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Abstract

Many human diseases, including viral infections and cancers, are driven by the evolutionary dynamics of heterogeneous populations of genomic
variants. A major type of evolutionary behavior of these populations is migration including viral transmissions and cancer metastatic spread.
A common strategy for migration pathways reconstruction involves constructing a phylogenetic tree of observed genotypes and inferring its
ancestral states corresponding to migration sites. Key challenges here include determining the conditions when a phylogenetic tree topology
reflects the underlying migration tree structure, and balancing computational tractability, flexibility, and biological realism of inference algorithms
and models.

In this study, we address these challenges using the powerful machinery of graph homomorphisms, a mathematical concept that describes
how one graph can be mapped onto another while preserving its structure. We investigate how structural constraints on migration patterns and
migration tree topologies influence the relationship between phylogenies and migration trees, characterize trees compatible with a given phylogeny
and propose a series of algorithms to assess whether given phylogenetic and migration trees are compatible under various migration scenarios.

Leveraging our findings, we present a framework for inferring migration trees by sampling potential trees from a prior random tree distribution
and identifying a subsample compatible with a given phylogeny. By varying prior tree distributions, this approach expands upon several existing
models, offering a versatile strategy applicable to a variety of biological processes. We validate our methodology using simulated datasets and
real data from studies of viral outbreaks and cancer metastasis, demonstrating its effectiveness across different contexts.

Keywords: migration tree, phylogenetic inference, viral transmission, cancer metastasis

1. Introduction1

Many human diseases are essentially evolutionary processes.2

This includes viral infections, driven by evolving populations of3

viral variants [1], as well as cancers associated with diversify-4

ing intra-tumor subclonal lineages [2]. Although the biological5

mechanisms of these diseases are different, both are fueled by6

highly mutable populations of disease-causing agents, whose7

∗Corresponding authors.
Email addresses: kkuzmin1@gsu.edu (Kiril Kuzmin),

pavel.skums@uconn.edu (Pavel Skums)

extreme genomic diversity originates from error-prone replica-8

tion processes, whether due to the lack of a proofreading mech-9

anism in RNA-dependent RNA polymerase or retroviral reverse10

transcriptase in RNA viruses [3, 4, 5], or from the genetic in-11

stability of tumor cells manifesting itself in somatic mutations,12

chromosomal gain/loss/translocation, and aneuploidy [6, 7, 8,13

9]. Consequently, the general phylogenetic methodologies ap-14

plied to these populations exhibit many similarities. From a15

methodological standpoint, they form a unique segment of phy-16

logenetics and phylodynamics, fostering a mutual exchange of17
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concepts that enhances all areas of application [10, 11, 12].18

A major type of evolutionary behaviour of highly mutable19

populations is migration, wherein their members spread from20

initial sites, seeding new populations at newly invaded sites. For21

infectious diseases, such migrations equate to pathogen trans-22

missions, whereas in cancer this process is identified with me-23

tastatic spread. Thus, accurate inference of migration networks24

of heterogeneous populations is crucial for public health and25

medical research [13, 14, 15, 16].26

The study of highly mutable population migration has been27

significantly enhanced by groundbreaking advancements in se-28

quencing technologies. State-of-the-art high-throughput targe-29

ted sequencing and single-cell DNA sequencing enable the cap-30

ture of detailed population snapshots at exceptionally high res-31

olutions, facilitating fine-grained analysis down to the level of32

individual genotypes [16, 17, 18, 19]. In particular, this allows33

to examine population migration on the level of individual mi-34

gration events [20, 17, 21, 22].35

A wide array of methods has been developed specifically36

for reconstructing viral and bacterial transmission trees, reflect-37

ing the substantial interest in tracking the spread of infectious38

diseases. The arsenal of tools available for reconstructing trans-39

mission networks is extensive, including but not limited to Out-40

breaker, Outbreaker 2 [23, 24], SeqTrack [25], SCOTTI [26],41

SOPHIE [27], Phybreak [28], Bitrugs [29], BadTrIP [30], Phy-42

loscanner [31], StrainHub [32], TransPhylo [33, 34] (along with43

its extension TransPhyloMulti [35]), STraTUS [36], TreeFix-44

TP [37], QUENTIN [38], VOICE [39], HIVTrace [40], GHOST45

[41], MicrobeTrace [42], SharpTNI [43], TiTUS [12], TNeT46

[44], AutoNet [45], and others [46, 47, 34, 48, 49, 50, 51, 52,47

53]. These tools have been instrumental in investigation of out-48

breaks and monitoring the transmission dynamics of pathogens49

like HIV, hepatitis C (HCV), SARS, MERS and SARS-CoV-250

[54, 55, 56, 57, 20, 58].51

Similarly, the development of methods for deducing meta-52

static spread histories is burgeoning, driven by advancements in53

single-cell DNA sequencing and CRISPR-based lineage tracing54

technologies. Currently, the repertoire of tools in this domain55

includes MACHINA [22], FitchCount (as part of the Cassiopeia56

suite) [21, 59], PathFinder [60], TCC, PCC, and PCCH [61].57

Notwithstanding the relatively shorter list, the impact of these58

tools is growing, with several studies published recently lever-59

aging these methods to gain insights into the mechanisms of60

metastatic spread [21, 62, 63, 64].61

Despite significant progress in the field, the wide variety of62

existing methods underscores that the challenge of accurately63

inferring heterogeneous population migration remains unresol-64

ved. This diversity of approaches indicates both the complex-65

ity of the problem and the ongoing efforts to refine and im-66

prove upon existing methods. Additionally, a major barrier to67

advancement in the field is the relative isolation of viral and68

cancer genomics fields. Some of the aforementioned tools are69

based on conceptually similar techniques - this applies, for ex-70

ample, to STraTUS (which focus on viral transmission) and71

FitchCount (which addresses metastatic spread) that, as demon-72

strated in this paper, yield virtually identical results when ap-73

plied to the same datasets. This lack of interdisciplinary ex-74

change of ideas often leads researchers to inadvertently dupli-75

cate efforts, thereby impeding progress in both fields.76

Phylogenetics and phylodynamics provide the most widely77

used methodological frameworks for migration tree/network re-78

construction [35, 22]. However, their application in this context79

is not straightforward. A phylogenetic tree does not directly80

equate to a migration tree [35], as the nodes in a phylogenetic81

tree represent divergences of lineages rather than specific mi-82

gration events [35, 65]. While some of these divergences may83

result from migration, others occur within previously invaded84

sites. Therefore, deriving a migration tree from a phyloge-85
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netic tree essentially requires solving an ancestral trait infer-86

ence problem, wherein the internal nodes of a phylogenetic tree87

are annotated with labels that indicate whether each divergence88

event occurred within a site or as a result of seeding of a new89

site upon migration. Furthermore, it is crucial to effectively90

leverage the full spectrum of intra-site (within-host or within-91

tumor) population diversity uncovered by high-throughput se-92

quencing, that often provide a strong signal for migration in-93

ference. For example, the paraphyletic relationships between94

populations suggest recent migrations between corresponding95

sites [66, 67, 39, 68].96

The challenges mentioned above highlight several crucial97

questions that remain unresolved and warrant further explo-98

ration. These questions include:99

1)To what extent and under which conditions does the topol-100

ogy of a phylogenetic tree reflect the structure of the underly-101

ing migration tree? This question becomes particularly impor-102

tant when the level of paraphyly in the labeled phylogeny is103

low, a situation not uncommon as the paraphyletic signal tends104

to diminish over time and with smaller sample sizes [66]. A105

number of studies have looked at this subject but their conclu-106

sions were mixed. Some studies have found that certain mi-107

gration patterns, such as super-spreading, migration chains, or,108

more generally, migrations within networks formed by differ-109

ent models like Erdös-Rényi [69], preferential attachment [70],110

or Watts-Strogatz models [71], lead to quantitatively distinct111

phylogenetic tree topologies [72, 73, 74]. Additionally, the112

spatial structure and dynamics of heterogeneous populations,113

which are directly related to migrations pathways, have been114

shown to affect the phylogeny structure of both viral and tumor115

populations [75, 76, 77, 78]. On the other hand, other studies116

report that the direct impact of migration patterns on phyloge-117

netic trees ranges from minimal to moderate [79, 80, 81, 82].118

Finally, certain studies have drawn mixed conclusions, indicat-119

ing that while some migration characteristics are reflected in the120

phylogeny, others are not [83].121

2) How can we limit the solution space to balance computa-122

tional feasibility, accuracy of inference, generalizability, and123

biological realism? The space of migration trees compatible124

with given phylogenetic trees is often vast, and its properties are125

not well understood [36, 12]. A sampling-consensus approach126

is one method to address solution ambiguity, where feasible mi-127

gration trees are sampled and summarized in a weighted con-128

sensus graph, with weights reflecting posterior probabilities of129

edges [44, 12, 43, 26, 21]. However, the size of solution space130

may restrict the depth of sampling. As a response, it is common131

practice to narrow down the solution space to a set of plausible132

migration trees optimizing a specific objective function under133

evolutionary-based constraints. Employing constrained models134

also aids in preventing overfitting in presence of missing data135

and errors.136

Various objectives and constraints have been implemented137

by existing methods. Limiting number of migration events,138

sizes of bottlenecks or numbers of back-migrations [31, 12, 44,139

22, 59, 21, 61, 36, 25] is more computationally efficient and140

scalable due to utilization of dynamic programming [84, 85],141

making such approaches practical in both molecular epidemiol-142

ogy and computational oncology. These can also be formulated143

as Integer Linear Programming (ILP) problems [86] and solved144

with reasonable efficiency using existing ILP solvers. Models145

with more complex Bayesian objectives with constraints regu-146

larized as priors [35, 28, 26, 23, 30] offer a richer, biologically147

nuanced perspective but suffer from scalability issues and usu-148

ally rely on generic methods like Markov Chain Monte Carlo149

(MCMC) sampling, which may not yield optimal solutions, in150

part due to a lack of problem-specific mathematical strategies.151

Balancing computational efficiency with biological comprehen-152

siveness presents a notable challenge, compounded by the un-153

3
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certainty of how much constraints and objectives truly limit the154

