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A B S T R A C T 

Protocols model multiagent systems (MAS) by capturing the communications between its agents. Belief-Desire-Intention (BDI) architectures provide 
an attractive way for organizing an agent in terms of cognitive concepts. Current BDI approaches, however, lack adequate support for engineering 
protocol-based agents.
We describe Argus, an approach that melds recent advances in üexible, declarative communication protocols with BDI architectures. For 
concreteness, we adopt Jason as an exemplar of the BDI paradigm and show how to support protocol-based reasoning in it. Speciûcally, Argus 
contributes (1) a novel architecture and formal operational semantics combining protocols and BDI; (2) a code generation-based programming 
model that guides the implementation of agents; and (3) integrity checking for incoming and outgoing messages that help ensure that the agents 
are well-behaved. The Argus conceptual architecture builds quite naturally on top of Jason. Thus, Argus enables building more üexible multiagent 
systems while using a BDI architecture than is currently possible.

1. Introduction

We address the problem of building decentralized multiagent systems, whose member agents are autonomous and heterogeneous. 
Decentralization is a crucial requirement in any application setting in which more than one stakeholder is involved because the agents 
representing and acting on behalf of different stakeholders must be able to (1) act independently and üexibly, thereby indicating their 
autonomy [1], and (2) be designed and conûgured independently, thereby indicating their heterogeneity [2].

With these concerns at heart, interaction-oriented approaches have historically emphasized agent communication [3], especially 
protocols [4,5], including higher-level abstractions such as commitments, as models of multiagent systems [6,7]. Broadly, a protocol 
speciûes the constraints on messaging between agents. The main beneût of a protocol as a basis for a multiagent system is that 
it enables the implementation of each agent in the system independently of other agents, based solely on the roles it plays in the 
protocol. In other words, a protocol supports implementing autonomous and heterogeneous agents by capturing the extent of the 
coupling between them. A second beneût of protocols is that they can be veriûed to help design suitable interactions for a multiagent 
system [8,9] without being overwhelmed with the internal details of the agents in the multiagent system being designed.

In this paper, we turn to the problem of implementing cognitive agents on the basis of protocols. Agent-oriented approaches in the 
cognitive tradition, such as Jason [24,10], help specify autonomous agents in terms of their beliefs and intentions. These abstractions 
can capture stakeholder requirements succinctly and naturally by matching folk psychological constructs that stakeholders would 
understand and avoiding implementation details [11]. The agent-oriented approaches are undergirded by formal semantics and 
supported by programming frameworks that enable a programmer to specify the operations of an agent in terms of beliefs and 
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intentions such that the agent9s behavior is directly linked to its cognitive makeup. Existing cognitive agent programming approaches 
support communication between agents; however, in general, they haven9t kept up with advances in modeling interactions.

In a nutshell, both agent-oriented and interaction-oriented approaches aim to simplify the engineering of multiagent systems via 
programming abstractions. Further, they are mutually complementary. Whereas the cognitive agent-oriented approaches can be seen 
as capturing the internal reasoning that drives an agent9s interactions, the interaction-oriented approaches may be seen as placing 
constraints on such reasoning for purposes of interoperability. However, as of yet, there is no approach that combines the two themes 
in a cohesive approach for building multiagent systems.

1.1. The Argus approach

This paper tackles the above challenge. It synthesizes the agent-oriented and interaction-oriented approaches into a new approach 
for developing multiagent systems. Our proposed approach is to replace the agent communication part of a BDI architecture with 
protocols. Speciûcally, we leave the BDI reasoning engine and the core abstractions of beliefs, goals, and plans unchanged. That is, we 
do not demand any change to whatever operational semantics holds for the BDI reasoning except for what concerns communication. 
Thus, agents can be authored and executed much as before, albeit with streamlining due to the proposed communication semantics 
and protocol handling.

We adopt Jason as the exemplar of the cognitive tradition because of its well-deserved prominence in agent programming and its 
extensive support for communications. Jason is an exemplary BDI framework that provides rule-based programming based on beliefs 
and intentions to build BDI agents. Jason agents can communicate with each other based on their beliefs and intentions, and thereby 
realize multiagent systems. Jason9s communication model and semantics, however, suffer from fundamental limitations: They provide 
predetermined performatives (message or <speech act= types) and couple agents unnecessarily. Jason9s strong treatment of commu-
nications makes it an ideal target for our investigation for two reasons. One, Jason provides a concrete model of communications in a 
traditional BDI approach that enables us to demonstrate the beneûts of introducing interaction orientation. Two, because Jason has 
a communication model, it provides us with an engineering challenge to replace the communications part of it.

In contrast, other BDI approaches, e.g., CAN [12], do not pay special attention to communication, potentially treating it like any 
action. Incorporating communication protocols in those approaches is conceptually unproblematic since there is nothing that has to 
be replaced. Likewise, they provide less of an opportunity to show the beneûts of an interaction-oriented approach to communication 
vis à vis a BDI approach.

We adopt information protocols [13] as an exemplar of the interaction-oriented tradition. Information protocols capture interac-
tions between agents abstractly and seek to maximally decouple the agents—that is, couple the agents only to the extent necessary 
for interoperation in the desired multiagent system. The associated abstractions deal with information transfer as a basis for causality 
and integrity, which as well are undergirded by a formal semantics and associated with a programming framework. Information pro-
tocols may be composed and veriûed for properties such as liveness and safety, thus enabling the veriûcation of a multiagent system 
before implementing agents to play roles in it [14]. They can be enacted üexibly and asynchronously without requiring message 
ordering guarantees from the underlying communication service [15]. Information protocols enable specifying and implementing 
fault tolerance at the application level [16]. In addition, they enable precise speciûcation of commitments and other norms [17,18].

Because the concrete realization of our approach relies on Jason and contributes to the Jason ecosystem, we name our approach 
Argus—in Greek mythology, the builder of the Argo, the ship that transports Jason on his quest.

1.2. Contributions

Our overarching contribution is to unite BDI-oriented agent programming and information protocols to simplify implementing 
loosely coupled agents, and demonstrated concretely via Argus, as stated above.

Argus supports a reactive model to map information-based communication to BDI reasoning. The Argus operational semantics 
makes weak assumptions about the infrastructure, preserves autonomy (agents may ignore or respond to messages as they see ût), 
and preserves heterogeneity (separating local and internal states and avoiding hidden dependencies). Argus makes few assumptions 
about the underlying agent reasoning and may be readily adapted to other cognitive agent-programming languages, such as 2APL 
[19], 3APL [20], CAN [12], and GOAL [21].

We identify and resolve limitations of Jason9s support for communications: no support for protocols; adoption of Knowledge 
Query and Manipulation Language (KQML) [22] primitives and semantics; selection and social acceptability functions to control 
communications that are neither public nor based in beliefs and plans; and inadequate support for autonomy and heterogeneity. 
KQML was a landmark contribution to agent communication, but there is no good reason to conûne agent programming to KQML 
over thirty years after its inception. Our objective here is not to criticize Jason or KQML but to bring forth shortcomings of Jason9s 
treatment of agent communication to show the need for improvement.

It is worth noting that implementing an agent that is compliant with the protocol and exploits its üexibility is a nontrivial activity. 
A üexible protocol can, in the worst case, have enactments that are exponential in the size of its speciûcation. To support the task of 
implementing an agent, Argus bundles a code generator that produces Jason code that captures the changes to an agent9s view of the 
protocol state and guides the implementation.
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1.3. Running example: academic testing

We consider a typical US university setting, which involves professors, teaching assistants (TAs), and students. In our example, a 
course is taught by one professor, who is assisted by one TA for that course. Students enroll in one or more courses. Each course has 
a test that the professor prepares along with a grading rubric (instructions) for the TA. Each student enrolled in that course prepares 
a solution to the test.

We focus on the interactions here. A professor begins a test and asks students to provide solutions to a series of questions. The 
professor sends the grading rubric to the TA. A student submits their solutions to the TA, who grades them according to the rubric 
and sends the grades to the professor.

2. Background: agent programming in Jason

Jason is an extended implementation of the AgentSpeak logic-programming language for specifying agent behavior [24]. In Jason, 
an agent is modeled as having beliefs, which capture the state of the world; goals, which capture its objectives; and plans, which are 
methods for realizing its goals. To facilitate building multiagent systems, Jason adopts communication primitives based on KQML.

To illustrate Jason9s programming model, especially how it weaves together communication and reasoning in an agent, Listing 1
and Listing 2 give snippets of professor Pnin and student Lancelot9s implementations in Jason.

Listing 1: Jason snippet of Pnin, the agent who plays Professor.

1 s t u d e n t ( s 1 , l a n c e l o t ) . 
2 s t u d e n t ( s 2 , g a l a h a d ) . 
3 q u e s t i o n ( q 1 , " W h a t i s y o u r n a m e ? " ) . 
4 q u e s t i o n ( q 2 , " W h a t i s y o u r q u e s t ? " ) . 
5 ! s t a r t . 
6 
7 + ! s t a r t < − 
8 f o r ( s t u d e n t ( T I D , S t u d e n t ) ) { 
9 . s e n d ( S t u d e n t , t e l l , b e g i n _ t e s t ( T I D ) ) ; 
10 f o r ( q u e s t i o n ( Q I D , Q ) ) { 
11 . s e n d ( S t u d e n t , t e l l , c h a l l e n g e ( T I D , Q I D , Q ) ) ; 
12 . p r i n t ( " c h a l l e n g e " , S t u d e n t , T I D , Q I D , Q ) ; 
13 } ; 
14 } . 

The ûrst two lines of Listing 1 add beliefs that there are two students, Lancelot and Galahad, with student IDs s1 and s2, 
respectively. The next two lines add beliefs for questions, each composed of an identiûer and a string stating the questions. Line 5
adds an initial goal to achieve start.

Lines 7–14 describe a plan for achieving the start goal: for each student, send a begin test message containing just the TID, and then 
send each question. Note that functions (plans), loops, and procedures (e.g., .send, which is built-in) work via parameter uniûcation. 
For example, the for loop works by ûnding all terms that match the provided structure, using capitalized names (e.g., TID and Student) 
to represent variables. The loop body is executed once for each match; in this case, once for each student, with (TID, Student) bound to 
(s1, lancelot) and (s2, galahad) successively. The .send procedure takes three parameters: the name of the agent receiving the message 
(the Student), the speech act to perform (Tell), and the term to send (the challenge). The Tell speech act adds the term to the recipient9s 
belief base (and triggers a matching plan if there is one).

Listing 2: Jason snippet of Lancelot, an agent who plays Student.

1 + c h a l l e n g e ( T I D , Q I D , Q ) < − 
2 . p r i n t ( " I h a v e b e e n g i v e n c h a l l e n g e : " , Q ) . 

Lines 1–2 of Listing 2 give a plan for student Lancelot that reacts to the addition of the challenge(TID, QID, Q) belief. This belief is 
added automatically when the Tell is received, triggering the plan. The speciûc implementation simply prints information about the 
question the student was given.

An agent can have multiple plans for achieving a goal. If so, it tries to select the ûrst one that is applicable, based on the guards 
of the plan.

Listing 3: Guard for challenge plan.

1 + c h a l l e n g e ( T I D , Q I D , Q ) 
2 : s t u d e n t ( T I D , l a n c e l o t ) 
3 < − . . . 

Line 2 in Listing 3 shows the plan for challenge extended with a single guard. This guard checks for the existence of the belief 
student(TID, lancelot)—in other words, it checks that Lancelot9s agent believes TID is his student ID. If Lancelot9s agent has a 
matching belief, it will select and execute this plan. Otherwise, it will skip over this plan and pick another one if available.
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Table 1
Performatives supported by Jason.

Performative Meaning 

tell ïbeliefð recipient should add ïbeliefð
untell ïbeliefð recipient should remove ïbeliefð
achieve ïgoalð recipient should achieve ïgoalð
unachieve ïgoalð recipient should drop the intention of achieving ïgoalð
tellHow ïplanð recipient should add ïplanð
untellHow ïplanð recipient should disregard ïplanð
askIf ïqueryð recipient should reply if ïqueryð is true 
askAll ïqueryð recipient should reply with all answers matching ïqueryð
askHow ïqueryð recipient should reply with plans matching ïeventð

Fig. 1. The Jason reasoning cycle, highlighting the transitions pertaining to communication with zig-zag arrows. The other transitions arise from internal reasoning 
(processing of beliefs, plans, and intentions) in Jason.

2.1. Communication

Communication in Jason primarily uses the .send function, though others such as .broadcast also exist, and the language can 
be extended with custom plugins.

The syntax of sending a message is .send(Recipient, Performative, Content). Here, Recipient is a reference to the 
agent the Jason runtime should deliver the message to. Performative is the name of the speech act (i.e., illocutionary act [23]) this 
message is performing. Content is a literal being sent as the body of a message and refers to the content of the message, i.e., a belief 
that the recipient should adopt. Listing 1 uses Tell as the performative, which means that the receiving agent should adopt the content 
of the message as a belief. The list of supported performatives is given in Table 1.

2.2. Jason reasoning cycle

Fig. 1 shows the Jason reasoning cycle, involving the various processing steps and how a Jason reasoner may transition from one 
step to the next. The entire set of processing steps in Jason is {ÿÿýýýýý, ÿÿýýÿ, ýÿýÿý, ýýýýÿý, ÿÿýýýýý, ýýýýý, ÿÿýýÿý, ýýÿýýÿý, ÿýÿýÿý} 
[24, pp. 234–235]. These labels stand for, respectively: processing a message from the agent9s mail inbox, selecting an event from 
the set of events, retrieving all relevant plans, checking which of those are applicable, selecting one particular applicable plan (the 
intended means), adding the new intended means to the set of intentions, selecting an intention, executing the selected intention, 
and clearing an intention or intended means that may have ûnished in the previous step.

In Jason, a receiver processes a message from its inbox when (1) its programmer-speciûed selection function ÿý selects that 
message, and (2) the constraints speciûed in the ÿýýýýý function are met. Processing the message means inserting it into the receiver9s 
belief base. (See Jason9s Tell rule [24, p. 244].) The motivation behind ÿý is to capture the priority of a message. The motivation 
behind ÿýýýýý is to capture reasoning based on social constraints such as power, trust, and so on.

3. Information protocols

An information protocol, as speciûed in the Blindingly Simple Protocol Language (BSPL) [13], speciûes communication in a 
multiagent system and provides a basis for implementing its üexible agents in a loosely-coupled manner. Listing 4 illustrates the main 
features of BSPL via our running example.

Listing 4: The grading protocol.

1 G r a d i n g { 
2 r o l e s P r o f e s s o r , S t u d e n t , T A 
3 p a r a m e t e r s o u t T I D k e y , o u t Q I D k e y , o u t G r a d e 
4 p r i v a t e Q u e s t i o n , S o l u t i o n , A n s w e r 
5 
6 P r o f e s s o r ↦ S t u d e n t : b e g i n T e s t [ o u t T I D k e y ] 
7 P r o f e s s o r ↦ S t u d e n t : c h a l l e n g e [ i n T I D k e y , o u t Q I D k e y , o u t Q u e s t i o n ] 
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8 
9 P r o f e s s o r ↦ T A : r u b r i c [ i n T I D k e y , i n Q I D k e y , o u t S o l u t i o n ] 
10 S t u d e n t ↦ T A : r e s p o n s e [ i n T I D k e y , i n Q I D k e y , i n Q u e s t i o n , o u t A n s w e r ] 
11 T A ↦ P r o f e s s o r : r e s u l t [ i n T I D k e y , i n Q I D k e y , i n A n s w e r , i n S o l u t i o n , o u t G r a d e ] 
12 } 

A protocol speciûes the roles that participate in it. It also speciûes the message schemas of the messages to be sent and received by 
the (agents playing the) roles. A message schema has a name, a sender role, a receiver role, and one or more parameters, some of 
which are designated ?ýÿÿ@ and each of which is adorned ?ÿÿ@, ?ýÿý@, or ?ÿÿý@. A message instance is a tuple of bindings for the ?ÿÿ@
and ?ýÿý@ parameters of that schema (?ÿÿý@ parameters have no bindings). The ?ýÿÿ@ parameters of a schema form a composite key 
and uniquely identify its instances.

Parameter adornments capture causality. An agent9s local state is the set of messages it has observed, that is, sent or received. To 
emit an instance of a schema, parameters adorned ?ÿÿ@ must have bindings in the sender9s local state, and parameters adorned ?ýÿý@
and ?ÿÿý@ must not have bindings in the sender9s local state. We say a parameter binding is known to the agent if its binding exists in 
the local state. Thus, in simple terms, to emit an instance, the ?ÿÿ@ parameters9 bindings must be known already to the agent, and the 
?ýÿý@ and ?ÿÿý@ parameters9 bindings must not be known already. Upon emission of the instance, it becomes part of the local state, 
and the ?ýÿý@ parameters bindings become known; the ?ÿÿý@ parameters remain unknown.

