Published as a conference paper at ICLR 2022

YOU ARE ALLSET: A MULTISET LEARNING FRAME-
WORK FOR HYPERGRAPH NEURAL NETWORKS

Eli Chien* Chao Pan* Jianhao Peng® Olgica Milenkovic
Department of Electrical and Computer Engineering

University of Illinois, Urbana-Champaign

{ichien3, chaopan2, jianhao2,milenkov}@illinois.edu

ABSTRACT

Hypergraphs are used to model higher-order interactions amongst agents and there
exist many practically relevant instances of hypergraph datasets. To enable the
efficient processing of hypergraph data, several hypergraph neural network plat-
forms have been proposed for learning hypergraph properties and structure, with
a special focus on node classification tasks. However, almost all existing methods
use heuristic propagation rules and offer suboptimal performance on benchmark-
ing datasets. We propose AllSet, a new hypergraph neural network paradigm that
represents a highly general framework for (hyper)graph neural networks and for
the first time implements hypergraph neural network layers as compositions of two
multiset functions that can be efficiently learned for each task and each dataset.
The proposed AllSet framework also for the first time integrates Deep Sets and Set
Transformers with hypergraph neural networks for the purpose of learning mul-
tiset functions and therefore allows for significant modeling flexibility and high
expressive power. To evaluate the performance of AllSet, we conduct the most ex-
tensive experiments to date involving ten known benchmarking datasets and three
newly curated datasets that represent significant challenges for hypergraph node
classification. The results demonstrate that our method has the unique ability to
either match or outperform all other hypergraph neural networks across the tested
datasets: As an example, the performance improvements over existing methods
and a new method based on heterogeneous graph neural networks are close to 4%
on the Yelp and Zoo datasets, and 3% on the Walmart dataset. Our AllSet network
implementation is available online'.

1 INTRODUCTION

Graph-centered machine learning, and especially graph neural networks (GNNSs), have attracted
great interest in the machine learning community due to the ubiquity of graph-structured data and
the importance of solving numerous real-world problems such as semi-supervised node classifica-
tion and graph classification (Zhu, 2005; Shervashidze et al., 2011; Lii & Zhou, 2011). Graphs model
pairwise interactions between entities, but fail to capture more complex relationships. Hypergraphs,
on the other hand, involve hyperedges that can connect more than two nodes, and are therefore capa-
ble of representing higher-order structures in datasets. There exist many machine learning and data
mining applications for which modeling high-order relations via hypergraphs leads to better learning
performance when compared to graph-based models (Benson et al., 2016). For example, in subspace
clustering, in order to fit a d-dimensional subspace, we need at least d+ 1 data points (Agarwal et al.,
2005); in hierarchical species classification of a FoodWeb, a carbon-flow unit based on four species
is significantly more predictive than that involving two or three entities (Li & Milenkovic, 2017).
Hence, it is desirable to generalize GNN concepts to hypergraphs.

One straightforward way to generalize graph algorithms for hypergraphs is to convert hypergraphs to
graphs via clique-expansion (CE) (Agarwal et al., 2005; Zhou et al., 2006). CE replaces hyperedges
by (possibly weighted) cliques. Many recent attempts to generalize GNNSs to hypergraphs can be
viewed as redefining hypergraph propagation schemes based on CE or its variants (Yadati et al.,

*Equal contribution. ! https://github.com/jianhao2016/A11Set

Published as a conference paper at ICLR 2022

2019; Feng et al., 2019; Bai et al., 2021), which was also originally pointed out in (Dong et al., 2020).
Despite the simplicity of CE, it is well-known that CE causes distortion and leads to undesired losses
in learning performance (Hein et al., 2013; Li & Milenkovic, 2018; Chien et al., 2019b).

In parallel, more sophisticated propagation rules directly applicable on hypergraphs, and related to
tensor eigenproblems, have been studied as well. One such example, termed Multilinear PageR-
ank (Gleich et al., 2015), generalizes PageRank techniques (Page et al., 1999; Jeh & Widom, 2003)
directly to hypergraphs without resorting to the use of CE. Its propagation scheme is closely related
to the Z eigenproblem which has been extensively investigated in tensor analysis and spectral hyper-
graph theory (Li et al., 2013; He & Huang, 2014; Qi & Luo, 2017; Pearson & Zhang, 2014; Gautier
et al., 2019). An important result of Benson et al. (2017) shows that tensor-based propagation out-
performs a CE-based scheme on several tasks. The pros and cons of these two types of propagation
rule in statistical learning frameworks were examined in Chien et al. (2021a). More recently, it was
shown in Tudisco et al. (2020) that label propagation based on CE of hypergraphs does not always
lead to acceptable performance. Similarly to Chien et al. (2021a), Benson (2019) identified positive
traits of CE eigenvectors but argued in favor of using Z eigenvectors due to their more versatile
nonlinear formulation compared to that of the eigenvectors of CE graphs.

We address two natural questions pertaining to learning on hypergraphs: “Is there a general frame-
work that includes CE-based, Z-based and other propagations on hypergraphs?” and, “Can we learn
propagation schemes for hypergraph neural networks suitable for different datasets and different
learning tasks?” We give affirmative answers to both questions. We propose a general framework,
AllSet, which includes both CE-based and tensor-based propagation rules as special cases. We also
propose two powerful hypergraph neural network layer architectures that can learn adequate propa-
gation rules for hypergraphs using multiset functions. Our specific contributions are as follows.

1. We show that using AllSet, one can not only model CE-based and tensor-based propagation rules,
but also cover propagation methods of most existing hypergraph neural networks, including Hy-
perGCN (Yadati et al., 2019), HGNN (Feng et al., 2019), HCHA (Bai et al., 2021), HNHN (Dong
et al., 2020) and HyperSAGE (Arya et al., 2020). Most importantly, we show that all these prop-
agation rules can be described as a composition of two multiset functions (leading to the proposed
method name AllSet). Furthermore, we also show that AllSet is a hypergraph generalization of Mes-
sage Passing Neural Networks (MPNN) (Gilmer et al., 2017), a powerful graph learning framework
encompassing many GNNs such as GCN (Kipf & Welling, 2017) and GAT (Velickovié et al., 2018).

2. Inspired by Deep Sets (Zaheer et al., 2017) and Set Transformer (Lee et al., 2019), we propose
AllDeepSets and AllSetTransformer layers which are end-to-end trainable. They can be plugged
into most types of graph neural networks to enable effortless generalizations to hypergraphs. No-
tably, our work represents the first attempt to connect the problem of learning multiset function with
hypergraph neural networks, and to leverage the powerful Set Transformer model in the design of
these specialized networks.

3. We report, to the best of our knowledge, the most extensive experiments in the hypergraph neural
networks literature pertaining to semi-supervised node classification. Experimental results against
ten baseline methods on ten benchmark datasets and three newly curated and challenging datasets
demonstrate the superiority and consistency of our AllSet approach. As an example, AllSetTrans-
former outperforms the best baseline method by close to 4% in accuracy on Yelp and Zoo datasets
and 3% on the Walmart dataset; furthermore, AllSetTransformer matches or outperforms the best
baseline models on nine out of ten datasets. Such improvements are not possible with modifications
of HAN (Wang et al., 2019b), a heterogeneous GNN, adapted to hypergraphs or other specialized
approaches that do not use Set Transformers.

4. As another practical contribution, we also provide a succinct pipeline for standardization of the
hypergraph neural networks evaluation process based on Pytorch Geometric (Fey & Lenssen, 2019).
The pipeline is built in a fashion similar to that proposed in recent benchmarking GNNs papers (Hu
et al., 2020a; Lim et al., 2021). The newly introduced datasets, along with our reported testbed, may
be viewed as an initial step toward benchmarking hypergraph neural networks.

All proofs and concluding remarks are relegated to the Appendix.

Published as a conference paper at ICLR 2022

: fras o fw
o b J+]

o(®o N £

(3)
(1]
Lo XL T xe EHE

(3] B = fons 00X X ONHZ) X = few (ZE 201X,)

Figure 1: Left: The difference between a hypergraph and clique-expanded graph. Right: Illustration
of our AllSet framework for the hypergraph depicted on the left. Included is an example on the
aggregation rule for hyperedge b and node 4. The key idea is that fy,_,¢ and fe_,y are two multiset
functions, which by definition are permutation invariant with respect to their input multisets.

2 BACKGROUND

Notation. A hypergraph is an ordered pair of sets G(V, £), where V = {1,2,...,n} is the set of
nodes while € is the set of hyperedges. Each hyperedge e € £ is a subset of V, i.e., e C V. Unlike
a graph edge, a hyperedge e may contain more than two nodes. If Ve € £ one has |e| = d € N, the
hypergraph G is termed d-uniform. A d-uniform hypergraph can be represented by a d-dimensional
supersymmetric tensor such that for all distinct collections 41,...,iq € V, A;, i, = ﬁ if

e={i1,...,iq} € E,and A;, . = 0 otherwise. Henceforth, A ;. is used to denote the slice of
A along the first coordinate. A hypergraph can alternatively be represented by its incidence matrix
H, where H,. = 1if v € e and H,. = 0 otherwise. We use the superscript (¢) to represent the
functions or variables at the ¢-th step of propagation and || to denote concatenation. Furthermore, ©
and b are reserved for a learnable weight matrix and bias of a neural network, respectively. Finally,
we use o(-) to denote a nonlinear activation function (such as ReLU, eLU or LeakyReLU), which

depends on the model used.

CE-based propagation on hypergraphs. The CE of a hypergraph G(V,) is a weighted graph
with the same set of nodes V. It can be described in terms of the associated adjacency or incidence

matrices which we write with a slight abuse of notation as AEJCE) = iarigey Aijis,..ig and

H(E) = HHT, respectively. It is obvious that these two matrices only differ in their diagonal
entries (Os versus node degrees, respectively). One step of propagation of a F'-dimensional node
feature matrix X € R"*¥ is captured by A(CE)X or H(®)X; alternatively, in terms of node
feature updates, we have

CEpropA: XEJH'U = Z Z X(t) CEpropH: Xg"’l) = Z Z Xﬁfﬂ, (1)

ewee yu: uEe\v e:vEe u:uce

Many existing hypergraph convolutional layers actually perform CE-based propagation, potentially
with further degree normalization and nonlinear hyperedge weights. For example, the propagation
rule of HGNN (Feng et al., 2019) takes the following node-wise form:

X(= ([LynyX]@w b<t>>, o
ewwee uuce

where d,, denotes the degree of node v, w, is a predefined weight of hyperedge e and o is the ReLU
activation function. The hypergraph convolution in HCHA (Bai et al., 2021) uses different degree
normalizations and attention weights, with the attention weights depending on node features and the
hyperedge features. If datasets do not contain hyperedge feature information or if the features come
from a different domain compared to the node features, one cannot use their attention module (Bai

Published as a conference paper at ICLR 2022

et al., 2021). HyperGCN replaces each hyperedge by an incomplete clique via so-called media-
tors (Yadati et al., 2019). When the hypergraph is 3-uniform, the aforementioned approach becomes
a standard weighted CE. Hence, all the described hypergraph neural networks adapt propagation
rules based on CE or its variants, potentially with the addition of nonlinear hyperedge weights.
The described methods achieve reasonable good performance on standard cocitation and coauthor
benchmarking datasets.