solution space [36, 12].155

3) How to incorporate a variety of models for phylogenetic156

inference of migrations into a unified modular computational157

framework?158

Migration inference models draw on varied biological or159

epidemiological assumptions. For instance, viral transmission160

inference often incorporates case-specific temporal data like in-161

fectious periods, exposure intervals, symptom onset, diagnosis162

or sample collection dates to establish order of infections and163

eliminate unlikely transmission links [23, 47, 28, 33, 12, 26,164

29]. In some rare cases, contact networks are known and can be165

used for the same purpose [87, 58]. While effective, such data166

is often unavailable, non-informative, or sensitive, particularly167

for endemic and pandemic diseases caused by HIV, Hepatitis168

C, SARS-CoV-2, or Influenza [27, 38, 53]. In situations where169

case-specific data cannot be used, genomic epidemiology tools170

resort to broader assumptions, like the expected degree distri-171

bution of transmission networks implied by a structure of a sus-172

ceptible population [38, 27]. Similarly, methods for inferring173

metastatic spread use constraints defined by so-called migration174

patterns that reflect realistic cancer migration scenarios, such175

as monoclonal, polyclonal or multi-source seeding [22, 61]. A176

commonality across all these methods is the use of structural177

constraints on feasible transmission networks that are consid-178

ered as subgraphs of a larger "pattern" graph. It suggests a179

need for a versatile, modular migration inference framework180

that integrates these varied approaches on a unified algorithmic181

and mathematical basis, akin e.g. to the BEAST framework for182

Bayesian evolutionary analysis [88].183

Addressing these challenges requires a comprehensive in-184

vestigation into the mathematical properties of migration trees185

compatible with a given phylogeny, a topic that is not yet fully186

understood [36]. Our study aims to advance this area by devel-187

oping a novel methodology based on powerful techniques from188

graph theory and combinatorics. Additionally, we will use this189

methodology to introduce novel algorithmic approaches for in-190

ferring migration trees.191

A number of earlier studies has achieved important progress192

in this area. Several studies noticed that migration trees compat-193

ible with a given phylogeny correspond to partitions of the phy-194

logeny’s node set or to coloring of its branches [51, 36, 33, 34].195

These observations have informed the development of meth-196

ods to enumerate and sample these trees, assuming a complete197

migration bottleneck [36] and a known sequence of migrations198

[89]. In fact, as we argue in this paper, the relation between a199

phylogenetic tree and a migration tree is described by the con-200

cept of a graph homomorphism that generalize both partitions201

and colorings.202

Graph homomorphism is essentially a mapping between the203

vertices of two graphs that preserve their structure [90]. The204

theory of graph homomorphisms is well-established area of dis-205

crete mathematics, with deep results and rich methodology. All206

types of migration trees discussed so far can be described by207

a graph homomorphism with specific constraints. For exam-208

ple, migration trees compatible with a given phylogeny under209

the assumptions of complete sampling and complete bottleneck,210

that has been studied in [51, 36] are minors [91, 92] of the phy-211

logeny or, equivalently, its homomorphic images such that in-212

verse images of all vertices are connected subtrees.213

We use mathematical and algorithmic machinery of graph214

homomorphism theory to delve into the details of migration in-215

ference. Specifically, we provide necessary and sufficient con-216

ditions describing trees compatible with a given phylogeny and217

propose a series of algorithms that evaluate the compatibility218

of phylogenetic and migration trees under various evolutionary219

scenarios through the construction of corresponding homomor-220

phisms. We examine particular structural constraints on migra-221

4
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tion patterns and migration tree topologies to understand their222

influence on the relationship between a phylogeny and a migra-223

tion tree.224

Based on aforementioned insights, we propose a general225

framework for migration inference that samples candidate mi-226

gration trees from a chosen prior random tree distribution, and227

identifies a subsample of trees compatible with a given phy-228

logeny. By varying prior tree distributions, this approach ex-229

pands upon and generalizes several existing models, offering a230

versatile and computationally efficient strategy applicable to a231

variety of biological processes associated with heterogeneous232

population migration. Crucially, the proposed framework is233

computationally fast, enabling biomedical and public health re-234

searchers to quickly test different tree priors that represent com-235

mon migration models. Beyond migration reconstruction, pro-236

posed methods can be used for investigating how phylogenies237

constrain the space of possible migration trees, for inferring an238

order of known or suspected migration events, and for deter-239

mining potential migration events that are definitively ruled out240

by a phylogeny [36].241

Proposed methodology was validated using both simulated242

datasets and real experimental data gathered from studies of vi-243

ral outbreaks and cancer metastasis, demonstrating its effective-244

ness and applicability across different contexts.245

2. Methods246

2.1. Basic definitions247

Throughout this paper, we consider a pair of trees: a phyloge-248

netic tree and a migration tree. For clarity, we refer to elements249

of a phylogeny as nodes, and to elements of a migration net-250

work as vertices, and denote them by Greek and Latin letters,251

respectively.252

The problem of migration network inference is set up as253

follows. The input is a phylogenetic tree Ψ = (V(Ψ), E(Ψ)),254

with the leaf set L(Ψ) representing genomic variants belonging255

to different subpopulations (or demes), denoted by L. The tree256

Ψ can be a standard binary phylogeny or non-binary mutation257

tree used in most cancer studies. Each leaf λ ∈ L(Ψ) has an258

assigned site label (or color) lλ ∈ L. The aim is to expand this259

labeling from the leaves to all nodes in the tree, creating a full260

labeling f : V(Ψ) → L. In this model, any multi-colored tree261

edge αβ represents a migration of genomic variants between262

demes f (α) and f (β). The migration tree T = T (Ψ, l) and with263

vertices V(T ) = L, is then formed by contracting the nodes264

with the same color [51].265

As mentioned in the introduction, researchers often seek266

migration trees satisfying particular constraints restricting types267

of migration or tree topologies. These constraints can be en-268

coded using a transition pattern graph G that describes permis-269

sible patterns of migration (specific examples are provided in270

the following subsection). We will first consider the situation271

when G is a simple graph; later on, it will be extended to the272

cases when G is a random graph characterized by some prob-273

ability distribution. In this model, a migration tree should be274

isomorphic (i.e. identical up to relabeling of vertices) to a sub-275

graph of the transition pattern. Any corresponding labeling will276

be called feasible.277

The relations between the phylogeny Ψ, the migration tree278

T and the transition pattern G can be captured using the con-279

cept of a graph homomorphism. A homomorphism f : Ψ → G280

[90] is an adjacency-preserving mapping between vertex sets of281

these graphs, i.e. f (u) f (v) ∈ E(G) if uv ∈ E(Ψ). For the sake of282

mathematical rigor, here and throughout this paper we assume283

that a transition pattern is reflexive, i.e. every vertex is adja-284

cent to itself. With this condition in place, any feasible labeling285

f is a homomorphism from Ψ to G, making the migration in-286

ference problem essentially a problem of finding such a homo-287

morphism. In graph theory, this type of problems is sometimes288

5
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A B C

51 2 3 4 6

D

E

Figure 1. SMiTH: Sampling MIgration Trees with Homomorphisms. A: Input phylogenetic tree. B: Distribution of possible migration trees. Parallel rectangles
depict a probability density function, with each rectangle’s width proportional to the corresponding probability. In practice, the distribution is represented either by
a random graph model or by a stochastic graph generation procedure. C: Candidate migration trees sampled from the distribution B. D: Homomorphisms from the
phylogeny to three sampled trees. In the phylogenies, nodes are color-coded by their homomorphic images in a migration tree. The phylogeny layouts in the middle
of each subfigure showcases how homomorphism transforms them into sampled trees. E: consensus solution derived from homomorphisms in D. The solution
is shown as potential color distributions for the phylogeny’s nodes (left) or as a graph where possible migration edges are weighted according to the number of
supporting solutions (right), with the edge thickness indicating weight.

referred to as an G-coloring of the tree Ψ [90].289

Throughout this paper, we use standard graph theory no-290

tations. We denote by Ψα a subtree of Ψ rooted at the node291

α. For any graph G, G[X] represents the subgraph induced by292

the subset of vertices X. We use u ∼ v to indicate that ver-293

tices u and v are adjacent. The set of neighbors of a vertex u294

in G is denoted as NG(u), degG(u) = |NG(u)| is the degree of295

u, NG[u] = NG(u) ∪ {u} and NG[X] is the union of the neigh-296

borhoods of all vertices in a set X. Additionally, the distance297

between any two vertices u and v in G is denoted by dG(u, v),298

and PG(u, v) refers to the corresponding shortest path between299

them. When the graph is clear from a context, we may omit the300

subscripts in these notations. In the case of a phylogeny Ψ, all301

distances and paths are undirected.302

Additionally, to simplify the notation, we will apply set-303

theoretical operations (e.g. intersection and union) directly to304

subgraph of G, with the understanding that the resulting sub-305

graph is induced by the set obtained from applying these oper-306

ations to the vertex sets of the original subgraphs.307
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Figure 2. Solutions for the Migration History Inference Problem under

various constraints. For each scenario, a phylogenetic tree is illustrated in two
different layouts on the left and in the middle, with the corresponding migration
tree displayed on the right. In the phylogenies, nodes are color-coded by their
homomorphic images in the migration tree. The layout in the middle showcases
how homomorphism transforms a phylogeny into a migration tree. (a) Uncon-
strained solution. Subtrees formed by blue and red nodes are not connected,
indicating a violation of the convexity constraint. (b) Convex solution. Each
color-coded subtree is connected, but compactness is violated in the subtree
rooted at node 7. (c) Convex and compact solution.

2.2. Migration inference under structural constraints308

The simplest form of the migration inference challenge appears309

when the vertices of the transition pattern graph G directly cor-310

respond to the labels of the phylogenetic tree leaves, that is,311

V(G) = L. This variant is referred to as labeled inference. The312

transition pattern G can be an unweighted graph or a random313

graph with specified edge probabilities. Several scenarios ex-314

emplify this problem:315

• For viral transmissions, G could reflect a contact network316

of potential hosts [87, 58], where an infection spreads317

through direct interactions within this network.318

• Another viral transmission model assumes that transmis-319

sion is only possible between hosts with overlapping ex-320

posure intervals [30, 12]. In this case G is an interval321

graph [93], i.e. a graph with vertices representing time322

intervals and edges connecting vertices whose intervals323

intersect.324

• For metastatic spread inference, G may represent a cir-325

culatory network [94, 95, 96], with vertices representing326

organs and edges reflecting the prior probabilities of can-327

cer spreading between organs.328

Problem 1 (labeled migration inference)329

Input:330

(a1) a phylogenetic tree Ψ with leaf labels (lλ)λ∈L(Ψ) forming331

the label set L;332

(b1) a transition pattern G with V(G) = L;333

Output:334

(c1) a homomorphism f : Ψ → G such that f (λ) = lλ for335

every λ ∈ L(Ψ).336

In practical settings, however, Problem 1 might be too re-337

strictive or not fully reflective of reality. The main issue is338

the absence of a known mapping between the leaf labels and339

the vertices of the transition pattern. In other words, the pat-340

tern G represents the permissible topology of migration rather341

than specific allowed migration links. For instance, we may342

expect that a viral transmission network likely includes a super-343

spreader, but the exact subpopulation associated with this su-344

perspreader is not known. The following models to this variant345

of the problem:346

• Viral transmission: The transition pattern G could repre-347

sent a random graph that describes expected characteris-348

tics of transmission trees, like being scale-free or having349

a particular expected degree distribution. Such models350

draw on known expected properties of contact networks351

7
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essential for infection spread [97, 98, 99, 100] without352