By uniqueness, no two message instances with the same bindings for overlapping ?ýÿÿ@ parameters may have distinct bindings 
for common non-key parameters. Since bindings are introduced through ?ýÿý@ parameters, no two message instances may have 
overlapping key parameter bindings as well as a binding of the same ?ýÿý@ parameter. BSPL thus captures causality and integrity 
through information.

How may an agent create message instances for emission? The bindings for the ?ÿÿ@ parameters must obviously come from the 
local state. The bindings for the ?ýÿý@ parameters must, however, be generated by the agent via internal reasoning. For example, say 
Pnin (an agent playing the role Professor) wants to send a challenge. Pnin9s internal reasoning for generating Question may involve 
looking up a database of questions from which it selects a question with a suitable difficulty level and, moreover, has not been used 
in challenges in the last three years.

TID identiûes the test being taken. Since TID and QID are both marked ?ýÿÿ@, where they appear together, they constitute a 
composite key and jointly identify a challenge within a test. That is, each test may have multiple challenges, one for each binding 
of QID. To send result, for any ïTID, QIDð tuple, an agent playing the TA role needs to know Solution and Answer. This use of key 
parameters illustrates correlation and joining of information from different roles.

Notably, a message may be received at any time, that is, in any relative order with respect to other messages, obviating the need 
for ordered-delivery communication services. For example, the information needed for TA to send result comes from receiving response 
from Student and rubric from Professor. These messages may be received in any order by TA.

Grading can be enacted üexibly. After beginning a test, Professor may send challenges and rubrics in any order. Moreover, they 
may be received by Student and TA in any order. Student may respond to challenges received in any order and TA may grade 
responses (for which it has also received rubrics) in any order. Fig. 2 demonstrates an enactment for TID t1 and QIDs q1 and q2 
(other parameters are elided).

The formal syntax of our language, based on BSPL [13], is given in Table 2, and described in detail below. A superscript of +
indicates one or more repetitions, superscript ∗ indicates zero or more, and + and , delimit expressions, which are optional when 
without a superscript.
l1. A speciûcation document consists of one or more protocols (which may be individual messages).
l2. A protocol declaration consists of a name, roles, a public parameter expression, optional private parameters, and references to 

constituent protocols or messages. The public parameters with the ýÿÿ qualiûer form this declaration9s key.
l3. A parameter expression is a comma-separated list of parameters.
l4. A parameter has an adornment and name and may be optionally declared key.
l5. A reference to a protocol consists of the name of the referenced protocol and a parenthesized parameter expression matching the 

protocol9s declaration.
l6. A message schema consists of a name, a sending role, a receiving role, and a parameter expression.
l7. An adornment is either ?ÿÿ@, ?ýÿý@, or ?ÿÿý@.

Together, ?ÿÿ@, ?ýÿý@, and ?ÿÿý@ capture all the possibilities from the point of view of what knowledge an agent has and what 
knowledge it may generate through its actions (message emissions). These are either know (?ÿÿ@) or don’t know (?ýÿý@ or ?ÿÿý@). Don’t 
know can be further broken down into can generate (?ýÿý@) and

cannot generate (?ÿÿý@). The parameter adornments may be used to constrain the ordering and occurrence of an agent9s actions 
with respect to other actions. For example, if we wanted to ensure that an agent could only emit message ÿ after observing (sending 
or receiving) another message ÿ′ , then we would have some parameter that was ?ýÿý@ only in ÿ′ and ?ÿÿ@ in ÿ. If we wanted ensure 
that a message ÿ could not occur after ÿ′ had been observed, then we would have some parameter that was either ?ÿÿ@ or ?ýÿý@ in 
ÿ′ and ?ÿÿý@ in ÿ.

4. The Argus architecture

Argus is a programming model for agents based on information protocols. The programming model takes a protocol as an input 
and provides abstractions that make it convenient to independently implement agents.
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Professor Student TA

ÿÿýÿÿÿÿýý(ýÿ)

ýýÿýýÿÿýÿ(ýÿ,ÿÿ)
ýýÿýýÿÿýÿ(ýÿ,ÿÿ)

ÿÿýýýÿýÿ(ýÿ,ÿÿ)
ÿÿÿÿÿý(ýÿ,ÿÿ)

ÿÿÿÿÿý(ýÿ,ÿÿ)

ÿÿýÿýý(ýÿ,ÿÿ)

Fig. 2. An enactment of Grading demonstrating the üexibility afforded by information protocols. 

Table 2
BSPL Syntax.

l1 Spec ⟶ +Protocol|Message,+
l2 Protocol ⟶ Name { 

ÿýýÿý ýÿÿÿ+

ýÿÿýÿý ParamExpr

+ýÿÿÿÿýÿ ParamExpr,
Reference+ }

l3 ParamExpr ⟶ Parameter +,Parameter,+
l4 Parameter ⟶ Adornment Name +ýÿÿ,
l5 Reference ⟶ Name(ParamExpr) | Message

l6 Message ⟶ Name ↦ Name: Name[ParamExpr]

l7 Adornment ⟶ ÿÿ | ÿÿý | ýÿý

We describe the main elements of the Argus architecture. Let Pnin and Timofey be agents playing the Professor and TA roles, 
respectively. Let Galahad and Lancelot be agents playing the Student role.

Fig. 3 shows a multiagent system under Argus. BDI Agents interact on the basis of an information protocol. An agent9s local state 
comprises beliefs corresponding to the messages it has observed (sent or received) and is used for validating messages before emission 
and after reception. The internal state comprises beliefs about whatever is relevant to the agent9s reasoning besides what is included 
in the protocol. That is, the internal state is separate from the local state. There are no other beliefs. The adapter applies the protocol 
speciûcation to validate both incoming and outgoing messages and update the local state. Each agent has plans and a BDI reasoner 
that executes its plans. An agent9s control state is given by its current intentions and associated objects.

Some of the plans are generated by our tooling based on the protocol speciûcation. These plans are essentially to emit messages. 
Each plan is triggered by the addition of a belief corresponding to a message observation and speciûes the state the enactment should 
be in for a further message to be emitted. These plans offer an opportunity for the developer to plug in internal reasoning satisfying 
which the message will be emitted. Such an emission plan is necessarily incomplete because the internal logic is necessary to produce 
the bindings of the message9s ?ýÿý@ parameters. The internal reasoning could itself involve other plans written by the agent developer.

4.1. Representing the local state

Argus preserves agent autonomy by separating each agent9s local state (containing information shared between agents who com-
municate with each other) from its internal state (containing private information).

In Argus, a valid message observation (emission or reception) is represented as a belief and added to the local state. For example, 
referring to Listing 4, the message

challenge[s1, q1, “What is your name?”]

Artiϧcial Intelligence 348 (2025) 104398 

6 



S.H. Christie, M.P. Singh and A.K. Chopra 

Fig. 3. The Argus architecture is realized on top of the BDI architecture in that Argus addresses how BDI agents interact. Each agent has an Argus adapter generated 
for the roles it plays in the information protocol. The adapter validates incoming and outgoing messages against the protocol and updates the local state. Argus blends 
into the BDI architecture because the Argus local state is nothing more than a set of beliefs, as are already available to the BDI reasoner in the BDI architecture.

from Pnin to Lancelot, if it passes validation, is constructed as the Jason term

challenge(“Pnin”, “Lancelot”, s1, q1, “What is your name?”)

and is added to Pnin9s local state upon emission and to Lancelot9s local state upon reception.

4.2. Handling message observations

To avoid conüict with Jason9s builtin procedure .ýÿÿý, we postulate (and implement) new builtin procedures .ÿÿÿý and .ÿÿÿýýýý.
Executing .ÿÿÿý for some message instance causes the adapter to validate the instance against the local state. Speciûcally, the 

bindings for the ?ÿÿ@ parameters must be already known (from the local state); and the bindings for the ?ýÿý@ and ?ÿÿý@ parameters 
must not already be known. If the validation is successful, the adapter adds the instance to the local state (as described above) and 
transmits the message instance to the recipient via the appropriate channel. The recipient can be speciûed directly as a string address 
in <ip:port= format, or will be loaded from the adapter conûguration.

Similarly, for .ÿÿÿýýýý, a multicast primitive, the same message is emitted in every MAS that the sender is already participating in. 
This means that for Pnin, who is conûgured with two MASs, one for Lancelot and one for Galahad, he can send the questions to both 
students with a single .ÿÿÿýýýý.

Listing 5: Partial Professor Pnin in Argus.

1 s t u d e n t ( " l a n c e l o t " , " L a n c e l o t " ) 
2 s t u d e n t ( " g a l a h a d " , " G a l a h a d " ) . 
3 q u e s t i o n ( q 1 , " W h a t i s y o u r n a m e ? " ) . 
4 s o l u t i o n ( " l a n c e l o t " , q 1 , " S i r L a n c e l o t o f C a m e l o t " ) . 
5 s o l u t i o n ( " g a l a h a d " , q 1 , " S i r G a l a h a d o f C a m e l o t " ) . 
6 ! s t a r t . 
7 
8 + ! s t a r t < − 
9 T I D = " m i d t e r m " ; 
10 . p r i n t ( " S t a r t i n g t e s t " , T I D ) ; 
11 . e m i t A l l ( b e g i n _ t e s t ( M a s I D , P r o f e s s o r , S t u d e n t , T I D ) ) ; 
12 
13 f o r ( q u e s t i o n ( Q I D , Q u e s t i o n ) ) { 
14 . p r i n t ( " C h a l l e n g e " , Q I D , " : " , Q u e s t i o n ) ; 
15 . e m i t A l l ( c h a l l e n g e ( M a s I D , P r o f e s s o r , S t u d e n t , T I D , Q I D , Q u e s t i o n ) ) ; 
16 f o r ( s t u d e n t ( M a s I D , S t u d e n t ) ) { 
17 s o l u t i o n ( M a s I D , Q I D , S o l u t i o n ) ; 
18 . e m i t ( r u b r i c ( M a s I D , P r o f e s s o r , T A , T I D , Q I D , S o l u t i o n ) ) ; 
19 . p r i n t ( " S o l u t i o n f o r " , M a s I D , Q I D , " i s " , S o l u t i o n ) ; 
20 } ; 
21 } . 

For example, in Line 15, Pnin sends challenge to all students by invoking .ÿÿÿýýýý. Suppose TID is <midterm= and QID is q1, and 
Question is “What is your name?”. Pnin9s adapter constructs the corresponding message instance and validates it. If the instance passes 
validation, it adds the assertion challenge(“lancelot”, “Pnin”, “Lancelot”, “midterm”, q1, “What is your name?”) to the local state and 
sends the message instance to Lancelot, with a similar message for Galahad.
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Each interaction happens within the context of MAS. In our implementation, borrowing from Kiko [25], the variable MasID 
identiûes the MAS. In Listing 5, the MasID corresponds to the name of the student in lowercase, e.g., lancelot (line 1). In effect, 
each student is in a different MAS but with the same Professor and the same TA.

When the adapter receives a message instance and ûnds it consistent with the local state, it inserts the message into the local state. 
Given the information model, consistency simply means that there would be no key violation in the local state if that message were 
inserted. For example, when Lancelot receives the above message, Lancelot9s adapter checks the local state to verify that no message 
with the same TID and QID but a different Question has been observed. If the check passes, then

challenge(“lancelot”, “Pnin”, “Lancelot”, s1, q1, “What is your name?”)

is added to Lancelot9s local state.
It is worth emphasizing the distinction between an agent9s local state and internal state. Lines 1–5 model Pnin9s question bank. 

The questions and their solutions are part of Pnin9s internal state.
Message parameters exclusively apply to the local state; their bindings don9t become part of the local state until a message 

containing them is recorded in the local state. Whether a message may be emitted depends only on the local state, not the internal 
state. The rubric message has ?ýÿý@ Solution. Pnin9s emission of this message (Line 18) is not blocked merely because he has the 
solutions in his internal state. A solution in the internal state doesn9t become a Solution in Pnin9s local state until he sends a rubric for 
some TID, QID combination with the solution as the binding for Solution. Once Pnin has sent it, Solution becomes part of the his local 
state relative to that TID, QID combination and he is blocked from sending any further rubric messages for the combination.

Multicast messages are handled by generating separate messages for each MAS. Each message is validated and stored in the local 
state separately, just like any other message. Thus, Pnin would store two copies of the Challenge message, one for each student, while 
the students would each store the single instance they receive.

4.3. Programming agents for enacting protocols in Argus

A conceptually simple programming model is based on the Stellar approach for Jason [26]. Here, agents react to message recep-
tions. In Argus, we model message receptions by adding terms to the recipient9s knowledge base, which they can react to using goals 
triggered by term addition.

Our tooling supports this programming model by generating code for the agents based on the protocol speciûcation. Listing 6
gives the skeleton code generated for Timofey, the TA, from the grading protocol speciûcation.

Listing 6: Generated code for TA
1 + r u b r i c ( M a s I D , P r o f e s s o r , T A , T I D , Q I D , S o l u t i o n ) 
2 : r e s p o n s e ( M a s I D , S t u d e n t , T A , T I D , Q I D , Q u e s t i o n , A n s w e r ) 
3 < − ! s e n d _ r e s u l t ( M a s I D , T A , P r o f e s s o r , T I D , Q I D , A n s w e r , S o l u t i o n ) . 
4 
5 + r e s p o n s e ( M a s I D , S t u d e n t , T A , T I D , Q I D , Q u e s t i o n , A n s w e r ) 
6 : r u b r i c ( M a s I D , P r o f e s s o r , T A , T I D , Q I D , S o l u t i o n ) 
7 < − ! s e n d _ r e s u l t ( M a s I D , T A , P r o f e s s o r , T I D , Q I D , A n s w e r , S o l u t i o n ) . 
8 
9 + ! s e n d _ r e s u l t ( M a s I D , T A , P r o f e s s o r , T I D , Q I D , A n s w e r , S o l u t i o n ) 
10 < − / / i n s e r t c o d e t o c o m p u t e r e s u l t o u t p a r a m e t e r s [ ’ G r a d e ’ ] h e r e 
11 . e m i t ( r e s u l t ( M a s I D , T A , P r o f e s s o r , T I D , Q I D , A n s w e r , S o l u t i o n , G r a d e ) ) . 

Our code generator focuses on enabling the emissions that the agent could send, rather than simply generating stub reactions for 
every reception, so the developer doesn9t have to rewrite the interaction logic from the protocol. In Grading, TA needs to observe 
rubric and response before it is enabled to send result. These dependencies are reüected in the generated code in Listing 6 by two goals 
that react to the observation of rubric and response respectively. Because the messages are asynchronous and could be received in 
any order, both goals have guards that check for prior observation of the other message; if there are N prerequisite messages for a 
speciûc emission, the generator automatically produces N goals, each triggered by one reception and guarded by all of the others. 
Whichever reception is last will pass the guard, and consequently trigger the uniûed goal for sending the dependent message (in 
this case, !send_result for sending result). The developer will need to add code as indicated by the comment to bind the ?ýÿý@
parameters.

Listing 7 shows a complete implementation for Timofey, the TA, according to this model. Timofey checks if Answer equals Solution, 
and if so, gives a grade of 1 for that question; otherwise, 0. It then prints the grade and emits result.

Listing 7: TA Timofey in Argus
1 + r u b r i c ( M a s I D , P r o f e s s o r , T A , T I D , Q I D , S o l u t i o n ) 
2 : r e s p o n s e ( M a s I D , S t u d e n t , T A , T I D , Q I D , Q u e s t i o n , A n s w e r ) 
3 < − ! s e n d _ r e s u l t ( M a s I D , T A , P r o f e s s o r , T I D , Q I D , A n s w e r , S o l u t i o n ) . 
4 
5 + r e s p o n s e ( M a s I D , S t u d e n t , T A , T I D , Q I D , Q u e s t i o n , A n s w e r ) 
6 : r u b r i c ( M a s I D , P r o f e s s o r , T A , T I D , Q I D , S o l u t i o n ) 
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7 < − ! s e n d _ r e s u l t ( M a s I D , T A , P r o f e s s o r , T I D , Q I D , A n s w e r , S o l u t i o n ) . 
8 
9 + ! s e n d _ r e s u l t ( M a s I D , T A , P r o f e s s o r , T I D , Q I D , A n s w e r , S o l u t i o n ) 
10 < − i f ( A n s w e r = S o l u t i o n ) { 
11 . p r i n t ( T I D , Q I D , A n s w e r , " m a t c h e s " , S o l u t i o n ) ; 
12 G r a d e = 1 ; 
13 } e l s e { 
14 . p r i n t ( T I D , Q I D , A n s w e r , " d o e s n o t m a t c h " , S o l u t i o n ) ; 
15 G r a d e = 0 ; 
16 } 
17 . p r i n t ( " G r a d e : " , G r a d e ) ; 
18 . e m i t ( r e s u l t ( M a s I D , T A , P r o f e s s o r , T I D , Q I D , A n s w e r , S o l u t i o n , G r a d e ) ) . 

