here due to its relevancesss
for subsequent, more complex methods. 454

455

2.4. Unconstrained unlabeled migration inference
456

A possible strategy to solve Problem 2 involves identifying a bi-457
jection g : L — V(T) that can be extended to a homomorphism458
¥ — T using Algorithm 1. We will describe such bijections as_

feasible.

Algorithm 1 Unlabeled migration inference

1: Let p be the root of ¥. Perform a post-order
traversal of the tree V.

2: for every node a of the traversal do

3: construct a set of potential images I(a) C L:

4: if @ is a leaf then

5: I(@) < {l(@)};

6: else

7: Suppose that fBi,...,B; are children of «.
Then /(@) consists of vertices x € V(G) such that
there exist vertices y; € I(B), i = 1,k such that
Yi~ X.

8: end if

9: end for
10: if I(p) =0 then

1: homomorphism f does not exist

12: else

13: perform a pre-order traversal of ¥ and
construct a homomorphism f as follows

14: for every node @ of the pre-order do

15: if @ =p then

16: select any v € I(p) and set f(p) < v;

17: else

18: Let w be the parent of @. Choose ve€ (@)
such that v~ f(w) and set f(a) < v.

19: end if

20: end for

21: end if

Let Ly(u) = {4 € L(¥) : g(Ip) = u} be the set of leaves in
¥ whose labels map to u. The following theorem establishes a

necessary and sufficient condition for the bijection feasibility.

Theorem 1. The bijection g : L — V(T) is feasible if and only
if
dr(uy, uz) < dy(4y, 2) (H

SJorall uy,uy € V(T), A1 € Lg(uy), A2 € Ly(uo).

Proof. The necessity of the condition stated in the theorem is a
known property of graph homomorphisms [90]. However, it is
generally not sufficient [90]. For our specific type of the homo-
morphism problem, we will demonstrate that it indeed suffices.

Consider a bijection g satisfying the condition (1). De-
fine C, € V(T) as the image set of its clade, that is, C, =
gy : 1 € L(¥Y,). Additionally, for a node o € V(¥) and a ver-

tex u € V(T), define B,(u) as a ball centered at u in T, with
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radius 485

dy(a, ) @

Faou =

min
Q€L (u)NLY,)

ie., Bo(w) ={ve V(T) : dr(u,v) < rou}.
We proceed by establishing two auxiliary facts. The first

follows directly from the properties of a tree:

Lemma 1. Let Xi,...,X; be subsets of vertices of the tree,,

T such that each subsets induces a connected subgraph and,,

* Xi # 0. Then N[N, X)1 = N, N[X].

488

Suppose now that /(@) : @ € V(¥) are the sets of potential489
node images produced by Algorithm 1, given the matching of490
leaf labels in ¥ and vertices of T through the bijection g. These491

sets are described by the following lemma. "

Lemma 2. For every node a € V('¥), I(@) = (,ec, Ba(W).

493

494
Proof. The proof of the lemma proceeds by induction. Con-

495
sider a node @ € V(¥). The lemma’s assertion is trivially true

496
when « is a leaf. Assume now that « is an internal node with

497
., Bk, each set I(3;) is non-empty and, by the in-

498

children gy, ..

ductive assumption,

499

(3)500

501

1B) = ﬂ Bg ().

ueCp,

1 502

Then C, = Uf:l Cp,; furthermore, according to Algorithm

503

and the equality (3) we have

() Batw)

ueC,

: “

k k
1@ = |NU@E) =[N
i=1 i=1

Now consider a vertex u € C,. Let B(u) be the child of o>
such that 7, = min’_, rg ,; in cases where there are multiple*®
such children, we pick any of them. Consequently, we have®®
Teu = Tsuyu + 1, leading to the relation By (1) = N[Bpuy(w)].*
Furthermore, it is obvious that Bg,(u) C Bg (1) for all nodes™®
Bi such that u € Bg,(u). Together, these observations imply the509

510

10

following sequence of equalities:

k

() Batw) = () NBgw@1 =) ) NiBsw]=

ueC, ueC, i=1 wp(u)=p;

k
=() () NBs@1 (5)

i=1 ueCg,
By Lemma 1, N[ﬂuec/,, Bﬁ,.(u)] = ﬂuec/,l N[Bg,(u)], and
thus the expressions (4) and (5) are equal. This completes the

proof of Lemma 2. O

According to Lemma 2, Algorithm 1 succeeds whenever
(Muec, Bo(u) # O for every node a € V(¥). To establish that
this condition holds, we invoke so-called Helly property of sub-
trees. A family of sets Si,...,S has a Helly property [104]
if ﬂle S; # 0 whenever S; NS; # 0 for every i, j € [k]; in
other words, the existence of non-empty pairwise intersections
guarantees a non-empty total intersection.

Subtrees of a given tree are known to have the Helly prop-
erty [105]. The subsets B, (u) obviously induce subtrees of 7.
Therefore, to prove the theorem, it is sufficient to demonstrate
that for every node @ € V(¥) and for every pair of vertices
uy, uy € C,, the intersection B, (u1) N B, (12) is non-empty.

Select two leafs 41,4, € L(¥,) that minimize the distance

between nodes of the sets L, (1) N L(¥,) and Lg(up) N L(Y,,).

According to the theorem’s conditions, we have:

dr(uy, up) < dy(Ay, ) < dy(a, Ay) + dy(a, A2). (6)

This implies the existence of a path between u; and u, in T with
a length at most dy(a, ;) + dy(e, 4). On this path, there is at
least one vertex v such that dr(uy,v) < dy(a, A1) and dr(uz,v) <
dy(a, A;). Consequently, v belongs to both B, (u;) and B, (),

thereby completing the proof. O

Theorem 1 establishes that the Unlabeled Migration Infer-

ence problem is algorithmically equivalent to the problem of
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finding a bijection that satisfies (1). First of all, this allows ussss
to demonstrate that Problem 2 is NP-hard. We will prove itsss

through a reduction from the following problem:
537

Graph Bandwidth problem.

538
Given: A graph G.
Find: The minimal integer K = bw(G) for which there exists is53

540

abijection f : V(G) — {1,...,|V(G)|} such that

541

|f(w) — f(v)| < K forall u ~ v. (Tyse2

543

The Graph Bandwidth problem is NP-hard [106], and, mo-

544

reover, it cannot be approximated within any constant factor
545

unless P = NP, even when the input graph G is a tree [107].

546

Theorem 2. The Unlabeled Migration Inference problem is,,,
NP-hard, even when all leaf labels in the phylogeny ¥ are,,,

unique. s

Proof. For our purposes, it is more convenient to use an equiv-

alent condition for Graph Bandwidth problem:

550

®)

551

|f(w) — f(v)] < Kdg(u,v) for all u,v € V(G).