requiring actual host contact information, and have been353

explored in several studies [38, 27].354

• Metastatic spread inference: In this case, a transition pat-355

tern G may describe plausible evolutionary scenarios of356

cancer migration, such as monoclonal or polyclonal se-357

eding from single or multiple sources [22, 61]. A re-358

lated idea has been applied in studies analyzing CRISPR-359

based lineage tracing phylogenies, where G specifies a360

so-called star homoplasy model [101].361

In this version of migration inference problem, is no ex-362

plicitly given mapping between the set of leaf labels and the363

vertices of the transition pattern. Instead, a feasible homomor-364

phism should map leaves with distinct labels to distinct ver-365

tices of G and vice versa, i.e. for any λ1, λ2 ∈ L(Ψ) we have366

f (λ1) , f (λ2) whenever lλ1 , lλ2 (Fig. 2 (a)). We will call a367

homomorphisms satisfying this requirement a label-distinctive368

homomorphism. It should be noted that finding such a homo-369

morphism seems to be a non-standard variant of a graph homo-370

morphism problem, that, to the best of our knowledge, has not371

been studied previously.372

In such context, the first question to be asked is whether a373

given subtree T of the transition pattern G is compatible with374

the phylogeny Ψ, i.e. whether there exist a label-distinctive ho-375

momorphism Ψ→ T .376

Problem 2 (unlabeled migration inference)377

Input:378

(a2) a phylogenetic tree Ψ with leaf labels (lλ)λ∈L(Ψ);379

(b2) a tree T ;380

Output:381

(c2) a label-distinctive homomorphism f : Ψ→ T .382

A more restricted version of Problem 3 includes an addi-383

tional convexity constraint [102, 103], where tree nodes map-384

ping to the same vertex of G form a connected subtree of Ψ385

(Fig. 2 (b)):386

Problem 3 (convex unlabeled migration inference)387

Input: (a2) and (b2)388

Output:389

(c3) a label-distinctive homomorphism f : Ψ → T such that390

induced subgraphs Ψ[ f −1(v)] are connected for all v ∈391

V(T ).392

We will refer to a homomorphism satisfying (c3) as a convex393

homomorphism. Convex homomorphisms to trees describe mi-394

grations with a complete bottleneck; such migration trees were395

the focus of extensive research in previous studies [51, 36, 89].396

To define another type of constraints, consider a labeling397

l of nodes of the phylogeny Ψ. The labeling l is compact if398

the label of the most recent common ancestor (MRCA) for any399

group of leaves matches one of the labels within that group.400

The rationale for this is based on the understanding that mi-401

grations within any given subtree could follow one of the fol-402

lowing scenarios: either (i) migrations involve only the demes403

represented by the leaves of the subtree, or (ii) migrations in-404

clude external demes, but lineages from these demes were not405

sampled due to extinction or incomplete collection. Although406

both scenarios are feasible, the first is more parsimonious, es-407

pecially when sampling is dense and migration events span a408

short period of time. Hence, homomorphisms that align with409

this compact labeling are referred to as compact.410

Problem 4 (compact unlabeled migration inference)411

Input: (a2) and (b2)412

Output:413

(c4) a label-distinctive homomorphism f : Ψ → T such that414

for any node α ∈ V(Ψ) we have f (α) ∈ f (L(Ψα)).415

8
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Finally, it is often desirable to produce a sample of poten-416

tial solutions rather than a single solution. Such approach offers417

statistical backing for potential migration network edges and418

logically shifts the migration inference problem to a Bayesian419

paradigm. Potential solutions can be sampled from a random420

graph distribution or, if a transition pattern is a deterministic421

graph, from the uniform distribution of its subgraphs with spec-422

ified properties (e.g. subtrees). The sampling-based version of423

the migration inference problem can be formulated as follows:424

Problem 5 (unlabeled migration sampling)425

Input:426

(a5) a phylogenetic tree Ψ with leaf labels (lλ)λ∈L(Ψ);427

(b5) a random transition pattern G with edge probabilities p :428

E(G) → [0, 1] that define a distribution D of subtrees of429

G.430

Output:431

(c5) a sample S = {T1, . . . ,Tm} from the distributionD, whe-432

re each subtree Ti is a homeomorhic image of Ψ, and433

the corresponding label-distinctive homomorphisms fi :434

Ψ→ Ti are possibly convex and/or compact.435

2.3. Labeled migration inference436

Problem 1 can be efficiently solved in polynomial time using437

dynamic programming, as detailed in Algorithm 1. Despite its438

simplicity, we include the algorithm here due to its relevance439

for subsequent, more complex methods.440

2.4. Unconstrained unlabeled migration inference441

A possible strategy to solve Problem 2 involves identifying a bi-442

jection g : L → V(T ) that can be extended to a homomorphism443

Ψ → T using Algorithm 1. We will describe such bijections as444

feasible.445

Algorithm 1 Unlabeled migration inference
1: Let ρ be the root of Ψ. Perform a post-order

traversal of the tree Ψ.

2: for every node α of the traversal do

3: construct a set of potential images I(α) ⊆ L:
4: if α is a leaf then

5: I(α)← {l(α)};
6: else

7: Suppose that β1, . . . , βk are children of α.

Then I(α) consists of vertices x ∈ V(G) such that

there exist vertices yi ∈ I(βi), i = 1, k such that

yi ∼ x.

8: end if

9: end for

10: if I(ρ) = ∅ then

11: homomorphism f does not exist

12: else

13: perform a pre-order traversal of Ψ and

construct a homomorphism f as follows

14: for every node α of the pre-order do

15: if α = ρ then

16: select any v ∈ I(ρ) and set f (ρ)← v;

17: else

18: Let ω be the parent of α. Choose v ∈ I(α)
such that v ∼ f (ω) and set f (α)← v.

19: end if

20: end for

21: end if

Let Lg(u) = {λ ∈ L(Ψ) : g(lλ) = u} be the set of leaves in446

Ψ whose labels map to u. The following theorem establishes a447

necessary and sufficient condition for the bijection feasibility.448

Theorem 1. The bijection g : L → V(T ) is feasible if and only449

if450

dT (u1, u2) ≤ dΨ(λ1, λ2) (1)

for all u1, u2 ∈ V(T ), λ1 ∈ Lg(u1), λ2 ∈ Lg(u2).451

Proof. The necessity of the condition stated in the theorem is a452

known property of graph homomorphisms [90]. However, it is453

generally not sufficient [90]. For our specific type of the homo-454

morphism problem, we will demonstrate that it indeed suffices.455

Consider a bijection g satisfying the condition (1). De-456

fine Cα ⊆ V(T ) as the image set of its clade, that is, Cα =457

g(lλ) : λ ∈ L(Ψα). Additionally, for a node α ∈ V(Ψ) and a ver-458

tex u ∈ V(T ), define Bα(u) as a ball centered at u in T , with459

9
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radius460

rα,u = min
λ∈Lg(u)∩L(Ψα)

dΨ(α, λ) (2)

i.e., Bα(u) = {v ∈ V(T ) : dT (u, v) ≤ rα,u}.461

We proceed by establishing two auxiliary facts. The first462

follows directly from the properties of a tree:463

Lemma 1. Let X1, . . . , Xk be subsets of vertices of the tree464

T such that each subsets induces a connected subgraph and465

⋂k
i=1 Xi , ∅. Then N[

⋂k
i=1 Xi)] =

⋂k
i=1 N[Xi].466

Suppose now that I(α) : α ∈ V(Ψ) are the sets of potential467

node images produced by Algorithm 1, given the matching of468

leaf labels in Ψ and vertices of T through the bijection g. These469

sets are described by the following lemma.470

Lemma 2. For every node α ∈ V(Ψ), I(α) =
⋂

u∈Cα
Bα(u).471

Proof. The proof of the lemma proceeds by induction. Con-472

sider a node α ∈ V(Ψ). The lemma’s assertion is trivially true473

when α is a leaf. Assume now that α is an internal node with474

children β1, . . . , βk, each set I(βi) is non-empty and, by the in-475

ductive assumption,476

I(βi) =
⋂

u∈Cβi

Bβi
(u). (3)

Then Cα =
⋃k

i=1 Cβi
; furthermore, according to Algorithm 1477

and the equality (3) we have478

I(α) =
k
⋂

i=1

N[I(βi)] =
k
⋂

i=1

N



















⋂

u∈Cβi

Bβi
(u)



















. (4)

Now consider a vertex u ∈ Cα. Let β(u) be the child of α479

such that rβ(u),u = mink
i=1 rβi,u; in cases where there are multiple480

such children, we pick any of them. Consequently, we have481

rα,u = rβ(u),u + 1, leading to the relation Bα(u) = N[Bβ(u)(u)].482

Furthermore, it is obvious that Bβ(u)(u) ⊆ Bβi
(u) for all nodes483

βi such that u ∈ Bβi
(u). Together, these observations imply the484

following sequence of equalities:485

⋂

u∈Cα

Bα(u) =
⋂

u∈Cα

N[Bβ(u)(u)] =
k
⋂

i=1

⋂

u:β(u)=βi

N[Bβi
(u)] =

=

k
⋂

i=1

⋂

u∈Cβi

N[Bβi
(u)] (5)

By Lemma 1, N
[

⋂

u∈Cβi
Bβi

(u)
]

=
⋂

u∈Cβi
N[Bβi

(u)], and486

thus the expressions (4) and (5) are equal. This completes the487

proof of Lemma 2.488

According to Lemma 2, Algorithm 1 succeeds whenever489

⋂

u∈Cα
Bα(u) , ∅ for every node α ∈ V(Ψ). To establish that490

this condition holds, we invoke so-called Helly property of sub-491

trees. A family of sets S 1, . . . , S k has a Helly property [104]492

if
⋂k

i=1 S i , ∅ whenever S i ∩ S j , ∅ for every i, j ∈ [k]; in493

other words, the existence of non-empty pairwise intersections494

guarantees a non-empty total intersection.495

Subtrees of a given tree are known to have the Helly prop-496

erty [105]. The subsets Bα(u) obviously induce subtrees of T .497

Therefore, to prove the theorem, it is sufficient to demonstrate498

that for every node α ∈ V(Ψ) and for every pair of vertices499

u1, u2 ∈ Cα, the intersection Bα(u1) ∩ Bα(u2) is non-empty.500

Select two leafs λ1, λ2 ∈ L(Ψα) that minimize the distance501

between nodes of the sets Lg(u1) ∩ L(Ψα) and Lg(u2) ∩ L(Ψα).502

According to the theorem’s conditions, we have:503

dT (u1, u2) ≤ dΨ(λ1, λ2) ≤ dΨ(α, λ1) + dΨ(α, λ2). (6)