This programming model resembles traditional Jason communication patterns in that it is based on responding to events (which 
arise from incoming messages), but is enhanced with message validation based on protocols.

4.3.1. Code generation algorithms
The Argus code generator performs sophisticated analysis of protocol speciûcations to automatically create appropriate plan 

skeletons. This process relies on two key algorithms: cover calculation and conüict identiûcation.

Emission covers For each message that an agent playing a given role can emit, the cover algorithm determines which incoming 
messages must be observed before the emission becomes possible. A cover is a set of messages that, when observed, collectively bind 
all the necessary ?ÿÿ@ parameters required for an emission.

The algorithm ûrst identiûes all possible enactments of the protocol that include the target emission as paths, that is, sequences of 
emission and reception events. For each path, it tracks the ?ÿÿ@ parameters needed by the emission and identiûes observable messages 
that provide these parameters. When a set of messages collectively satisûes all parameter requirements, it becomes a valid cover and 
stops consideration of that path. Once initial covers are identiûed, they are pruned to eliminate redundancy. A message is removed 
from a cover if all the ?ÿÿ@ parameters it provides are also provided by other messages in the cover. This ensures minimal covers that 
avoid unnecessary dependencies.

Conflict guards The conüict identiûcation algorithm identiûes messages which should block an emission when observed. These 
conüicts are used to add guards to the message emission plans, so they are not attempted in situations where they are blocked. The 
protocol adapter will enforce the constraint during emission, but the guards help avoid even attempting such violations.

For each message a role can emit, the algorithm checks all other observable messages to determine if they would disable the 
emission. Message A is considered to block message B if A contains parameters adorned ?ÿÿ@ or ?ýÿý@ which B has adorned ?ýÿý@ or 
?ÿÿý@. However, applying these criteria naively would mean that direct dependencies (with ?ÿÿ@ parameters) block the message that 
enables them (which bind it as ?ýÿý@). While these guards would be harmless, they are unnecessary. Thus, our disablement calculation 
excludes messages that are the sole source of a necessary parameter.

Plan generation The code generator combines the results of these algorithms to create three types of plans:

1. For emissions with no dependencies, it generates a simple plan triggered by a goal with appropriate conüict guards. That is, the 
agent must set a goal to produce this message; it is not automatically triggered.

2. For emissions dependent on a single message, it generates a plan triggered by the addition of that message as a belief, which 
happens on reception, with conüict guards.

3. For emissions dependent on multiple messages, it generates multiple plans—one triggered by each dependency and guarded by 
the presence of the others, plus a goal plan to perform the actual emission.

The generation of these plans is illustrated in Listing 6, where two plans are created for the result message. These plans are triggered 
by the reception of either rubric or response and guarded by the presence of the other message, ensuring that both prerequisites are 
satisûed before the result can be emitted.

4.3.2. Agent listings
For completeness, Listings 8–10 give all the Argus agents.

Listing 8: Complete Professor Pnin in Argus.
1 q u e s t i o n ( q 1 , " W h a t i s y o u r n a m e ? " ) . 
2 s o l u t i o n ( " l a n c e l o t " , q 1 , " S i r L a n c e l o t o f C a m e l o t " ) . 
3 s o l u t i o n ( " g a l a h a d " , q 1 , " S i r G a l a h a d o f C a m e l o t " ) . 
4 q u e s t i o n ( q 2 , " W h a t i s y o u r q u e s t ? " ) . 
5 s o l u t i o n ( " l a n c e l o t " , q 2 , " T o s e e k t h e H o l y G r a i l " ) . 
6 s o l u t i o n ( " g a l a h a d " , q 2 , " T o s e e k t h e G r a i l " ) . 
7 q u e s t i o n ( q 3 , " W h a t i s y o u r f a v o r i t e c o l o r ? " ) . 
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8 s o l u t i o n ( " l a n c e l o t " , q 3 , " B l u e " ) . 
9 s o l u t i o n ( " g a l a h a d " , q 3 , " Y e l l o w " ) . 
10 
11 s t u d e n t ( " l a n c e l o t " , " L a n c e l o t " ) . 
12 s t u d e n t ( " g a l a h a d " , " G a l a h a d " ) . 
13 
14 ! s t a r t . 
15 
16 + ! s t a r t < − 
17 T I D = " m i d t e r m " ; 
18 . p r i n t ( " S t a r t i n g t e s t " , T I D ) ; 
19 . e m i t A l l ( b e g i n _ t e s t ( M a s I D , P r o f e s s o r , S t u d e n t , T I D ) ) ; 
20 
21 f o r ( q u e s t i o n ( Q I D , Q u e s t i o n ) ) { 
22 . p r i n t ( " C h a l l e n g e " , Q I D , " : " , Q u e s t i o n ) ; 
23 . e m i t A l l ( c h a l l e n g e ( M a s I D , P r o f e s s o r , S t u d e n t , T I D , Q I D , Q u e s t i o n ) ) ; 
24 f o r ( s t u d e n t ( M a s I D , S t u d e n t ) ) { 
25 s o l u t i o n ( M a s I D , Q I D , S o l u t i o n ) ; 
26 . e m i t ( r u b r i c ( M a s I D , P r o f e s s o r , T A , T I D , Q I D , S o l u t i o n ) ) ; 
27 . p r i n t ( " S o l u t i o n f o r " , M a s I D , Q I D , " i s " , S o l u t i o n ) ; 
28 } ; 
29 } . 
30 
31 + r e s u l t ( M a s I D , T A , P r o f e s s o r , T I D , Q I D , A n s , S o l , G r a d e ) < − 
32 . p r i n t ( " R e c e i v e d r e s u l t f o r " , M a s I D , Q I D , " w i t h g r a d e " , G r a d e ) ; 
33 . c o u n t ( r e s u l t ( M a s I D , _ , _ , T I D , _ , _ , _ , _ ) , C ) ; 
34 . c o u n t ( c h a l l e n g e ( M a s I D , _ , _ , T I D , _ , _ ) , C h a l l e n g e s ) ; 
35 i f ( C > = C h a l l e n g e s ) { 
36 ! r e p o r t ( M a s I D , T I D ) ; 
37 } . 
38 
39 + ! r e p o r t ( M a s I D , T I D ) : n o t r e p o r t e d ( M a s I D , T I D ) < − 
40 . f i n d a l l ( G r a d e , r e s u l t ( M a s I D , _ , _ , T I D , _ , _ , _ , G r a d e ) , L ) ; 
41 ! s u m ( L , T o t a l ) ; 
42 . c o u n t ( c h a l l e n g e ( M a s I D , _ , _ , T I D , _ , _ ) , C ) ; 
43 . p r i n t ( " T o t a l g r a d e f o r s t u d e n t " , M a s I D , " i s " , T o t a l , " / " , C ) ; 
44 + r e p o r t e d ( M a s I D , T I D ) . 
45 + ! r e p o r t ( M a s I D , T I D ) < − t r u e . 
46 
47 + ! s u m ( [ ] , 0 ) . 
48 + ! s u m ( [ T | R ] , M ) < − 
49 ! s u m ( R , S ) ; 
50 M = T + S . 

Listing 9: Lancelot9s decision making in Argus.
1 a n s w e r ( " W h a t i s y o u r n a m e ? " , " S i r L a n c e l o t o f C a m e l o t " ) . 
2 a n s w e r ( " W h a t i s y o u r q u e s t ? " , " T o s e e k t h e H o l y G r a i l " ) . 
3 a n s w e r ( " W h a t i s y o u r f a v o r i t e c o l o r ? " , " B l u e " ) . 
4 
5 + b e g i n _ t e s t ( M a s I D , P r o f e s s o r , S t u d e n t , T I D ) < − 
6 . p r i n t ( " S t a r t i n g t e s t w i t h T I D " , T I D ) . 
7 
8 + c h a l l e n g e ( M a s I D , P r o f e s s o r , S t u d e n t , T I D , Q I D , Q u e s t i o n ) : a n s w e r ( Q u e s t i o n , A n s w e r ) < − 
9 . p r i n t ( " A n s w e r i n g " , Q I D , " w i t h " , A n s w e r ) ; 
10 . e m i t ( r e s p o n s e ( M a s I D , S t u d e n t , T A , T I D , Q I D , Q u e s t i o n , A n s w e r ) ) . 

Listing 10: Galahad9s decision making in Argus.
1 + b e g i n _ t e s t ( M a s I D , P r o f e s s o r , S t u d e n t , T I D ) < − 
2 . p r i n t ( " S t a r t i n g t e s t w i t h T I D " , T I D ) . 
3 
4 + c h a l l e n g e ( M a s I D , P r o f e s s o r , S t u d e n t , T I D , Q I D , Q u e s t i o n ) < − 
5 ! a n s w e r ( Q u e s t i o n , A n s w e r ) ; 
6 . p r i n t ( " A n s w e r i n g " , Q I D , " w i t h " , A n s w e r ) ; 
7 . e m i t ( r e s p o n s e ( M a s I D , S t u d e n t , T A , T I D , Q I D , Q u e s t i o n , A n s w e r ) ) . 
8 
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9 + ! a n s w e r ( " W h a t i s y o u r n a m e ? " , " S i r G a l a h a d o f C a m e l o t " ) . 
10 + ! a n s w e r ( " W h a t i s y o u r q u e s t ? " , " T o s e e k t h e G r a i l " ) . 
11 + ! a n s w e r ( " W h a t i s y o u r f a v o r i t e c o l o r ? " , " B l u e " ) . 
12 + ! a n s w e r ( _ , " I d o n ’ t k n o w t h a t " ) . 

We launched all agents from a shell script. Listing 11 shows the output.

Listing 11: Example execution trace.
1 S t a r t i n g G a l a h a d . . . 
2 S t a r t i n g L a n c e l o t . . . 
3 S t a r t i n g T i m o f e y . . . 
4 P r e s s a n y k e y t o s t o p . . . 
5 S t a r t i n g P n i n . . . 
6 P n i n S t a r t i n g t e s t m i d t e r m 
7 P n i n C h a l l e n g e q 1 : W h a t i s y o u r n a m e ? 
8 P n i n S o l u t i o n f o r l a n c e l o t q 1 i s S i r L a n c e l o t o f C a m e l o t 
9 P n i n S o l u t i o n f o r g a l a h a d q 1 i s S i r G a l a h a d o f C a m e l o t 
10 P n i n C h a l l e n g e q 2 : W h a t i s y o u r q u e s t ? 
11 P n i n S o l u t i o n f o r l a n c e l o t q 2 i s T o s e e k t h e H o l y G r a i l 
12 P n i n S o l u t i o n f o r g a l a h a d q 2 i s T o s e e k t h e G r a i l 
13 P n i n C h a l l e n g e q 3 : W h a t i s y o u r f a v o r i t e c o l o r ? 
14 P n i n S o l u t i o n f o r l a n c e l o t q 3 i s B l u e 
15 P n i n S o l u t i o n f o r g a l a h a d q 3 i s Y e l l o w 
16 G a l a h a d S t a r t i n g t e s t w i t h T I D m i d t e r m 
17 L a n c e l o t S t a r t i n g t e s t w i t h T I D m i d t e r m 
18 G a l a h a d A n s w e r i n g q 1 w i t h S i r G a l a h a d o f C a m e l o t 
19 L a n c e l o t A n s w e r i n g q 1 w i t h S i r L a n c e l o t o f C a m e l o t 
20 G a l a h a d A n s w e r i n g q 2 w i t h T o s e e k t h e G r a i l 
21 G a l a h a d A n s w e r i n g q 3 w i t h B l u e 
22 L a n c e l o t A n s w e r i n g q 2 w i t h T o s e e k t h e H o l y G r a i l 
23 T i m o f e y g a l a h a d q 1 S i r G a l a h a d o f C a m e l o t m a t c h e s S i r G a l a h a d o f C a m e l o t 
24 L a n c e l o t A n s w e r i n g q 3 w i t h B l u e 
25 T i m o f e y G r a d e : 1 
26 P n i n R e c e i v e d r e s u l t f o r g a l a h a d q 1 w i t h g r a d e 1 
27 T i m o f e y l a n c e l o t q 1 S i r L a n c e l o t o f C a m e l o t m a t c h e s S i r L a n c e l o t o f C a m e l o t 
28 T i m o f e y G r a d e : 1 
29 T i m o f e y g a l a h a d q 2 T o s e e k t h e G r a i l m a t c h e s T o s e e k t h e G r a i l 
30 T i m o f e y G r a d e : 1 
31 T i m o f e y g a l a h a d q 3 B l u e d o e s n o t m a t c h Y e l l o w 
32 T i m o f e y G r a d e : 0 
33 T i m o f e y l a n c e l o t q 2 T o s e e k t h e H o l y G r a i l m a t c h e s T o s e e k t h e H o l y G r a i l 
34 T i m o f e y G r a d e : 1 
35 P n i n R e c e i v e d r e s u l t f o r l a n c e l o t q 1 w i t h g r a d e 1 
36 T i m o f e y l a n c e l o t q 3 B l u e m a t c h e s B l u e 
37 T i m o f e y G r a d e : 1 
38 P n i n R e c e i v e d r e s u l t f o r g a l a h a d q 2 w i t h g r a d e 1 
39 P n i n R e c e i v e d r e s u l t f o r g a l a h a d q 3 w i t h g r a d e 0 
40 P n i n T o t a l g r a d e f o r s t u d e n t g a l a h a d i s 2 / 3 
41 P n i n R e c e i v e d r e s u l t f o r l a n c e l o t q 2 w i t h g r a d e 1 
42 P n i n T o t a l g r a d e f o r s t u d e n t l a n c e l o t i s 3 / 3 
43 P n i n R e c e i v e d r e s u l t f o r l a n c e l o t q 3 w i t h g r a d e 1 

5. Formal semantics for Argus

Since Argus is a synthesis of protocols and BDI concepts, it helps to leverage BDI semantics. Accordingly, we begin with a brief 
description of the BDI semantics. Next, we introduce the key concepts of protocols and then describe the operational semantics for 
Argus.

5.1. Background on BDI semantics

We adopt the speciûc semantics for Jason to guide our choices since it is well worked out and compatible with our approach.
For the present purposes, we introduce the following elements of the Jason semantics [24, pp. 231–232]. An agent program ag

comprises a set of beliefs ÿý and a set of plans ýý. An intention is a stack of partially instantiated plans; ÿ[ý] is an intention with plan 
ý at the top. ⊤ is the empty intention. An event ÿ = ïý, ÿð pairs a trigger with an intention. An agent conûguration ïag,ÿ,ý,ÿ , ýð, 
includes an agent ag and four components:
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• A circumstance ÿ = ïý,ý,ýð, where (1) ý is a set of intentions; (2) ý is a set of events; (3) ý is a set of actions.
• A messaging subsystem ý = ïIn,Out,SIð, where In is ag9s inbox, Out its outbox, and SI its set of suspended intentions (as while 
awaiting a reply to an Ask). We don9t use ý or its subcomponents.

• Temporary information ÿ = ïý,ýý, ÿ, ÿ, ÿð, where ý is the set of relevant plans for the current event; ýý ⊆ ý the applicable plans 
(those whose contexts are true); and ÿ, ÿ, ÿ are the intention, event, applicable plan under consideration in the current reasoning 
cycle.

• The current step in the agent9s reasoning cycle, ý. Of the nine steps deûned in Jason, Argus concerns (1) ÿÿýýýýý, processing an 
incoming message, and (2) ýýÿýýÿý, executing an intention, speciûcally to emit a message. In the Jason reasoning cycle (Fig. 1), 
ÿÿýýýýý leads to ÿÿýýÿ (selecting an event); ýýÿýýÿý may lead to ÿÿýýýýý or to ÿýÿýÿý (clearing an intention) but in our semantics 
leads only to ÿýÿýÿý.

The Jason semantics uses the environment, env, as well, but in parts not relevant to Argus.

5.2. The Argus model

Argus adopts the circumstance, temporary information, and current step from Jason9s semantics, and adds the following:

• For each pair of communicating agents, there is a point-to-point communication channel ýÿ,ÿ , where ÿ ≠ ÿ are its sender and 
receiver, respectively. A channel9s contents are an unordered set, to model unordered communication. That is, a receiver can 
remove a message from a channel if it is present there, independently of when that message was added relative to other messages 
in the channel. We can think of the channels as being part of the environment.