The fact that (8) implies (7) is obvious. To demonstrate®?
that (7) implies (8), consider the shortest (u, v)-path in G (u =%
X0s X1y -+« »Xg—1,Xq = V), Where d = dg(u,v). Then we have

d
F@) = fO) =1 (Fi) = fi)l <
i=1

d
< DG = fE) < Kd.
i=1

555

Now suppose that 7" is an input tree of Graph Bandwidth556
problem. We can assume that bw(T’) > 3, since graphs Where557
bw(T”") < 2 are recognizable in linear time [108]. To construct558
an instance for Problem 2, for an integer K > 3, we proceed as
follows:

1) The input phylogeny Wk is constructed by (a) subdivid-
11

ing every edge of 7’ into K edges; (b) attaching a leaf

labeled u’ to every node u € V(T").

2) The input tree T is an n-vertex path P, with V(T) =

{1,...,n}

For the trees constructed in this manner we have:

(@) LWk) = {u’ 1 u e V(T)};
(b) dy,(u',v') = Kds(u,v) + 2;
(©) dr(, j) =i = jl.

We will demonstrate that a polynomial-time algorithm for
Problem 2 leads to a %-approximation algorithm for the Graph
Bandwidth problem. Assume the existence of such an algo-
rithm for Problem 2. Let K* be the smallest integer for which
this algorithm produces a sought-for homomorphism Wg- — T'.
To establish the % approximation factor, we need to demonstrate

the following relationship:

K* <bw(T’) < %K &)

To establish an upper bound, let us consider the feasible bi-
jection g* : L(Wg+) — {1,...,n}. We extend this bijection to the
nodes of V(T’) by setting g*(«) = g*(u’). Given the inequality

(1) and assuming that K* > 3, we have:

lg"(w) — g" W] = dr(g"(u), 8" (V) < dw,. (u' V') =

5
= K" dp(u.v) +2 < 3K dr ().

This implies that bw(S) < 3K*.

Conversely, if bw(T’) = K < K*, and the mapping g :
V(T") — {1,...,n} is the bijection reflecting this bandwidth,
then we can extend it to L(Wg) by setting g(u’) = g(u). This

yields:
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dr(g(u), g(v)) = Ig(u) — )| < Kdp(u,v) < 58°

581

< Kdr(u,v) +2 = dg, (u',V).

582

This inequality contradicts the assumption that K* is minimal.*®
Therefore, we must have bw(S) > K*. This completes the®™

proof. %85

586

Although the Unlabeled Migration Inference problem is NP-
hard, we can use Theorem 1 to approach it using Integer Linearss
Programming (ILP). We define a feasible bijection g : £ —__
V(T) using binary variables x;,, where x;,, = 1if g(i) = u, for_
eachi € Land u € V(T). The ILP formulation to find such a_,

bijection is as follows: sor

592

D7 > o) degu)xi, — max (10)
icZ uev(T) 59
594

S.t.

595

D =1l el (1n
ueV(T) 596
D xu=1, ueV(); (12)™
iEL 598
Xiy + Xjy < 1, i,je LuveV(T) 599
and  min  dy(d;, ) < dr(u,v);  (13)%

A€l (0),;€l71 ()

601
Xiu + Xy + X + x5, <y +1 1, j€ Liuv e E(T); (14)e02
603

Dlyvij=n-1 (15)
i,jEL 604

In this formulation, constraints (11) and (12) ensure that x
605

encodes a bijection, while constraints (13) guarantee that the
606

bijection adheres to the conditions of Theorem 1. The auxiliary607
variables y;; in constraints (14) indicate whether a pair of leaf

labels map to adjacent vertices in 7', with constraint (15) ensur-"
ing the inferred migration network forms a tree. The objective””

function (10) facilitates the search for a solution by levelrag-610

ing the relationship between population diversity and popula-611

612

12

tion age [109, 110, 111], that suggests that more diverse popu-
lations, which are likely older, are also more probable origins
of migration [38, 31, 66]. Consequently, it is more likely that
such populations correspond to high-degree vertices in the tree
T. Here a coefficient 6(i) represents the genetic diversity of the
ith subpopulation, measured as allelic entropy averaged over all

allelic positions.

2.5. Migration inference under convexity constraints

In this section, a convex label-distinctive homomorhism¥ — T
will be called feasible. When such homomorphism exists, T
can be obtained from ¥ by a series of edge contractions, mak-
ing T a minor of ¥. Generally, a graph G| is a minor of a graph
G, if G| can be obtained from G, by edge contractions, edge
removals and node removals [112]. It is known that the prob-
lem of detecting whether a given graph is a minor of another
graph is NP-hard, even when input graphs are trees [113, 114].
However, minors associated with our problem satisfy a more
stringent set of conditions than general graph minors: in our
case, only edge contractions are allowed and, in addition, con-
tractions of edges between labeled nodes with different labels
are forbidden. We suggest that in practical settings feasible ho-
momorphisms can be efficiently found and enumerated using
dynamic programming.

The following simple property of convex homomorphisms

will be useful for our subsequent analysis:

Lemma 3. Suppose that f : ¥ — T is a convex homomor-
phism. Then T’ with is a subtree of T if and only if ¥ = f~(T")

is a subtree of V.

Proof. Homomorphic image of a connected subgraph is con-
nected, as implied by the definition of a homomorphism. The
converse is also true, if [T’| = 1. Suppose that |7’| > 2 and
the subgraph f~!(T") is not connected. Consider two of its con-

nected components, ¥ and ¥/, such that the unique path P
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between the nodes @ € ¥ and g € W) is shortest among alles
such paths between different components. Then |P| > 3 andes
T” = f(P\ {a,B}) N T’ = 0. Moreover, the vertices f(a) andess

f(B) are adjacent to vertices of 7”’. This leads to two distinct
650

paths between f(a) and f(B) — one in 7’ and another passing

651

through 7. This contradicts the fact that T is a tree. O

652
Next, we describe the proposed algorithmic approach. Ini-ess
tially, we simplify the original phylogenetic tree ¥ by collaps-ess

ing paths between leaves sharing identical labels into a single
655
node, a step made feasible by the convexity constraint. The re-

sulting tree, still referred to as ¥, may become non-binary andsss
contains uniquely labeled leaves and possibly some labeled in-6s7

ternal nodes.
658

The algorithm performs a post-order traversal of the phy-

659

logeny ¥ and, for each node o € V(¥), calculates a set H, de-
scribing possible homomorphisms from the subtree ¥, to sub-,

trees of 7. At the root node p, the set H, thus describes all
661
homomorphisms from ¥ to 7. Upon completing the traversal,

the algorithm either concludes that no feasible homomorphismss2
exists (when H, = 0), or initiates a pre-order traversal of ‘P'.e

During this second traversal, it reconstructs feasible homomor-
664

phisms using the information from the sets H,.
665

Formally, let A, be the set of labeled nodes in the subtree
666

Y,. A subtree T[v,X] of T is termed an induced v-subtree if

667

it includes the vertex v, a subset X of v’s neighbors, and all
668

vertices that are connected to v via paths that intersect with X
669

(Fig. 3).
670

For a vertex @ € V(P), the set H, consists of triples (v, X, C)

671

called partial homomorphism tokens or simply tokens. In each
672

token, (i) v € V(T), (ii)) X C Ny(v), (iii) C is a subset of vertices

673

of an induced v-subtree T'[v, X] such that there exists a feasible
674

surjective homomorphism f : ¥, — T'[v, X] with f(a@) = v and
675
f(Ae) =C.
676

The algorithm is initialized by setting H, = {(v,0,{v}) :

13

v € V(T)} for all leafs A. For an internal node «, the set H, is
> Bre-

constructed based on the sets from its children nodes G, . . .