Tensor-based propagations. As mentioned in the introduction, there exist more elaborate tensor-
based propagation schemes which in some cases outperform CE-based methods. The propagation
rules related to Z eigenproblems such as multilinear PageRank (Gleich et al., 2015) and spacey
random walks (Benson et al., 2017) are two such examples. The Z eigenproblem for an adjacency
tensor A of a d-uniform hypergraph is defined as:

Ar = Az? 1 & Z A iy igTiy - Tiy,x € R and ll||? = 1. 3)

1250050d

Here, Azd—1 equals ZZ—Q """" iy A. i, i,%i, ... Ti,, an entity frequently used in the tensor analysis
literature. The Z eigenproblem has been extensively studied both in the context of tensor analysis
and network sciences; the problem is also known as the 12 eigenproblem (Lim, 2005; Gautier et al.,
2019). We refer the interested readers to Qi & Luo (2017) for a more detailed theoretical analysis of
the Z eigenproblems and Benson (2019) for its application in the study of hypergraph centralities.

By ignoring the norm constraint, one can define the following tensor-based propagation rule based
on (3) according to:

Zprop: X1 = Z (d—1) H X0, 4)

eveEe wu€e\v

Despite its interesting theoretical properties, Zprop is known to have what is termed the “unit prob-
lem” (Benson, 2019). In practice, the product can cause numerical instabilities for large hyperedges.
Furthermore, Zprop has only been studied for the case of d-uniform hypergraphs, which makes it
less relevant for general hypergraph learning tasks. Clearly, CEprop and Zprop have different advan-
tages and disadvantages for different dataset structures. This motivates finding a general framework
that encompasses these two and other propagation rules. In this case, we aim to learn the suitable
propagation scheme under such a framework for hypergraph neural networks.

3 ALLSET: ONE METHOD TO BIND THEM ALL

We show that all the above described propagation methods can be unified within one setting, termed
AllSet. The key observation is that all propagation rules equal a composition of two multiset func-
tions, defined below.

Definition 3.1. A function f is permutation invariant if and only if Vi € S,,, where S,, denotes the
symmetric group of order nl, f(Xz(1y, .-, Xz(n)) = f(X1,...,Xn).

Definition 3.2. We say that a function f is a multiset function if it is permutation invariant.

Next, let Vo x = {X,,. : u € e} denote the multiset of hidden node representations contained in
the hyperedge e. Also, let Z € RI€I*F " denote the hidden hyperedge representations. Similarly, let
E,z ={Z., : v € e} be the multiset of hidden representations of hyperedges that contain the node
v. The AllSet framework uses the update rules

28D = fose(Vexon ZL)), X{TY = few (B, g X)), (5)

e,:
where fy_,¢ and fe_,y are two multiset functions with respect to their first input. For the initial
condition, we choose zéo) and XS,O) to be hyperedge features and node features, respectively (if

available). If these are not available, we set both entities to be all-zero matrices. Note that we
make the tacit assumption that both functions fy_, ¢ and fec_,y> also include the hypergraph G as an
input. This allows degree normalization to be part of our framework. As one can also distinguish

the aggregating node v from the multiset V, x), we also have the following AllSet variant:

ZUT = e (Vi xoi 280, X)), XEFD = fe ,p (B, gern.; X)), (6)

Published as a conference paper at ICLR 2022

For simplicity, we omit the last input argument Xf,t) for fy_¢ in (6), unless explicitly needed

(as in the proof pertaining to HyperGCN). The formulation (5) lends itself to a significantly more
computationally- and memory-efficient pipeline. This is clearly the case since for each hyperedge
e, the expression in (5) only uses one hyperedge hidden representation while the expression (6)
uses |e]| distinct hidden representations. This difference can be substantial when the hyperedge sizes
are large. Hence, we only use (6) for theoretical analysis purposes and (5) for all experimental
verifications. The next theorems establish the universality of the AllSet framework.

Theorem 3.3. CEpropH of (1) is a special case of AllSet (5). Furthermore, CEpropA of (1) and
Zprop of (4) are also special cases of AllSet (6).

Sketch of proof. If we ignore the second input and choose both f,_, ¢ and fe_,y to be sums over their
input multisets, we recover the CE-based propagation rule CEpropH of (1) via (5). For CEpropA,
the same observation is true with respect to (6). If one instead chooses fy,_.¢ to be the product over
its input multiset, multiplied by the scalar |V, x| — 1, one recovers the tensor-based propagation
Zprop of (4) via (6).

Next, we show that many state-of-the-art hypergraph neural network layers also represent special
instances of AllSet and are strictly less expressive than AllSet.

Theorem 3.4. The hypergraph neural network layers of HGNN (2), HCHA (Bai et al., 2021),
HNHN (Dong et al., 2020) and HyperSAGE (Arya et al., 2020) are all special cases of AllSet (5).
The HyperGCN layer (Yadati et al., 2019) is a special instance of AllSet (6). Furthermore, all the
above methods are strictly less expressive than AllSet (5) and (6). More precisely, there exists a
combination of multiset functions fy_.e and fe_,y for AllSet (5) and (6) that cannot be modeled by
any of the aforementioned hypergraph neural network layers.

The first half of the proof is by direct construction. The second half of the proof consists of counter-
examples. Intuitively, none of the listed hypergraph neural network layers can model Zprop (3)
while we established in the previous result that Zprop is a special case of AllSet.

The last result shows that the MPNN (Gilmer et al., 2017) framework is also a special instance of
our AllSet for graphs, which are (clearly) special cases of hypergraphs. Hence, AllSet may also be
viewed as a hypergraph generalization of MPNN. Note that MPNN itself generalizes many well-
known GNNgs, such as GCN (Kipf & Welling, 2017), Gated Graph Neural Networks (Li et al., 2015)
and GAT (Velickovi¢ et al., 2018).

Theorem 3.5. MPNN is a special case of AllSet (6) when applied to graphs.

4 How TO LEARN ALLSET LAYERS

The key idea behind AllSet is to learn the multiset functions fy,_,¢ and fe_,y on the fly for each
dataset and task. To facilitate this learning process, we first have to properly parametrize the multiset
functions. Ideally, the parametrization should represent a universal approximator for a multiset
function that allows one to retain the higher expressive power of our architectures when compared
to that of the hypergraph neural networks described in Theorem 3.4. For simplicity, we focus on the
multiset inputs of f)_,¢ and fe_,, and postpone the discussion pertaining to the second arguments
of the functions to the end of this section.

Under the assumption that the multiset size is finite, the authors of Zaheer et al. (2017) and Wagstaft
et al. (2019) proved that any multiset functions f can be parametrized as f(S) = p (3 ,cq #(s)),
where p and ¢ are some bijective mappings (Theorem 4.4 in Wagstaff et al. (2019)). In practice,
these mappings can be replaced by any universal approximator such as a multilayer perceptron
(MLP) (Zaheer et al., 2017). This leads to the purely MLP AllSet layer for hypergraph neural
networks, termed AllDeepSets.

AllDeepSets: fy_e(S) = fe_y(S) = MLP <Z MLP(5)> . (7)

seSs

The authors of Lee et al. (2019) argued that the unweighted sum in Deep Set makes it hard to
learn the importance of each individual contributing term. Thus, they proposed the Set Transformer

Published as a conference paper at ICLR 2022

paradigm which was shown to offer better performance than Deep Sets as a learnable multiset func-
tion architecture. Based on this result, we also propose an attention-based AllSet layer for hyper-
graph neural networks, termed AllSetTransformer. Given the matrix S € RISIX¥ which represents
the multiset S of F'-dimensional real vectors, the definition of AllSetTransformer is

AllSetTransformer: fy_¢(S) = fe—1(S) = LN (Y + MLP(Y)),
where Y = LN (6 + MH,, ,(6,S,S)),MH;, ,(6,S,8) = |0,
0=y (9<i>(K<i>)T) v gLk 90 KO =MLPEY(S), VIO = MLPV(S). (8)

Here, LN represents the layer normalization (Ba et al., 2016), || denotes concatenation and 6 €
R*AFn ig a learnable weight; in addition, MHy, , is a multihead attention mechanism with & heads
and activation function w (Vaswani et al., 2017). Note that the dimension of the output of MHj, ,
is 1 x hF}, where F}, is the hidden dimension of V(® ¢ RISI*Fr_ In our experimental setting, we
choose w to be the softmax function which is robust in practice. Our formulation of projections in
MHj, , is slight more general than standard linear projections. If one restricts MLP®* and MLP"?
to one-layer perceptrons without a bias term (i.e., including only a learnable weight matrix), we
obtain standard linear projections in the multihead attention mechanism. The output dimensions of
MLP®* and MLP"Y"* are both equal to RISI*F»_ It is worth pointing out that all the MLP modules op-
erate row-wise, which means they are applied to each multiset element (a real vector) independently
and in an identical fashion. This directly implies that MLP modules are permutation equivariant.

Based on the above discussion and Proposition 2 of Lee et al. (2019) we have the following result.

Proposition 4.1. The functions fy_.e and fe_,\ defined in AlliSetTransformer (8) are permutation
invariant. Furthermore, the functions fy_.¢ and fe_,y defined in (8) are universal approximators
of multiset functions when the size of the input multiset is finite.

Note that in practice, both the size of hyperedges and the node degrees are finite. Thus, the finite size
multiset assumption is satisfied. Therefore, the above results directly imply that the AllDeepSets (7)
and AllSetTransformer (8) layers have the same expressive power as the general AllSet framework.
Together with the result of Theorem 3.4, we arrive at the conclusion that AllDeepSets and AllSet-
Transformer are both more expressive than any other aforementioned hypergraph neural network.

Conceptually, one can also incorporate the Set Attention Block and the two steps pooling strategy
of Lee et al. (2019) into AllSet. However, it appears hard to make such an implementation efficient
and we hence leave this investigation as future work. In practice, we find that even our simplified
design (8) already outperforms all baseline hypergraph neural networks, as demonstrated by our
extensive experiments. Also, it is possible to utilize the information of the second argument of
fv—e and fe_,y via concatenation, another topic relegated to future work.

As a concluding remark, we observe that the multiset functions in both AllDeepSets (7) and AllSet-
Transformer (8) are universal approximators for general multiset functions. In contrast, the other
described hypergraph neural network layers fail to retain the universal approximation property for
general multiset functions, as shown in Theorem 3.4. This implies that all these hypergraph neural
network layers have strictly weaker expressive power compared to AllDeepSets (7) and AllSetTrans-
former (8). We also note that any other universal approximators for multiset functions can easily
be combined with our AllSet framework (as we already demonstrated by our Deep Sets and Set
Transformer examples). One possible candidate is Janossy pooling (Murphy et al., 2019) which
will be examined as part of our future work. Note that more expressive models do not necessarily
have better performance than less expressive models, as many other factors influence system per-
formance (as an example, AllDeepSet performs worse than AllSetTransformer albeit both have the
same theoretical expressive power; this is in agreement with the observation from Lee et al. (2019)
that Set Transformer can learn multiset functions better than Deep Set.). Nevertheless, we demon-
strate in the experimental verification section that our AllSetTransformer indeed has consistently
better performance compared to other baseline methods.

5 RELATED WORKS

Due to space limitations, a more comprehensive discussion of related work is relegated to the Ap-
pendix A.