• We identify the local state of an agent, crucial to BSPL semantics, as ÿ ⊆ ÿý. An agent9s internal state comprises its beliefs and is 
also a subset of ÿý. However, the internal state is irrelevant to the Argus semantics, so we don9t assign a symbol to it. An agent 
may consult (but not alter) its local state and consult (and possibly alter) its internal state, produce additional intentions, and 
emit and receive messages.

We adopt information protocols as introduced in BSPL [14]. A protocol is given by one or more roles and one or more message 
schemas involving those roles.

Definition 1 (Message schema). A message schema is given by ÿ[ý, ÿ, ý⃗ÿ , ý⃗ý , ý⃗ÿ , ý⃗ý ], where ý and ÿ are its sender and receiver roles; 
ý⃗ý , ý⃗ÿ , and ý⃗ý are its (pairwise disjoint) ?ÿÿ@, ?ýÿý@, and ?ÿÿý@ parameters, respectively; and ý⃗ÿ ⊆ ý⃗ý ∪ ý⃗ÿ its key parameters.

The semantics of a protocol in BSPL is grounded in terms of the messages sent and received by the agents enacting that protocol. 
Speciûcally, although BSPL allows a protocol to refer to other protocols, for the purposes of semantics all that matters are the message 
schemas deûned in a protocol, including the message schemas deûned in the protocols referenced from it [14]. Accordingly, for a 
protocol ÿ , we deûne Λ(ÿ ) as the set of message schemas deûned in ÿ .

Let ý⃗ = ý⃗ý ∪ ý⃗ÿ be the lists of ?ÿÿ@ and ?ýÿý@ parameters in a schema. We write ÿ to indicate what a parameter is bound to and ÿ to 
indicate a list of bindings corresponding to a list of parameters. (We use the same notation to avoid clutter since the context always 
makes clear whether we have an individual or a list.) For any parameter ÿ, the expression ÿ ↩ ÿ refers to the parameter having a 
binding ÿ. Likewise, for any list of parameters, ÿ⃗, the expression ÿ⃗↩ ÿ refers to each parameter in ÿ⃗ having the corresponding binding 
in ÿ.

Definition 2 (Message instance). A message instance ÿ[ý, ÿ, ý⃗↩ ý] is given by a schema name ÿ, a sender ý and a receiver ÿ playing 
appropriate roles, and a payload (ý⃗↩ ý, which are bindings for ?ÿÿ@ and ?ýÿý@ parameters).

5.3. Local state data model

Below, we write ÿ[ [ ] ] to distinguish the relation contents from the relation (message schema) ÿ or ÿ[ ]. We also use ÿ[ ] for message 
instances, since instances (comprising parameter bindings) are easily distinguished from schemas (comprising lists of key, in, out, 
and nil parameters).

Definition 3 (Local state). Let ag be an agent and let ÿ be a protocol. Then, ag9s local state (with respect to ÿ ), agÿ, is given as 
follows:

• For each message schema ÿ[ý, ÿ, ý⃗ÿ , ý⃗ý , ý⃗ÿ , ý⃗ý ] ∈ Λ(ÿ ), where ag has adopted role ý or ÿ, agÿ contains a relation ÿ[ [ý⃗ÿ , ý⃗ý , ý⃗ÿ, ý⃗ý ] ], 
where this relation has a key constructed from the parameters in ý⃗ÿ .

• agÿ contains nothing else.

A message instance maps to a ground atom, the same as a belief in Jason. That is, each message instance of a message schema 
ÿ emitted or received corresponds to a row ÿ[ [ý⃗↩ ý] ] being inserted in the relation for that schema. Each relation9s contents at any 
time describe the agent9s history relative to that message schema.
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BSPL deûnes integrity independently of speciûc messages and considers the totality of the local states across all agents. For a safe 
protocol [14,8], if each agent separately ensures the integrity of its emissions, the multiagent system retains integrity. Local integrity 
means that if any two rows in any relations agree on bindings of their common key parameters, they agree on bindings of all other 
common parameters [27]. Accordingly, implementing the BSPL semantics requires the adapter to verify that parameter bindings 
present in a message instance are consistent with any bindings stored in the local state before it adds the message to its agent9s local 
state.

The underlying intuition in BSPL is that an enactment of a protocol computes a social object. This social object is identiûed by the 
bindings of the key parameters of the protocol and contains the bindings for the other parameters of the protocol. For a parameter, 
in general, its binding is nonsensical unless it is associated with a key. This situation is the same as in databases. For example, in an 
enterprise database, salary = 100000 is meaningless, but a row in a payroll table that captures employeeID = ABC, salary = 100000 
is indeed meaningful. That is, we cannot divorce parameters from the keys with respect to which they are deûned. Recall that each 
message schema is an elementary protocol; thus, the foregoing applies to messages as well as to full protocols.

The above motivation leads us to impose two well-formedness criteria on protocols, motivated in Clouseau [18, §5]. First, if any 
two or more messages share a parameter, their keys must jointly overlap, else that parameter would have two conceptions.

Well-formedness requirement 1 (Overlapping key parameters). Let ý be a parameter and ÿ be a protocol. Let {…ÿÿ[ýÿ, ÿÿ, ⃗ýÿ,ÿ, ⃗ýý,ÿ, 
⃗ýÿ,ÿ, ⃗ýý,ÿ]…} be the set of message schemas in ÿ where ý ∈ ⃗ýý,ÿ ∪ ⃗ýÿ,ÿ ∪ ⃗ýý,ÿ. Then, 

⋂
ÿ ⃗ýÿ,ÿ ≠ ∅.

That is, the set of key parameters common to these schemas is nonempty.
Second, informally, when a parameter is adorned ?ÿÿ@ in a message schema, any parameter that is <essential= in identifying that 

parameter must also be adorned ?ÿÿ@. Otherwise, that parameter9s binding would be meaningless, üoating in the ether as it were 
without being anchored to a key. The determinant of a parameter captures the intuition of what its essential key is. The determinant 
of a parameter is the intersection of the keys of all schemas in which the parameter appears.

Definition 4 (Determinant of a parameter). Let ý be a parameter and ÿ be a protocol. Let {…ÿÿ[ýÿ, ÿÿ, ⃗ýÿ,ÿ, ⃗ýý,ÿ, ⃗ýÿ,ÿ, ⃗ýý,ÿ]…} be the 
set of message schemas in ÿ , where ý ∈ ⃗ýý,ÿ ∪ ⃗ýÿ,ÿ ∪ ⃗ýý,ÿ. Then, Δ(ý), the determinant of ý is given by 

⋂
ÿ ⃗ýÿ,ÿ.

Listing 12 illustrates the idea of a determinant through a ûctitious variant of our running example. The parameter Question occurs 
in two message schemas, challenge and responseMulti. The parameters marked ?ýÿÿ@ in these message schemas are TID, QID and TID, 
QID, AID, respectively. Therefore, the determinant of Question in this protocol is TID, QID.

Listing 12: Determinant example
1 D e t e r m i n a n t E x a m p l e { 
2 r o l e s P r o f e s s o r , S t u d e n t , T A 
3 p a r a m e t e r s o u t T I D k e y , o u t Q I D k e y , o u t A I D k e y , Q u e s t i o n , A n s w e r 
4 
5 P r o f e s s o r ↦ S t u d e n t : c h a l l e n g e [ o u t T I D k e y , o u t Q I D k e y , o u t Q u e s t i o n ] 
6 
7 S t u d e n t ↦ T A : r e s p o n s e M u l t i [ i n T I D k e y , i n Q I D k e y , o u t A I D k e y , i n Q u e s t i o n , o u t A n s w e r ] 
8 } 

Well-formedness requirement 2 (Parameters adorned ?ÿÿ@). Let ý be a parameter and ÿ be a protocol. Let ÿ[ý, ÿ, ý⃗ÿ , ý⃗ý , ý⃗ÿ, ý⃗ý ] be 
a message schema in ÿ where ý ∈ ý⃗ý . Then, ý⃗ÿ ∩Δ(ý) ⊆ ý⃗ý ).

That is, when a parameter is adorned ?ÿÿ@ in a message schema, so is each parameter in its determinant that occurs in that schema.
Notice that, in Listing 12, Question appears ?ýÿý@ in challenge so the above well-formed requirement is met. In addition, Question 

appears ?ÿÿ@ in responseMulti as do TID and QID, so the above well-formed requirement is met there too.

5.4. Integrity checks on the local state

Given bindings for the key parameters, some parameters are deemed known, written ÿ, if the bindings of these parameters exist 
in the belief base. And, given bindings for the key parameters, some parameters are deemed unknown, written ý, if their bindings 
are not already known. An incoming message is compatible, written ÿ, with the local state if it is consistent (with respect to its key 
parameters) with the bindings already present in the local state.

Below, we adopt the notation that ÿ ∋ ÿ⃗↩ ÿ means that the speciûed bindings occur in the row corresponding to message instance 
ÿ.

Definition 5 (Known bindings). The primitive ÿ(ÿ, ý⃗, ÿ⃗ ↩ ÿ) veriûes if, given key parameters ý⃗, the parameter bindings for ÿ⃗ are 
identical to those in the local state ÿ.

ÿ(ÿ, ý⃗, ÿ⃗↩ ÿ) iff (∀ÿ ∈ ÿ⃗∶ (#ÿ ∈ÿ,ÿ ∈ ÿ[ [ ] ] ∶ ÿ ∋ ý⃗↩ ý and ÿ ∋ ÿ↩ ÿ))
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Consider a parameter ÿ ∈ ÿ⃗. For ÿ to be known, its determinant must be a subset of ÿ⃗ ∩ ý⃗, and its binding must be present in some 
message ÿ with the same key bindings ý⃗↩ ý in the contents of some relation ÿ[ [ ] ].

Definition 6 (Unknown bindings). The primitive ý(ÿ, ý⃗↩ ý, ÿ⃗) veriûes if, given the key bindings, the ÿ⃗ parameters have no bindings 
in the local state ÿ.

ý(ÿ, ý⃗↩ ý, ÿ⃗) iff (∀ÿ ∈ ÿ⃗∶ (∀ÿ ∈ÿ ∶ ($ÿ ∈ ÿ[ [ ] ] ∶ ÿ ∋ ý⃗↩ ý and ÿ ∋ ÿ↩ ÿ)))

That is, for each parameter in ÿ⃗, no message ÿ with the same key bindings in the contents of any relation ÿ[ [ ] ]must have a binding 
for that parameter.

Definition 7 (Consistent bindings). The primitive ÿ(ÿ, ý⃗, ÿ⃗↩ ÿ) veriûes if the stated parameter bindings are compatible with the local 
state ÿ.

ÿ(ÿ, ý⃗, ÿ⃗↩ ÿ) iff (∀ÿ ∈ ÿ⃗, ÿ ∈ÿ,ÿ ∈ ÿ[ [ ] ], ý∶ if ÿ ∋ ý⃗↩ ý and ÿ ∋ ÿ↩ ý then ý = ÿ)

That is, for each parameter in ÿ⃗, no message ÿ with the same key bindings in any relation contents ÿ[ [ ] ] has a different binding 
for that parameter. An absent binding is acceptable.

5.5. Operational semantics

The style of the semantic description we adopt here is called (structural) operational semantics [28]. Speciûcally, like Vieira 
et al. [24], our presentation matches the notion of a labeled transition system [28, p. 24] where the set of conûgurations is given by 
multiagent system conûgurations (Deûnition 11), the labels or actions are given by the actions of an agent emitting or receiving a 
message, and the transition relation is given by the progression of one system conûguration to another (Deûnition 12). Our focus on 
message emission and reception is likewise in congruence with Plotkin9s advice that <It is a matter of experience to choose the right 
deûnition of external behavior= [28, p. 20].

Our semantics shows how BDI constructs can be adapted to incorporate information protocols. Deûnition 8 captures an agent 
conûguration emphasizing what is needed for communication.

Definition 8 (Agent configuration). The conûguration of an agent ag is a tuple ïÿ,ÿ,ÿ ,ÿýÿýð, where ÿ = agÿ is ag9s local state, 
ÿ = agÿ is ag9s circumstance, ÿ = agÿ is ag9s temporary information, and ÿýÿý is ag9s current step.

Deûnition 9 characterizes a multiagent system and Deûnition 10 describes how a multiagent system enacts a protocol.

Definition 9 (Multiagent system). A multiagent system for ÿ is given by ïAgents,ÿýÿÿÿÿýýð, where Agents is a set of agents and ÿýÿÿÿÿýý
is a set of channels, each channel being ýý,ÿ, where ý, ÿ ∈ ýýÿÿýý and ý ≠ ÿ.

Deûnition 10 characterizes a MAS for a protocol: a MAS must assign agents to all of the protocol roles, and have the channels 
between the assigned agents that are necessary for sending all of its messages.

Definition 10 (System for protocols). Let ÿ be a protocol and MAS = ïAgents,ÿýÿÿÿÿýýð be a multiagent system. Let Roles be the set of 
roles such that ý ∈ R iff ý appears as sender or receiver in some schema of Λ(ÿ ). Then, MAS is a multiagent system for ÿ provided 
there is a function Assign, where Assign∶ Roles → ℘(Agents) is a total and injective function, and if there exists a schema in Λ(ÿ )
with sender Sender and receiver Receiver, then there is a corresponding channel from the agent Assign(Sender) to every agent in 
Assign(Receiver).

Deûnition 11 deûnes a conûguration for a multiagent system based on the conûgurations of its member agents and the contents 
of the communication channels between them.

Definition 11 (System configuration). Let MAS = ï{ag0…agÿ},{ýý0,ÿ0…ýýý,ÿý}ð be a multiagent system. Then, a conûguration for 
MAS is given by:

ï{ïÿ0,ÿ0, ÿ0,ÿýÿý0ð… ïÿÿ,ÿÿ, ÿÿ,ÿýÿýÿð},ýý0,ÿ0…ýýý,ÿýð

For ease of exposition, it helps to show how reasoning in Argus relates to the Jason reasoning cycle. Fig. 4 shows the Jason 
reasoning cycle highlighting the parts (squiggly red transitions) relevant to our semantics.

An agent9s conûguration may change according to the Jason reasoning cycle (the blue, solid transitions in Fig. 4). These conûgu-
ration changes are not important in the Argus semantics. The remaining conûguration changes (shown as squiggly red transitions in 
Fig. 4) correspond to the emission or reception of a message, which, in each case, also changes the requisite channel.
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Fig. 4. Argus reasoning related to the Jason reasoning cycle. This diagram highlights the two transitions pertaining to communication, which correspond to 
communication-related transitions in Jason for emitting and receiving a message. The communication-related transition in Jason corresponding to a blocking emission 
waiting for a reply (shown dashed) is eliminated in Argus.

Deûnition 12 describes that a multiagent system9s conûguration progresses whenever an agent9s conûguration changes due to the 
emission or reception of a message, which, in each case, also changes the requisite channel to which the message is emitted or from 
which the message is received.

Definition 12 (Progression). 

ï{ïÿ0,ÿ0, ÿ0,ÿýÿý0ð… ïÿÿ,ÿÿ, ÿÿ,ÿýÿýÿð},ýý0,ÿ0…ýýý,ÿýð⟶

ï{ïÿ′
0
,ÿ ′

0
, ÿ ′

0
,ÿýÿý′

0
ð… ïÿ′

ÿ,ÿ
′
ÿ, ÿ

′
ÿ ,ÿýÿý

′
ÿð},ý

′
ý0,ÿ0

…ý′
ýý,ÿýð

such that there exist ÿ and ý such that ÿÿ ≠ÿ′
ÿ
and either ýÿ,ý ≠ ý′

ÿ,ý
or ýý,ÿ ≠ ý′

ý,ÿ
.

Notice that Deûnition 12 admits concurrency in that there could be two (or more) agents sending or receiving messages at the 
same time as long as they send and receive from channels that change. The deûnition prevents lockstep sending and receiving of a 
message. For example, if Alice sends Bob a message and Bob receives the message at the same time, Alice and Bob9s local states would 
change but the channel from Alice to Bob that Alice sent the message to and which Bob received that message from would remain net 
unchanged. In BSPL, the causal intuition is crucial, meaning that sends causally precede receives, and thus do not occur concurrently. 
Therefore, we require a channel to ûrst gain a message (through an emission) and only subsequently to lose that message (through a 
reception).

In Argus, sending is nonblocking and receptions are always enabled and nondeterministic. Point-to-point channels (Section 5.2) 
convey messages from the emitter to the receiver. The emitter or receiver9s conûguration changes in conjunction with changes to the 
relevant channel. Nothing else changes in the multiagent system so we leave it out for brevity.