The construction utilizes the following lemma:

Lemma 4. Let T[v,X] be an induced v-subtree. Then there
exist a feasible surjective homomorphism f . ¥, — T[v,X]
with f(a) = v and f(A,) = C if and only if there exist tokens
(v1,X1,C1) € Hp,,...,(vi, Xy, Ck) € Hp, satisfying the following

conditions:
(al) v~viorv=vforallie{l,... k};

(b1) (V(T'vi, iD\ (vh 0 (V(T'lv;, X;D\ {vh) = 0 forall i, j €

(oo ki #

(cl) v e V(Tvi, X;]) if and only if vi = v.
(dl) v ¢ C,, if a is labeled.

(el) Xi = Nr(v) \ {v}, if vi # v.

(f1) X ={vi,..., v\ v}y

(gl) C=CyU---UCy, if ais unlabeled, and C = C; U --- U
Cr U {v}, if ais labeled.

Proof. Let us prove the necessity of conditions (al) - (g1). Sup-
pose that there exists a feasible surjective homomorphism f :
Y, — T[v,X] such that f(a«) = v. Define T; as the image of
the subtree s, under f, denoted by f(‘¥4), and let v; = f(B)).
Also, let X; = Nr(v;)) N V(T;) and C; = f(Ag,).

We aim to demonstrate that 7; = T[v;, X;]. According to
Lemma 3, T; is connected, which suggests that 7; must be a
subgraph of T[v;, X;]. Furthermore, Lemma 3 also indicates
that f~1(T'[v;, X;]) is connected. Given the surjectivity of f, it
follows that f~1(T'[v;, X;]) € W5, leading to the conclusion that
T, X1 € T;.

Consequently, the restriction of f to Wg, is a surjective ho-

momorphism from Wg, to T'[v;, X;]. Thus, the token (v;, X;, C;)
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A poocomeny B

®

T[1,{4,9,10,11}]

. ®

= = |
f3 1 f4-

T[1,{4,11}] T[1,{3,5}]

Figure 3. Overview of the Dynamic Programming Algorithm for Detecting Convex Label-Distinctive Homomorphisms. A. A phylogenetic subtree, ¥,
rooted at node @ with two children, 8 and y. B. Input candidate migration tree 7. The goal is to produce convex homomorphisms from ¥, to induced subtrees
of T from such homomorphisms for ¥g and ¥,. C. Convex homomorphisms from ¥z (top row) and ¥, (bottom row) to induced subtrees of T. For instance,
the top figure depicts a homomorphism to an induced 1-tree 71, {4, 9, 10, 11}] that consists of the vertex 1, its neighbors 4,9, 10, 11 and all vertices connected to
1 via paths that intersect these neighbors. Nodes of subtrees are colored by their homomorphic images. Homomorphisms are organized into a bipartite graph G,
where edges connect homomorphism pairs fi f> and fi f4 that are compatible, and there is no edge between homomorphisms f; and f3, that are not compatible. D.
Homomorphisms f5 and fi obtained by combining compatible homomorphisms fi, > and fi, fa.

belongs to Hp,. The condition (al) follows from the homomor-es  (b1)-(g1).

phism definition, while the convexity of f yields the conditionseso Conversely, suppose for each i € 1,...,k, we have feasi-
14
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ble homomorphisms f; : W5, — T[v;, X;, C;] that meet condi-7io
tions (al) - (el). We can construct a homomorphism f : ¥, —
712

T[v, X, C] by defining f as follows:

fi(y), if y € V(¥p)

v, ify=a

f = (16)™

715

Condition (al) implies that f is a homomorphism, condition;e
(d1) ensures that labeled nodes map to distinct vertices of 7,4,
and (el) guarantees that f is surjective. 78

It remains to show that f is convex. Suppose that f(y1) =,
f(y2) = w. If both y; and 7y, belong to the same subtree ¥ ,7.
then the entire path Py (y1,y,) maps to w due to the convexity of,,,
fi- If, on the other hand, y; € ¥, and y; € ‘I‘ﬁj, then condition,,,
(bl) implies that w = v. Furthermore, by the condition (c1) we;;
have v; = v; = v. Therefore convexity of f; and f;, as well as;.,
the fact that f(@) = v, imply that f(Pyg(y1,v2)) = v. Together, s

these two facts prove that f is convex. [

To convert Lemma 4 into an algorithm constructing the set’”
of tokens for a node « using the tokens of its children, we
first need to identify tokens of children that satisfy conditions”
(al)-(gl). This can be achieved through the following ste:ps.730
For each vertex v € V(T'), we construct a multipartite graph731
G = G(a,v) (i.e. a graph partitioned into k independent sets or

parts), as described below: oo

733

(i) The parts Ay, ..., A; correspond to children of a.

734

(ii) The vertices of the set A; are tokens from the set Wp, sat-
735

isfying the conditions (al),(c1), (d1) and (el).

736

(iii) Two tokens from the sets A; and A ; are adjacent wheneverrs

738

they satisfy the condition (b1).
738

In the constructed graph, sets of partial homomorphism to-
kens that satisfy Lemma 4 can be identified as k-vertex cliques.740
We employ the Bron-Kerbosch algorithm [115] to generate the-741
742

15

se cliques. For each identified clique, we use conditions (f1)
and (gl) to construct a new token (v, X, C) for the node «.

Additionally, for each token (v,X,C) € H,, we maintain
pointers p(v, X, C) that link to the children tokens used in its
construction. These pointers are used in the subsequent phase
of the algorithm, which aims to reconstruct full feasible homo-
morphisms f.

During this phase, the algorithm executes a pre-order traver-
sal of ¥. As it progresses, it recursively assigns a specific token
to each node. When a token ¢ = (v, X, C) is assigned to node
a, the algorithm sets f(a) = v. It then retrieves tokens for ¢ via
the pointers p(¢) and assigns them to children, By, ...,B:. This
ensures that by the end of the traversal, each node in ¥ has been
assigned a homomorphic image, completing the construction of
the homomorphism f.

In general, the set H,, at the root node p may include mul-
tiple tokens, each representing a feasible homomorphism f :
Y — T. When multiple feasible homomorphisms are avail-
able, the algorithm selects the one that minimizes violations of
the compactness constraint (to be discussed in the next subsec-
tion). In case of ties, the selection criterion shifts to minimizing
the quantity

D(f) = Z 6(a) - d(f(a)), a7

aeN(T)
where 6(@) is the number of labeled children of a node a. This
approach prioritizes homomorphisms that map high-degree no-
des to high-degree vertices.