Published as a conference paper at ICLR 2022

Hypergraph learning. Learning on hypergraphs has attracted significant attention due to its abil-
ity to capture higher-order structural information (Li et al., 2017; 2019). In the statistical learning
and information theory literature, researchers have studied community detection problem for hyper-
graph stochastic block models (Ghoshdastidar & Dukkipati, 2015; Chien et al., 2018; 2019a). In the
machine learning community, methods that mitigate drawbacks of CE have been reported in (Li &
Milenkovic, 2017; Chien et al., 2019b; Hein et al., 2013; Chan et al., 2018). Despite these advances,
hypergraph neural network developments are still limited beyond the works covered by the AllSet
paradigm. Exceptions include Hyper-SAGNN (Zhang et al., 2019), LEGCN (Yang et al., 2020) and
MPNN-R (Yadati, 2020), the only three hypergraph neural networks that do not represent obvious
special instances of AllSet. But, Hyper-SAGNN focuses on hyperedge prediction while we focus
on semi-supervised node classification. LEGCN first transforms hypergraphs into graphs via line
expansion and then applies a standard GCN. Although the transformation used in LEGCN does not
cause a large distortion as CE, it significantly increases the number of nodes and edges. Hence, it
is not memory and computationally efficient (more details about this approach can be found in the
Appendix G). MPNN-R focuses on recursive hypergraphs (Joslyn & Nowak, 2017), which is not
the topic of this work. It is an interesting future work to investigate the relationship between AllSet
and Hyper-SAGNN or MPNN-R when extending AllSet to hyperedge prediction tasks or recursive
hypergraph implementations.

Furthermore, Tudisco & Higham (2021); Tudisco et al. (2021) also proposed to develop and analyze
hypergraph propagations that operate “between” CE-prop and Z-prop rules. These works focus on
the theoretical analysis of special types of propagation rules, which can also be modeled by our
AllSet frameworks. Importantly, our AllSet layers do not fix the rules but instead learn them in
an adaptive manner. Also, one can view Tudisco & Higham (2021); Tudisco et al. (2021) as the
hypergraph version of SGC, which can help with interpreting the functionalities of AllSet layers.

Star expansion, UniGNN and Heterogeneous GNNs. A very recent work concurrent to ours,
UniGNN (Huang & Yang, 2021), also proposes to unify hypergraph and GNN models. Both Huang
& Yang (2021) and our work can be related to hypergraph star expansion (Agarwal et al., 2006;
Yang et al., 2020), which results in a bipartite graph (see Figure 1). One particular variant, Uni-
GIN, is related to our AllDeepSets model, as both represent a hypergraph generalization of GIN (Xu
et al., 2019). However, UniGNN does not make use of deep learning methods for learning mul-
tiset functions, which is crucial for identifying the most appropriate propagation and aggregation
rules for individual datasets and learning tasks as done by AllSetTransformer (see Section 6 for
supporting information). Also, the most advanced variant of UniGNN, UniGCNII, is not compara-
ble to AllSetTransformers. Furthermore, one could also naively try to apply heterogeneous GNNss,
such as HAN (Wang et al., 2019b), to hypergraph datasets converted into bipartite graphs. This
approach was not previously examined in the literature, but we experimentally tested it neverthe-
less to show that the performance improvements in this case are significantly smaller than ours and
that the method does not scale well even for moderately sized hypergraphs. Another very recent
work (Xue et al., 2021) appears at first glance similar to ours, but it solves a very different problem
by transforming a heterogeneous bipartite graph into a hypergraph and then apply standard GCN
layers to implement fy_,¢ and fg_,y, which is more related to HNHN (Dong et al., 2020) and
UniGCN (Huang & Yang, 2021) and very different from AllSetTransformer.

Learning (multi)set functions. (Multi)set functions, which are also known as pooling architectures
for (multi)sets, have been used in numerous problems including causality discovery (Lopez-Paz
et al., 2017), few-shot image classification (Snell et al., 2017) and conditional regression and clas-
sification (Garnelo et al., 2018). The authors of Zaheer et al. (2017) provide a universal way to
parameterize the (multi)set functions under some mild assumptions. Similar results have been pro-
posed independently by the authors of Qi et al. (2017) for computer vision applications. The authors
of Lee et al. (2019) propose to learn multiset functions via attention mechanisms. This further in-
spired the work in Baek et al. (2021), which adopted the idea for graph representation learning. The
authors of Wagstaff et al. (2019) discuss the limitation of Zaheer et al. (2017), and specifically focus
on continuous functions. A more general treatment of how to capture complex dependencies among
multiset elements is available in Murphy et al. (2019). To the best of our knowledge, this work is the
first to build the connection between learning multiset functions with propagations on hypergraph.

Published as a conference paper at ICLR 2022

Table 1: Dataset statistics: |e| refers to the size of the hyperedges while d,, refers to the node degree.
Cora Citeseer Pubmed Cora-CA DBLP-CA Zoo 20News Mushroom NTU2012 ModelNet40 Yelp House Walmart
[V| 2708 3312 19717 2708 41302 101 16242 8124 2012 12311 50758 1290 88860

€] 1579 1079 7963 1072 22363 43 100 298 2012 12311 679302 341 69906
7 feature 1433 3703 500 1433 1425 16 100 22 100 100 1862 100 100
class 7 6 3 7 6 7 4 2 67 40 9 2 11
max |e| 5 26 171 43 202 93 2241 1808 5 5 2838 81 25

6 EXPERIMENTS

We focus on semi-supervised node classification in the transductive setting. We randomly split the
data into training/validation/test samples using (50%/25%/25%) splitting percentages. We aggre-
gate the results of 20 experiments using multiple random splits and initializations.

Methods used for comparative studies. We compare our AllSetTransformer and AllDeepSets with
ten baseline models, MLP, CE+GCN, CE+GAT, HGNN (Feng et al., 2019), HCHA (Bai et al.,
2021), HyperGCN (Yadati et al., 2019), HNHN (Dong et al., 2020), UniGCNII (Huang & Yang,
2021) and HAN (Wang et al., 2019b), with both full batch and mini-batch settings. All architec-
tures are implemented using the Pytorch Geometric library (PyG) (Fey & Lenssen, 2019) except
for HAN, in which case the implementation was retrieved from Deep Graph Library (DGL) (Wang
etal., 2019a). The implementation of HyperGCN? is used in the same form as reported in the official
repository. We adapted the implementation of HCHA from PyG. We also reimplemented HNHN and
HGNN using the PyG framework. Note that in the original implementation of HGNN?, propaga-
tion is performed via matrix multiplication which is far less memory and computationally efficient
when compared to our implementation. MLP, GCN and GAT are executed directly from PyG. The
UniGCNII code is taken from the official site*. For HAN, we tested both the full batch training
setting and a mini-batch setting provided by DGL. We treated the vertices ()) and hyperedges (£)
as two heterogeneous types of nodes, and used two metapaths: {V — & — V,€ - V — £} in
its semantic attention. In the mini-batch setting, we used the DGL’s default neighborhood sampler
with a number of neighbors set to 32 during training and 64 for validation and testing purposes. In
both settings, due to the specific conversion of hyperedges into nodes, our evaluations only involve
the original labeled vertices in the hypergraph and ignore the hyperedge node-proxies. More details
regarding the experimental settings and the choices of hyperparameters are given in the Appendix J.

Benchmarking and new datasets. We use ten available datasets from the existing hypergraph neu-
ral networks literature and three newly curated datasets from different application domains. The
benchmark datasets include cocitation networks Cora, Citeseer and Pubmed, downloaded from Ya-
dati et al. (2019). The coauthorship networks Cora-CA and DBLP-CA were adapted from Yadati
et al. (2019). We also tested datasets from the UCI Categorical Machine Learning Repository (Dua
& Graff, 2017), including 20Newsgroups, Mushroom and Zoo. Datasets from the area of computer
vision and computer graphics include ModelNet40 (Wu et al., 2015) and NTU2012 (Chen et al.,
2003). The hypergraph construction follows the recommendations from Feng et al. (2019); Yang
et al. (2020). The three newly introduced datasets are adaptations of Yelp (Yelp), House (Chodrow
et al., 2021) and Walmart (Amburg et al., 2020). Since there are no node features in the original
datasets of House and Walmart, we use Gaussian random vectors instead, in a fashion similar to
what was proposed for Contextual stochastic block models (Deshpande et al., 2018). We use post-
fix (z) to indicate the standard deviation of the added Gaussian features. The partial statistics of all
datasets are provided in Table 1, and more details are available in the Appendix I.

Results. We use accuracy (micro-F1 score) as the evaluation metric, along with its standard devia-
tion. The relevant findings are summarized in Table 2. The results show that AllSetTransformer is
the most robust hypergraph neural network model and that it has the best overall performance when
compared to state-of-the art and new models such a hypergraph HAN. In contrast, all baseline meth-
ods perform poorly on at least two datasets. For example, UniGCNII and HAN are two of the best
performing baseline models according to our experiments. However, UniGCNII performs poorly
on Zoo, Yelp and Walmart when compared to our AllSetTransformer. More precisely, AllSetTrans-
former outperforms UniGCNII by 11.01% in accuracy on the Walmart(1) dataset. HAN has poor
performance when compared AllSetTransformer on Mushroom, NTU2012 and ModelNet40. Fur-

2 https://github.com/malllabiisc/HyperGCN 3 https://github.com/iMoonLab/HGNN 4 https://github.com/OneForward/UniGNN

Published as a conference paper at ICLR 2022

Table 2: Results for the tested datasets: Mean accuracy (%) + standard deviation. Boldfaced letters
shaded grey are used to indicate the best result, while blue shaded boxes indicate results within one
standard deviation of the best result. NA indicates that the method has numerical precision issue.
For HAN*, additional preprocessing of each dataset is required (see the Section 6 for more details).
Cora Citeseer Pubmed Cora-CA DBLP-CA Zoo 20Newsgroups mushroom

AllSetTransformer 78.59 +1.47 73.08 £1.20 88.72+0.37 83.63+1.47 91.53+0.23 97.50+3.59 81.38+0.58 100.00 = 0.00
AllDeepSets 76.88 +1.80 70.83+1.63 88.75+0.33 81.97+1.50 91.27+0.27 9539+£4.77 81.06£0.54 99.99 +0.02

MLP 7517 +£1.21 72.67 £1.56 87.47+0.51 74.31+1.89 84.83+0.22 87.18+4.44 | 81.42+0.49 100.00 + 0.00
CECGN 76.17 +1.39 70.16 £ 1.31 86.45+0.43 77.05+1.26 83.00+0.26 51.54+11.19 OOM 95.27 +0.47
CEGAT 76.41 +£1.53 70.63 +£1.30 86.81 £0.42 76.16 £1.19 88.59 +£0.29 47.88 +14.03 OOM 96.60 + 1.67
HNHN 76.36 +1.92 | 72.64 £1.57 86.90+0.30 77.19+1.49 86.78£0.29 93.59+5.88 | 81.35+£0.61 100.00 + 0.01
HGNN 7939+ 1.36 72.45+1.16 86.44+0.44 82.64+1.65 91.03+0.20 92.50+4.58 80.33+0.42 98.73+0.32
HCHA 79.14 £1.02 72.42+1.42 86.41+0.36 82.55+0.97 90.92+0.22 93.65+6.15 80.33+0.80 98.70 +0.39