The Argus semantics requires only two rules to describe communication, one for message emission and one for message reception, 
because message emission and reception are the only two actions in our model of interaction between agents. The rules below provide 
the elements of the structure of the transitions as characterized by Deûnition 12 and thus üesh out the progression of a multiagent 
system.

Let9s brieüy explain how to read each of these operational rules. On the left of the horizontal line is a name for the rule describ-
ing its purpose in our semantics. Below the horizontal line is a statement of a transition from a prior agent conûguration deûned 
abstractly (using metavariables ÿ, ÿ , and so on) to a posterior agent conûguration deûned abstractly. Above the horizontal line is a 
set of assertions that impose some constraints on the metavariables occurring below the line in the prior agent conûguration. These 
assertions must hold before the rule ûres for the corresponding values of the metavariables. That is, they characterize the prior agent 
conûguration. The where statements below the transition deûne the metavariables occurring below the line in the posterior agent 
conûguration.

5.5.1. Message emission
Given a protocol ÿ , an agent in its ýýÿýýÿý step executes an intention whose ûrst part is to emit a message instance. We perform 

two tests for a message instance using its message schema and the local state: (1) the bindings of its ?ÿÿ@ parameters are known in 
the local state, and (2) no bindings for its ?ýÿý@ and ?ÿÿý@ parameters are known in the agent9s local state.

Emit

ÿÿ = ÿ[ℎÿÿý ← .ÿÿÿý(ÿ[ag, ÿ, ý⃗↩ ý]);ℎ] ÿ[ý, ÿ, ý⃗ÿ , ý⃗ý , ý⃗ÿ , ý⃗ý ] ∈ Λ(ÿ )

ÿ(ÿ, [ý⃗ÿ ∩ ý⃗ý ], [ý⃗ý ↩ ýý ]) ý(ÿ, [ý⃗ÿ ∩ ý⃗ý ↩ ýÿ ∩ ýý ], [ý⃗ÿ , ý⃗ý ])

ïÿ,ÿ,ÿ ,ýýÿýýÿýð,ýag,ÿ ⟶ ïÿ′,ÿ ′, ÿ ,ÿýÿýÿýð,ý′
ag,ÿ

where∶

ÿ′ = ÿ+ ÿ[ [ag, ÿ, ý⃗↩ ý] ]
ÿ ′
ý
= (ÿý ⧵ {ÿÿ}) ∪ {ÿ[ℎÿÿý ← ℎ]}

ý′ = ý ∪ {ÿ[ [ag, ÿ, ý⃗↩ ý] ]}
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Upon emitting the message, the agent advances as follows. One, it consumes its current intention, replaces it with the residual 
intention, and moves to the ÿýÿýÿý step. Two, it updates its local state to record the bindings of the emitted message in the corresponding 
relation. Simultaneously with the update, it adds the emitted message to the appropriate channel.

5.5.2. Message reception
When the agent is in its ÿÿýýýýý step and a message is available in some incoming channel, it may receive the message. For the 

reception to proceed, we verify if the bindings are compatible with the agent9s local state. Given a safe protocol and trustworthy 
agents, this compatibility check is redundant but we include it as good practice.

Upon receiving a message, if it passes the compatibility check, the agent advances as follows. One, it updates its local state to 
record the bindings of the received message in the corresponding relation. Two, it creates an event for those local state updates. 
Simultaneously, it removes the received message from the channel.

Receive
ÿ[ÿ,ag, ý⃗↩ ý] ∈ ýÿ,ag ÿ[ý, ÿ, ý⃗ÿ , ý⃗ý , ý⃗ÿ , ý⃗ý ] ∈ Λ(ÿ ) ÿ(ÿ, ý⃗ÿ , ý⃗↩ ý)

ïÿ,ÿ,ÿ ,ÿÿýýýýýð,ýÿ,ag ⟶ ïÿ′,ÿ ′, ÿ ,ÿÿýýÿð,ý′
ÿ,ag

where∶

ÿ′ = ÿ+ ÿ[ [ÿ,ag, ý⃗↩ ý] ]
ÿ ′
ý
= (ÿý ∪ {+ïÿ[ [ÿ,ag, ý⃗↩ ý] ],⊤ð}

ý′ = ý ⧵ {ÿ[ [ÿ,ag, ý⃗↩ ý] ]}

If a message fails the compatibility check, for convenience, we <discard= it by leaving it in the channel. Because channels are 
unordered sets of messages, leaving a message in a channel does not block other messages in the channel from reception.

We dispense with Jason9s selection (ÿý ) and social acceptability (ÿýýýýý) functions—see its Tell rule (p. 244). The receiver 
doesn9t select or reorder incoming messages. Section 6.5 describes the beneûts accruing to our approach due to its avoiding the 
selection and social acceptability functions.

6. Contrasting Argus with communication in a plain BDI approach

Argus modiûes a plain BDI approach by introducing communication protocols as explained above. Now we compare Argus with 
a plain BDI approach to make the case for the beneût of a careful treatment of agent communication protocols in the engineering of 
multiagent systems.

As explained above, we use Jason as the exemplar BDI approach with which to compare Argus. Jason9s communication language 
is KQML [22] and Jason9s operations are based on a blackboard architecture, as in tuplespaces [29]. These design choices prove to 
be limiting, as we explain below.

6.1. Summary of Jason’s operational semantics for communications

To effectively compare Argus with a traditional BDI approach with respect to communication, it helps to bring out and explain 
the key part of Jason9s operational semantics. Section 5.1 provides essential information to understand the rest of this subsection.

There are only two rules in the Jason semantics relevant to sending messages: one for Ask (and variants) and one for all the other 
illocutionary forces. Below is the rule called ExecActSndAsk from Vieira et al. [24, p. 241].

ExecActSndAsk
ÿÿ = ÿ[ℎÿÿý ← .ýÿÿý(ÿÿý, ilf , ýÿý);ℎ] ilf ∈ {AskIf ,AskAll,AskHow}

ïag,ÿ,ý,ÿ ,ýýÿýýÿýð⟶ ïag,ÿ ′,ý ′, ÿ ,ÿÿýýýýýð

where∶

ý ′
Out

= ýOut ∪ {ïmid, ÿý, ilf , ýÿýð}
ý ′

SI
= ýSI ∪ {(mid, ÿ[ℎÿÿý ← ℎ])},

with mid a new message identiûer;
ÿ ′
ý
= (ÿý ⧵ {ÿÿ})

In the above rule, the current intention is a plan to send a message of one of the Ask messages followed by a plan ℎ to work on 
the response. The rule puts the message in the outbox. It removes the current intention from the circumstance but places the latter 
part of the suspended current intention by setting up a trigger so that when a response message arrives (of a matching mid) it would 
execute the residual plan ℎ when that response arrives. ÿÿýýýýý is the step to process the response messages that would arrive.

Below is the rule called ExecActSnd from Vieira et al. [24, p. 242], for sending messages of other illocutionary forces besides 
Ask. This rule is simpler than the one above because it doesn9t wait for a response. Therefore, the next step is not ÿÿýýýýý as above, 
but ÿýÿýÿý.
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ExecActSnd
ÿÿ = ÿ[ℎÿÿý ← .ýÿÿý(ÿÿý, ilf , ýÿý);ℎ] ilf ∉ {AskIf ,AskAll,AskHow}

ïag,ÿ,ý,ÿ ,ýýÿýýÿýð⟶ ïag,ÿ ′,ý ′, ÿ ,ÿýÿýÿýð

where∶

ý ′
Out

= ýOut ∪ {ïmid, ÿý, ilf , ýÿýð}
with mid a new message identiûer;

ÿ ′
ý
= (ÿý ⧵ {ÿÿ}) ∪ {ÿ[ℎÿÿý ← ℎ]}

Below is the rule called Tell from Vieira et al. [24, p. 244], for receiving a Tell message. This rule assumes a function ÿý to 
decide which message in ýIn to consider based on the priority assigned by a programmer. The rule also assumes a function ÿýýýýý, 
which applies social reasoning to determine which action to take given the <social acceptability= of the message.

Tell

ÿý (ýIn) = ïmid, ÿý,Tell,ýýð
(mid, ÿ) ∉ýSI for any intention ÿÿýýýýý(ÿý,Tell,ýý)

ïag,ÿ,ý,ÿ ,ÿÿýýýýýð⟶ ïag,ÿ ′,ý ′, ÿ ,ÿÿýýÿð

where∶

ý ′
In
= ýIn ⧵ {ïmid, ÿý,Tell,ýýð}

for each ÿ ∈ýý:
ÿý′

ÿý
= agÿý + ÿ[ÿý]

ÿ ′
ý
= ÿý ∪ {ï+ÿ[ÿý],⊤ð}

Below is Jason9s MsgExchg rule (p. 242) that describes how the conûguration of a multiagent system progresses given how the 
conûgurations of the agents in the system progress when one of the agents sends a message to another agent.

MsgExchg
ïmid, ÿýÿ , ilf , ýÿýð ∈ýÿ,Out

{agÿý1
…agÿ…agÿýÿ

…agÿýÿ
, ÿÿÿ} ⟶ {agÿý1

…ÿý′ÿ …ÿý′
ÿýÿ

…agÿýÿ
, ÿÿÿ}

where∶
ý ′

ÿ,Out
= ýÿ,Out ⧵ {ïmid, ÿýÿ , ilf , ýÿýð ∈ýÿ,Out}

ý ′
ÿ,In

= ýÿ,In ∪ {ïmid, ÿýÿ, ilf , ýÿýð ∈ýÿ,In}

Below is Jason9s NoMsg rule (p. 249) that describes that an agent may proceed from its ÿÿýýýýý step when no message is present 
in its inbox.

NoMsg
ýIn = { }

ïag,ÿ,ý,ÿ ,ÿÿýýýýýð⟶ ïag,ÿ,ý,ÿ ,ÿÿýýÿð

6.2. Fixed message types and meanings

KQML features a predetermined set of message types. A ûxed set of message types (and associated meanings) is unnecessarily 
limiting because meaning arises from the application domain. There is no way that the designers of KQML (or any language) could 
anticipate all possible meanings [30, Singh9s essay, pp. 15–16]. For example, a price supplied for an item may have these meanings: 
(1) offer to sell at that price, as in e-commerce; (2) report of a recent transaction, as in stock markets; (3) current bid; (4) predicted 
price for a security, as in an analyst9s report. In practice, therefore, programmers simply use the Tell primitive as a transport wrapper 
and hope the meaning is clear from the payload. That is, the message type carries no practical information. Hence, there is no support 
for programmers to express the meanings of relevance to the application.

To get a sense of the semantic variety of speech acts, consider that Vanderveken [31, ch. 6] discusses 70 English assertives, 32 
commissives, 56 directives, 85 declaratives, and 28 expressives. KQML, by contrast, features only about two dozen speech acts, all 
assertives or directives, and several of which are merely operational variants. Jason features a strict subset of KQML9s speech acts 
(Table 1).

Argus dispenses with KQML primitives, such as Ask and Tell, which are central to Jason9s communication model. Instead, Argus 
simply provides a generic primitive to emit whatever application-speciûc messages are speciûed in the protocol. A message can be 
understood in illocutionary [23,32] terms as follows. The ?ÿÿ@ parameters in a message together with the ?ýÿÿ@ parameters can be 
understood as forming an informative and the ?ýÿý@ parameters together with the ?ýÿÿ@ parameters can be understood as forming a 
declarative.

In general, the application meaning of a message can be made explicit via representations such as those based on commitments 
and other norms [33,34]. For example, an offer message may be modeled as creating a practical commitment and a prediction 
message may be modeled as creating a dialectical commitment [35]. Although such representations are out of scope for this paper, 
application-speciûc communications provide the basis for capturing them, in contrast to KQML primitives such as Tell.

An important point is that the BSPL semantics provides precise computational interpretations for the parameter adornments (?ÿÿ@, 
?ýÿý@, and ?ÿÿý@). These interpretations are supported and enforced by the Argus architecture and are not left up to the decision 
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making of an agent. In contrast, BSPL has nothing to say about commitments or other norms. Thus, how agents process the meanings 
of the messages they exchange is captured in some other way, e.g., in higher-level protocols, which are not within the scope of the 
present paper.

6.3. Request-response communication

When a Jason agent sends some variant of the Ask message type using the ExecActSndAsk rule, the Jason reasoning cycle 
transitions from ýýÿýýÿý (where the message emission occurs) to ÿÿýýýýý (where the agent processes an incoming message, in this 
case, the reply) before continuing with that intention. That is, an intention is suspended upon sending the message until a matching 
reply arrives. In essence, this represents a BDI encoding of remote-procedure calls, a pattern from client-server computing that is 
well-known to be inapplicable where autonomous agents interact.

Argus does not use the ExecActSndAsk rule, instead replacing all message emissions with the single Emit rule, which is 
asynchronous—i.e., it does not wait for a reply. Thus, the Argus reasoning cycle always goes from ýýÿýýÿý to ÿýÿýÿý during emis-
sion.

Clearly, there could be cases where an agent must wait until it receives some information: protocols provide a simple way to express 
such dependencies and Argus supports enacting them. The design limitation is that Jason enshrines the two-party request-response 
pattern in its semantics whereas real-life communications are not always so constrained. For example, three-party interactions are 
common (as Listing 4 shows, in our running example, Professor sends a message to Student, who sends a response to TA). Jason9s 
selection of the two-party request-response pattern as special may have been motivated by adherence to KQML rather than any 
fundamental principle.

Fig. 4 shows the reasoning cycle for an Argus agent, which is identical to Jason9s reasoning cycle except for the removal of the 
path between ýýÿýýÿý and ÿÿýýýýý (which is still drawn, but as a dashed line to highlight which transition was removed).

6.4. Correlation by syntactic identifiers

Argus9 programming model takes advantage of keys in BSPL to correlate information, as Listing 7 illustrates. The order in which 
the rubric and response for a given question are received is unimportant because they are guarded and matched based on the enactment 
keys, TID and QID. Crucially, the keys come from the application domain and, therefore, are semantic in nature. From the point of 
view of implementation, Argus beneûts from the logic programming model underlying Jason, which can accommodate semantic 
identiûers.

By contrast, Jason9s communication model lacks semantic identiûers. This means that identiûers and correlation must be imple-
mented in agents in ad hoc ways, leading to tight coupling between agents [15]. An identiûer mid, as used in ExecActSndAsk and 
other rules, is deûned as a message identiûer but is used as a conversation identiûer, i.e., for correlation, since it is reused by a 
response message. Such identiûers are <syntactic= because they are unrelated to the application domain.

Chopra and Singh [36] classify the use of such identiûers as a semantic antipattern because by artiûcially compartmentalizing 
elements of the application state, such identiûers block necessary semantic inference. Drawing upon Chopra and Singh9s example, 
commitment reasoning, which is at a higher level than Jason9s conversations, would not work on a store of messages in Jason. By 
contrast, commitment reasoning works naturally on top of the local state [18,15]. One might insert semantic keys in the payload of a 
Jason (i.e., KQML) message. Whereas, in general, inserting semantic keys would be an improvement, it would mean we would have 
two standards of keys and still no support from the architecture.

Further, a single identiûer such as mid is inadequate for modeling subconversations [15]. In terms of our running example, every 
challenge in a test may be thought of as a subconversation.

6.5. Hidden dependencies via external functions

Jason9s selection ÿý and social acceptability ÿýýýýý are hidden functions in the sense that neither ÿý nor ÿýýýýý is based on 
the state of the receiving agent, as captured by its beliefs. ÿý is a function of the inbox of the agent. Thus, it presumably has access 
to the messages in the inbox. Each incoming message is given by a four-tuple ïmid, id, ilf , cntð, where mid is a message identiûer, id
identiûes the sending agent, ilf is the illocutionary force of the message (e.g., Tell), and cnt is its content (such as assertions being) 
[24, p. 241]. ÿýýýýý is a function of the body of a message, i.e., everything except its message identiûer, mid. Since they are not 
based on the receiving agent9s state, it9s unclear how these functions can reasonably be computed. It appears they are hardcoded, if 
used at all.

ÿý and ÿýýýýý go against the BDI paradigm. Relying on them means that the receiver9s beliefs do not reüect its information about 
the world because some of the state is hidden in the outcomes of these functions. In essence, the receiving agent9s behavior is not 
characterized by its beliefs and intentions. ÿý and ÿýýýýý also go against interaction orientation by capturing part of the interaction 
while being internal to an agent. These functions thus form hidden dependencies between agents by coupling their internals so that 
the multiagent system progresses as desired.

In general, as a physical system, the agent knows [37] that a message has arrived because the agent has performed computations 
based on it. Omitting the knowledge of a message from the agent9s beliefs is not only an exercise in self-deception but also enables 
antipatterns in multiagent architecture [15]. In addition, external functions such as ÿý and ÿýýýýý exacerbate complexity for the 
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programmer since the agent9s control state is split between these functions and the agent9s intentions. The two representations must 
be constantly reconciled.