This implies the existence of a path between u1 and u2 in T with504

a length at most dΨ(α, λ1) + dΨ(α, λ2). On this path, there is at505

least one vertex v such that dT (u1, v) ≤ dΨ(α, λ1) and dT (u2, v) ≤506

dΨ(α, λ2). Consequently, v belongs to both Bα(u1) and Bα(u2),507

thereby completing the proof.508

Theorem 1 establishes that the Unlabeled Migration Infer-509

ence problem is algorithmically equivalent to the problem of510

10
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finding a bijection that satisfies (1). First of all, this allows us511

to demonstrate that Problem 2 is NP-hard. We will prove it512

through a reduction from the following problem:513

Graph Bandwidth problem.514

Given: A graph G.515

Find: The minimal integer K = bw(G) for which there exists is516

a bijection f : V(G)→ {1, . . . , |V(G)|} such that517

| f (u) − f (v)| ≤ K for all u ∼ v. (7)

The Graph Bandwidth problem isNP-hard [106], and, mo-518

reover, it cannot be approximated within any constant factor519

unless P = NP, even when the input graph G is a tree [107].520

Theorem 2. The Unlabeled Migration Inference problem is521

NP-hard, even when all leaf labels in the phylogeny Ψ are522

unique.523

Proof. For our purposes, it is more convenient to use an equiv-524

alent condition for Graph Bandwidth problem:525

| f (u) − f (v)| ≤ KdG(u, v) for all u, v ∈ V(G). (8)

The fact that (8) implies (7) is obvious. To demonstrate526

that (7) implies (8), consider the shortest (u, v)-path in G (u =527

x0, x1, . . . , xd−1, xd = v), where d = dG(u, v). Then we have528

| f (u) − f (v)| = |
d
∑

i=1

( f (xi−1) − f (xi))| ≤

≤

d
∑

i=1

|( f (xi−1) − f (xi))| ≤ Kd.

Now suppose that T ′ is an input tree of Graph Bandwidth529

problem. We can assume that bw(T ′) ≥ 3, since graphs where530

bw(T ′) ≤ 2 are recognizable in linear time [108]. To construct531

an instance for Problem 2, for an integer K ≥ 3, we proceed as532

follows:533

1) The input phylogeny ΨK is constructed by (a) subdivid-534

ing every edge of T ′ into K edges; (b) attaching a leaf535

labeled u′ to every node u ∈ V(T ′).536

2) The input tree T is an n-vertex path Pn with V(T ) =537

{1, . . . , n}538

For the trees constructed in this manner we have:539

(a) L(ΨK) = {u′ : u ∈ V(T ′)};540

(b) dΨK
(u′, v′) = KdS (u, v) + 2;541

(c) dT (i, j) = |i − j|.542

We will demonstrate that a polynomial-time algorithm for543

Problem 2 leads to a 5
3 -approximation algorithm for the Graph544

Bandwidth problem. Assume the existence of such an algo-545

rithm for Problem 2. Let K∗ be the smallest integer for which546

this algorithm produces a sought-for homomorphismΨK∗ → T .547

To establish the 5
3 approximation factor, we need to demonstrate548

the following relationship:549

K∗ ≤ bw(T ′) ≤
5
3

K∗ (9)

To establish an upper bound, let us consider the feasible bi-550

jection g∗ : L(ΨK∗ )→ {1, . . . , n}. We extend this bijection to the551

nodes of V(T ′) by setting g∗(u) = g∗(u′). Given the inequality552

(1) and assuming that K∗ ≥ 3, we have:553

|g∗(u) − g∗(v)| = dT (g∗(u′), g∗(v′)) ≤ dΨK∗
(u′, v′) =

= K∗ · dT ′ (u, v) + 2 ≤
5
3

K∗dT ′(u, v).

This implies that bw(S ) ≤ 5
3 K∗.554

Conversely, if bw(T ′) = K < K∗, and the mapping g :555

V(T ′) → {1, . . . , n} is the bijection reflecting this bandwidth,556

then we can extend it to L(ΨK) by setting g(u′) = g(u). This557

yields:558
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dT (g(u′), g(v′)) = |g(u) − g(v)| ≤ KdT ′ (u, v) <

< KdT ′ (u, v) + 2 = dΨK
(u′, v′).

This inequality contradicts the assumption that K∗ is minimal.559

Therefore, we must have bw(S ) ≥ K∗. This completes the560

proof.561

Although the Unlabeled Migration Inference problem isNP-562

hard, we can use Theorem 1 to approach it using Integer Linear563

Programming (ILP). We define a feasible bijection g : L →564

V(T ) using binary variables xiu, where xi,u = 1 if g(i) = u, for565

each i ∈ L and u ∈ V(T ). The ILP formulation to find such a566

bijection is as follows:567

∑

i∈L

∑

u∈V(T )

δ(i) deg(u)xiu → max (10)

s.t.568

∑

u∈V(T )

xiu = 1, i ∈ L; (11)

569
∑

i∈L

xiu = 1, u ∈ V(T ); (12)

xiu + x jv ≤ 1, i, j ∈ L, u, v ∈ V(T )

and min
λi∈l−1(i),λ j∈l−1( j)

dΨ(λi, λ j) < dT (u, v); (13)

570

xiu + xiv + x ju + x jv ≤ yi j + 1 i, j ∈ L, uv ∈ E(T ); (14)
571

∑

i, j∈L

yi j = n − 1. (15)

In this formulation, constraints (11) and (12) ensure that x572

encodes a bijection, while constraints (13) guarantee that the573

bijection adheres to the conditions of Theorem 1. The auxiliary574

variables yi j in constraints (14) indicate whether a pair of leaf575

labels map to adjacent vertices in T , with constraint (15) ensur-576

ing the inferred migration network forms a tree. The objective577

function (10) facilitates the search for a solution by leverag-578

ing the relationship between population diversity and popula-579

tion age [109, 110, 111], that suggests that more diverse popu-580

lations, which are likely older, are also more probable origins581

of migration [38, 31, 66]. Consequently, it is more likely that582

such populations correspond to high-degree vertices in the tree583

T . Here a coefficient δ(i) represents the genetic diversity of the584

ith subpopulation, measured as allelic entropy averaged over all585

allelic positions.586

2.5. Migration inference under convexity constraints587

In this section, a convex label-distinctive homomorhismΨ→ T588

will be called feasible. When such homomorphism exists, T589

can be obtained from Ψ by a series of edge contractions, mak-590

ing T a minor of Ψ. Generally, a graph G1 is a minor of a graph591

G2 if G1 can be obtained from G2 by edge contractions, edge592

removals and node removals [112]. It is known that the prob-593

lem of detecting whether a given graph is a minor of another594

graph isNP-hard, even when input graphs are trees [113, 114].595

However, minors associated with our problem satisfy a more596

stringent set of conditions than general graph minors: in our597

case, only edge contractions are allowed and, in addition, con-598

tractions of edges between labeled nodes with different labels599

are forbidden. We suggest that in practical settings feasible ho-600

momorphisms can be efficiently found and enumerated using601

dynamic programming.602

The following simple property of convex homomorphisms603

will be useful for our subsequent analysis:604

Lemma 3. Suppose that f : Ψ → T is a convex homomor-605

phism. Then T ′ with is a subtree of T if and only ifΨ′ = f −1(T ′)606

is a subtree of Ψ.607

Proof. Homomorphic image of a connected subgraph is con-608

nected, as implied by the definition of a homomorphism. The609

converse is also true, if |T ′| = 1. Suppose that |T ′| ≥ 2 and610

the subgraph f −1(T ′) is not connected. Consider two of its con-611

nected components, Ψ′1 and Ψ′2, such that the unique path P612
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between the nodes α ∈ Ψ′1 and β ∈ Ψ′2 is shortest among all613