HyperGCN 7845+1.26 71.28+0.82 82.84 £8.67 79.48 £2.08 89.38 +0.25 N/A 81.05+£0.59 4790+ 1.04
UniGCNII 78.81 £1.05 73.05£2.21 88.25+0.40 83.60+1.14 91.69 £0.19 93.65+4.37 = 81.12+0.67 99.96 +0.05
HAN (full batch)* [80.18 £ 1.15 74.05 + 1.43 86.21 +0.48 84.04 + 1.02 90.89 +0.23 85.19 £8.18 OOM 90.86 +2.40
HAN (mini batch)* 79.70 £ 1.77 74.12+1.52 8532 +2.25 81.71£1.73 90.17+£0.65 75.77+7.10 79.72+0.62 93.45+1.31
NTU2012 ModelNet40 Yelp House(1) Walmart(1) House(0.6) Walmart(0.6) avg. ranking (1)
AllSetTransformer 88.69 + 1.24 98.20 £ 0.20 36.89 + 0.51 69.33 £2.20 65.46 +£0.25 83.14+1.92 78.46 + 0.40 2.00
AllDeepSets 88.09 £ 1.52 96.98 £0.26 30.36 +1.57 67.82+£2.40 64.55+0.33 80.70+1.59 | 78.46 + 0.26 4.47

MLP 85.52+£1.49 96.14+0.36 31.96+0.44 67.93+£233 4551+0.24 81.53+£226 63.28+0.37 6.27
CECGN 81.52+1.43 89.92+0.46 OOM 62.80 £2.61 54.44+0.24 6436+241 59.78+0.32 9.66
CEGAT 82.21£1.23 92.52+0.39 OOM 69.09 £3.00 51.14+0.56 77.25+2.53 59.47 £1.05 8.80
HNHN 89.11£1.44 97.84+0.25 31.65+0.44 67.80+£2.59 47.18+0.35 78.78+1.88 65.80 +0.39 5.87
HGNN 87.72 £ 1.35 9544 +0.33 33.04+0.62 61.39+2.96 62.00+0.24 66.16+1.80 77.72+0.21 5.73
HCHA 87.48 £1.87 9448 +£0.28 30.99+0.72 61.36 253 6245+0.26 6791226 77.12+0.26 6.40

HyperGCN 56.36 £4.86 75.89£5.26 2942+ 1.54 4831+293 44.74+£281 7822+246 55.31+0.30 9.87
UniGCNIT 89.30 £1.33 98.07 £0.23 31.70+0.52 67.25+2.57 5445+0.37 80.65+1.96 72.08+0.28 3.87
HAN (full batch)* 83.58 £ 1.46 94.04 +0.41 OOM 71.05 + 2.26 OOM 83.27 + 1.62 OOM 6.73
HAN (mini batch)* 80.77 £2.36 91.52+0.96 26.05+1.37 62.00+9.06 48.57 +1.04 82.04+2.68 63.10+0.96 7.60

thermore, it experiences memory overload issues on Yelp and Walmart with a full batch setting and
performs poorly with a mini-batch setting on the same datasets. Numerically, AllSetTransformer
outperforms HAN with full batch setting by 9.14% on the Mushroom and HAN with mini-batch
setting and by 16.89% on Walmart(1). These findings emphasize the importance of including di-
verse datasets from different application domains when trying to test hypergraph neural networks
fairly. Testing standard benchmark datasets such as Cora, Citeseer and Pubmed alone is insufficient
and can lead to biased conclusions. Indeed, our experiments show that all hypergraph neural net-
works work reasonably well on these three datasets. Our results also demonstrate the power of Set
Transformer when applied to hypergraph learning via the AllSet framework.

The execution times of all methods are available in the Appendix J: They show that the complexity of
AllSet is comparable to that of the baseline hypergraph neural networks. This further strengthens the
case for AllSet, as its performance gains do not come at the cost of high computational complexity.
Note that in HAN’s mini-batch setting, the neighborhood sampler is performed on CPU instead of
GPU, hence its training time is significantly higher than that needed by other methods, due to the
frequent I/O operation between CPU and GPU. On some larger datasets such as Yelp and Walmart,
20 runs take more than 24 hours so we only recorded the results for first 10 runs.

The performance of AllDeepSets is not on par with that of AllSetTransformer, despite the fact that
both represent universal approximators of the general AllSet formalism. This result confirms the
assessment of Lee et al. (2019) that attention mechanisms are crucial for learning multiset functions
in practice. Furthermore, we note that combining CE with existing GNNs such as GCN and GAT
leads to suboptimal performance. CE-based approaches are also problematic in terms of memory
efficiency when large hyperedges are present. This is due to the fact the CE of a hyperedge e leads
to ©(|e|?) edges in the resulting graph. Note that as indicated in Table 2, CE-based methods went
out-of-memory (OOM) for 20Newsgroups and Yelp. These two datasets have the largest maximum
hyperedge size, as can be see from Table 1. HAN encounters the OOM issue on even more datasets
when used in the full batch setting, and its mini-batch setting mode perform poorly on Yelp and
Walmart. This shows that a naive application of standard heterogeneous GNNs on large hypergraphs
often fails and is thus not as robust as our AllSetTransformer. The mediator HyperGCN approach
exhibits numerical instabilities on some datasets (i.e., Zoo and House) and may hence not be suitable
for learning on general hypergraph datasets.

Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

The authors would like to thank Prof. Pan Li at Purdue University for helpful discussions. The au-
thors would also like to thank Chaoqi Yang for answering questions regarding the LEGCN method.
This work was funded by the NSF grant 1956384.

7 ETHICS STATEMENT

We do not aware of any potential ethical issues regarding our work. For the newly curated three
datasets, there is no private personally identifiable information. Note that although nodes in House
datasets represent congresspersons and hyperedges represent members serving on the same commit-
tee, this information is public and not subject to privacy constraints. For the Walmart dataset, the
nodes are products and hyperedges are formed by sets of products purchased together. We do not
include any personal information regarding the buyers (customers) in the text. In the Yelp dataset
the nodes represent restaurants and hyperedges are collections of restaurants visited by the same
user. Similar to the Walmart case, there is no user information included in the dataset. More details
of how the features in each datasets are generated can be found in Appendix I.

8 REPRODUCIBILITY STATEMENT

We have tried our best to ensure reproducibility of our results. We built a succinct pipeline for stan-
dardization of the hypergraph neural networks evaluation process based on Pytorch Geometric. This
implementation can be checked by referring to our supplementary material. We include all dataset
in our supplementary material and integrate all tested methods in our code. Hence, one can simply
reproduce all experiment results effortlessly (by just running a one-line command). All details re-
garding how the datasets were prepared are stated in Appendix I. All choices of hyperparameters and
the process of selecting them are available in Appendix J. Our experimental settings including the
specifications of our machine and environment, the training/validation/test split and the evaluation
metric. Once again, refer ro the Appendix J and Section 6. We also clearly specify all the package
dependencies used in our code in the Supplementary material.

REFERENCES

Sameer Agarwal, Jongwoo Lim, Lihi Zelnik-Manor, Pietro Perona, David Kriegman, and Serge
Belongie. Beyond pairwise clustering. In 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), volume 2, pp. 838-845. IEEE, 2005.

Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher order learning with graphs. In
Proceedings of the 23rd international conference on Machine learning, pp. 17-24, 2006.

Ilya Amburg, Nate Veldt, and Austin Benson. Clustering in graphs and hypergraphs with categorical
edge labels. In Proceedings of The Web Conference 2020, WWW 20, pp. 706717, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450370233. doi: 10.1145/
3366423.3380152. URL https://doi.org/10.1145/3366423.3380152.

Devanshu Arya, Deepak K Gupta, Stevan Rudinac, and Marcel Worring. Hypersage: Generalizing
inductive representation learning on hypergraphs. arXiv preprint arXiv:2010.04558, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with
graph multiset pooling. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=JHcgXGagiGn.

Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention.
Pattern Recognition, 110:107637, 2021.

Austin R Benson. Three hypergraph eigenvector centralities. SIAM Journal on Mathematics of Data
Science, 1(2):293-312, 2019.

10

Published as a conference paper at ICLR 2022

Austin R Benson, David F Gleich, and Jure Leskovec. Higher-order organization of complex net-
works. Science, 353(6295):163-166, 2016.

Austin R Benson, David F Gleich, and Lek-Heng Lim. The spacey random walk: A stochastic
process for higher-order data. SIAM Review, 59(2):321-345, 2017.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18—42,
2017.

T-H Hubert Chan, Anand Louis, Zhihao Gavin Tang, and Chenzi Zhang. Spectral properties of
hypergraph laplacian and approximation algorithms. Journal of the ACM (JACM), 65(3):1-48,
2018.

Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. On visual similarity based 3d
model retrieval. In Computer graphics forum, volume 22, pp. 223-232. Wiley Online Library,
2003.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
257-266, 2019.

Eli Chien, Pan Li, and Olgica Milenkovic. Landing probabilities of random walks for seed-set
expansion in hypergraphs. IEEE Information Theory Workshop (ITW), 2021a.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations, 2021b. URL
https://openreview.net/forum?id=n6jl17fLxrP.

I Chien, Chung-Yi Lin, and I-Hsiang Wang. Community detection in hypergraphs: Optimal sta-
tistical limit and efficient algorithms. In International Conference on Artificial Intelligence and
Statistics, pp. 871-879. PMLR, 2018.

I Eli Chien, Chung-Yi Lin, and I-Hsiang Wang. On the minimax misclassification ratio of hy-
pergraph community detection. IEEE Transactions on Information Theory, 65(12):8095-8118,
2019a.

I Eli Chien, Huozhi Zhou, and Pan Li. Hs2: Active learning over hypergraphs with pointwise and
pairwise queries. In The 22nd International Conference on Artificial Intelligence and Statistics,
pp. 2466-2475. PMLR, 2019b.

Philip S Chodrow, Nate Veldt, and Austin R Benson. Hypergraph clustering: from blockmodels to
modularity. arXiv preprint arXiv:2101.09611, 2021.

Yash Deshpande, Subhabrata Sen, Andrea Montanari, and Elchanan Mossel. Contextual stochastic
block models. Advances in Neural Information Processing Systems 31 (NIPS 2018), 2018.

Kaize Ding, Jianling Wang, Jundong Li, Dingcheng Li, and Huan Liu. Be more with less: Hy-
pergraph attention networks for inductive text classification. arXiv preprint arXiv:2011.00387,
2020.

Yihe Dong, Will Sawin, and Yoshua Bengio. Hnhn: Hypergraph networks with hyperedge neurons.
arXiv preprint arXiv:2006.12278, 2020.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Yifan Feng, Zizhao Zhang, Xibin Zhao, Rongrong Ji, and Yue Gao. Gvcnn: Group-view convo-
lutional neural networks for 3d shape recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 264-272, 2018.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 3558-3565,
2019.

11

Published as a conference paper at ICLR 2022

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
International Conference on Machine Learning, pp. 1704-1713. PMLR, 2018.

Antoine Gautier, Francesco Tudisco, and Matthias Hein. A unifying perron—frobenius theorem
for nonnegative tensors via multithomogeneous maps. SIAM Journal on Matrix Analysis and
Applications, 40(3):1206-1231, 2019.