An Argus agent also processes messages available for reception—as encoded in the Receive rule—before making them part of the 
agent9s belief base (speciûcally, its local state). However, whereas Jason9s ÿý and ÿýýýýý are intended to capture an agent9s decision 
making, the processing in the Receive encodes protocol semantics, not an agent9s decision making.

6.6. Tackling prioritization and social acceptability in Argus

We emphasize that prioritization and social acceptability are valuable capabilities for an agent. For example, a merchant may 
prioritize shipping goods based on its inventory and may offer discounts or credits to customers of long standing. With Argus, priorities 
and social relationships are readily captured using beliefs and plans, as Listing 13 demonstrates. Notably, Vieira et al. [24][p. 244] 
indeed note the possibility of capturing social constraints using practical reasoning as an alternative to ÿýýýýý.

Listing 13: Prioritizing TA in Argus.
1 s t u d e n t ( " s 1 " , 3 ) . / / I D , y e a r 
2 s t u d e n t ( " s 2 " , 4 ) . 
3 
4 r e v e r s e ( [ ] , Z , Z ) : − t r u e . 
5 r e v e r s e ( [ H | T ] , Z , A c c ) : − r e v e r s e ( T , Z , [ H | A c c ] ) . 
6 
7 + r e s p o n s e ( M a s I D , S t u d e n t , T A , T I D , Q I D , Q u e s t i o n , A n s w e r ) 
8 : r u b r i c ( M a s I D , P r o f e s s o r , T A , T I D , Q I D , S o l u t i o n ) < − 
9 + t a s k ( M a s I D , T I D , Q I D , A n s w e r , S o l u t i o n ) . 
10 
11 + r u b r i c ( M a s I D , P r o f e s s o r , T A , T I D , Q I D , S o l u t i o n ) 
12 : r e s p o n s e ( M a s I D , S t u d e n t , T A , T I D , Q I D , Q u e s t i o n , A n s w e r ) < − 
13 + t a s k ( M a s I D , T I D , Q I D , A n s w e r , S o l u t i o n ) . 
14 
15 + t a s k ( M a s I D , T I D , Q I D , A n s w e r , S o l u t i o n ) 
16 : . c o u n t ( t a s k ( _ , _ , _ , _ , _ ) , C ) & C = 6 
17 < − ! p r i o r i t i z e ( P ) ; 
18 ! w o r k ( P ) . 
19 
20 + ! w o r k ( P ) < − 
21 f o r ( . m e m b e r ( [ Y e a r , T I D , Q I D ] , P ) ) { 
22 t a s k ( M a s I D , T I D , Q I D , A n s , S o l ) ; 
23 ! g r a d e ( M a s I D , T I D , Q I D , A n s , S o l ) ; 
24 } . 
25 
26 + ! m a p _ y e a r ( [ [ T I D , Q I D ] | [ ] ] , P ) : s t u d e n t ( T I D , Y e a r ) < − 
27 P = [ [ Y e a r , T I D , Q I D ] ] . 
28 + ! m a p _ y e a r ( [ [ T I D , Q I D ] | T ] , P ) : s t u d e n t ( T I D , Y e a r ) < − 
29 ! m a p _ y e a r ( T , P 2 ) ; 
30 P = [ [ Y e a r , T I D , Q I D ] | P 2 ] . 
31 
32 + ! p r i o r i t i z e ( P ) < − 
33 . f i n d a l l ( [ T I D , Q I D ] , t a s k ( M a s I D , T I D , Q I D , A n s , S o l ) , L ) ; 
34 ! m a p _ y e a r ( L , L 2 ) ; 
35 . s o r t ( L 2 , L 3 ) ; 
36 r e v e r s e ( L 3 , P , [ ] ) . 
37 
38 + ! g r a d e ( M a s I D , T I D , Q I D , A n s w e r , S o l u t i o n ) < − 
39 i f ( A n s w e r = = S o l u t i o n ) { 
40 . p r i n t ( T I D , Q I D , A n s w e r , " m a t c h e s " , S o l u t i o n ) ; 
41 G r a d e = 1 ; 
42 } e l s e { 
43 . p r i n t ( T I D , Q I D , A n s w e r , " d o e s n o t m a t c h " , S o l u t i o n ) ; 
44 G r a d e = 0 ; 
45 } 
46 . p r i n t ( " G r a d e : " , G r a d e ) ; 
47 . e m i t ( r e s u l t ( M a s I D , T A , P r o f e s s o r , T I D , Q I D , A n s w e r , S o l u t i o n , G r a d e ) ) . 

In Listing 13, the TA does not directly initiate a goal for grading results but instead creates tasks that can be prioritized. Timofey 
waits until he has six available tasks before starting his work (elided in the abridged version), so he can prioritize them using social 
constraints, namely student seniority. Timofey prioritizes senior students (who may need to graduate or register for classes earlier) 
by sorting the tasks according to the students9 years in college.
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6.7. Synchronization via shared artifacts

Jason adopts the idea of a blackboard architecture for coordinating cooperative problem solvers [38,39]. Jason9s MsgExchg rule 
(p. 242) assumes synchronization since a message appears in the sender and receiver9s conûgurations simultaneously.

Carriero and Gelernter [29,40] describe tuplespaces, an approach for coordinating distributed computation where agents read from 
and write on a shared space (i.e., a blackboard) to exchange information. CArtAgO [41], which envisages Jason agents interacting 
through shared artifacts in the environment, supports tuplespaces as a particular type of coordination artifact.

The main idea behind tuplespaces is separating coordination from computation—a major step forward at the time. Common op-
erations on tuplespaces include in(t), which blocks until it can take a matching tuple (removing it from the tuplespace), rd which is 
like in but copies the tuple instead of removing it, and out, which writes a tuple to the tuplespace. These operators create information 
dependencies similar to the ?ÿÿ@ and ?ýÿý@ parameter adornments of BSPL: an in cannot return until the corresponding out completes. 
Although similar, there are signiûcant conceptual differences, most crucially that tuplespaces leave the relationships between oper-
ations on tuples up to the agent implementations. Thus, an agent programmer must implement the correct sequence of tuplespace 
operations without programming model support. Further, the programmers of different agents must agree on their implementations 
for purposes of interoperability, thus compromising loose coupling. BSPL avoids these problems by explicitly modeling parameter 
relationships in the message schemas in protocols, which Argus exploits in a programming model that supports implementing agents.

Also, tuplespaces require an agent to select information to read for processing. As Section 6.5 explains, this approach places 
decision-making outside of the cognitive model of the agent.

Our semantics incorporates asynchrony in a shared-nothing setting (avoiding synchronization primitives) [42] that enables agents 
to proceed in a maximally decoupled manner, constrained only by the causal dependencies between the messages they send one 
another.

We note that some implementations of tuplespaces support nonblocking versions of in and rd; regardless, the points we make 
above remain valid.

6.8. Comparing the programming models

Jason doesn9t support communication protocols. Vieira et al. [24] state that <communication structures= can be captured as plans 
(p. 253). However, plans are placed within agents. It is well known that plans are not protocols, which are about interaction [3]. 
Moreover, adding protocols to Jason is nontrivial because Jason9s design suffers from crucial limitations, which we described above.

The use of protocols at the heart of a programming model in Argus facilitates the implementation of agents by encoding the 
protocol-speciûc reasoning in the generated code and the protocol adapter, enabling programmers to focus on the agent9s decision 
making. The generated code provides clear points for plugging in the decision making and guides the implementation of agents so that 
they attempt to emit only legal (enabled) messages. The agent9s adapter enforces all protocol constraints, ensuring that its emissions 
and receptions accord with its local state. The adapter is crucial for catching errors in agent implementations. In this manner, the 
generated code and the adapter support correctness as well.

Argus supports interoperability and loose coupling. Therefore, beyond agreeing on the protocol and developing agents to enact 
the respective roles in the protocol, the programmers do not need to coordinate their design choices. The agents may be contributed 
by multiple programmers in different organizations.

There is a small caveat though. The Argus adapter sends and received JSON-encoded messages over UDP and materializes them as 
beliefs. As long as agents use the Argus adapter, interoperability is guaranteed. However, if agents want to use different BSPL adapters, 
then standardizing on the message encoding and transport becomes necessary. Such standardization would indeed be valuable.

In Argus, messages arrive nondeterministically, including when a response is expected to a previous query. Moreover, Argus 
doesn9t have any use for suspended intentions to deal with requests in progress because the local state is captured entirely in the 
parameter bindings. The internals of an agent can function arbitrarily.

7. Case study: HL7

We highlight the beneûts of Argus by modeling a healthcare scenario speciûed by HL7, a health standards body, as a UML activity 
diagram [43] (reproduced as Fig. 9 in the Appendix). The scenario describes the process for creating a lab order—that is, for a health 
care provider to request collection of (or collect themselves) a sample from the patient and then perform lab work on the sample. 
The scenario is üexible because there are three ways that samples could be collected. Thus, there could be multiple ways to report 
that work is completed depending on the needs of the agents. Our model involves four agents: Patient, Provider, Collector, and 
Laboratory. We elide the interactions between these roles and their computer systems (which the original UML includes) because 
we focus on interactions between autonomous parties. For the present study, we modeled the scenario as an information protocol 
based on the formalization of Christie V et al. [44] with some corrections and simpliûcations. Listing 14 shows this protocol.

The main interaction is the CreateOrder protocol, which begins with Patient submitting a complaint to Provider, who then 
communicates the need for lab work to Laboratory. The interaction then branches into three possible protocols for sample collection: 
(1) the provider can collect the sample themselves, (2) the provider can instruct the subject to visit the lab, who performs the collection, 
(3) or the provider can instruct the subject to get an appointment with a third party specialist who performs the collection.

Once the lab work has been performed, the lab communicates the results to the provider, either directly or by notifying them that 
they are available for querying.
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Fig. 5. Possible Provider Collection enactment, with querying for results. 

We have written a protocol adapting the worküow, focusing on the communication and üow of information. Some of the other 
actions, such as transporting samples, are also adapted as messages; these could be interpreted as notiûcations about the sample 
transfer instead of sending digital samples only.

Listing 14: The main interaction üow of the HL7 Create Laboratory Order standard expressed in BSPL.

1 C r e a t e O r d e r { 
2 r o l e s P a t i e n t , P r o v i d e r , C o l l e c t o r , L a b o r a t o r y 
3 p a r a m e t e r s o u t I D k e y , o u t c o m p l a i n t , o u t r e p o r t 
4 p r i v a t e o r d e r , c o l l e c t i o n , s p e c i m e n , u n s u i t a b l e , r e c e i v e d , r e s u l t s , r e s u l t s − i d , c o − l o c a t i o n , c o n t a c t , 

q u e r y , r e q u e s t , o r d e r − q u e r y , o r d e r − r e s p o n s e 
5 
6 P a t i e n t ↦ P r o v i d e r : C o m p l a i n [ o u t I D , o u t c o m p l a i n t ] 
7 P r o v i d e r ↦ L a b o r a t o r y : E n t e r R e q u e s t [ i n I D , i n c o m p l a i n t , o u t o r d e r ] 
8 
9 P r o v i d e r ↦ L a b o r a t o r y : S h i p [ i n I D , i n o r d e r , o u t c o l l e c t i o n , o u t s p e c i m e n ] 
10 P r o v i d e r ↦ C o l l e c t o r : N o n P r o v i d e r C o l l e c t [ i n I D , i n o r d e r , o u t c o l l e c t i o n , o u t c o − l o c a t i o n ] 
11 P r o v i d e r ↦ P a t i e n t : N e e d A p p o i n t m e n t [ i n I D , i n o r d e r , o u t c o l l e c t i o n , o u t c o n t a c t ] 
12 
13 P a t i e n t ↦ C o l l e c t o r : S c h e d u l e [ i n I D , i n c o n t a c t , o u t c o − l o c a t i o n , n i l s p e c i m e n ] 
14 C o l l e c t o r ↦ P r o v i d e r : O r d e r Q u e r y [ i n I D , i n c o − l o c a t i o n , n i l o r d e r , o u t o r d e r − q u e r y ] 
15 P r o v i d e r ↦ C o l l e c t o r : O r d e r R e s p o n s e [ i n I D , i n o r d e r − q u e r y , i n o r d e r , o u t o r d e r − r e s p o n s e ] 
16 C o l l e c t o r ↦ L a b o r a t o r y : C o l l e c t S p e c i m e n [ i n I D , i n o r d e r , i n c o − l o c a t i o n , o u t s p e c i m e n ] 
17 
18 L a b o r a t o r y ↦ C o l l e c t o r : N o t i f y U n s u i t a b l e [ i n I D , i n o r d e r , i n s p e c i m e n , o u t u n s u i t a b l e ] 
19 L a b o r a t o r y ↦ C o l l e c t o r : N o t i f y R e c e i v e d [ i n I D , i n o r d e r , i n s p e c i m e n , o u t r e c e i v e d ] 
20 
21 L a b o r a t o r y ↦ P r o v i d e r : R e s u l t s [ i n I D , i n o r d e r , i n s p e c i m e n , o u t r e s u l t s ] 
22 L a b o r a t o r y ↦ P r o v i d e r : R e s u l t s A v a i l a b l e [ i n I D , i n o r d e r , i n s p e c i m e n , o u t r e s u l t s − i d ] 
23 
24 P r o v i d e r ↦ L a b o r a t o r y : Q u e r y [ i n I D , i n r e s u l t s − i d , o u t q u e r y ] 
25 L a b o r a t o r y ↦ P r o v i d e r : S e n d R e s u l t s [ i n I D , i n r e s u l t s − i d , i n q u e r y , o u t r e s u l t s ] 
26 
27 P r o v i d e r ↦ P a t i e n t : A l l R e c e i v e d [ i n I D , i n r e s u l t s , o u t r e p o r t ] 
28 } 

The above listing gives the complete speciûcation of the interaction. In this collection of actions, Patient sends a complaint to 
Provider. Based on this complaint, Provider creates an order for laboratory work and sends it to Laboratory. Then, one of the 
three methods for sample collection are performed: the provider can collect the specimen, or they can delegate collection to Collec-
tor, to be performed either immediately or at a later scheduled appointment. After the collection has been performed, Laboratory 
may respond in several ways, notifying that they9ve received the samples, possibly üagging them as unsuitable and requiring another 
collection, and returning results either directly or via notiûcation for retrieval. When all the work has been completed, Provider 
sends the ûnal results to Patient. Figs. 5–7 demonstrate protocol enactments corresponding to the three collection methods.
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Fig. 6. Possible Nonprovider Collection enactment. 

Fig. 7. Possible Scheduled Collection enactment. 

7.1. Role skeletons

Our tooling generates the agent skeletons from the protocol. Speciûcally, Listings 15 and 16 respectively state the skeletons for 
roles Patient and Provider. The skeletons clearly indicate where programmers need to plug in internal reasoning. In the absence 
of the protocol, as is currently the case with Jason, a programmer would have no basis for structuring agents as such and would have 
to ûgure out the entire agent design from scratch. (Generated skeletons for all roles are available in the online code repository. In the 
light of Jason9s syntactic conventions, in the generated code, Uppercase and CamelCase message names are automatically converted 
to lowercase names with 8_9 between component names and lowercase parameter names are automatically converted into Uppercase 
names.)
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Listing 15: Agent skeletons for role Patient automatically generated from the protocol of Listing 14.

1 + ! s e n d _ c o m p l a i n 
2 < − / / i n s e r t c o d e t o c o m p u t e C o m p l a i n o u t p a r a m e t e r s [ ’ I D ’ , ’ c o m p l a i n t ’ ] h e r e 
3 . e m i t ( c o m p l a i n ( M a s I D , P a t i e n t , P r o v i d e r , I D , C o m p l a i n t ) ) . 
4 
5 + n e e d _ a p p o i n t m e n t ( M a s I D , P r o v i d e r , P a t i e n t , I D , O r d e r , C o l l e c t i o n , C o n t a c t ) 
6 < − / / i n s e r t c o d e t o c o m p u t e S c h e d u l e o u t p a r a m e t e r s [ ’ c o − l o c a t i o n ’ ] h e r e 
7 . e m i t ( s c h e d u l e ( M a s I D , P a t i e n t , C o l l e c t o r , I D , C o n t a c t , C o L o c a t i o n ) ) . 

Listing 16: Agent skeleton for role Provider automatically generated from the protocol of Listing 14.