such paths between different components. Then |P| ≥ 3 and614

T ′′ = f (P \ {α, β}) ∩ T ′ = ∅. Moreover, the vertices f (α) and615

f (β) are adjacent to vertices of T ′′. This leads to two distinct616

paths between f (α) and f (β) – one in T ′ and another passing617

through T ′′. This contradicts the fact that T is a tree.618

Next, we describe the proposed algorithmic approach. Ini-619

tially, we simplify the original phylogenetic tree Ψ by collaps-620

ing paths between leaves sharing identical labels into a single621

node, a step made feasible by the convexity constraint. The re-622

sulting tree, still referred to as Ψ, may become non-binary and623

contains uniquely labeled leaves and possibly some labeled in-624

ternal nodes.625

The algorithm performs a post-order traversal of the phy-626

logeny Ψ and, for each node α ∈ V(Ψ), calculates a set Hα de-627

scribing possible homomorphisms from the subtree Ψα to sub-628

trees of T . At the root node ρ, the set Hρ thus describes all629

homomorphisms from Ψ to T . Upon completing the traversal,630

the algorithm either concludes that no feasible homomorphism631

exists (when Hρ = ∅), or initiates a pre-order traversal of Ψ.632

During this second traversal, it reconstructs feasible homomor-633

phisms using the information from the sets Hα.634

Formally, let Λα be the set of labeled nodes in the subtree635

Ψα. A subtree T [v, X] of T is termed an induced v-subtree if636

it includes the vertex v, a subset X of v’s neighbors, and all637

vertices that are connected to v via paths that intersect with X638

(Fig. 3).639

For a vertex α ∈ V(Ψ), the set Hα consists of triples (v, X,C)640

called partial homomorphism tokens or simply tokens. In each641

token, (i) v ∈ V(T ), (ii) X ⊆ NT (v), (iii) C is a subset of vertices642

of an induced v-subtree T [v, X] such that there exists a feasible643

surjective homomorphism f : Ψα → T [v, X] with f (α) = v and644

f (Λα) = C.645

The algorithm is initialized by setting Hλ = {(v, ∅, {v}) :646

v ∈ V(T )} for all leafs λ. For an internal node α, the set Hα is647

constructed based on the sets from its children nodes β1, . . . , βk.648

The construction utilizes the following lemma:649

Lemma 4. Let T [v, X] be an induced v-subtree. Then there650

exist a feasible surjective homomorphism f : Ψα → T [v, X]651

with f (α) = v and f (Λα) = C if and only if there exist tokens652

(v1, X1,C1) ∈ Hβ1 ,. . . ,(vk, Xk,Ck) ∈ Hβk
satisfying the following653

conditions:654

(a1) v ∼ vi or v = vi for all i ∈ {1, . . . , k};655

(b1) (V(T [vi, Xi]) \ {v}) ∩ (V(T [v j, X j]) \ {v}) = ∅ for all i, j ∈656

{1, . . . , k}, i , j;657

(c1) v ∈ V(T [vi, Xi]) if and only if vi = v.658

(d1) v < Ci, if α is labeled.659

(e1) Xi = NT (vi) \ {v}, if vi , v.660

(f1) X = {v1, . . . , vk} \ {v};661

(g1) C = C1 ∪ · · · ∪ Ck, if α is unlabeled, and C = C1 ∪ · · · ∪662

Ck ∪ {v}, if α is labeled.663

Proof. Let us prove the necessity of conditions (a1) - (g1). Sup-664

pose that there exists a feasible surjective homomorphism f :665

Ψα → T [v, X] such that f (α) = v. Define Ti as the image of666

the subtree Ψβi
under f , denoted by f (Ψβi

), and let vi = f (βi).667

Also, let Xi = NT (vi) ∩ V(Ti) and Ci = f (Λβi
).668

We aim to demonstrate that Ti = T [vi, Xi]. According to669

Lemma 3, Ti is connected, which suggests that Ti must be a670

subgraph of T [vi, Xi]. Furthermore, Lemma 3 also indicates671

that f −1(T [vi, Xi]) is connected. Given the surjectivity of f , it672

follows that f −1(T [vi, Xi]) ⊆ Ψβi
, leading to the conclusion that673

T [vi, Xi] ⊆ Ti.674

Consequently, the restriction of f to Ψβi
is a surjective ho-675

momorphism from Ψβi
to T [vi, Xi]. Thus, the token (vi, Xi,Ci)676
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Figure 3. Overview of the Dynamic Programming Algorithm for Detecting Convex Label-Distinctive Homomorphisms. A. A phylogenetic subtree, Ψα,
rooted at node α with two children, β and γ. B. Input candidate migration tree T . The goal is to produce convex homomorphisms from Ψα to induced subtrees
of T from such homomorphisms for Ψβ and Ψγ. C. Convex homomorphisms from Ψβ (top row) and Ψγ (bottom row) to induced subtrees of T . For instance,
the top figure depicts a homomorphism to an induced 1-tree T [1, {4, 9, 10, 11}] that consists of the vertex 1, its neighbors 4, 9, 10, 11 and all vertices connected to
1 via paths that intersect these neighbors. Nodes of subtrees are colored by their homomorphic images. Homomorphisms are organized into a bipartite graph G,
where edges connect homomorphism pairs f1 f2 and f1 f4 that are compatible, and there is no edge between homomorphisms f1 and f3, that are not compatible. D.

Homomorphisms f5 and f6 obtained by combining compatible homomorphisms f1, f2 and f1, f4.

belongs to Hβi
. The condition (a1) follows from the homomor-677

phism definition, while the convexity of f yields the conditions678

(b1)-(g1).679

Conversely, suppose for each i ∈ 1, . . . , k, we have feasi-680
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ble homomorphisms fi : Ψβi
→ T [vi, Xi,Ci] that meet condi-681

tions (a1) - (e1). We can construct a homomorphism f : Ψα →682

T [v, X,C] by defining f as follows:683

f (γ) =























fi(γ), if γ ∈ V(Ψβi
)

v, if γ = α
(16)

Condition (a1) implies that f is a homomorphism, condition684

(d1) ensures that labeled nodes map to distinct vertices of T ,685

and (e1) guarantees that f is surjective.686

It remains to show that f is convex. Suppose that f (γ1) =687

f (γ2) = w. If both γ1 and γ2 belong to the same subtree Ψβi
,688

then the entire path PΨ(γ1, γ2) maps to w due to the convexity of689

fi. If, on the other hand, γ1 ∈ Ψβi
and γ2 ∈ Ψβ j

, then condition690

(b1) implies that w = v. Furthermore, by the condition (c1) we691

have vi = v j = v. Therefore convexity of fi and f j, as well as692

the fact that f (α) = v, imply that f (PΨ(γ1, γ2)) = v. Together,693

these two facts prove that f is convex.694

To convert Lemma 4 into an algorithm constructing the set695

of tokens for a node α using the tokens of its children, we696

first need to identify tokens of children that satisfy conditions697

(a1)-(g1). This can be achieved through the following steps.698

For each vertex v ∈ V(T ), we construct a multipartite graph699

G = G(α, v) (i.e. a graph partitioned into k independent sets or700

parts), as described below:701

(i) The parts A1, . . . , Ak correspond to children of α.702

(ii) The vertices of the set Ai are tokens from the set Ψβi
sat-703

isfying the conditions (a1),(c1), (d1) and (e1).704

(iii) Two tokens from the sets Ai and A j are adjacent whenever705

they satisfy the condition (b1).706

In the constructed graph, sets of partial homomorphism to-707

kens that satisfy Lemma 4 can be identified as k-vertex cliques.708

We employ the Bron-Kerbosch algorithm [115] to generate the-709

se cliques. For each identified clique, we use conditions (f1)710

and (g1) to construct a new token (v, X,C) for the node α.711

Additionally, for each token (v, X,C) ∈ Hα, we maintain712

pointers p(v, X,C) that link to the children tokens used in its713

construction. These pointers are used in the subsequent phase714

of the algorithm, which aims to reconstruct full feasible homo-715

morphisms f .716

During this phase, the algorithm executes a pre-order traver-717

sal of Ψ. As it progresses, it recursively assigns a specific token718

to each node. When a token t = (v, X,C) is assigned to node719

α, the algorithm sets f (α) = v. It then retrieves tokens for t via720

the pointers p(t) and assigns them to children, β1, . . . , βk. This721

ensures that by the end of the traversal, each node inΨ has been722

assigned a homomorphic image, completing the construction of723

the homomorphism f .724

In general, the set Hρ at the root node ρ may include mul-725

tiple tokens, each representing a feasible homomorphism f :726

Ψ → T . When multiple feasible homomorphisms are avail-727

able, the algorithm selects the one that minimizes violations of728

the compactness constraint (to be discussed in the next subsec-729

tion). In case of ties, the selection criterion shifts to minimizing730

the quantity731

D( f ) =
∑

α∈Λ(T )

δ(α) · d( f (α)), (17)

where δ(α) is the number of labeled children of a node α. This732

approach prioritizes homomorphisms that map high-degree no-733

des to high-degree vertices.734

The outlined method is formalized in Algorithm 2. Its ef-735

ficiency can be improved by contracting sibling leaves in both736

Ψ and T into a single node (vertex). The algorithm maintains a737

count of copies of contracted nodes used by tokens, and a new738

token is generated from children tokens only if the total count739

of each leaf in the children tokens does not exceed its over-740

all count. This modification markedly enhances the dynamic741

programming algorithm’s runtime. The adjustments to Lemma742
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Algorithm 2 Convex homomorphism minimizing compactness violations
Input: phylogenetic tree Ψ with the root ρ and a candidate migration tree T

Output: a feasible homomorphism f : Ψ→ T or the answer that it does not exist.

1: modify Ψ by contracting paths between leafs with the same label.

2: perform a post-order traversal of Ψ.

3: for every node α of the post-order do

4: construct a set of partial homomorphism tokens Hα.

5: if α is a leaf then

6: Hα ← {(v, ∅, {v}) : v ∈ V(T )};
7: end if

8: if α is an internal node with children β1, . . . , βk then

9: Let H(β j) = {(v
j

i
, X

j

i
,C

j

i
) : i = 1, . . . , l j}, j = 1, . . . , k.

10: for v ∈ V(T ) do

11: construct the multipartite graph G(α, v) as described in (i)-(iii);

12: Generate the set K of k-vertex cliques of G(α, v) using Bron-Kerbosch algorithm.

13: for each clique {(u1
i1
, X1

i1
,C1

i1
), . . . , (uk

ik
, Xk

ik
,Ck

ik
)} ∈ K do

14: Construct the sets X and C using formulas (f1) and (g1).

15: Set Hα ← Hα ∪ {(v, X,C)} and p(v, X,C)← p(v, X,C) ∪ {(i1, . . . , ik)}.
16: end for

17: end for

18: end if

19: end for

20: if Hρ , ∅ then

21: perform a pre-order traversal of Ψ;

22: for each token t1, . . . tR ∈ Hρ do

23: assign the token tr to ρ : AS ρ ← tr.

24: for every node α of the pre-order do

25: fr(α)← v, where (v, X,C) = AS α.

26: if α is an internal node with children β1, . . . , βk then

27: Let H(β j) = {(v
j

i
, X

j

i
,C

j

i
) : i = 1, . . . , l j}, j = 1, . . . , k and p(v, X,C) = (i1, . . . , ik).

28: AS β j
← (v j

i j
, X

j

i j
,C

j

i j
), j = 1, . . . , k

29: end if

30: end for

31: end for

32: among generated homomorphisms f1, . . . , fR, output the homomorphism fr with the minimal number of compactness

violations and, in case of ties, with the minimal D( fr).
33: else

34: f does not exist

35: end if

4 and Algorithm 3 in Supplementary Material are straightfor-743

ward, but involve numerous minor technical details; hence a744

formal description is omitted. One particular detail, however,745

should be mentioned: if Ψ′ and T ′ represent the leaf-contracted746

versions of Ψ and T , respectively, and f ′ : Ψ′ → T ′ is a fea-747

sible homomorphism, there may be cases where f (α) = l for748

an internal node α of Ψ and a leaf l in T ′ that results from the749

contraction of leaves l1 and l2. In such instances, f ′ can be ex-750

tended to a homomorphism f : Ψ → T by designating f (α) as751

either l1 or l2. To resolve this ambiguity, the leaf corresponding752

to the population with higher diversity is chosen.753

Finally, it should be noted that, strictly speaking, Algorithm754

2 is not polynomial, since the number of tokens for a node of755

Ψ theoretically can be exponential. In practical settings, how-756

ever, the algorithm is extremely fast, and require split seconds757

to finish.758

2.6. Migration inference with convexity and compactness con-759

straints760

A similar approach to the one outlined in Subsection 2.5 can be761

employed to identify homomorphisms that are both convex and762

compact. However, the dynamic programming algorithm can763

be further optimized by taking advantage of the specific nature764
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of these constraints.765

As with the earlier approach, homomorphisms that are both766

convex and compact will be referred to as feasible. Following767

a similar methodology to that used in Algorithm 2, we begin768

by contracting the paths in the phylogeny Ψ. We then construct769

partial homomorphism tokens similar to those used previously,770

with the exception that subsets C of images of labeled nodes771

are not required. Thus, the tokens are simplified to pairs (v, X),772

where v ∈ V(T ) and X ⊆ NT (v). A pair (v, X) is included in Hα773

if there exists a feasible surjective homomorphism f : Ψα →774

T [v, X] such that f (α) = v, and it also satisfies the following775

condition:776

|Λα| = |T [v, X]|. (18)