Debarghya Ghoshdastidar and Ambedkar Dukkipati. A provable generalized tensor spectral method
for uniform hypergraph partitioning. In International Conference on Machine Learning, pp. 400—
409. PMLR, 2015.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, pp.
1263-1272. PMLR, 2017.

David F Gleich, Lek-Heng Lim, and Yongyang Yu. Multilinear pagerank. SIAM Journal on Matrix
Analysis and Applications, 36(4):1507-1541, 2015.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 1025-1035, 2017.

Jun He and Ting-Zhu Huang. Upper bound for the largest z-eigenvalue of positive tensors. Applied
Mathematics Letters, 38:110-114, 2014.

Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapuram. The total variation
on hypergraphs-learning on hypergraphs revisited. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems-Volume 2, pp. 2427-2435, 2013.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 22118-22133. Curran Asso-
ciates, Inc., 2020a. URL https://proceedings.neurips.cc/paper/2020/file/
fb60d411a5cbb72b2e7d3527cfc84£fd0-Paper.pdf.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of The Web Conference 2020, pp. 2704-2710, 2020b.

Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
arXiv preprint arXiv:2105.00956, 2021.

Glen Jeh and Jennifer Widom. Scaling personalized web search. In Proceedings of the 12th inter-
national conference on World Wide Web, pp. 271-279, 2003.

Junteng Jia and Austion R Benson. Residual correlation in graph neural network regression. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 588-598, 2020.

Jaehyeong Jo, Jinheon Baek, Seul Lee, Dongki Kim, Minki Kang, and Sung Ju Hwang. Edge
representation learning with hypergraphs. Advances in Neural Information Processing Systems,
34, 2021.

CIliff Joslyn and Kathleen Nowak. Ubergraphs: A definition of a recursive hypergraph structure.
arXiv preprint arXiv:1704.05547, 2017.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.

12

Published as a conference paper at ICLR 2022

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=H1gL-2A9Ym.

Juho Lee, Yoonho Lee, Jungtack Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Interna-
tional Conference on Machine Learning, pp. 3744-3753. PMLR, 2019.

Guoyin Li, Liqun Qi, and Gaohang Yu. The z-eigenvalues of a symmetric tensor and its application
to spectral hypergraph theory. Numerical Linear Algebra with Applications, 20(6):1001-1029,
2013.

Pan Li and Olgica Milenkovic. Inhomogeneous hypergraph clustering with applications. Advances
in Neural Information Processing Systems, 2017:2309-2319, 2017.

Pan Li and Olgica Milenkovic. Submodular hypergraphs: p-laplacians, cheeger inequalities and
spectral clustering. In International Conference on Machine Learning, pp. 3014-3023. PMLR,
2018.

Pan Li, Hoang Dau, Gregory Puleo, and Olgica Milenkovic. Motif clustering and overlapping
clustering for social network analysis. In IEEE INFOCOM 2017-IEEE Conference on Computer
Communications, pp. 1-9. IEEE, 2017.

Pan Li, Gregory J Puleo, and Olgica Milenkovic. Motif and hypergraph correlation clustering. /IEEE
Transactions on Information Theory, 66(5):3065-3078, 2019.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: De-
sign provably more powerful neural networks for graph representation learning. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 4465-4478. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
2£73168bf3656£697507752ec592c437-Paper.pdf.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Derek Lim, Xiuyu Li, Felix Hohne, and Ser-Nam Lim. New benchmarks for learning on non-
homophilous graphs. arXiv preprint arXiv:2104.01404, 2021.

Lek-Heng Lim. Singular values and eigenvalues of tensors: a variational approach. In /st IEEE
International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.,
pp- 129-132. IEEE, 2005.

David Lopez-Paz, Robert Nishihara, Soumith Chintala, Bernhard Scholkopf, and Léon Bottou. Dis-
covering causal signals in images. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 6979-6987, 2017.

Linyuan Lii and Tao Zhou. Link prediction in complex networks: A survey. Physica A: statistical
mechanics and its applications, 390(6):1150-1170, 2011.

Jiagi Ma, Bo Chang, Xuefei Zhang, and Qiaozhu Mei. CopulaGNN: Towards integrating repre-
sentational and correlational roles of graphs in graph neural networks. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
XI-0Jb5yyse.

Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy pooling:
Learning deep permutation-invariant functions for variable-size inputs. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
BJluy2RcFm.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

13

Published as a conference paper at ICLR 2022

Kelly J Pearson and Tan Zhang. On spectral hypergraph theory of the adjacency tensor. Graphs and
Combinatorics, 30(5):1233-1248, 2014.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652-660, 2017.

Liqun Qi and Ziyan Luo. Tensor analysis: spectral theory and special tensors. SIAM, 2017.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In International Conference on Learning Repre-
sentations, 2019.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, pp.
40804090, 2017.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view convo-
lutional neural networks for 3d shape recognition. In Proceedings of the IEEE international
conference on computer vision, pp. 945-953, 2015.

Francesco Tudisco and Desmond J Higham. Node and edge nonlinear eigenvector centrality for
hypergraphs. Communications Physics, 4(1):1-10, 2021.

Francesco Tudisco, Austin R Benson, and Konstantin Prokopchik. Nonlinear higher-order label
spreading. arXiv preprint arXiv:2006.04762, 2020.

Francesco Tudisco, Konstantin Prokopchik, and Austin R Benson. A nonlinear diffusion method for
semi-supervised learning on hypergraphs. arXiv preprint arXiv:2103.14867, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30:5998-6008, 2017.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Lio, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR (Poster), 2019.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ingmar Posner, and Michael A Osborne. On the
limitations of representing functions on sets. In International Conference on Machine Learning,
pp. 6487-6494. PMLR, 2019.

Jianling Wang, Kaize Ding, Ziwei Zhu, and James Caverlee. Session-based recommendation with
hypergraph attention networks. In Proceedings of the 2021 SIAM International Conference on
Data Mining (SDM), pp. 82-90. SIAM, 2021.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019a.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous
graph attention network. In The World Wide Web Conference, pp. 2022-2032, 2019b.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861-6871. PMLR, 2019.

14

Published as a conference paper at ICLR 2022

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912-1920, 2015.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453-5462. PMLR, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Hansheng Xue, Luwei Yang, Vaibhav Rajan, Wen Jiang, Yi Wei, and Yu Lin. Multiplex bipartite
network embedding using dual hypergraph convolutional networks. In Proceedings of the Web
Conference 2021, pp. 1649-1660, 2021.

Naganand Yadati. Neural message passing for multi-relational ordered and recursive hypergraphs.
Advances in Neural Information Processing Systems, 33, 2020.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. Hypergen: A new method for training graph convolutional networks on hyper-
graphs. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
lefa39%bcaec6£3900149160693694536-Paper.pdf.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, and Tarek Abdelzaher. Hypergraph learning with line
expansion. arXiv preprint arXiv:2005.04843, 2020.

Yelp. Yelp business dataset. URL https://www.yelp.com/dataset.

Seongjun Yun, Minbyul Jeong, Rachyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph trans-
former networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
9d63484abb477¢c97640154d40595a3bb-Paper.pdf.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbhakhsh, Barnabas Péczos, Ruslan Salakhutdinov, and
Alexander J Smola. Deep sets. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, pp. 3394-3404, 2017.

Hanging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2019.

Ruochi Zhang, Yuesong Zou, and Jian Ma. Hyper-sagnn: a self-attention based graph neural network
for hypergraphs. arXiv preprint arXiv:1911.02613, 2019.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In International
Conference on Learning Representations, 2019.

Dengyong Zhou, Jiayuan Huang, and Bernhard Scholkopf. Learning with hypergraphs: Clustering,
classification, and embedding. Advances in neural information processing systems, 19:1601—
1608, 2006.

Xiaojin Jerry Zhu. Semi-supervised learning literature survey. Technical Report, 2005.

15

Published as a conference paper at ICLR 2022

APPENDIX

A ADDITIONAL RELATED WORKS

We further discuss related works for completeness.

Graph neural networks on graphs. GNNs have received significant attention in the past, often
under the umbrella of Geometric Deep Learning (Bronstein et al., 2017). Many successful archi-
tectures have been proposed for various tasks on graphs, including GCN (Kipf & Welling, 2017),
GAT (Vaswani et al., 2017), GraphSAGE (Hamilton et al., 2017), GIN (Xu et al., 2019) and many
others (Klicpera et al., 2019; Wu et al., 2019; Velickovic et al., 2019; Li et al., 2020; Xu et al., 2018;
Chien et al., 2021b). There have also been some recent attempts to use Transformers in GNNs (Baek
etal., 2021; Yun et al., 2019; Hu et al., 2020b). Nevertheless, all these methods only apply to graphs
and not to hypergraphs. Although CE can be used in all these case, this is clearly not an optimal
strategy due to the previously mentioned distortion issues. There are also many techniques that can
improve GNNss in various directions. For example, PairNorm (Zhao & Akoglu, 2019) and DropE-
dge (Rong et al., 2019) allow one to build deeper GNNs. ClusterGCN (Chiang et al., 2019) and
GraphSAINT (Zeng et al., 2019), on the other hand, may be used to significantly scale up GNNs.
Residual correlation (Jia & Benson, 2020) and CopulaGNN (Ma et al., 2021) have been shown to
improve GNNSs on graph regression problems. These works highlight new directions and limitations
of not only our method, but also hypergraph neural networks in general. Nevertheless, we believe
that AllSet layers can be adapted to resolve these issues using similar ideas as those proposed for
graph layers.

Additional contributions to learning on hypergraphs. After the submission of our manuscript,
we were made aware of some loosely related lines of works. Ding et al. (2020) and Wang et al.
(2021) proposed hypergraph attention networks based on the V — £ and £ — V formulation, spe-
cialized for certain downstream tasks. However, these approaches fall under our AllSet framework
and have smaller expressiveness compared to AllSet. The work Jo et al. (2021) proposes to learn
edge representations in a graph via message passing on its dual hypergraph. Although the authors
used GMT (Baek et al., 2021) as their node pooling module, they do not explore the idea of treating
fv—e and fe_. as multiset functions for hypergraph neural networks as AllSet does. It is also
possible to define propagation schemes based on other tensor eigenproblems, such as H eigenprob-
lems (Qi & Luo, 2017). Defining propagation rules based on H eigenproblems can lead to imaginary
features which is problematic: A more detailed discussion regarding this direction is available in the
Appendix H.

B CONCLUSIONS

We proposed AllSet, a novel hypergraph neural network paradigm that represents a highly general
framework for hypergraph neural networks. We implemented hypergraph neural network layers as
compositions of two multiset functions that can be efficiently learned for each task and each dataset.
Furthermore, for the first time, we integrated Deep Set and Set Transformer methods within hyper-
graph neural networks for the purpose of learning the described multiset functions. Our theoretical
analysis demonstrated that most of the previous hypergraph neural networks are strictly less expres-
sive then our proposed AllSet framework. We conducted the most extensive experiments to date
involving ten known benchmarking datasets and three newly curated datasets that represent signif-
icant challenges for hypergraph node classification. The results showed that our method has the
unique ability to either match or outperform all other baselines, including the state-of-the-art hyper-
graph neural networks UniGNN (Huang & Yang, 2021). Remarkably, our baseline also included
HAN (Wang et al., 2019b), the heterogeneous hypergraph neural networks, via star expansion as the
new comparative method in the hypergraph neural network literature for the first time. Our results
show that leveraging powerful multiset function learners in our AllSet framework is indeed helpful
for hypergraph learning. As a promising future direction, more advanced multiset function learners
such as Janossy pooling (Murphy et al., 2019) can be used in our AllSet framework and potentially
further improve the performance. We left this topic in future works.