1 + c o m p l a i n ( M a s I D , P a t i e n t , P r o v i d e r , I D , C o m p l a i n t ) 
2 < − / / i n s e r t c o d e t o c o m p u t e E n t e r R e q u e s t o u t p a r a m e t e r s [ ’ o r d e r ’ ] h e r e 
3 . e m i t ( e n t e r _ r e q u e s t ( M a s I D , P r o v i d e r , L a b o r a t o r y , I D , C o m p l a i n t , O r d e r ) ) . 
4 
5 + e n t e r _ r e q u e s t ( M a s I D , P r o v i d e r , L a b o r a t o r y , I D , C o m p l a i n t , O r d e r ) 
6 : n o t n o n _ p r o v i d e r _ c o l l e c t ( M a s I D , P r o v i d e r , C o l l e c t o r , I D , O r d e r , C o l l e c t i o n , C o L o c a t i o n ) & n o t 

n e e d _ a p p o i n t m e n t ( M a s I D , P r o v i d e r , P a t i e n t , I D , O r d e r , C o l l e c t i o n , C o n t a c t ) & n o t r e s u l t s ( M a s I D , 
L a b o r a t o r y , P r o v i d e r , I D , O r d e r , S p e c i m e n , R e s u l t s ) & n o t r e s u l t s _ a v a i l a b l e ( M a s I D , L a b o r a t o r y , 
P r o v i d e r , I D , O r d e r , S p e c i m e n , R e s u l t s I d ) 

7 < − / / i n s e r t c o d e t o c o m p u t e S h i p o u t p a r a m e t e r s [ ’ c o l l e c t i o n ’ , ’ s p e c i m e n ’ ] h e r e 
8 . e m i t ( s h i p ( M a s I D , P r o v i d e r , L a b o r a t o r y , I D , O r d e r , C o l l e c t i o n , S p e c i m e n ) ) . 
9 
10 + e n t e r _ r e q u e s t ( M a s I D , P r o v i d e r , L a b o r a t o r y , I D , C o m p l a i n t , O r d e r ) 
11 : n o t s h i p ( M a s I D , P r o v i d e r , L a b o r a t o r y , I D , O r d e r , C o l l e c t i o n , S p e c i m e n ) & n o t n e e d _ a p p o i n t m e n t ( M a s I D 

, P r o v i d e r , P a t i e n t , I D , O r d e r , C o l l e c t i o n , C o n t a c t ) & n o t o r d e r _ q u e r y ( M a s I D , C o l l e c t o r , P r o v i d e r , 
I D , C o L o c a t i o n , O r d e r Q u e r y ) 

12 < − / / i n s e r t c o d e t o c o m p u t e N o n P r o v i d e r C o l l e c t o u t p a r a m e t e r s [ ’ c o − l o c a t i o n ’ , ’ c o l l e c t i o n ’ ] h e r e 
13 . e m i t ( n o n _ p r o v i d e r _ c o l l e c t ( M a s I D , P r o v i d e r , C o l l e c t o r , I D , O r d e r , C o l l e c t i o n , C o L o c a t i o n ) ) . 
14 
15 + e n t e r _ r e q u e s t ( M a s I D , P r o v i d e r , L a b o r a t o r y , I D , C o m p l a i n t , O r d e r ) 
16 : n o t s h i p ( M a s I D , P r o v i d e r , L a b o r a t o r y , I D , O r d e r , C o l l e c t i o n , S p e c i m e n ) & n o t n o n _ p r o v i d e r _ c o l l e c t ( 

M a s I D , P r o v i d e r , C o l l e c t o r , I D , O r d e r , C o l l e c t i o n , C o L o c a t i o n ) 
17 < − / / i n s e r t c o d e t o c o m p u t e N e e d A p p o i n t m e n t o u t p a r a m e t e r s [ ’ c o l l e c t i o n ’ , ’ c o n t a c t ’ ] h e r e 
18 . e m i t ( n e e d _ a p p o i n t m e n t ( M a s I D , P r o v i d e r , P a t i e n t , I D , O r d e r , C o l l e c t i o n , C o n t a c t ) ) . 
19 
20 + o r d e r _ q u e r y ( M a s I D , C o l l e c t o r , P r o v i d e r , I D , C o L o c a t i o n , O r d e r Q u e r y ) 
21 : e n t e r _ r e q u e s t ( M a s I D , P r o v i d e r , L a b o r a t o r y , I D , C o m p l a i n t , O r d e r ) 
22 < − ! s e n d _ o r d e r _ r e s p o n s e ( M a s I D , P r o v i d e r , C o l l e c t o r , I D , O r d e r Q u e r y , O r d e r ) . 
23 
24 + e n t e r _ r e q u e s t ( M a s I D , P r o v i d e r , L a b o r a t o r y , I D , C o m p l a i n t , O r d e r ) 
25 : o r d e r _ q u e r y ( M a s I D , C o l l e c t o r , P r o v i d e r , I D , C o L o c a t i o n , O r d e r Q u e r y ) 
26 < − ! s e n d _ o r d e r _ r e s p o n s e ( M a s I D , P r o v i d e r , C o l l e c t o r , I D , O r d e r Q u e r y , O r d e r ) . 
27 
28 + ! s e n d _ o r d e r _ r e s p o n s e ( M a s I D , P r o v i d e r , C o l l e c t o r , I D , O r d e r Q u e r y , O r d e r ) 
29 < − / / i n s e r t c o d e t o c o m p u t e O r d e r R e s p o n s e o u t p a r a m e t e r s [ ’ o r d e r − r e s p o n s e ’ ] h e r e 
30 . e m i t ( o r d e r _ r e s p o n s e ( M a s I D , P r o v i d e r , C o l l e c t o r , I D , O r d e r Q u e r y , O r d e r , O r d e r R e s p o n s e ) ) . 
31 
32 + r e s u l t s _ a v a i l a b l e ( M a s I D , L a b o r a t o r y , P r o v i d e r , I D , O r d e r , S p e c i m e n , R e s u l t s I d ) 
33 < − / / i n s e r t c o d e t o c o m p u t e Q u e r y o u t p a r a m e t e r s [ ’ q u e r y ’ ] h e r e 
34 . e m i t ( q u e r y ( M a s I D , P r o v i d e r , L a b o r a t o r y , I D , R e s u l t s I d , Q u e r y ) ) . 
35 
36 + r e s u l t s ( M a s I D , L a b o r a t o r y , P r o v i d e r , I D , O r d e r , S p e c i m e n , R e s u l t s ) 
37 < − / / i n s e r t c o d e t o c o m p u t e A l l R e c e i v e d o u t p a r a m e t e r s [ ’ r e p o r t ’ ] h e r e 
38 . e m i t ( a l l _ r e c e i v e d ( M a s I D , P r o v i d e r , P a t i e n t , I D , R e s u l t s , R e p o r t ) ) . 
39 
40 + s e n d _ r e s u l t s ( M a s I D , L a b o r a t o r y , P r o v i d e r , I D , R e s u l t s I d , Q u e r y , R e s u l t s ) 
41 < − / / i n s e r t c o d e t o c o m p u t e A l l R e c e i v e d o u t p a r a m e t e r s [ ’ r e p o r t ’ ] h e r e 
42 . e m i t ( a l l _ r e c e i v e d ( M a s I D , P r o v i d e r , P a t i e n t , I D , R e s u l t s , R e p o r t ) ) . 

7.2. Agents

Patient-1 is an agent that implements role Patient by üeshing out the skeleton in Listing 15.
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Listing 17: Patient-1, an agent playing role Patient.

1 ! s e n d _ c o m p l a i n . 
2 + ! s e n d _ c o m p l a i n 
3 < − M A S = " m a i n " ; 
4 I D = 1 ; 
5 C o m p l a i n t = " M y t o e h u r t s . " ; 
6 . p r i n t ( " C o m p l a i n i n g : " , C o m p l a i n t ) ; 
7 . e m i t ( c o m p l a i n ( M A S , P a t i e n t , P r o v i d e r , I D , C o m p l a i n t ) ) . 
8 
9 + n e e d _ a p p o i n t m e n t ( M a s I D , P r o v i d e r , P a t i e n t , I D , O r d e r , C o l l e c t i o n , C o n t a c t ) 
10 < − C o L o c a t i o n = " l a b 4 " ; 
11 . e m i t ( s c h e d u l e ( M a s I D , P a t i e n t , C o l l e c t o r , I D , C o n t a c t , C o L o c a t i o n , S p e c i m e n ) ) . 
12 
13 + a l l _ r e c e i v e d ( M a s I D , P r o v i d e r , P a t i e n t , I D , R e s u l t s , R e p o r t ) 
14 < − . p r i n t ( R e p o r t ) . 

As shown above, completing the agent speciûcation is as simple as binding the identiûed out parameters. This can be as simple 
as setting them to a constant, or could involve more complex logic that selects the values based on the bindings of other parameters. 
The Argus protocol adapter automatically manages the beliefs corresponding to message observations, triggering these goals when 
their message is received. The skeleton generator applies heuristics to decide when it is likely or possible to emit the messages, as 
shown above.

Listing 18: Provider-1, an agent playing the Provider role.

1 + c o m p l a i n ( M a s I D , P a t i e n t , P r o v i d e r , I D , C o m p l a i n t ) 
2 < − O r d e r = " O r d e r 0 0 0 1 " ; 
3 . e m i t ( e n t e r _ r e q u e s t ( M a s I D , P r o v i d e r , L a b o r a t o r y , I D , C o m p l a i n t , O r d e r ) ) . 
4 
5 + e n t e r _ r e q u e s t ( M a s I D , P r o v i d e r , L a b o r a t o r y , I D , C o m p l a i n t , O r d e r ) 
6 : n o t s h i p ( M a s I D , P r o v i d e r , L a b o r a t o r y , I D , O r d e r , C o l l e c t i o n , S p e c i m e n ) & n o t n e e d _ a p p o i n t m e n t ( M a s I D 

, P r o v i d e r , P a t i e n t , I D , O r d e r , C o l l e c t i o n , C o n t a c t ) & n o t o r d e r _ q u e r y ( M a s I D , C o l l e c t o r , P r o v i d e r , 
I D , C o L o c a t i o n , O r d e r Q u e r y ) 

7 < − . r a n d i n t ( 1 , 3 , M e t h o d ) ; 
8 i f ( M e t h o d = = 1 ) { 
9 C o l l e c t i o n = " p r o v i d e r " ; 
10 S p e c i m e n = " S p e c i m e n 0 0 0 0 " ; 
11 . e m i t ( s h i p ( M a s I D , P r o v i d e r , L a b o r a t o r y , I D , O r d e r , C o l l e c t i o n , S p e c i m e n ) ) ; 
12 } ; 
13 i f ( M e t h o d = = 2 ) { 
14 C o l l e c t i o n = " n o n − p r o v i d e r " ; 
15 C o L o c a t i o n = " o n − s i t e " ; 
16 . e m i t ( n o n _ p r o v i d e r _ c o l l e c t ( M a s I D , P r o v i d e r , C o l l e c t o r , I D , O r d e r , C o l l e c t i o n , C o L o c a t i o n ) ) ; 
17 } ; 
18 i f ( M e t h o d = = 3 ) { 
19 C o l l e c t i o n = " a p p o i n t m e n t " ; 
20 C o n t a c t = " L a b o r a t o r y " ; 
21 . e m i t ( n e e d _ a p p o i n t m e n t ( M a s I D , P r o v i d e r , P a t i e n t , I D , O r d e r , C o l l e c t i o n , C o n t a c t ) ) ; 
22 } . 
23 
24 + o r d e r _ q u e r y ( M a s I D , C o l l e c t o r , P r o v i d e r , I D , C o L o c a t i o n , O r d e r Q u e r y ) 
25 : e n t e r _ r e q u e s t ( M a s I D , P r o v i d e r , L a b o r a t o r y , I D , C o m p l a i n t , O r d e r ) 
26 < − O r d e r R e s p o n s e = " r e s p o n d e d " ; 
27 . e m i t ( o r d e r _ r e s p o n s e ( M a s I D , P r o v i d e r , C o l l e c t o r , I D , O r d e r Q u e r y , O r d e r , O r d e r R e s p o n s e ) ) . 
28 
29 + r e s u l t s _ a v a i l a b l e ( M a s I D , L a b o r a t o r y , P r o v i d e r , I D , O r d e r , S p e c i m e n , R e s u l t s I d ) 
30 < − Q u e r y = " g e t r e s u l t s " ; 
31 . e m i t ( q u e r y ( M a s I D , P r o v i d e r , L a b o r a t o r y , I D , R e s u l t s I d , Q u e r y ) ) . 
32 
33 + r e s u l t s ( M a s I D , L a b o r a t o r y , P r o v i d e r , I D , O r d e r , S p e c i m e n , R e s u l t s ) 
34 < − ! r e p o r t ( M a s I D , P r o v i d e r , P a t i e n t , I D , R e s u l t s ) . 
35 + s e n d _ r e s u l t s ( M a s I D , L a b o r a t o r y , P r o v i d e r , I D , R e s u l t s I d , Q u e r y , R e s u l t s ) 
36 < − ! r e p o r t ( M a s I D , P r o v i d e r , P a t i e n t , I D , R e s u l t s ) . 
37 
38 + ! r e p o r t ( M a s I D , P r o v i d e r , P a t i e n t , I D , R e s u l t s ) 
39 < − R e p o r t = " N e g a t i v e " ; 
40 . e m i t ( a l l _ r e c e i v e d ( M a s I D , P r o v i d e r , P a t i e n t , I D , R e s u l t s , R e p o r t ) ) . 
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The completed implementation (Provider-1) in Listing 18 shows several common patterns. First, multiple branches are folded 
into one goal, selected by appropriate conditional logic. Second, some of the branches that result in emitting the same message are 
refactored to trigger a common goal that handles that emission, reducing redundancy.

7.3. Execution trace

Listing 19 shows an enactment generated upon launching the implemented agents in a shell.

Listing 19: Enactment Trace

1 P a t i e n t − 1 C o m p l a i n i n g : M y t o e h u r t s . 
2 2 0 2 4 − 0 6 − 1 8 1 7 : 0 1 : 2 5 , 3 6 5 ( P a t i e n t − 1 ) : S e n t : C o m p l a i n ( I D = 1 . 0 , c o m p l a i n t = ’ M y t o e h u r t s . ’ ) { s y s t e m = ’ m a i n ’ } 
3 2 0 2 4 − 0 6 − 1 8 1 7 : 0 1 : 2 5 , 3 6 6 ( P r o v i d e r − 1 ) : R e c e i v e d : C o m p l a i n ( I D = 1 . 0 , c o m p l a i n t = ’ M y t o e h u r t s . ’ ) { s y s t e m = ’ 

m a i n ’ , r e c e i v e d = d a t e t i m e . d a t e t i m e ( 2 0 2 4 , 6 , 1 8 , 1 7 , 1 , 2 5 , 3 6 6 0 3 7 ) } 
4 2 0 2 4 − 0 6 − 1 8 1 7 : 0 1 : 2 5 , 3 6 7 ( P r o v i d e r − 1 ) : S e n t : E n t e r R e q u e s t ( I D = 1 . 0 , c o m p l a i n t = ’ M y t o e h u r t s . ’ , o r d e r = ’ 

O r d e r 0 0 0 1 ’ ) { s y s t e m = ’ m a i n ’ } 
5 2 0 2 4 − 0 6 − 1 8 1 7 : 0 1 : 2 5 , 3 6 8 ( L a b o r a t o r y − 1 ) : R e c e i v e d : E n t e r R e q u e s t ( I D = 1 . 0 , c o m p l a i n t = ’ M y t o e h u r t s . ’ , o r d e r 

= ’ O r d e r 0 0 0 1 ’ ) { s y s t e m = ’ m a i n ’ , r e c e i v e d = d a t e t i m e . d a t e t i m e ( 2 0 2 4 , 6 , 1 8 , 1 7 , 1 , 2 5 , 3 6 8 0 9 3 ) } 
6 2 0 2 4 − 0 6 − 1 8 1 7 : 0 1 : 2 5 , 3 6 8 ( P r o v i d e r − 1 ) : S e n t : S h i p ( I D = 1 . 0 , o r d e r = ’ O r d e r 0 0 0 1 ’ , c o l l e c t i o n = ’ p r o v i d e r ’ , 

s p e c i m e n = ’ S p e c i m e n 0 0 0 0 ’ ) { s y s t e m = ’ m a i n ’ } 
7 2 0 2 4 − 0 6 − 1 8 1 7 : 0 1 : 2 5 , 3 6 9 ( L a b o r a t o r y − 1 ) : R e c e i v e d : S h i p ( I D = 1 . 0 , o r d e r = ’ O r d e r 0 0 0 1 ’ , c o l l e c t i o n = ’ p r o v i d e r 

’ , s p e c i m e n = ’ S p e c i m e n 0 0 0 0 ’ ) { s y s t e m = ’ m a i n ’ , r e c e i v e d = d a t e t i m e . d a t e t i m e 
( 2 0 2 4 , 6 , 1 8 , 1 7 , 1 , 2 5 , 3 6 9 5 7 3 ) } 