This condition is necessary for a partial homomorphism to be777

extendable to a full compact homomomorphism Ψ→ T .778

The algorithm is initialized by setting Hλ = {(v, ∅) : v ∈779

V(T )} for leafs λ. For an internal node α ∈ V(Ψ), its token set780

Hα is constructed from the tokens of its children β1, . . . βk using781

Lemma 5.782

Lemma 5. (v, X) ∈ Hα if and only if one of the following con-783

ditions hold:784

1) α is not labeled and there exist w ∈ X such that (v, X \785

{w}) ∈ Hβ1 and (w,NT (w) \ {v}) ∈ Hβ2 .786

2) α is labeled, |X| = k, and there exist a permutation (v1, . . . , vk)787

of elements of X such that v ∼ v1, . . . , vk, and (v1,NT (v1)\788

{v}) ∈ Hβ1 , . . . , (vk,NT (vk) \ {v}) ∈ Hβk
.789

Proof. We present the proof for the case where α is unlabeled;790

the argument for labeled α follows a similar rationale. In this791

case, α was not involved in path contraction, and thus k = 2.792

Suppose that (v, X) ∈ Hα, i.e. |Λα| = |T [v, X]| and there793

exists a feasible surjective homomorphism f : Ψα → T [v, X]794

such that f (α) = v. Consequently, f (Λα) = V(T [v, X]), and795

therefore there must be a labeled node γ ∈ V(Ψβ1 ) such that796

f (γ) = v. Given the connectivity constraint, this implies that797

f (β1) = v. Meanwhile, the compactness constraint necessitates798

f (β2) = w , v.799

Following Lemma 3 and considering the connectivity con-800

straint, it can be shown that:801

f (Ψβ1 ) = T [v, X \ {v}] and f (Ψβ2 ) = T [w,N(w) \ {v}] (19)

Let us now establish the second equality; the method for802

proving the first is analogous. Let T2 = f (Ψβ2 ). We know that803

v < V(T2) and, according to 3, T2 is connected. These observa-804

tions imply that T2 ⊆ T [w,N(w) \ {v}]. Conversely, Lemma 3805

suggests that f −1(T [w,N(w) \ {v}]) is connected. Given the sur-806

jectivity of f , this implies f −1(T [w,N(w) \ {v}]) ⊆ Ψβ2 , leading807

to T [w,N(w) \ {v}] ⊆ T2. Thus, both T2 ⊆ T [w,N(w) \ {v}] and808

T [w,N(w) \ {v}] ⊆ T2 are true, confirming the second equality.809

So, the restrictions f |Ψβ1 and f |Ψβ2 are both feasible surjec-810

tive homomorphisms. Additionally, Λα = Λβ1 ∪ Λβ2 , f (Λβ1 ) =811

f (Ψβ1 ) = T [v, X \ {w}] and f (Λβ2 ) = f (Ψβ2 ) = T [w,NT (w) \812

{v}], thus confirming that the equality (18) holds for the tokens813

(v, X \ {w}) and (w,NT (w) \ {v}). This proves the necessity of814

condition 1).815

To demonstrate the sufficiency of condition 1), we assume816

that there exist feasible surjective homomorphisms f1 : Ψβ1 →817

T [v, X \ {w}] and f2 : Ψβ2 → T [w,NT (w)\ {v}]. By defining f as818

follows, we can establish a combined feasible homomorphism:819

f (χ) =







































f1(χ) if χ ∈ V(Ψβ1 )

f2(χ) if χ ∈ V(Ψβ2 )

v if χ = α

(20)

820

Lemma 5 can be directly applied to construct tokens for821

an unlabeled node α using the tokens from its children. For822

17



K. Kuzmin et al. / Nature Communications 00 (2024) 1–33 18

a labeled node α, however, the process of finding a permuta-823

tion (v1, . . . , vk) of the tokens is more complex. The method to824

achieve this is detailed in the following approach.825

Lemma 5 can be straightforwardly use to construct tokens826

of α from tokens of its children, if α is unlabeled. When α827

is labeled, then finding a permutation (v1, . . . , vk) required by828

Lemma 5 is more complicated and can be achieved using the829

approach described next.830

Suppose that S = (S 1, . . . , S k) is a collection of sets. A vec-831

tor (x1, . . . , xk) is termed a transversal of S [116] if xi ∈ S i and832

all xi are distinct. Let now S i = {u : (u,Y)) ∈ Hβi
and v ∼833

u}. Then the vector (v1, . . . , vk) satisfies the condition 2) of834

Lemma 5 if and only if it is a transversal of S.835

Given this, the set Hα can be obtained by generating all836

transversals of S. This process involves the following steps:837

• Construct a bipartite graph B(S) with parts I and J ,838

where I = 1, . . . , k represents the set indices, and J =839

⋃k
i=1 S i, represents all elements in the sets. In this graph,840

a vertex i ∈ I is adjacent to a vertex j ∈ J if j belongs841

to S i.842

• In B, each transversal corresponds to a maximal match-843

ing of size k. To generate these matchings, construct a844

line graph L(B), where each vertex represents an edge845

of B, and two vertices are adjacent if their corresponding846

edges in B share a common vertex. Maximal matchings847

of B correspond to maximal independent sets in L(B),848

that can be produced using the Bron–Kerbosch algorithm849

[115].850

The entire method is detailed in Supplementary Material,851

Algorithm 3. Like Algorithm 2, efficiency can be significantly852

improved by contracting sibling leaves in both Ψ and T .853

2.7. SMiTH: Sampling Migration Trees via Homomorphisms854

The algorithms discussed can be effectively integrated into an855

Unlabeled Migration Sampling framework (Problem 5). It al-856

lows for the identification of homeomorphic images of a given857

phylogeny Ψ within a collection of candidate migration trees858

sampled from a given migration pattern represented by a speci-859

fied tree distribution.860

The obtained sample of migration trees can be directly an-861

alyzed to estimate the probabilities of specific migration routes862

or to obtain summary statistics and confidence intervals for de-863

rivative evolutionary parameters. It can be also synthesized864

into a single weighted consensus graph, where each edge is865

weighted by the number of candidate trees that support it. When866

the homomorphism reconstruction includes an objective func-867

tion, the consensus graph is constructed from a subsample com-868

prising the top κ% of trees ranked by their objective values.869

For applications requiring a specific output tree – such as for870

benchmarking and comparison with other methods described871

in Subsection 3.1 – the tree is determined by calculating the872

maximum-weight spanning tree of the consensus graph. The873

entire algorithmic pipeline, named SMiTH (Sampling Migra-874

tion Trees via Homomorphisms), is illustrated in Figure 1.875

3. Results876

3.1. Simulated data877

To generate synthetic data, we used FAVITES [117], a tool ca-878

pable of simulating genomes, phylogenies, and migration net-879

works under various evolutionary scenarios. Although origi-880

nally designed to simulate viral outbreaks, FAVITES supports881

general phylogenetic and population genetics models, making882

it suitable for simulating migrations of heterogeneous popula-883

tions besides viruses. It also should be noted that, to the best884

of our knowledge, specialized simulation tools for metastatic885
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spread with capabilities comparable to FAVITES are currently886

not available.887

We simulated the migration of a heterogeneous population888

over a network of sites formed according to the Barabasi-Albert889

model [70]. This assumption can be valid for both viral [98,890

118] and cancer [119, 95] spread. Migrations occur at a con-891

stant rate along each network edge (in viral context, this cor-892

responds to the network-based Susceptible-Infected (SI) trans-893

mission model). Within each site, phylogenies evolved under894

the exponential coalescent, a model previously used to simu-895

late intra-host [66] and intra-tumor [120] evolution. Genotypes896

were assumed to evolve under the GTR+Γ substitution model,897

and were sampled simultaneously at the end of the simulation.898

In total, 275 simulated datasets were generated, encompassing899

5–30 demes with 100 sequences sampled per deme.900

In the first series of experiments, we sampled candidate mi-901

gration trees from 3 distinct prior distributions of tree topolo-902

gies and evaluated their compatibility with simulated phyloge-903

nies under three different types of constraints. The prior distri-904

butions included:905

T1) Degenerate distribution consisting of the true topology.906

Even though this scenario is unrealistic for actual migra-907

tion inference, it serves as a test to determine if migration908

links can be accurately reconstructed when the topology909

is known but sites need to be correctly mapped to migra-910

tion network vertices. To avoid bias linked to correlations911

between vertex IDs and migration times, that can be po-912

tentially introduced by the simulation methods, we pro-913

duced multiple samples with randomly permuted vertex914

IDs.915

T2) Random scale-free trees produced by the preferential at-916

tachment procedure.917

T3) Uniformly distributed trees of a given size. Sampling was918

performed by generating random Prufer codes [121], in-919

teger sequences of length n − 2 that uniquely define n-920

vertex trees.921

The following types of constraints were used:922

H1) unconstrained homomorphism;923

H2) convex homomorphism minimizing the number of com-924

pactness constraint violations;925

H3) convex and compact homomorphism.926

For each simulated dataset, we produced 9 samples of candidate927

migration trees corresponding to all combinations of conditions928

T1)–T3) and H1)–H3). The sample sizes ranged from 1,000 for929

the degenerate distribution without constraints, up to 1,000,000930

for the uniform distribution with convexity and compactness931

constraints. This variation in sample size was necessary be-932

cause stricter constraints require larger samples to ensure that a933

sufficient number of feasible trees are produced. We assessed934

the compatibility of these sampled trees with the given phylo-935

genies under the respective constraints, using methods detailed936

in Subsections 2.4–2.6. Using these assessments, subsamples937

of compatible tree were extracted.938

Sampled trees were compared with true migration trees pro-939

duced by FAVITES. Individual trees were compared by measur-940

ing recall, defined as the fraction of inferred transmission edges941

among true transmission edges; precision, the fraction of true942

transmission edges among inferred transmission edges; and the943

f -score, i.e., the harmonic mean of precision and recall.944

Additionally, we summarized each subsample of compati-945

ble migration trees using a consensus graph, where each edge946

is weighted by the proportion of candidate trees that support947

that edge [26, 34, 122]. A solution can be extracted from the948

consensus graph by discarding edges with support below a pre-949

defined threshold. For each graph, we estimated the area under950
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Figure 4. (a)-(c) Percent of sampled trees that are compatible with given phylogenies. (d-f) Area under the precision-recall curve (AUC) calculated by varying the
support threshold.