The outlined method is formalized in Algorithm 2. Its ef-
ficiency can be improved by contracting sibling leaves in both
Y and T into a single node (vertex). The algorithm maintains a
count of copies of contracted nodes used by tokens, and a new
token is generated from children tokens only if the total count
of each leaf in the children tokens does not exceed its over-
all count. This modification markedly enhances the dynamic

programming algorithm’s runtime. The adjustments to Lemma
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Algorithm 2 Convex homomorphism minimizing compactness violations

Input:
Output:

phylogenetic tree ¥ with the root p and a candidate migration tree T
a feasible homomorphism f:%¥ — T or the answer that it does not exist.

1: modify ¥ by contracting paths between leafs with the same label.

2: perform a post-order traversal of Y.
3: for every node a of the post-order do

4: construct a set of partial homomorphism tokens H,.

5 if @ is a leaf then

6: H, — {(v,0,{v}) : ve V(T)};

7: end if

8 if @ is an internal node with children fi,.
9 Let HB) = {0, X/,C)i=1,...,1}, j=1,....k.

..,Br then

for ve V(T) do
11: construct the multipartite graph G(a,v) as described in (i)-(iii);
12: Generate the set K of k-vertex cliques of G(a,v) using Bron-Kerbosch algorithm.
13: for each clique {(u,.ll,Xill,Ci'l),...,(ufk,X;‘k,Cffk)} €K do
14: Construct the sets X and C using formulas (f1) and (gl).
15: Set H, « H, U{(v,X,C)} and p(v,X,C) <« p(v,X,C) U {(i1,...,ix)}.
16: end for
17: end for
18: end if
19: end for
20: if H, # 0 then
21 perform a pre-order traversal of V¥;
22 for each token t,...7x € H, do
23: assign the token f, to p: AS, « ..
24: for every node a of the pre-order do
25: fi(@) « v, where (,X,C)=AS,.
26: if @ is an internal node with children fi,...,5; then
27: Let HB) = {0, X/,C):i=1,....1;}, j=1,....k and p(,X,C) = (i1,....ix).
28: ASp O] X].Chy, j=1. 0k
29: end if
30: end for
31: end for
32: among generated homomorphisms fj,...,fg, output the homomorphism f, with the minimal number of compactness
violations and, in case of ties, with the minimal D(f,).
33: else
34: f does not exist
35: end if

4 and Algorithm 3 in Supplementary Material are straightfor-7s:
ward, but involve numerous minor technical details; hence arss
formal description is omitted. One particular detail, however,7ss
should be mentioned: if ¥ and T" represent the leaf-contractedss
versions of ¥ and T, respectively, and f : ¥ — T’ is a fea-s

sible homomorphism, there may be cases where f(a) = [ for

759
an internal node a of ¥ and a leaf [/ in T’ that results from the

760
contraction of leaves /; and /,. In such instances, f’ can be ex-

1

tended to a homomorphism f : ¥ — T by designating f(a) as’

either [ or [,. To resolve this ambiguity, the leaf corresponding”*

to the population with higher diversity is chosen. 7%

764

Finally, it should be noted that, strictly speaking, Algorithm
2 is not polynomial, since the number of tokens for a node of
Y theoretically can be exponential. In practical settings, how-
ever, the algorithm is extremely fast, and require split seconds

to finish.

2.6. Migration inference with convexity and compactness con-

straints

A similar approach to the one outlined in Subsection 2.5 can be
employed to identify homomorphisms that are both convex and
compact. However, the dynamic programming algorithm can

be further optimized by taking advantage of the specific nature

16
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of these constraints. 796
As with the earlier approach, homomorphisms that are bothzs
convex and compact will be referred to as feasible. Followingzss
a similar methodology to that used in Algorithm 2, we beginzss
by contracting the paths in the phylogeny ¥. We then constructso
partial homomorphism tokens similar to those used previously,sor

with the exception that subsets C of images of labeled nodes

are not required. Thus, the tokens are simplified to pairs (v, X),

where v € V(T) and X C Nr(v). A pair (v, X) is included in H,
if there exists a feasible surjective homomorphism f : ¥, -
T[v, X] such that f(a) = v, and it also satisfies the following803
804

condition:

(] 8)805

806

Aol = IT[v, X]I.

This condition is necessary for a partial homomorphism to be_,
extendable to a full compact homomomorphism ¥ — 7.

808

The algorithm is initialized by setting Hy = {(v,0) : v €,
V(T)} for leafs A. For an internal node a € V(¥), its token set_
H, is constructed from the tokens of its children g, .. . B using, .

Lemma 5. 812

Lemma 5. (v,X) € H, if and only if one of the following con-*"°

ditions hold: 814
815

1) « is not labeled and there exist w € X such that (v, X \816

{w}) € Hg, and (w, Nr(w) \ {v}) € Hp,.

817

2) aislabeled, |X| = k, and there exist a permutation (vi, . ..
of elements of X such thatv ~ vy, ..., v, and (vi, Ny (vi)\#?®

(V) € Hg,,...,(vi, Nr(vi) \ {v}) € Hp,.

Proof. We present the proof for the case where « is unlabeled;
the argument for labeled a follows a similar rationale. In this
case, @ was not involved in path contraction, and thus k = 2.
Suppose that (v, X) € H,, i.e. [Ag| = |T[v,X]| and there
exists a feasible surjective homomorphism f : ¥, — T[v, X]ea

such that f(a) = v. Consequently, f(A,) = V(T[v, X]), andee

17

therefore there must be a labeled node y € V(¥g,) such that
f(y) = v. Given the connectivity constraint, this implies that
f(B1) = v. Meanwhile, the compactness constraint necessitates
fB)=w#v.

Following Lemma 3 and considering the connectivity con-

straint, it can be shown that:

J(¥p) =T, X\ {vi]and f(¥p,) = Tlw, Nw)\ (v}]  (19)

Let us now establish the second equality; the method for
proving the first is analogous. Let 7> = f(¥s,). We know that
v ¢ V(T,) and, according to 3, T, is connected. These observa-
tions imply that T, € T[w, N(w) \ {v}]. Conversely, Lemma 3
suggests that F YT Tw, Nw) \ {v}]) is connected. Given the sur-
jectivity of f, this implies f~!(T[w, N(w) \ {v}]) € Wg,, leading
to T'[w, N(w) \ {v}] € T,. Thus, both T, € T[w, N(w) \ {v}] and
T[w, N(w) \ {v}] C T, are true, confirming the second equality.

So, the restrictions fly, and fly, are both feasible surjec-
tive homomorphisms. Additionally, A, = Ag, U Ag,, f(Ag,) =
J(¥p) = Tv, X\ {w}] and f(Ag,) = f(¥p,) = T[w,Nr(w) \
{v}], thus confirming that the equality (18) holds for the tokens
v, X \ {w}) and (w, Ny(w) \ {v}). This proves the necessity of
condition 1).