16

Published as a conference paper at ICLR 2022

C PROOF OF THEOREM 3.3

First, we show that one can recover CEpropH (1) from AllSet (5). By choosing fy,_,¢ and fe_,y to
be the sums over appropriate input multisets and by ignoring the second input, we obtain

Z0T) = fue(Voxo 28 = Y a=) X0,)
wEVS’x(t) uce
X0 = fe (B gorn; X = Y 2=y zUHY. (10)
a;eEv,Z(tJrl) e:v€e

Combining these two equations gives
XV =3zl =3 > X, (11)
evee e:vce uce
which matches the update equations of CEpropH (1).
Next, we prove that one can recover CEpropA (1) from AllSet (6). We once again choose fy,_,¢ and

fe—y to be the sums over appropriate input multisets and ignore the second input term. This results
in the following update equations:

2D = fooe (Vo xos 20" = 3 w= Y X{, a2
meVe\u,x(t) u€e\v

XUHD = fo (B, gosnn; X)) = Z = Z Z(H D, (13)
meEv,z(tJrl),v evee

Combining the two equations we obtain
(t+1 Z Z(t“ Z Z X (14)
ewee ewee yce\v
which represents the update rule of CEpropA from (1).
In the last step, we prove that one can recover Zprop (4) from AllSet (6). By choosing fy_,¢ and

fe—y to be the product and sum over appropriate input multisets, respectively, and by ignore the
second input, we have:

ZU = fyLe (Vo xaoi 28 = [== J] X, (15)
IEVE\%X(t) u€e\v

X0 = feov(Byzus X = Y w=) 2l (16)
IEEU,z(H—l)w e:w€e

Combining these two equations we arrive at
X =Szl =3 I X1, (17)
e:vee evee uee\v

which matches Zprop from (4). This completes the proof.

D PROOF OF THEOREM 3.4

First we prove that the hypergraph neural network layer of HGNN (2) is a special instance of
AllSet (5). By choosing fy_,¢ and fg_,, to be the weighted sum over appropriate input multi-
sets, where the weights are chosen according to the node degree, edge degree, and edge weights,
and by ignore the second input, we have:

Z{TD = fooe (Ve 20) = D=2 X (18)

uce
1 ZTe®
(W = e il 4
(&
ewwee

X = fe v (By gern; X)) =

17

Published as a conference paper at ICLR 2022

Since fy_,¢ and fe_, both use the hypergraph G as their input, the functions can use the node de-
grees, edge degrees and edge weights as their arguments. Also, it is not hard to see that our choices
for fy_,¢ (18) and fg_, (19) are permutation invariant in V, xm and B, 741, respectively. Plug-
ging (18) into (19) leads to:

X = (L Z Z X @“ +b(t)> (20)

ewee

which represents the HGNN layer (2).

For the HCHA layer, we have a node-wise formulation that reads as follows:

Y ewee uuce

oW 4 b(t)> , Q1)

where the attention weight ozi(w) depends on the node features X(*) and the feature of hyperedge e.

Here, o(+) is a nonlinear activation function such as LeakyReLU and eLU. An analysis similar to
that described for HGNN can be used in this case as well. The only difference is in the choice of the
attention weights o, and .. The definition of attention weights for HCHA is presented below.

exp(o(a” ng): zﬁf?

S nee exp(o(al X || ZE)))

Clearly, the attention function in (22) has V, x and Z;) as its arguments. Furthermore, we can

choose fy_,¢ and fe_,y as:

Z{) = fyoe(Voxo; Z8) =Y al)X), (23)
uee
(t) (t+1) (t)
WeOlye Lie ®
XD = fe (B, g X)) = (T > % +b<f>>. (24)
V e:w€e

Note that both (23) and (24) are permutation invariant, which means that they are valid choices for
fyv—e and fe_,y. Combining these two equations reproduces the HCHA layer of (21).

For the HyperGCN layer, ignoring the degree normalization, one can use the following formulation:

X{H) = ¢ <[Z Z wl) XE)] oW + b(f)> (25)

ewee uuce
Here, the weight 11)1(2})7e depends on all node features within the hyperedge {Xq(f) :u € e}, and
o(+) is a nonlinear activation function (for example, ReLU). The same analysis as presented for the
previous cases may be used in this case as well: The only difference lies in the choice of the weights
wq(fv) e. According to the original HyperGCN paper (Yadati et al., 2019), these weights are defined
as

WO — —2‘573 if u € {ic,jeo}orv € {ic, e}, 6)
Wuv,e 0 otherwise. ’
where (i, jo) = argmax,, e [|(X{) — XN eV, 27)

Again, it is straightforward to see that w;’i,) ¢ 18 a function of V. e\, X (1) and X) . Also, it is permuta-

tion invariant with respect to ‘/'6\1,_)((0. Hence, we can choose fy_.¢ and fgﬁy as

Zg:Jrl)’v = fV—)S(Ve\U X ()} Z v, Z wuv eX(t) (28)
u€e\v
X(t,Jrl) = fE—W(Ey Z(t+1),v5 X() (Z Z t+1) U@(t) 4 b(t)> (29)
evee

18

Published as a conference paper at ICLR 2022

Combining the two equations leads to the HyperGCN layer from (25).

Next, we show that HNHN layer introduced in Dong et al. (2020) is a special case of AllSet (5). The
definition of HNHN layer is as follows

1
7+ _ dy x®| @ _|_b(t) 7 (30)
e,: de’l7ﬁ ; k) 15 U,y £ £
XD = & ([! 3 de,azgt.ﬂ)} el +b§§>> : 31)
’ dv,l,a ewee ’
where dep = |dul®, durp=d; dorp =Y |do|®, dyra=ds. (32)
uce ewwee

Note that « and /3 are two hyperparameters that can be tuned in HNHN. As before, o(-) is a non-
linear activation function (e.g., ReLU). It is obvious that we can choose fy,_,¢ and f¢_, according
to (30) and (31), respectively. This is due to the fact that these expressions only involves degree
normalizations and linear transformations.

Finally, we show that the HyperSAGE layer from Arya et al. (2020) is a special case of AllSet (5).
The HyperSAGE layer update rules are as follows:

1/p
1
z{'H) = <|€| Z(X&?)”) : (33)

uce
1 1/p
X{ = <| oce X (ZEf,?)p> + X[, (34)
: evEe
(t+1) X (t+1)
XU7: =0 W@ . (35)

where o(+) is a nonlinear activation function. The update (33) can be recovered by simply choosing
fv—¢ to be the [, (power) mean. For the fg_,y component, we first model fg_, as a composition
of another two multiset functions. The first is the I, (power) mean with respect to its first input,
while the second is addition with respect to the second input. This recovers (34). The second of the
two defining functions can be chosen as (35), which is also a multiset function. This procedure leads
to fg_. This completes the proof of the first claim pertaining to the universality of AllSet.

To address the claim that the above described hypergrpah neural network layers have strictly smaller
expressive power then AllSet, one only has to observe that these hypergraph neural network layers
cannot approximate arbitrary multiset functions in either the fy,_, ¢ or f¢_,), component. We discuss
both these functions separately.

With regards to the HGNN layer, it is clear that two linear transformations cannot model arbitrary
multiset functions such as the product in Zprop (4). For the HCHA layer, we note that if all node
features are identical and the hyperedge features are all-zero vectors, all the attention weights av,e
are the same. This setting is similar to that described for the HGNN layer and thus this rule cannot
model arbitrary multiset functions. For the HyperGCN layer (25), consider a 3-uniform hypergraph
as its input. In this case, by definition, the weights w,, . are all equal. Again, using only linear
transformations one cannot model the product operation in Zprop (4); the same argument holds even
when degree normalizations are included. For the HNHN layer, note that the £ —)} component
of (31) is just one MLP layer that follows the sum . __, which cannot model arbitrary multiset
functions based on the results of Deep Sets (Zaheer et al., 2017). As a final note, we point out that the
HyperSAGE layer involves only one learnable matrix ® and is hence also a linear transformation,
which cannot model arbitrary multiset functions.

This completes the proof.

19

Published as a conference paper at ICLR 2022

E PROOF OF THEOREM 3.5

The propagation rule of MPNN reads as follows:
m{) = 3 X0, X0, Z200), XD = Uy(XE, ml), (36)

u€N (v)
Here, m denotes the message obtained by aggregating messages from the neighborhood of the node

v, while M; and U, are certain functions selected at the ¢-th step of propagation. To recover MPNN
from AllSet (6), we simply choose fy_,¢ and fe_,y as

ZUTDY 2 fy e (Vi x0i Z9Y) = fune ((XOHZ00) = XO | 2000, stuee\w,
XU £ fe (B goine; X)) = femn({Z8TD Y eee; X))

<X5f LY Mz Xif?)) = (M3 M(x(), X ”,ZE??“)) : 37)

ewwee ewwee

Hence, MPNN is a special case of AllSet for graph inputs.

F PROOF OF PROPOSITION 4.1

The proof is largely based on the proof of Proposition 2 of the Set Trasnformer paper (Lee et al.,
2019) but is nevertheless included for completeness. We ignore all layer normalizations as in the
proof of (Lee et al., 2019) and start with the following theorem.

Theorem F.1 (Theorem 1 in Lee et al. (2019)). Functions of the form MLP > (MLP) are universal
approximators in the space of permutation invariant functions.

This result is based on Zaheer et al. (2017). According to Wagstaff et al. (2019), we have the
constraint that the input multiset has to be finite.

Next, we show that the simple mean operator is a special case of a multihead attention module. For

simplicity, we consider the case of a single head, which corresponds to h = 1, as we can always set

the other heads to zero by choosing MLP"**(S) = 0 for all i > 2. Following the proof of Lemma 3

in Lee et al. (2019), we set the learnable weight 6 to be the all-zero vector and use w(-) = 1 4 g(-)

(element-wise) as an activation function such that g(0) = 0. The MH; ,, module in (8) then becomes
IS

MH; ,(6,8,8) = O = w ((MLP*'(S))") MLP""'(S) = > MLP"!(S);. (38)

The AllSetTranformer layer (8) takes the form
S|
fyoe(S) =Y + MLP(Y), where Y =) " MLP""(S). (39)
i=1
Note that Y is a vector. Clearly, we can choose an MLP such that MLP(Y) equals to another
MLP(Y) that results in subtracting Y. Thus, we have:
S|
fy—e(S) =MLP(Y) = MLP | Y "MLP"'(S) | . (40)
i=1
By Theorem F.1, it is clear that f,_,¢(S) is a universal approximator for permutation invariant
functions. The same analysis applies to fe_,1(.5).

G A DiscussIioN oF LEGCN

Line expansion (LE) is a procedure that transform a hypergraph or a graph into a homogeneous
graph; a node in the LE graph represents a pair of node-hyperedge from the original hypergraph.