the precision-recall curve, which was calculated by varying the951

support threshold. We opted for the precision-recall curve in-952

stead of the more common ROC curve due to the imbalance953

between the classes of true and false migration edges.954

We found that the relationship between phylogenetic trees955

and migration trees is heavily influenced by structural constra-956

ints. In the absence of constraints, there is considerable ambi-957

guity in the possible migration histories that align with a given958

phylogenetic tree topology, even when prior knowledge about959

true migration tree topology is available. Notably, almost every960

sampled scale-free network proved compatible with the given961

phylogenies, with a median fraction of compatible trees at µ = 1962

(Fig. 4b). It is not entirely unexpected in light of Theorem963

1, which suggests that trees with a low diameter – a common964

feature of scale-free networks – are more likely to be compati-965

ble with a given phylogenetic tree. However, even among uni-966

formly sampled trees, a high compatibility rate was observed967

when no constraints are applied (median µ = 0.84, Fig. 4c).968

Furthermore, without constraints individual compatible tre-969

es display only marginal agreement with true migration trees.970

This holds not only for scale-free and uniformly sampled trees,971

but even for the degenerate distribution, with median f -score972

within the range 0.33–0.36 for all three tree priors (Supplemen-973

tary Material, Fig. 8). In other words, even if the topology of a974

true migration tree is known, numerous labelings of that topol-975

ogy are compatible with the original phylogeny, most of which976

substantially diverge from the true labeling. Consequently, the977

true labeling is not immediately distinguishable among the al-978

ternatives without additional information. Combining a com-979

patible tree subsample into a consensus graph, however, brings980

it closer to the true migration tree, with the median AUC values981

ranging from 0.56 to 0.59 for all three tree priors (see Fig. 4).982

The introduction of convexity and compactness constraints983

significantly reduces the percentage of trees deemed compati-984
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ble, as can be expected (Fig. 4abc). This reduction primarily985

eliminates incidental solutions, enhancing the alignment of the986

trees that meet these constraints with the true migration trees987

(Fig. 4def). In particular, for the degenerate distribution, intro-988

ducing constraints effectively filters out ambiguous vertex map-989

pings, nearly always recovering the true mapping, provided that990

the solutions satisfying the constraints exist.991

Interestingly, without constraints, the use of tree priors does992

not enhance accuracy, as demonstrated by the lack of signif-993

icant differences in AUC distributions among the tree priors994

(p = 0.083, Kruskal-Wallis test). In contrast, when constraints995

are applied, prior knowledge of the migration tree structure be-996

comes beneficial, with AUCs improving as the tree prior be-997

comes tighter. In particular, under constraints, AUCs for the998

scale-free prior are significantly higher than those for the uni-999

form prior (p = 4.4 · 10−6 and p = 1.76 · 10−16 for convex and1000

both convex and compact cases, respectively, Kruskal–Wallis1001

test). Given that true migration trees are generated by the pref-1002

erential attachment, this suggests that under constraints, the1003

phylogeny to a certain degree reflects the properties of the un-1004

derlying migration network.1005

Taken together, these observations indicate that phylogeny1006

topologies do indeed reflect underlying migration tree struc-1007

tures, but the extent of this reflection is influenced by evolution-1008

ary constraints. Moreover, the correspondence between phylo-1009

genies and migration trees is primarily discernible when ana-1010

lyzed statistically across a large sample of feasible migration1011

trees that are compatible with the phylogeny. A single compat-1012

ible tree may be arbitrary, and thus relying on a single solution1013

may lead to misleading conclusions.1014

Based on those observations, we have developed a method1015

named SMiTH (Sampling MIgration Trees using Homomor-1016

phisms) for the constrained inference of migration trees with1017

expected general properties. This method involves sampling1018

candidate migration trees from a designated random tree dis-1019

tribution, identifying convex homomorphisms from the given1020

phylogeny to these sampled trees while minimizing an objective1021

function defined by the number of compactness constraint vio-1022

lations, constructing a consensus graph from trees with top ob-1023

jective values, and ultimately inferring the final migration tree1024

as the minimal spanning tree of this consensus graph.1025

We benchmarked SMiTH against several existing tools de-1026

signed to infer migration networks from phylogenetic tree topo-1027

logies. For the sake of fairness, tools that use dated phyloge-1028

nies and/or case-specific epidemiological information were not1029

considered. The tools selected for this comparison include Cas-1030

siopeia [21, 59], MACHINA [22], Phyloscanner [31], STraTUS1031

[36], and TNet [44]. For MACHINA, we ran all four migration1032

models provided by the tool and report the best result, which1033

was achieved using the single-source seeding model. STraTUS1034

generates a sample of migration trees rather than a single tree;1035

thus, similarly to SMiTH, we used the minimum spanning tree1036

of the consensus graph for benchmarking purposes.1037

The results of the algorithm comparison are shown in Fig.1038

5. It was found that both variants of SMiTH – with uniform1039

and scale-free tree priors – allow for a statistically significant1040

improvement over other tools (p < 10−9, multiple comparison1041

of f -score distributions by Kruskal–Wallis test). SMiTH is fol-1042

lowed by Cassiopeia and STraTUS – two other sampling-based1043

methods, whose accuracies were statistically indiscernible (p =1044

0.58, Kruskal–Wallis test). These tools indeed both produce1045

samples of convex solutions, albeit using different algorithms.1046

While STraTUS is doing it directly, while Cassiopeia’s module1047

FitchCount samples most parsimonious solutions that in our ex-1048

amples were almost always convex. These tools were followed1049

by MACHINA that, similarly to our approach, imposes struc-1050

tural constraints on plausible migration trees by considering1051

them as subgraphs of so-called transition patterns. However,1052
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Figure 5. (a) Summary statistics of methods performance on all simulated datasets. (b) Median f -scores of different methods on simulated datasets with varying
numbers of populations. (c) Median running times of SMiTH for construction of a constrained homomorphism for a given phylogenetic tree and candidate migration
tree as a function of number of migration sites

MACHINA produces a single solution optimizing particular ob-1053

jectives rather than summarizes a sample of such solutions; this,1054

in light of the observations described above, likely hampered its1055

performance vis-à-vis sampling-based methods. Similar rea-1056

soning can be applied to Phyloscanner, that also produces a1057

single most parsimonious solution. In addition, Phyloscanner1058

is specifically designed to make use of paraphyly, that usually1059

provides a strong signal for migration [66] when present; con-1060

sequently, its accuracy can be affected when, as in analyzed1061

test cases, the number of paraphyletic clades is limited. Fur-1062

thermore, Phyloscanner usually assumes that when the popula-1063

tions sampled from different cites are monophyletic, then they1064

all have a common source [66] - the assumption that is opposite1065

to compactness and that seems to be not always valid. The re-1066

lation between algorithms’ performances is mostly stable with1067

regard to the number of migration sites (Fig. 5b).1068

The median running time of our method for construction of1069

a constrained homomorphism for a given phylogenetic tree and1070

candidate migration tree was within 0.7 seconds for all tests1071

and tree priors (Fig. 5c), even though theoretically our algo-1072

rithms can be exponential in the worst case. It allows us, using1073

straightforward parallelization, to produce and process samples1074

consisting in hundreds of thousands of candidate trees in rea-1075

sonable time.1076
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3.2. Experimental viral data1077

Analysis of simulated data highlights the role of structural con-1078

straints in migration tree inference, particularly when paraphyly1079

is limited. Interestingly, these constraints prove just as essential1080

in scenarios with a high degree of paraphyly, albeit for different1081

reasons. This is evidenced by the analysis of data of Hepatitis1082

C (HCV) outbreaks, which have been considered in previous1083

studies [38, 39, 44, 27]. The data comprises intra-host HCV1084

populations from several outbreaks investigated by the Centers1085

for Disease Control and Prevention, each population consisting1086

of sequences covering Hypervariable Region 1 (HVR1) of the1087

HCV genome. In each outbreak, a single primary host infected1088

all other hosts, rendering the migration tree in graph-theoretical1089

terms a star.1090

We analyzed two largest outbreaks involving 15 and 19 in-1091

fected hosts. Phylogenetic trees for each outbreak were con-1092

structed using RAxML [123]. All transmissions occurred with-1093

in a short time frame and, as a result, intra-host populations are1094

highly intermixed (Fig. 6a). This makes paraphylytic signal1095

strong, but oversaturated, thus impeding its use to reconstruct1096

true transmission history.1097

This effect can be demonstrated by examining internal node1098

labels generated by Fitch algorithm, that serves as a basis for1099

several methods considered in the previous section. In the trees1100

analyzed, 32–34% of internal nodes were assigned a single pro-1101

visional label during the post-order traversal step of the dy-1102

namic programming algorithm, indicating that these labels ap-1103

pear in all most parsimonious solutions (or solutions with the1104

minimal migration number in terms of [22]). Many of these1105

nodes are adjacent, suggesting that the transmission links they1106

represent will be identified by any parsimony-based sampling1107

approach similar to those employed by existing tools [44, 12,1108

21]. For one outbreak, these links form a connected graph,1109

whereas in the other, only one host does not integrate into this1110

single connected component (see Fig. 6b). These resulting1111

graphs are relatively dense and include not only true edges but1112

also a significant number of false positives (see Fig. 6b). Con-1113

sequently, even if all true positive edges are correctly identified1114

using nodes with multiple Fitch labels, the f -scores would not1115

exceed 0.54 and 0.51, respectively. Enhancing the accuracy of1116

this approach requires the filtering out of false positive edges,1117

achievable only through the integration of additional prior in-1118

formation or constraints.1119

In contrast, sampling unconstrained candidate transmission1120

trees from the scale-free tree distribution produce the results1121

that are significantly closer to true transmission histories (Fig.1122

6c). For consensus networks derived from these samples, areas1123

under precision-recall curve are estimated at 0.76 and 0.70. Fur-1124

thermore, f -scores of solutions obtained as minimal spanning1125

trees of consensus networks produced from top 1% of sampled1126

trees according to the objective (10) are 0.86 and 0.94. Compa-1127

rable results – f = 0.79 and f = 0.89 – are obtained if we use1128

top 1% of sampled trees based on the parsimony score.1129

3.3. Experimental cancer data1130

We employed SMiTH to analyze the migration history of me-1131

tastatic ovarian cancer using the data published in [124]. The1132

dataset comprised whole-genome and targeted sequencing data1133

from samples collected at various anatomical sites, including1134

the left ovary (LOv), the right ovary (ROv), and several metas-1135

tases. In the original study, migration networks were inferred1136

using hierarchical clustering trees and a Dollo parsimony mo-1137

del. Subsequent re-analysis using MACHINA [22] revealed1138

several additional, more parsimonious migration histories.1139

We focused on the data from Patients 1, 3, and 7, that in-1140

cluded the highest number of anatomical sites (7-8 sites) and1141

that were thoroughly analyzed in [22]. We used clone trees1142

shared by the authors of [22]. For each patient, we sampled1143

candidate migration trees from a uniform distribution using an1144
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(a)