To demonstrate the sufficiency of condition 1), we assume

that there exist feasible surjective homomorphisms f; : ¥g, —

o19;) Tlv,X\{w}]and f; : ¥g, — T[w, Ny(w)\ {v}]. By defining f as

follows, we can establish a combined feasible homomorphism:

fHil) ity e V(¥g)
o) =1 Ak ifxy e V(¥s) (20)
v ify=a
O

Lemma 5 can be directly applied to construct tokens for

an unlabeled node « using the tokens from its children. For
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a labeled node a, however, the process of finding a permuta-sss

tion (vq,...,w) of the tokens is more complex. The method to,,,

achieve this is detailed in the following approach. a5

Lemma 5 can be straightforwardly use to construct tokens,,
of a from tokens of its children, if « is unlabeled. When «,

is labeled, then finding a permutation (vi,..., V) required by,

Lemma 5 is more complicated and can be achieved using the,

approach described next. o6t

Suppose that S = (S, ...,S) is a collection of sets. A vec-,

tor (x1,...,x;) is termed a transversal of S [116] if x; € S; and_,

all x; are distinct. Letnow §; = {u : (u,Y)) € Hg andv ~_,

u}. Then the vector (vi,...,Vy) satisfies the condition 2) of

Lemma 5 if and only if it is a transversal of S. a6

Given this, the set H, can be obtained by generating all_,

transversals of S. This process involves the following steps:

e Construct a bipartite graph B(S) with parts 7 and J ,869

870
where 7 = 1,...,k represents the set indices, and J =

Uf;l S, represents all elements in the sets. In this graph,871

. . . [P 872
a vertex i € 7 is adjacent to a vertex j € 7 if j belongs

873

toS§;.
874

e In B, each transversal corresponds to a maximal match—875
ing of size k. To generate these matchings, construct a

line graph L(8), where each vertex represents an edge,,

of B, and two vertices are adjacent if their corresponding

877
edges in B share a common vertex. Maximal matchings

of B correspond to maximal independent sets in L(B),”*
9

that can be produced using the Bron—Kerbosch algorithm®’

[115]. o0

881

The entire method is detailed in Supplementary Material,882
Algorithm 3. Like Algorithm 2, efficiency can be signiﬁcantly883

improved by contracting sibling leaves in both ¥ and 7. e

885
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2.7. SMiTH: Sampling Migration Trees via Homomorphisms

The algorithms discussed can be effectively integrated into an
Unlabeled Migration Sampling framework (Problem 5). It al-
lows for the identification of homeomorphic images of a given
phylogeny ¥ within a collection of candidate migration trees
sampled from a given migration pattern represented by a speci-
fied tree distribution.

The obtained sample of migration trees can be directly an-
alyzed to estimate the probabilities of specific migration routes
or to obtain summary statistics and confidence intervals for de-
rivative evolutionary parameters. It can be also synthesized
into a single weighted consensus graph, where each edge is
weighted by the number of candidate trees that support it. When
the homomorphism reconstruction includes an objective func-
tion, the consensus graph is constructed from a subsample com-
prising the top «% of trees ranked by their objective values.
For applications requiring a specific output tree — such as for
benchmarking and comparison with other methods described
in Subsection 3.1 — the tree is determined by calculating the
maximum-weight spanning tree of the consensus graph. The
entire algorithmic pipeline, named SMiTH (Sampling Migra-

tion Trees via Homomorphisms), is illustrated in Figure 1.

3. Results

3.1. Simulated data

To generate synthetic data, we used FAVITES [117], a tool ca-
pable of simulating genomes, phylogenies, and migration net-
works under various evolutionary scenarios. Although origi-
nally designed to simulate viral outbreaks, FAVITES supports
general phylogenetic and population genetics models, making
it suitable for simulating migrations of heterogeneous popula-
tions besides viruses. It also should be noted that, to the best

of our knowledge, specialized simulation tools for metastatic
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spread with capabilities comparable to FAVITES are currentlysis
not available. 920
We simulated the migration of a heterogeneous populationses
over a network of sites formed according to the Barabasi-Albert
model [70]. This assumption can be valid for both viral [98,922
118] and cancer [119, 95] spread. Migrations occur at a con-sz
stant rate along each network edge (in viral context, this cor-

924
responds to the network-based Susceptible-Infected (SI) trans-
925
mission model). Within each site, phylogenies evolved under
the exponential coalescent, a model previously used to simu-**
late intra-host [66] and intra-tumor [120] evolution. Genotypes927
were assumed to evolve under the GTR+I" substitution model,928
and were sampled simultaneously at the end of the simulation.929

In total, 275 simulated datasets were generated, encompassing
930

5-30 demes with 100 sequences sampled per deme. o

In the first series of experiments, we sampled candidate mi-932
gration trees from 3 distinct prior distributions of tree topolo-933
gies and evaluated their compatibility with simulated phyloge-934
nies under three different types of constraints. The prior distri-935

butions included:
936

T1) Degenerate distribution consisting of the true topology.*
Even though this scenario is unrealistic for actual migra-**
tion inference, it serves as a test to determine if migration®*
links can be accurately reconstructed when the topology®°
is known but sites need to be correctly mapped to migra->*
tion network vertices. To avoid bias linked to correlations®?
between vertex IDs and migration times, that can be po-**
tentially introduced by the simulation methods, we pro-**
duced multiple samples with randomly permuted vertex®*

IDs. %4

947

Random scale-free trees produced by the preferential at-
948

T2)

tachment procedure.
949

T3) Uniformly distributed trees of a given size. Sampling wassso

19

performed by generating random Prufer codes [121], in-
teger sequences of length n — 2 that uniquely define n-

vertex trees.

The following types of constraints were used:

HI) unconstrained homomorphism;

H2) convex homomorphism minimizing the number of com-

pactness constraint violations;

H3) convex and compact homomorphism.

For each simulated dataset, we produced 9 samples of candidate
migration trees corresponding to all combinations of conditions
T1)-T3) and H1)-H3). The sample sizes ranged from 1,000 for
the degenerate distribution without constraints, up to 1,000,000
for the uniform distribution with convexity and compactness
constraints. This variation in sample size was necessary be-
cause stricter constraints require larger samples to ensure that a
sufficient number of feasible trees are produced. We assessed
the compatibility of these sampled trees with the given phylo-
genies under the respective constraints, using methods detailed
in Subsections 2.4-2.6. Using these assessments, subsamples
of compatible tree were extracted.

Sampled trees were compared with true migration trees pro-
duced by FAVITES. Individual trees were compared by measur-
ing recall, defined as the fraction of inferred transmission edges
among true transmission edges; precision, the fraction of true
transmission edges among inferred transmission edges; and the
f-score, i.e., the harmonic mean of precision and recall.