20

Published as a conference paper at ICLR 2022

Nodes in the LE graph are linked if and only if there is a nonempty intersection of their associ-
ated node-hyperedge pairs. As stated by the authors of LEGCN (Yang et al., 2020), for a fully
connected d-uniform hypergraph their resulting LE graph has O(d|€|) nodes and ©(d?|€|?) edges.
This expansion hence leads to very large graphs which require large memory units and have high
computational complexity when coupled with GNNs such as GCN. To alleviate this drawback, the
authors use random sampling techniques which unfortunately lead to an undesired information loss.
In contrast, we define our AllSet layers directly on hypergraph which leads to a significantly more
efficient approach.

H HYPERGRAPH PROPAGATION RULES BASED ON THE H EIGENPROBLEM

As outlined in the main text, in this case we associate a d-uniform hypergraph G with an adjacency
tensor A. The H eigenproblem for A states that

, where xgdfl] = (xi)d_l. 41)

Ax?1 = x4

Similar to Zprop, we can define Hprop (41) in a node-wise fashion as

Hprop: XEf'H) = Z (d-1) H Xg) . (42)

e:weEe wu€e\v

Although taking the 1/(d — 1)-th root resolves the unit issue that exists in Zprop (4), it may lead to
imaginary features during updates. It remains an open question to formulate Hprop in a manner that
ensures that features remain real-valued during propagation.

I ADDITIONAL DETAILS PERTAINING TO THE TESTED DATASETS

Table 3: Full dataset statistics: |e| refers to the size of the hyperedges while d,, refers to the node

degree.
Cora Citeseer Pubmed Cora-CA DBLP-CA Zoo 20News Mushroom NTU2012 ModelNet40 Yelp House Walmart
4 2708 3312 19717 2708 41302 101 16242 8124 2012 12311 50758 1290 88860
€] 1579 1079 7963 1072 22363 43 100 298 2012 12311 679302 341 69906
feature 1433 3703 500 1433 1425 16 100 22 100 100 1862 100 100
7 class 7 6 3 7 6 7 4 2 67 40 9 2 11
max |e| 5 26 171 43 202 93 2241 1808 5 5 2838 81 25
min |e| 2 2 2 2 2 1 29 1 5 5 2 1 2
avg l[e] 3.03 32 4.35 4.28 4.45 39.93 654.51 136.31 5 5 6.66 3472 6.59
med |e| 3 2 3 3 3 40 537 72 5 5 3 40 5
max d, 145 88 99 23 18 17 44 5 19 30 7855 44 5733
min d,, 0 0 0 0 1 17 1 5 1 1 1 0 0
avgd, 177 1.04 1.76 1.69 2.41 17 4.03 5 5 5 89.12 9.18 5.18
med d, 1 0 0 2 2 17 3 5 5 4 35 7 2

We use 10 available benchmark datasets from the existing hypergraph neural networks literature
and introduce three newly created datasets as described in the exposition to follow. The benchmark
datasets include cocitation networks Cora, Citeseer and Pubmed?, obtained from Yadati et al. (2019).
The coauthorship networks Cora-CA® and DBLP-CA” are also adapted from Yadati et al. (2019).
In the cocitation and coauthorship networks datasets, the node features are the bag-of-words repre-
sentations of the corresponding documents. Datasets from the UCI Categorical Machine Learning
Repository (Dua & Graff, 2017) include 20Newsgroups, Mushroom and Zoo. In 20Newsgroups, the
node features are the TF-IDF representations of news messages. In the Mushroom dataset, the node
features represent categorical descriptions of 23 species of mushrooms. In Zoo, the node features are
a mix of categorical and numerical measurements describing different animals. The computer vision
and graphics datasets include the Princeton CAD ModelNet40 (Wu et al., 2015) and the NTU2012
3D dataset (Chen et al., 2003). The visual objects contain features extracted using Group-View
Convolutional Neural Network(GVCNN) (Feng et al., 2018) and Multi-View Convolutional Neural

5 https://lings.soe.ucsc.edu/data ® https://people.cs.umass.edu/ mccallum/data.html
7 https://aminer.org/lab-datasets/citation/DBLP-citation-Jan8.tar.bz

21

Published as a conference paper at ICLR 2022

Network(MVCNN) (Su et al., 2015). The hypergraph construction follows the setting described
in Feng et al. (2019); Yang et al. (2020).

The three newly introduce datasets are adapted from Yelp (Yelp), House (Chodrow et al., 2021) and
Walmart (Amburg et al., 2020). For Yelp, we selected all businesses in the “restaurant” catalog as
our nodes, and formed hyperedges by selecting restaurants visited by the same user. We use the
number of stars in the average review of a restaurant as the corresponding node label, starting from
1 and going up to 5 stars, with an interval of 0.5 stars. We then form the node features from the
latitude, longitude, one-hot encoding of city and state, and bag-of-word encoding of the top-1000
words in the name of the corresponding restaurants. In the House dataset, each node is a member of
the US House of Representatives and hyperedges are formed by grouping together members of the
same committee. Node labels indicate the political party of the representatives. In Walmart, nodes
represent products being purchased at Walmart, and hyperedges equal sets of products purchased
together; the node labels are the product categories. Since there are no node features in the original
House and Walmart dataset, we impute the same using Gaussian random vectors, in a manner sim-
ilar to what was done for the contextual stochastic block model (Deshpande et al., 2018). In both
datasets, we fix the feature vector dimension to 100 and use one-hot encodings of the labels with
added Gaussian noise A/ (0, 1) as the actual features. The noise standard deviation o is chosen to
be 1 and 0.6.

J COMPUTATIONAL EFFICIENCY AND EXPERIMENTAL SETTINGS

All our test were executed on a Linux machine with 48 cores, 376GB of system memory, and
two NVIDIA Tesla P100 GPUs with 12GB of GPU memory each. In AllSetTransformer, we also
used a single layer MLP at the end for node classification. The average training times with their
corresponding standard deviations in second per run, for all baseline methods at all tested datasets,
are reported in Table 4. Note that the reported times do not include any preprocessing times for
the hypergraph datasets as these are only performed once before training. Table 4 lists the average
training time per run with the optimal set of hyperparameters obtained after tunning; the average
training times per run for different sets of hyperparameters used in the tuning process are reported
in Table 5.

Choices of hyperparameters. We tune the hidden dimension of all hypergraph neural networks
over {64, 128,256,512}, except for the case of HyperGCN and HAN, where the original imple-
mentations do not allow for changing the hidden dimension. For HNHN, AllSetTransformer and
AllDeepSets we use one layer (a full V — £ — V propagation rule layer), while for all the other
methods we use two layers as recommended in the previous literature. We tune the learning rate
over {0.1,0.01,0.001}, and the weight decays over {0,0.00001}, for all models under considera-
tion. For models with multihead attentions, we also tune the number of heads over the set {1, 4, 8}.
The best hyperparameters for each model and dataset are listed in Table 6. Note that we only use
default setting for HAN due to facts that its DGL implementation has all parameters set as constants
and its much higher time complexity per run.

22

Published as a conference paper at ICLR 2022

Table 4: Running times for the best hyperparameter choice: Mean (sec or hour) + standard devia-

tion.
Cora Citeseer Pubmed Cora-CA DBLP-CA Zoo
AllSetTransformer 7.37s 4 0.37s 15.97s £ 0.17s 26.82s £ 0.13s 6.37s £ 0.13s 134.96s 4= 0.37s 5.36s & 0.13s
AllDeepSets 11.70s + 0.07s 14.56s 4+ 0.06s 58.26s 4+ 0.23s 11.23s + 0.06s 145.60s £ 11.00s 9.57s &+ 0.75s
MLP 1.33s £ 0.06s 1.52s + 0.04s 1.77s £ 0.05s 1.38s + 0.06s 3.86s + 0.02s 0.03s £ 0.00s
CECGN 2.39s + 0.09s 2.06s + 0.07s 3.42s + 0.30s 1.68s + 0.05s 9.19s £ 0.04s 1.69s &= 0.10s
CEGAT 10.84s £ 0.21s 5.34s £ 0.12s 23.20s £ 0.15s 4.86s £0.13s 69.50s = 0.38s 3.92s £ 0.13s
HNHN 2.71s £ 0.04s 2.84s + 0.03s 8.92s + 0.03s 2.67s £ 0.05s 26.57s £ 0.07s 0.19s & 0.02s
HGNN 4.81s +0.17s 5.03s £ 0.16s 14.75s + 0.08s 3325 £0.15s 21.65s £ 0.09s 3.18s + 0.04s
HCHA 3.57s £ 0.16s 4.02s £ 0.05s 14.26s + 0.06s 3.18s £ 0.29s 37.49s £ 0.08s 2.87s &+ 0.09s
HyperGCN 2.91s + 0.02s 3.37s £+ 0.02s 4.33s £ 0.27s 2.97s + 0.03s 8.07s £+ 0.21s N/A
UniGCNIL 43218 £ 0.06s 2.78s £ 0.27s 8.93s + 0.83s 16.55s £ 0.05s 223.57s £ 0.03s 2.35s +0.12s
HAN (full batch) ~ 3.47s 4= 0.52s 2.58s + 0.48s 7.17s £ 0.11s 3.09s £ 0.07s 12.39s £ 0.22s 2.78s & 0.09s
HAN (mini batch) 99.87s 4= 17.05s 69.06s + 11.69s 502.44s + 161.40s 143.80s 4= 15.48s 0.45h + 0.12h 102.98s + 2.39s
20Newsgroups Mushroom NTU2012 ModelNet40 Yelp House(1) ‘Walmart(1)
AllSetTransformer 25.47s £ 0.50s 10.12s & 0.14s 7.40s £ 0.28s 47.55s £ 0.25s 284.79s - 0.23s 8.69s = 0.32s 154.19s £ 0.11s
AllDeepSets 46.61s £ 0.14s 14.07s £ 0.03s 10.25s £ 0.07s 49.27s £ 0.13s 474.34s 4+ 0.07s 4.07s = 0.24s 341.18s £ 0.62s
MLP 1.68s £ 0.02s 1.44s £ 0.06s 1.29s £ 0.01s 1.60s £ 0.13s 5.70s £0.03s 1.51s +0.05s 7.83s £ 0.02s
CECGN OOM 69.67s £ 1.70s 2.00s + 0.02s 2.54s + 0.28s OOM 10.40s + 0.08s 173.75s £ 0.07s
CEGAT OOM 132.53s +27.81s 8.44s £ 0.12s 43.57s 4 16.13s OOM 26.38s £ 0.15s 121.90s £ 0.11s
HNHN 9.04s £ 0.09s 2.34s + 0.03s 2.17s £ 0.03s 8.54s £ 0.08s 111.00s = 0.08s 1.76s + 0.01s 54.85s + 0.05s
HGNN 0.51s £0.03s 10.57s 4 0.10s 3.46s + 0.09s 15.55s £ 0.13s 550.93s 4= 0.07s 3.20s 4= 0.13s 105.68s £ 0.05s
HCHA 0.53s £ 0.03s 10.54s £ 0.13s 3.47s £ 0.11s 15.95s £ 0.81s 267.83s = 0.03s 3.05s 4= 0.08s 104.27s £ 0.14s
HyperGCN 5.96s £ 0.03s 5.01s £ 0.03s 3.09s £ 0.02s 477s £0.02s 183.76s £ 0.82s 2.98s £ 0.04s 16.03s & 0.34s
UniGCNII 34.58s + 0.03s 10.00s +0.03s 12.95s 4 0.13s 4.40s £ 0.16s 197.07s £ 0.04s 12.10s = 0.06s 104.23s &+ 0.10s
HAN (full batch) OOM 30.28s + 3.29s 3.10s £ 0.11s 4.56s + 0.21s OOM 3.32s £ 0.12s OOM
HAN (mini batch) 313.28s 4= 93.42s 111.53s £ 30.05s 165.35s £ 1.96s 414.50s 4= 87.25s 5.50h &+ 1.48h 72.79s 4= 5.59s 1.96h + 0.44h