Figure 6. (a) Phylogenetic trees of HCV variants from two outbreaks. Variants sampled from different hosts are highlighted in different colors. (b) Graphs formed
by edges corresponding to adjacent tree nodes with unique Fitch labels. True edges are highlighted in red. (c) Consensus networks of top 1% of sampled trees with
respect to the objective (10). Edge thicknesses are proportional to their frequencies, true edges are highlighted in red.

unconstrained model. Following the methodology described in1145

[22], we resolved polytomies in clone trees to match the solu-1146

tions reported there. In instances where the resolution of poly-1147

tomies was ambiguous, we applied a random resolution, gen-1148

erating a new random resolution for each sampled candidate1149

migration tree.1150

For Patient 1, [124] identified a complex migration history,1151

designating ROv as the primary tumor site. MACHINA was1152

able to find several more parsimonious histories that suggested1153

either LOv or ROv as the primary tumor location, but was not1154

able to distinguish between them. These histories shared parsi-1155

mony scores (referred to as “migration numbers” [22]) and/or1156

the same number of migration events (named “co-migration1157

numbers” [22]), which left the primary tumor’s location am-1158

biguous. In contrast, SMiTH enabled the comparison of mi-1159

gration number distributions for different potential primary tu-1160

mor sources (Fig. 7) rather than making the decision based on1161

single most parsimonious solutions. Migration numbers asso-1162

ciated with LOv and ROv were significantly lower than those1163

of other potential sources (p < 10−65, Mann–Whitney U test).1164

Among these two, the lowest numbers were observed for ROv1165

(p < 10−38, Mann–Whitney U test), indicating a stronger statis-1166

tical support for ROv as the primary tumor source.1167

A similar situation was observed for Patient 7. Here, [124]1168

suggested the right uterosacral ligament (RUt) as the primary1169

tumor location, while MACHINA identified several alternative1170

migration histories with either the left ovary (LOv) or the right1171

ovary (ROv) as the source, each sharing identical migration and1172
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Figure 7. Distributions of migration numbers for trees with different primary tumor sites.

co-migration numbers. Based on these results, [22] argued that1173

available data provides no evidence for the assertion that the1174

primary tumor is located in the RUt as opposed to the ovaries.1175

However, SMiTH provided such statistical evidence (Fig. 7),1176

showing that migration trees with RUt as the source generally1177

exhibited lower migration numbers (p < 10−154, Mann–Whitney1178

U test).1179

Patient 3 presents a different scenario. Here, MACHINA1180

identified several migration histories with LOv or ROv as pri-1181

mary tumor sources. There is also an alternative history with1182

the omentum (Om) as the source, which has a lower migra-1183

tion number. The latter hypothesis appears preferable if judged1184

solely by the single most parsimonious solution. Yet, this con-1185

clusion is not reliable due to the highly symmetric distribution1186

of clones from different sites in the clone tree. Many clones1187

form polytomies, offering insufficient data to clearly differenti-1188

ate between the corresponding sites (e.g., all clones from LOv1189

and LFTC are siblings, rendering these sites indistinguishable;1190

see Supplementary Material, Fig. 9). The apparently lower mi-1191

gration number for Om, compared to other sites, is simply due1192

to its representation by five clones, versus four for several other1193

sites – a difference that could stem from sampling bias given1194

the small number of clones involved.1195

SMiTH was able to capture and quantify this uncertainty.1196

Specifically, it did not find significant differences in the distri-1197

bution of migration numbers among potential primary sources,1198
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with p-values ranging from 0.09 to 0.96 in pairwise Mann–1199

Whitney U tests and a p = 0.65 in a joint Kruskal–Wallis1200

test (Fig. 7). This provides a statistical support for suggestion1201

that the existing data is insufficient to draw reliable conclusions1202

about the migration history.1203

In total, these examples illustrate how SMiTH can be used1204

to provide statistical support for hypotheses regarding metat-1205

static spread pathways.1206

4. Discussion1207

This study is dedicated to in-depth mathematical exploration1208

of the relationships between phylogenies and migration trees of1209

heterogeneous genomic populations. Although it is established1210

that phylogenetic trees impose some restrictions on migration1211

pathways [36], the exact nature and extent of these constraints1212

are still not well understood, despite a considerable amount of1213

research dedicated to this problem [73, 72, 74, 75, 76, 77, 78,1214

79, 80, 81, 82, 83, 36]. Our approach adds both depth and rigor1215

to this area by utilizing the powerful theoretical and algorithmic1216

framework of theory of graph homomorphisms. This frame-1217

work allowed us to derive necessary and sufficient conditions1218

for the compatibility of phylogenetic and migration trees, and1219

to develop efficient algorithms for analyzing this compatibility1220

through numerical experiments.1221

Based on our findings, we propose a general and flexible1222

computational framework that can be used to infer migration1223

networks under various assumptions, quantitatively assess com-1224

peting hypotheses about migration dynamics, investigate the1225

influence of phylogenies on the migration tree space, and to1226

determine whether a potential migration history is definitively1227

contradicted by a phylogeny or set of phylogenies.1228

Methodologically, our approach balances the advantages of1229

probabilistic and parsimony methods. It incorporates scalability1230

and the use of advanced combinatorial optimization techniques1231

from the latter, along with the biological plausibility of the for-1232

mer that comes from employing appropriate prior random tree1233

distributions.1234

This study aligns well with the context of previous research.1235

Several earlier studies have conceptualized migration inference1236

as a coloring problem [35, 34, 36], employing this framework1237

both to develop efficient inference algorithms and to explore the1238

structure of migration tree space. The methodology introduced1239

in this paper advances these prior approaches by incorporating1240

a more comprehensive mathematical model and applying more1241

sophisticated mathematical techniques. Similarly, the concept1242

of constraining the tree space to random trees from a specified1243

distribution was first introduced in our earlier studies on viral1244

transmissions [38, 27], while a related concept of restricting the1245

tree space to subgraphs of specific migration patterns has been1246

utilized in computational cancer genomics [22, 61]. This paper1247

not only refines and extends these methodologies but also inte-1248

grates them into a cohesive modeling and computational frame-1249

work.1250

The proposed approach certainly has both advantages and1251

disadvantages. We recognize that uniform sampling from the1252

space of candidate migration trees may not be the most op-1253

timal tool for migration dynamics inference, and employing1254

more precise optimization or sampling techniques to navigate1255

the tree space could substantially enhance the method’s accu-1256

racy and efficiency. This work lays a foundation for further the-1257

oretical and algorithmic development in this direction, equip-1258

ping researchers with the tools needed to expand the use of1259

graph homomorphism methodologies. On the other hand, uni-1260

form sampling may be more suitable for hypothesis testing and1261

comparison. It also should be noted that a key aspect of our1262

methodology is that it involves sampling from the space of sub-1263

trees of a transition pattern, rather than from the space of phy-1264

logeny node labelings as was done in other studies [36, 44, 12].1265
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The former space is considerably smaller in practical scenar-1266

ios which often makes the uniform sampling computationally1267

feasible.1268

Furthermore, it is likely that migration models tailored to1269

the specific characteristics of underlying populations could po-1270

tentially yield more accurate insights into the biological pro-1271

cesses involved. In particular, the biological mechanisms driv-1272

ing viral and cancer migrations are certainly very different. Nonethe-1273

less, employing a unified phylogenetic approach to study highly1274

mutable populations offers several advantages. First, it decou-1275

ples the initial phylogenetic reconstruction from its biological1276

interpretation, thereby minimizing the risk of overfitting and1277

ensuring that the results are less biased by underlying models1278

[35]. Additionally, such methods are significantly more com-1279

putationally efficient and scalable compared to parameter-rich1280

models [35, 27]. Finally, more general phylogenetic models1281

offer greater flexibility and versatility, and usually can be read-1282

ily extended to more specific settings through the integration1283

of suitable priors [35]. These features make them an excellent1284

foundation for more detailed analyses.1285
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7. Supplementary Material1688

Figure 8. Comparison of sampled compatible trees with true trees under different constraints.

Figure 9. Clone tree for Patient 3
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Algorithm 3 Homomorphism under convexity and sampling parsimony constraints
Input: phylogenetic tree Ψ with the root ρ and a candidate migration tree T

Output: a feasible homomorphism f : Ψ→ T or the answer that it does not exist.

1: modify Ψ by contracting paths between leafs with the same label.

2: perform a post-order traversal of the tree Ψ.

3: for every node α of the post-order do

4: construct a set of partial homomorphism tokens Hα.

5: if α is a leaf then

6: Hα ← {(v, ∅) : v ∈ V(T )};
7: end if

8: if α is an unlabeled internal node with children β1 and β2 then

9: for all (v, X) ∈ Hβ1 and (u,Y) ∈ Hβ2 do

10: if v ∼ u, u < X and NT (u) = Y ∪ {v} then

11: Add (v, X ∪ {u}) to Hα
12: end if

13: if v ∼ u, v < Y and NT (v) = X ∪ {u} then

14: Add (u,Y ∪ {v}) to Hα
15: end if

16: end for

17: end if

18: if α is a labeled internal node with children β1, . . . , βk then

19: S i ← {v : (v, X) ∈ Hβi and |X| = deg(v) − 1}, i = 1, k;
20: Generate the set Tr of transversals of the set system (S 1, . . . , S k);
21: for transversals V = (v1, . . . , vk) ∈ Tr do

22: if there exists v ∼ v1, . . . , vk then

23: Add (v,V) to Hα
24: end if

25: end for

26: end if

27: end for

28: if Hρ , ∅ then

29: perform a pre-order traversal of Ψ;

30: for each token t1, . . . tR ∈ Hρ do

31: assign the token tr to ρ : AS ρ ← tr.

32: for every node α of the pre-order do

33: f (α)← v, where (v, X) = AS α.

34: if α is an unlabeled internal node with children β1 and β2 then

35: select a vertex u ∈ X such that (v, X \ {u}) ∈ Hβ1 and (u,NT (u) \ {v}) ∈ Hβ2.

36: AS β1 ← (v, X \ {u}) and AS β2 ← (u,NT (u) \ {v})
37: end if

38: if α is a labeled internal node with children β1, . . . , βk then

39: AS βi ← (vi,NT (vi) \ {v}), i = 1, . . . , k, where (v, {v1, . . . , vk}) = AS α
40: end if

41: end for

42: among generated homomorphisms f1, . . . , fR, output the homomorphism fr with the minimal D( fr).
43: end for

44: else

45: f does not exist

46: end if
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