Additionally, we summarized each subsample of compati-
ble migration trees using a consensus graph, where each edge
is weighted by the proportion of candidate trees that support
that edge [26, 34, 122]. A solution can be extracted from the
consensus graph by discarding edges with support below a pre-

defined threshold. For each graph, we estimated the area under
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Figure 4. (a)-(c) Percent of sampled trees that are compatible with given phylogenies. (d-f) Area under the precision-recall curve (AUC) calculated by varying the

support threshold.

the precision-recall curve, which was calculated by varying theses
support threshold. We opted for the precision-recall curve in-ses
stead of the more common ROC curve due to the imbalances
between the classes of true and false migration edges. o71

We found that the relationship between phylogenetic treessz
and migration trees is heavily influenced by structural constra-szs
ints. In the absence of constraints, there is considerable ambi-o74
guity in the possible migration histories that align with a givensrs
phylogenetic tree topology, even when prior knowledge aboutss
true migration tree topology is available. Notably, almost everys
sampled scale-free network proved compatible with the givenss
phylogenies, with a median fraction of compatible trees at i = Loz
(Fig. 4b). It is not entirely unexpected in light of Theoremsso
1, which suggests that trees with a low diameter — a commonss:
feature of scale-free networks — are more likely to be compati-ss2
ble with a given phylogenetic tree. However, even among uni-ss

formly sampled trees, a high compatibility rate was observedsss

20

when no constraints are applied (median u = 0.84, Fig. 4c).
Furthermore, without constraints individual compatible tre-
es display only marginal agreement with true migration trees.
This holds not only for scale-free and uniformly sampled trees,
but even for the degenerate distribution, with median f-score
within the range 0.33—0.36 for all three tree priors (Supplemen-
tary Material, Fig. 8). In other words, even if the topology of a
true migration tree is known, numerous labelings of that topol-
ogy are compatible with the original phylogeny, most of which
substantially diverge from the true labeling. Consequently, the
true labeling is not immediately distinguishable among the al-
ternatives without additional information. Combining a com-
patible tree subsample into a consensus graph, however, brings
it closer to the true migration tree, with the median AUC values
ranging from 0.56 to 0.59 for all three tree priors (see Fig. 4).
The introduction of convexity and compactness constraints

significantly reduces the percentage of trees deemed compati-
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ble, as can be expected (Fig. 4abc). This reduction primarilyoss
eliminates incidental solutions, enhancing the alignment of theozo
trees that meet these constraints with the true migration treesoo
(Fig. 4def). In particular, for the degenerate distribution, intro-oz
ducing constraints effectively filters out ambiguous vertex map-ozs
pings, nearly always recovering the true mapping, provided thatoz
the solutions satisfying the constraints exist. 1025

Interestingly, without constraints, the use of tree priors doesozs
not enhance accuracy, as demonstrated by the lack of signifier
icant differences in AUC distributions among the tree priorses
(p = 0.083, Kruskal-Wallis test). In contrast, when constraintsoes
are applied, prior knowledge of the migration tree structure be-oso
comes beneficial, with AUCs improving as the tree prior be+os:
comes tighter. In particular, under constraints, AUCs for theos
scale-free prior are significantly higher than those for the uni+oss
form prior (p = 4.4 - 107 and p = 1.76 - 107! for convex andos
both convex and compact cases, respectively, Kruskal-Wallisos
test). Given that true migration trees are generated by the pref+oss
erential attachment, this suggests that under constraints, theos
phylogeny to a certain degree reflects the properties of the un+os
derlying migration network. 1039

Taken together, these observations indicate that phylogenyio
topologies do indeed reflect underlying migration tree struc+os
tures, but the extent of this reflection is influenced by evolution+os
ary constraints. Moreover, the correspondence between phylo+os
genies and migration trees is primarily discernible when ana+os
lyzed statistically across a large sample of feasible migrationoss
trees that are compatible with the phylogeny. A single compat+os
ible tree may be arbitrary, and thus relying on a single solutionos
may lead to misleading conclusions. 1048

Based on those observations, we have developed a methodoss
named SMiTH (Sampling Mlgration Trees using Homomor+oso

phisms) for the constrained inference of migration trees withos:

expected general properties. This method involves samplingose

21

candidate migration trees from a designated random tree dis-
tribution, identifying convex homomorphisms from the given
phylogeny to these sampled trees while minimizing an objective
function defined by the number of compactness constraint vio-
lations, constructing a consensus graph from trees with top ob-
jective values, and ultimately inferring the final migration tree
as the minimal spanning tree of this consensus graph.

We benchmarked SMiTH against several existing tools de-
signed to infer migration networks from phylogenetic tree topo-
logies. For the sake of fairness, tools that use dated phyloge-
nies and/or case-specific epidemiological information were not
considered. The tools selected for this comparison include Cas-
siopeia [21, 59], MACHINA [22], Phyloscanner [31], STraTUS
[36], and TNet [44]. For MACHINA, we ran all four migration
models provided by the tool and report the best result, which
was achieved using the single-source seeding model. STraTUS
generates a sample of migration trees rather than a single tree;
thus, similarly to SMiTH, we used the minimum spanning tree
of the consensus graph for benchmarking purposes.

The results of the algorithm comparison are shown in Fig.
5. It was found that both variants of SMiTH — with uniform
and scale-free tree priors — allow for a statistically significant
improvement over other tools (p < 10~°, multiple comparison
of f-score distributions by Kruskal-Wallis test). SMiTH is fol-
lowed by Cassiopeia and STraTUS — two other sampling-based
methods, whose accuracies were statistically indiscernible (p =
0.58, Kruskal-Wallis test). These tools indeed both produce
samples of convex solutions, albeit using different algorithms.
While STraTUS is doing it directly, while Cassiopeia’s module
FitchCount samples most parsimonious solutions that in our ex-
amples were almost always convex. These tools were followed
by MACHINA that, similarly to our approach, imposes struc-
tural constraints on plausible migration trees by considering

them as subgraphs of so-called transition patterns. However,
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MACHINA produces a single solution optimizing particular ob-oss
jectives rather than summarizes a sample of such solutions; thisses
in light of the observations described above, likely hampered itsos
performance vis-a-vis sampling-based methods. Similar rea+oss
soning can be applied to Phyloscanner, that also produces aces
single most parsimonious solution. In addition, Phyloscanneroro
is specifically designed to make use of paraphyly, that usuallyor
provides a strong signal for migration [66] when present; con+or
sequently, its accuracy can be affected when, as in analyzedors
test cases, the number of paraphyletic clades is limited. Fur+or
thermore, Phyloscanner usually assumes that when the popula+ors

tions sampled from different cites are monophyletic, then theyozs

22

all have a common source [66] - the assumption that is opposite
to compactness and that seems to be not always valid. The re-
lation between algorithms’ performances is mostly stable with
regard to the number of migration sites (Fig. 5b).