Table 5: Average running times over all different choices of hyperparameters: Mean =+ standard

deviation.
Cora Citeseer Pubmed Cora-CA DBLP-CA Zoo
AllSetTransformer 8.18s & 3.59s 8.41s +£439s 22.99s £ 16.54s 7.21s £2.94s 53.14s +-43.49s 5.97s £ 2.23s
AllDeepSets 5.61s + 4.47s 6.83s £5.63s 27.05s +23.94s 5.62s +4.38s 57.26s + 55.65s 4.14s 4 3.18s
MLP 1.00s =+ 0.46s 1.03s £ 0.48s 1.53s £ 0.95s 1.00s + 0.45s 2.64s + 1.25s 0.99s =+ 0.50s
CEGCN 1.63s £ 0.76s 2.24s + 1.38s 5.93s £ 5.01s 1.79s £ 0.99s 1891s + 17.08s 1.41s 4 0.62s
CEGAT 6.47s £ 3.99s 9.25s £ 7.60s 34.52s 4 35.16s 7.93s = 594s 53.84s + 37.83s 5.28s 4+ 5.92s
HNHN 1.65s £ 1.01s 2.43s + 1.62s 5.03s + 3.14s 1.89s £ 0.80s 14.80s £9.55s 1.59s £ 0.63s
HGNN 3.42s + 1.49s 4.44s £ 2.03s 8.44s + 5.08s 337s + 1.47s 21.02s £ 13.61s 2.75s + 1.06s
HCHA 3.32s + 1.42s 4.30s £ 2.02s 8.22s +4.97s 324s + 1.42s 20.66s £ 13.37s 2.65s + 1.03s
HyperGCN 2.13s £ 0.75s 2.48s £ 0.76s 3.23s5 £ 1.00s 2.27s £ 0.67s 6.13s £ 1.93s 1.91s £ 0.58s
UniGCNII 13.13s + 13.64s 16.81s 4= 17.63s 61.81s = 75.63s 11.61s & 12.46s 94.97s + 81.68s 3.56s + 2.58s
HAN (full batch) 3.47s 4= 0.52s 2.58s + 0.48s 7.17s £ 0.11s 3.09s £ 0.07s 12.39s £ 0.22s 2.78s £ 0.09s
HAN (mini batch) 99.87s £ 17.05s 69.06s &+ 11.69s 502.44s + 161.40s 143.80s &= 15.48s 0.45h 4= 0.12h 102.98s £ 2.39s
20Newsgroups Mushroom NTU2012 ModelNet40 Yelp House(1) Walmart(1)
AllSetTransformer 21.97s &+ 17.96s 14.35s 4= 11.10s 6.96s =+ 2.65s 19.99s + 14.46s 244.61s +97.44s 6.87s £ 3.11s 123.51s 4= 102.91s
AllDeepSets 20.88s £ 21.73s 12.76s == 13.89s 5.15s & 4.03s 19.90s + 19.15s 196.53s & 254.83s 4.52s = 3.01s 107.54s &£ 119.02s
MLP 1.22s 4 0.54s 1.11s £ 0.53s 0.97s £ 0.43s 1.14s £ 0.50s 3.88s + 1.93s 0.98s £ 0.47s 4.44s £2.72s
CEGCN OOM 67.66s £ 47.17s 1.51s £ 0.69s 3.68s £ 2.72s OOM 4.16s £ 3.65s 63.42s + 62.30s
CEGAT OOM 121.39s £ 7.43s 5455 £2.97s 19.54s 4 19.68s OOM 21.94s + 23.44s 85.82s +45.10s
HNHN 5.21s £ 3.18s 3.28s + 1.80s 1.68s £ 0.68s 4925 £2.99s 56.15s & 77.57s 1.70s £ 0.53s 23.62s + 18.74s
HGNN 9.69s + 5.93s 6.51s + 3.58s 3.30s + 1.40s 8.86s £ 5.36s 343.16s £ 262.93s 3.29s + 1.21s 44.19s £ 36.85s
HCHA 9.61s + 5.98s 6.48s £ 3.57s 3.23s + 1.37s 8.82s +5.47s 135.47s £ 187.18s 3.20s + 1.18s 43.62s 4 36.37s
HyperGCN 4.34s £ 1.54s 3.56s + 1.25s 2.29s + 0.72s 341s £ 1.17s 125.67s +56.93s 2.39s + 0.76s 20.11s = 7.88s
UniGCNII 58.01s £ 66.97s 35.47s +44.72s 9.22s +9.68s 46.30s £ 54.77s 309.35s £ 129.68s 8.83s £ 7.97s 119.66s £ 73.89s
HAN (full batch) OOM 30.28s & 3.29s 3.10s £ 0.11s 4.56s £+ 0.21s OOM 3.32s + 0.12s OOM
HAN (mini batch) 313.28s £ 93.42s 111.53s + 30.05s 165.35s & 1.96s 414.50s + 87.25s 5.50h 4= 1.48h 72.79s 4+ 5.59s 1.96h + 0.44h

23

Published as a conference paper at ICLR 2022

Table 6: Choice of hyperparameters for each method: Ir refers to the learning rate, wd refers to
the weight decaying factor, hl refers to the dimension of MLP hidden layer and heads refers to the
number of attention heads. Remarkably, not all hyperparameters are used for some models. For
example, MLP, CEGCN, HNHN, HGNN, HCHA and HyperGCN does not take heads as input.

AllSetTransformer AllDeepSets MLP CEGCN
Ir wd hl heads Ir wd hl heads Ir wd hl heads Ir wd hl heads
Cora 0.001 256 4 0.001 512 1 0.01 0 64 1 0.001 0 512 1

Citeseer 0.001
Pubmed 0.001
Cora-CA 0.001
DBLP-CA 0.001
Zoo 0.01 1.0
20News 0.001
Mushroom 0.001
NTU2012 0.001
ModelNet40 0.001

0.01 0 64
0.01 1.00E-05 64
0.01 1.00E-05 64
0.01 0 64
0.1 0 64
0.01 1.00E-05 64
0.01 0 64
0.01 1.00E-05 64
0.01 1.00E-05 64

0.001 0 128 1
0.01 1.00E-05 64 1
0.001 0 64 1
0.01 1.00E-05 64 1
0.001 0 5121
OOM OOM OOM OOM
1.00E-05 64 1
0.001 0 512 1
0.01 1.00E-05 64 1

coococoococococogooooo
S
W
—_
(=)}
D O
®
00 = 00 00 = 00 = = 00 = 00 00 00 00
coco
oo
5353
===
coocococococococoo
[CRvE
[
S SEN)

e e e e e e e e e
e e e e e e e e e e
<)
=
=

Yelp 0.001 64 0.001 128 0.01 1.00E-05 64 OOM OOM OOM OOM
House(1) 0.001 512 0.01 1.00E-05 64 0.01 0 64 0.001 0 512 1
Walmart(1) 0.001 256 0.001 0 512 0.001 0 64 0.001 0 512 1
House(0.6) 0.001 512 0.001 0 128 0.01 1.00E-05 64 0.001 0 512 1
Walmart(0.6) 0.001 256 0.001 0 512 0.01 0 64 0.001 0 512 1
CEGAT HNHN HGNN HCHA
Ir wd hl heads Ir wd hl heads Ir wd hl heads Ir wd hl heads
Cora 0.001 0 256 8 0.001 0 512 1 0.001 0 512 1 0.001 0 256 1
Citeseer 0.001 0 64 4 0.001 0 256 1 0.001 0 256 1 0.001 0 128
Pubmed 0.01 1.00E-05 64 8 0.001 0 512 1 0.001 0 512 1 0.001 0 512 1
Cora-CA 0.01 0 64 4 0.001 0 512 1 0.001 0 128 1 0.001 0 128 1
DBLP-CA 0.01 1.00E-05 64 8 0.001 0 512 1 0.001 0 256 1 0.001 0 512 1
Zoo 0.001 1.00E-05 64 8 0.1 0 64 1 0.001 0 512 1 0.001 0 512 1
20News OOM OOM OOM OOM 0.001 0 512 1 0.1 0 64 1 0.1 0 64 1
Mushroom 0.01 1.00E-05 64 1 0.001 0 128 1 0.001 0 512 1 0.001 0 512 1
NTU2012 0.001 0 512 4 0.001 0 512 1 0.001 0 256 1 0.001 0 256 1
ModelNet40 0.01 1.00E-05 64 8 0.001 0 512 1 0.001 0 512 1 0.001 0 512 1
Yelp OOM OOM OOM OOM 0.001 0 128 1 0.001 0 256 1 0.001 0 128 1
House(1) 0.001 0 128 8 0.01 1.00E-05 64 1 0.01 0 64 1 0.01 1.00E-05 64 1
Walmart(1) 0.001 0 256 1 0.001 0 512 1 0.001 0 512 1 0.001 0 512 1
House(0.6) 0.01 1.00E-05 64 8 0.001 0 256 1 0.001 0 512 1 0.001 0 512 1
Walmart(0.6) 0.001 0 256 1 0.001 0 512 1 0.001 0 512 1 0.001 0 256 1
HyperGCN UniGCNII
Ir wd hl heads Ir hl heads

Cora 0.001 0 64 1 0.001
Citeseer 0.01 1.00E-05 64 1
Pubmed 0.01 1.00E-05 64 1
Cora-CA 0.01 1.00E-05 64 1
DBLP-CA 0.01 1.00E-05 64 1
Zoo 0.001 0 128 1
20News 0.01 1.00E-05 64 1
Mushroom 0.001 0 64 1
NTU2012 0.01 1.00E-05 64 1 0.001

1

1

1

1

1

1

512
128

ModeINetd0 0.01 1.00E-05 64
Yelp 0.01 1.00E-05 64
House(l) 0.01 1.00E-05 64
Walmart(1) 0.001 0 128
House(0.6) 0.0l 1.00E-05 64
Walmart(0.6) 0.01 1.00E-05 64

[=]

(=3

(=]
OOOOOOOOOOOOOOO%

—_—

[)

0
A== A== 000000~ — 00

24

	Introduction
	Background
	AllSet: One Method to Bind Them All
	How to Learn AllSet Layers
	Related Works
	Experiments
	Ethics Statement
	Reproducibility Statement
	Additional Related works
	Conclusions
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proof of Theorem 3.5
	Proof of Proposition 4.1
	A Discussion of LEGCN
	Hypergraph Propagation Rules Based on the H Eigenproblem
	Additional Details Pertaining to the Tested Datasets
	Computational Efficiency and Experimental Settings