The median running time of our method for construction of
a constrained homomorphism for a given phylogenetic tree and
candidate migration tree was within 0.7 seconds for all tests
and tree priors (Fig. 5c), even though theoretically our algo-
rithms can be exponential in the worst case. It allows us, using
straightforward parallelization, to produce and process samples
consisting in hundreds of thousands of candidate trees in rea-

sonable time.
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3.2. Experimental viral data 1

Analysis of simulated data highlights the role of structural con!''?
straints in migration tree inference, particularly when paraphyly'
is limited. Interestingly, these constraints prove just as essential''
in scenarios with a high degree of paraphyly, albeit for different'®
reasons. This is evidenced by the analysis of data of Hepatitig'®
C (HCV) outbreaks, which have been considered in previous'’
studies [38, 39, 44, 27]. The data comprises intra-host HCV''®
populations from several outbreaks investigated by the Centers'®
for Disease Control and Prevention, each population consisting'2
of sequences covering Hypervariable Region 1 (HVRI1) of thé™
HCV genome. In each outbreak, a single primary host infected'?
all other hosts, rendering the migration tree in graph-theoretical'?
terms a star. 1124

We analyzed two largest outbreaks involving 15 and 19 in!'®
fected hosts. Phylogenetic trees for each outbreak were con'®
structed using RAXML [123]. All transmissions occurred with!'?
in a short time frame and, as a result, intra-host populations aré'?®
highly intermixed (Fig. 6a). This makes paraphylytic signal'®

strong, but oversaturated, thus impeding its use to reconstruct
1130
true transmission history.
1131
This effect can be demonstrated by examining internal node
1132
labels generated by Fitch algorithm, that serves as a basis for
11
several methods considered in the previous section. In the trees )
1134
analyzed, 32-34% of internal nodes were assigned a single pro- 3
11
visional label during the post-order traversal step of the dy- )
11
namic programming algorithm, indicating that these labels ap- ’
1137
pear in all most parsimonious solutions (or solutions with the 3
11
minimal migration number in terms of [22]). Many of these )
11
nodes are adjacent, suggesting that the transmission links they )
1141
represent will be identified by any parsimony-based sampling 0
1141

approach similar to those employed by existing tools [44, 12,

1142
21]. For one outbreak, these links form a connected graph,
1143

whereas in the other, only one host does not integrate into this
1144

23

single connected component (see Fig. 6b). These resulting
graphs are relatively dense and include not only true edges but
also a significant number of false positives (see Fig. 6b). Con-
sequently, even if all true positive edges are correctly identified
using nodes with multiple Fitch labels, the f-scores would not
exceed 0.54 and 0.51, respectively. Enhancing the accuracy of
this approach requires the filtering out of false positive edges,
achievable only through the integration of additional prior in-
formation or constraints.

In contrast, sampling unconstrained candidate transmission
trees from the scale-free tree distribution produce the results
that are significantly closer to true transmission histories (Fig.
6¢). For consensus networks derived from these samples, areas
under precision-recall curve are estimated at 0.76 and 0.70. Fur-
thermore, f-scores of solutions obtained as minimal spanning
trees of consensus networks produced from top 1% of sampled
trees according to the objective (10) are 0.86 and 0.94. Compa-
rable results — f = 0.79 and f = 0.89 — are obtained if we use

top 1% of sampled trees based on the parsimony score.

3.3. Experimental cancer data

We employed SMiTH to analyze the migration history of me-
tastatic ovarian cancer using the data published in [124]. The
dataset comprised whole-genome and targeted sequencing data
from samples collected at various anatomical sites, including
the left ovary (LOv), the right ovary (ROv), and several metas-
tases. In the original study, migration networks were inferred
using hierarchical clustering trees and a Dollo parsimony mo-
del. Subsequent re-analysis using MACHINA [22] revealed
several additional, more parsimonious migration histories.

We focused on the data from Patients 1, 3, and 7, that in-
cluded the highest number of anatomical sites (7-8 sites) and
that were thoroughly analyzed in [22]. We used clone trees
shared by the authors of [22]. For each patient, we sampled

candidate migration trees from a uniform distribution using an
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Figure 6. (a) Phylogenetic trees of HCV variants from two outbreaks. Variants sampled from different hosts are highlighted in different colors. (b) Graphs formed
by edges corresponding to adjacent tree nodes with unique Fitch labels. True edges are highlighted in red. (c) Consensus networks of top 1% of sampled trees with

respect to the objective (10). Edge thicknesses are proportional to their frequencies,

unconstrained model. Following the methodology described iniss
[22], we resolved polytomies in clone trees to match the solu+eo
tions reported there. In instances where the resolution of poly+s
tomies was ambiguous, we applied a random resolution, gen+ez
erating a new random resolution for each sampled candidateiss
migration tree. 1164

For Patient 1, [124] identified a complex migration historyjies
designating ROv as the primary tumor site. MACHINA wasies
able to find several more parsimonious histories that suggestedie
either LOv or ROV as the primary tumor location, but was noties
able to distinguish between them. These histories shared parsi+ies
mony scores (referred to as “migration numbers” [22]) and/ofi7o

the same number of migration events (named ‘“‘co-migrationi

numbers” [22]), which left the primary tumor’s location am+i7

24

true edges are highlighted in red.

biguous. In contrast, SMiTH enabled the comparison of mi-
gration number distributions for different potential primary tu-
mor sources (Fig. 7) rather than making the decision based on
single most parsimonious solutions. Migration numbers asso-
ciated with LOv and ROv were significantly lower than those
of other potential sources (p < 1079, Mann—Whitney U test).
Among these two, the lowest numbers were observed for ROv
(p < 10738, Mann—Whitney U test), indicating a stronger statis-
tical support for ROv as the primary tumor source.

A similar situation was observed for Patient 7. Here, [124]
suggested the right uterosacral ligament (RUt) as the primary
tumor location, while MACHINA identified several alternative
migration histories with either the left ovary (LOvV) or the right

ovary (ROVv) as the source, each sharing identical migration and
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Figure 7. Distributions of migration numbers for trees with different primary tumor sites.

co-migration numbers. Based on these results, [22] argued thatiss
available data provides no evidence for the assertion that thess
primary tumor is located in the RUt as opposed to the ovariesiiss
However, SMiTH provided such statistical evidence (Fig. 7)o
showing that migration trees with RUt as the source generallyiso
exhibited lower migration numbers (p < 1071%%, Mann—Whitneyer
U test). 1192

Patient 3 presents a different scenario. Here, MACHINAss
identified several migration histories with LOv or ROv as pri+iss
mary tumor sources. There is also an alternative history withiss
the omentum (Om) as the source, which has a lower migra+ss

tion number. The latter hypothesis appears preferable if judgedis

solely by the single most parsimonious solution. Yet, this coniss

clusion is not reliable due to the highly symmetric distribution
of clones from different sites in the clone tree. Many clones
form polytomies, offering insufficient data to clearly differenti-
ate between the corresponding sites (e.g., all clones from LOv
and LFTC are siblings, rendering these sites indistinguishable;
see Supplementary Material, Fig. 9). The apparently lower mi-
gration number for Om, compared to other sites, is simply due
to its representation by five clones, versus four for several other
sites — a difference that could stem from sampling bias given
the small number of clones involved.

SMiTH was able to capture and quantify this uncertainty.
Specifically, it did not find significant differences in the distri-

bution of migration numbers among potential primary sources,

25
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with p-values ranging from 0.09 to 0.96 in pairwise Mann-rs:
Whitney U tests and a p = 0.65 in a joint Kruskal-Walliszs
test (Fig. 7). This provides a statistical support for suggestionzs
that the existing data is insufficient to draw reliable conclusionsass
about the migration history. 1236

In total, these examples illustrate how SMiTH can be usedzs
to provide statistical support for hypotheses regarding metat+ess

static spread pathways. 1239

1240

4. Discussion 1241

This study is dedicated to in-depth mathematical exploratioﬁ242
of the relationships between phylogenies and migration trees of °
heterogeneous genomic populations. Although it is established ™
that phylogenetic trees impose some restrictions on migratioﬂ245
pathways [36], the exact nature and extent of these constraints”
are still not well understood, despite a considerable amount ofm
research dedicated to this problem [73, 72, 74, 75, 76, 77, 781248
79, 80, 81, 82, 83, 36]. Our approach adds both depth and rigor
to this area by utilizing the powerful theoretical and algorithmic1250
framework of theory of graph homomorphisms. This frame-
work allowed us to derive necessary and sufficient conditions
for the compatibility of phylogenetic and migration trees, and™
to develop efficient algorithms for analyzing this compatibilit}}254
through numerical experiments. e

Based on our findings, we propose a general and flexible
computational framework that can be used to infer migratioﬂ257
networks under various assumptions, quantitatively assess com:
peting hypotheses about migration dynamics, investigate the
influence of phylogenies on the migration tree space, and o
determine whether a potential migration history is deﬁnitivel}}261
contradicted by a phylogeny or set of phylogenies. e

Methodologically, our approach balances the advantages of

probabilistic and parsimony methods. It incorporates scalabilit}}264

. . . . . . 1265
and the use of advanced combinatorial optimization techniques

26

from the latter, along with the biological plausibility of the for-
mer that comes from employing appropriate prior random tree
distributions.

This study aligns well with the context of previous research.
Several earlier studies have conceptualized migration inference
as a coloring problem [35, 34, 36], employing this framework
both to develop efficient inference algorithms and to explore the
structure of migration tree space. The methodology introduced
in this paper advances these prior approaches by incorporating
a more comprehensive mathematical model and applying more
sophisticated mathematical techniques. Similarly, the concept
of constraining the tree space to random trees from a specified
distribution was first introduced in our earlier studies on viral
transmissions [38, 27], while a related concept of restricting the
tree space to subgraphs of specific migration patterns has been
utilized in computational cancer genomics [22, 61]. This paper
not only refines and extends these methodologies but also inte-
grates them into a cohesive modeling and computational frame-
work.

The proposed approach certainly has both advantages and
disadvantages. We recognize that uniform sampling from the
space of candidate migration trees may not be the most op-
timal tool for migration dynamics inference, and employing
more precise optimization or sampling techniques to navigate
the tree space could substantially enhance the method’s accu-
racy and efficiency. This work lays a foundation for further the-
oretical and algorithmic development in this direction, equip-
ping researchers with the tools needed to expand the use of
graph homomorphism methodologies. On the other hand, uni-
form sampling may be more suitable for hypothesis testing and
comparison. It also should be noted that a key aspect of our
methodology is that it involves sampling from the space of sub-
trees of a transition pattern, rather than from the space of phy-

logeny node labelings as was done in other studies [36, 44, 12].
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The former space is considerably smaller in practical scenar+ess
ios which often makes the uniform sampling computationally,,

feasible. 1298

Furthermore, it is likely that migration models tailored to"

1300

the specific characteristics of underlying populations could po-
1301

tentially yield more accurate insights into the biological pross,

cesses involved. In particular, the biological mechanisms drivs

. . . . . . 130:
ing viral and cancer migrations are certainly very different. Noneéthe-

1305

less, employing a unified phylogenetic approach to study hi ghl}:so6
mutable populations offers several advantages. First, it decouqs,
ples the initial phylogenetic reconstruction from its biological®®

. . Ce . . . 1309
interpretation, thereby minimizing the risk of overfitting and
1310

ensuring that the results are less biased by underlying models1311

[35]. Additionally, such methods are significantly more com-sz

putationally efficient and scalable compared to parameter-rich®"

models [35, 27]. Finally, more general phylogenetic models1314
1315

offer greater flexibility and versatility, and usually can be read-

ily extended to more specific settings through the integrationsiz

of suitable priors [35]. These features make them an excellent’”

1319

foundation for more detailed analyses.
1320
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Algorithm 3 Homomorphism under convexity and sampling parsimony constraints

Input: phylogenetic tree ¥ with the root p and a candidate migration tree T
Output: a feasible homomorphism f:¥ — T or the answer that it does not exist.

1: modify ¥ by contracting paths between leafs with the same label.

2: perform a post-order traversal of the tree V.

3: for every node a of the post-order do

4: construct a set of partial homomorphism tokens H,.

5: if @ is a leaf then

6: H, — {(v,0):ve V(T)};

7: end if

8: if @ is an unlabeled internal node with children f; and 5, then
9: for all (v,X)€ Hp and (u,Y) € Hg, do

10: if v~u, u¢ X and Ny(u) =Y U{v} then

11: Add (v, X U {u}) to H,

12: end if

13: if v~u, v¢Y and Nr(v) = XU {u} then

14: Add (u,Y U {v}) to H,

15: end if

16: end for

17: end if

18: if @ is a labeled internal node with children f,...,5; then

19: Si—1{v:(X) € Hs and |X| =deg(v) -1}, i=1,k;

20: Generate the set Tr of transversals of the set system (Si,...,S);
21: for transversals V =(vi,...,»n)€Tr do

22: if there exists v~vy,...,v then

23: Add (v,V) to H,

24: end if

25: end for

26 end if

27: end for

28: if H, # 0 then

29 perform a pre-order traversal of ¥;

30 for each token f,...7%x € H, do

31: assign the token f, to p: AS, « ..

32: for every node a of the pre-order do

33: f(@) « v, where (v,X)=AS,

34: if @ is an unlabeled internal node with children §; and (3, then
35: select a vertex u € X such that (v,X\({u}) € Hs and (u,Ny(u)\{v}) € Hg,.
36: ASp — (v, X\ {u}) and ASp, < (u, Nr(u)\ {v})

37: end if

38: if @ is a labeled internal node with children f,...,[5; then
39: ASp — (vi, Nr(v)\ {v}), i=1,...,k, where (v,{vi,...,v}) = AS,
40: end if

41: end for

42: among generated homomorphisms fi,..., fg, output the homomorphism f, with the minimal D(f,).
43: end for

44: else

45: f does not exist

46: end if
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