8 L a b o r a t o r y − 1 4 
9 2 0 2 4 − 0 6 − 1 8 1 7 : 0 1 : 2 5 , 3 7 0 ( L a b o r a t o r y − 1 ) : S e n t : N o t i f y R e c e i v e d ( I D = 1 . 0 , o r d e r = ’ O r d e r 0 0 0 1 ’ , s p e c i m e n = ’ 

S p e c i m e n 0 0 0 0 ’ , r e c e i v e d = ’ r e c e i v e d ’ ) { s y s t e m = ’ m a i n ’ } 
10 2 0 2 4 − 0 6 − 1 8 1 7 : 0 1 : 2 5 , 3 7 1 ( L a b o r a t o r y − 1 ) : S e n t : R e s u l t s ( I D = 1 . 0 , o r d e r = ’ O r d e r 0 0 0 1 ’ , s p e c i m e n = ’ S p e c i m e n 

0 0 0 0 ’ , r e s u l t s = ’ n e g a t i v e ’ ) { s y s t e m = ’ m a i n ’ } 
11 2 0 2 4 − 0 6 − 1 8 1 7 : 0 1 : 2 5 , 3 7 1 ( C o l l e c t o r − 1 ) : R e c e i v e d : N o t i f y R e c e i v e d ( I D = 1 . 0 , o r d e r = ’ O r d e r 0 0 0 1 ’ , s p e c i m e n = ’ 

S p e c i m e n 0 0 0 0 ’ , r e c e i v e d = ’ r e c e i v e d ’ ) { s y s t e m = ’ m a i n ’ , r e c e i v e d = d a t e t i m e . d a t e t i m e 
( 2 0 2 4 , 6 , 1 8 , 1 7 , 1 , 2 5 , 3 7 1 0 9 9 ) } 

12 2 0 2 4 − 0 6 − 1 8 1 7 : 0 1 : 2 5 , 3 7 1 ( P r o v i d e r − 1 ) : R e c e i v e d : R e s u l t s ( I D = 1 . 0 , o r d e r = ’ O r d e r 0 0 0 1 ’ , s p e c i m e n = ’ S p e c i m e n 
0 0 0 0 ’ , r e s u l t s = ’ n e g a t i v e ’ ) { s y s t e m = ’ m a i n ’ , r e c e i v e d = d a t e t i m e . d a t e t i m e 

( 2 0 2 4 , 6 , 1 8 , 1 7 , 1 , 2 5 , 3 7 1 5 1 1 ) } 
13 2 0 2 4 − 0 6 − 1 8 1 7 : 0 1 : 2 5 , 3 7 2 ( P r o v i d e r − 1 ) : S e n t : A l l R e c e i v e d ( I D = 1 . 0 , r e s u l t s = ’ n e g a t i v e ’ , r e p o r t = ’ N e g a t i v e ’ ) { 

s y s t e m = ’ m a i n ’ } 
14 2 0 2 4 − 0 6 − 1 8 1 7 : 0 1 : 2 5 , 3 7 2 ( P a t i e n t − 1 ) : R e c e i v e d : A l l R e c e i v e d ( I D = 1 . 0 , r e s u l t s = ’ n e g a t i v e ’ , r e p o r t = ’ N e g a t i v e 

’ ) { s y s t e m = ’ m a i n ’ , 
15 r e c e i v e d = d a t e t i m e . d a t e t i m e ( 2 0 2 4 , 6 , 1 8 , 1 7 , 1 , 2 5 , 3 7 2 7 5 4 ) } 
16 P a t i e n t − 1 N e g a t i v e 

7.4. Pure Jason implementation

In contrast with the above automatically-generated skeletons and their implementations, we have also implemented a Jason 
version of the MAS directly from HL7 speciûcations, that is, without the beneût of the Argus protocol-based approach.

Listing 20: Agent Patient-2 in Jason that captures same functionality as the Argus Patient-1 (Listing 17).

1 c o m p l a i n t ( 1 , " s t o m a c h p a i n " ) . 
2 c o m p l a i n t ( 2 , " i n s o m n i a " ) . 
3 c o m p l a i n t ( 3 , " f e v e r " ) . 
4 c o m p l a i n t ( 4 , " s k i n l e s i o n " ) . 
5 
6 ! r e g i s t e r . 
7 + ! r e g i s t e r < − . d f _ r e g i s t e r ( p a t i e n t ) . 
8 
9 ! s t a r t . 
10 
11 + ! s t a r t < − 
12 . d f _ s e a r c h ( p r o v i d e r , P r o v i d e r ) ; 
13 f o r ( c o m p l a i n t ( I D , S y m p t o m ) ) { 
14 / / 1 . 1 P a t i e n t P r e s e n t s w i t h C o m p l a i n t 
15 . s e n d ( P r o v i d e r , t e l l , c o m p l a i n t ( I D , P a t i e n t , S y m p t o m ) ) ; 
16 . p r i n t ( " C o m p l a i n e d t o " , P r o v i d e r , " : " , S y m p t o m ) ; 
17 } . 
18 
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19 + c o m p l e t e ( I D ) < − 
20 . p r i n t ( " A l l o r d e r s c o m p l e t e f o r c o m p l a i n t " , I D ) . 
21 
22 / / 4 . 1 P a t i e n t C a l l s f o r S p e c C o l l e c t A p p t . 
23 + s c h e d u l e _ a p p o i n t m e n t ( I D ) < − 
24 . d f _ s e a r c h ( p h l e b o t o m i s t , P h ) ; 
25 . m y _ n a m e ( P a t i e n t ) 
26 . s e n d ( P h , a c h i e v e , c o l l e c t ( I D , P a t i e n t ) ) ; 
27 . p r i n t ( " C a l l e d p h l e b o t o m i s t f o r a p p o i n t m e n t a b o u t " , I D ) . 

Listing 20 gives the agent code for role Patient in CreateOrder, including simpliûed internal logic and decision-making. The 
patient searches for an agent playing Provider, and sends their complaints (multiple, to simulate several interactions) to that agent. 
The patient also listens for a complete event and has a goal for scheduling appointments when necessary.

Among the differences between the Jason implementation and the Argus version given in Listing 17 is the way that the recipients 
are identiûed and handled. Where Jason relies extensively on the Directory Facilitator (df) to register and search for agents, the 
Argus adapter explicitly tracks roles and their bindings under a MAS, identiûed via MasID in these listings. Thus, the Jason program 
constantly has to look up the next recipient, which may become problematic if there is more than one agent available to play each 
role—there is no guarantee that all of the messages from the same enactment will go to the same agent.

Listing 21: Agent Provider-2 in Jason.
1 ! r e g i s t e r . 
2 + ! r e g i s t e r < − . d f _ r e g i s t e r ( p r o v i d e r ) . 
3 
4 / / 2 . 1 P r o v i d e r E v a l u a t e s C o m p l a i n t 
5 + c o m p l a i n t ( I D , P a t i e n t , S y m p t o m ) [ s o u r c e ( P a t i e n t ) ] < − 
6 . r a n d o m ( R ) ; 
7 / / 2 . 2 L a b D i a g n o s t i c T e s t i n g N e e d e d ? 
8 i f ( R > 0 . 1 ) { / / 9 0 p e r c e n t c h a n c e o f d e c i d i n g t o r u n l a b t e s t 
9 / / 3 . 1 P r o v i d e r E n t e r s R e q u e s t i n t o P O S 
10 + r e q u e s t _ t e s t ( I D , P a t i e n t , S y m p t o m ) ; 
11 } e l s e { 
12 . p r i n t ( " N o t e s t n e e d e d f o r " , S y m p t o m ) ; 
13 } . 
14 
15 + r e q u e s t _ t e s t ( I D , P a t i e n t , S y m p t o m ) < − 
16 . p r i n t ( " R e q u e s t i n g t e s t f o r " , S y m p t o m ) ; 
17 . r a n d o m ( W h o ) ; 
18 i f ( W h o < = 0 . 3 ) { 
19 ! p r o v i d e r _ c o l l e c t ( I D , P a t i e n t , S y m p t o m ) ; 
20 } e l i f ( 0 . 3 < = W h o & W h o < = 0 . 6 ) { 
21 ! a p p o i n t m e n t ( I D , P a t i e n t ) ; 
22 } e l s e { 
23 ! n o n _ p r o v i d e r _ c o l l e c t ( I D , P a t i e n t ) ; 
24 } . 
25 
26 / / 2 . 2 [ s i c ] P r o v i d e r C o l l e c t s S p e c i m e n 
27 + ! p r o v i d e r _ c o l l e c t ( I D , P a t i e n t , S y m p t o m ) < − 
28 . p r i n t ( " P r o v i d e r c o l l e c t i n g s a m p l e f o r c a s e " , I D ) ; 
29 . d f _ s e a r c h ( l a b , L a b o r a t o r y ) ; 
30 
31 / / 2 . 3 S p e c i m e n L a b e l e d a n d S h i p p e d t o L a b o r a t o r y 
32 . s e n d ( L a b o r a t o r y , t e l l , s p e c i m e n ( I D , " s p e c i m e n " ) ) ; 
33 / / 3 . 4 P u s h E l e c t r o n i c C o n n e c t i v i t y t o L a b ? 
34 / / 3 . 5 S e n d L a b o r a t o r y O r d e r t o L a b o r a t o r y 
35 . s e n d ( L a b o r a t o r y , t e l l , l a b _ o r d e r ( I D , P a t i e n t , S y m p t o m ) ) ; 
36 . p r i n t ( " S e n t l a b _ o r d e r " , I D ) . 
37 
38 + ! a p p o i n t m e n t ( I D , P a t i e n t ) < − 
39 . p r i n t ( " S c h e d u l i n g a p p o i n t m e n t f o r p a t i e n t " , I D ) ; 
40 . s e n d ( P a t i e n t , t e l l , s c h e d u l e _ a p p o i n t m e n t ( I D ) ) . 
41 
42 + ! n o n _ p r o v i d e r _ c o l l e c t ( I D , P a t i e n t ) < − 
43 . d f _ s e a r c h ( p h l e b o t o m i s t , P h ) ; 
44 . p r i n t ( " D i r e c t i n g p h l e b o t o m i s t t o c o l l e c t s p e c i m e n f r o m p a t i e n t " , I D ) ; 
45 . s e n d ( P h , a c h i e v e , c o l l e c t ( I D , P a t i e n t ) ) . 
46 
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Table 3
Bugs found during code development.

Programming Error Count 

Naming inconsistencies 4 
Incorrect parameter ordering or count 4 
Incorrect syntax for adding beliefs 1 

47 / / 3 . 6 R e s p o n d t o L a b O r d e r Q u e r y 
48 + ! s e n d _ l a b _ o r d e r ( I D ) [ s o u r c e ( R e q u e s t o r ) ] : c o m p l a i n t ( I D , P a t i e n t , S y m p t o m ) < − 
49 . s e n d ( R e q u e s t o r , t e l l , l a b _ o r d e r ( I D , P a t i e n t , S y m p t o m ) ) ; 
50 . p r i n t ( " R e s p o n d e d t o L a b O r d e r Q u e r y " , I D ) . 
51 
52 + r e s u l t s _ a v a i l a b l e ( I D ) [ s o u r c e ( L a b o r a t o r y ) ] < − 
53 / / 2 . 5 R e c e i v e n o t i f i c a t i o n 
54 . p r i n t ( " R e c e i v e d n o t i f i c a t i o n t h a t r e s u l t s a r e a v a i l a b l e f o r o r d e r " , I D ) ; 
55 / / 2 . 6 Q u e r y R e s u l t s 
56 . s e n d ( L a b o r a t o r y , a c h i e v e , q u e r y _ r e s u l t s ( I D ) ) ; 
57 . p r i n t ( " Q u e r i e d r e s u l t s f o r " , I D ) . 
58 
59 + r e s u l t s ( I D , C o n t e n t ) < − 
60 . p r i n t ( " R e c e i v e d r e s u l t s f o r " , I D , " : " , C o n t e n t ) . 

The agent of Listing 21 is the most complex agent since it handles patient complaints, chooses which collection method to use, 
manages the collection, sends the lab order to the laboratory, and processes the ûnal results.

While implementing these agents, we took note of the errors that we ran into. Table 3 summarizes these errors and their frequency 
in our initial implementation attempts.

These errors are generally typos or incomplete design changes that were not immediately obvious due to the distributed nature 
of the software; the producers and consumers of the information were separate programs, speciûed in separate ûles.

Except for the one syntax mistake, we consider that most of these bugs should be reduced or eliminated by the use of speciûcation-
driven tooling, such as Argus. The speciûcation (BSPL in our case) keeps all of the names and schemas in a single place that can be 
checked for consistency, and then used to generate skeletons for implementation. Unfortunately, simple scaffolding only helps the 
initial implementation; after a design change, the developers must either modify the skeletons in place or regenerate them and migrate 
the entire implementation. Future tooling could minimize the cost of migration, but such tooling is out of scope for this project.

Protocols are conceptual objects, and agents must reason about them regardless of how they are implemented. Argus captures 
this reasoning via its code generation and adapter. Without Argus, Jason programmers must reason still about them, but without the 
kind of support that Argus provides.

8. Implementation

We have implemented the Argus communication model and AgentSpeak extensions using the Python-AgentSpeak implementation 
[45] of Jason. Our implementation is a library providing an adapter class that encapsulates both the protocol adapter and the Jason 
agent behavior, loading a protocol speciûed in BSPL and agent behavior speciûed in AgentSpeak.

Fig. 8 shows the Argus architecture. This architecture integrates and extends two existing architectures for building agents: BDI 
and protocol adapters. BDI agents have plans speciûed by their programming, a reasoner component that executes the plans, and a 
belief base that stores and enables queries for structured knowledge. Protocol adapters add interaction protocol support to an agent, 
using a protocol speciûcation, a local store that records observed messages, a checker component that validates incoming/outgoing 
messages against the protocol speciûcation, and an emitter and receiver that provide the network interface for message transmission.

Most Argus components are inherited from these prior architectures and their implementations are unchanged. These components 
are drawn as gray boxes. The extended components are highlighted with a red border: the Interpreter and Belief Base. The extended 
Interpreter component encompasses both the existing AgentSpeak reasoner and the protocol adapter9s message checking. Because 
asynchronous messages can be received anytime, the integration enables the protocol checker to trigger AgentSpeak goals for handling 
message observations.

The Belief Base is extended by merging the Local State information about which messages have been observed. Because Argus 
inherits from existing implementations, the observed messages are stored twice: ûrst as message objects in the protocol adapter9s local 
state, where they are used by the protocol checker, and then copied as a belief in the AgentSpeak belief base. Thus, Argus extends 
the belief base with information about message observations.

Concretely, an agent is implemented as a Python module containing an instance of the adapter object, conûgured with the role it 
is to play and the IP addresses of the other agents.

Listing 22: Agent setup for Argus.
1 f r o m a r g u s i m p o r t A d a p t e r 
2 f r o m c o n f i g u r a t i o n i m p o r t c o n f i g , g r a d i n g , P r o f e s s o r 
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Fig. 8. The Argus architecture implemented in a BDI agent. The Argus adapter validates incoming and outgoing messages against the protocol and updates the local 
state. Plans expressed as traditional BDI artifacts are interpreted by the BDI engine. Argus blends into the BDI architecture because the Argus local state is reüected as 
a set of beliefs, as are already available to the BDI reasoner in the BDI architecture.

3 a d a p t e r = A d a p t e r ( P r o f e s s o r , g r a d i n g , c o n f i g , n a m e = " P n i n " ) 
4 a d a p t e r . l o a d _ a s l ( " p n i n . a s l " ) 
5 
6 i f _ _ n a m e _ _ = = " _ _ m a i n _ _ " : 
7 p r i n t ( " S t a r t i n g ␣P n i n . . . " ) 
8 a d a p t e r . s t a r t ( ) 

The adapter has an asynchronous update loop that interleaves the processing of messages with the steps of the Jason reasoner. 
By default, the Python-AgentSpeak reasoner runs until it has exhausted all its intentions and then halts. We added a signal which 
resumes the reasoner when a new message is received.

9. Discussion

Although some existing research combines BDI-style agent reasoning with normative abstractions such as commitments [46,47], 
agent programming languages have generally not kept up with advances in modeling communications. Argus addresses this gap by 
proposing a programming model that combines protocols with Jason9s BDI-style agent programming abstractions. The speciûc form 
of protocols that we adopt here—information protocols—are fully declarative and match the representations on which rules, such 
as in Jason, may be stated. Through our choice of Jason as an exemplar of BDI-style programming abstractions, this paper indicates 
how protocols may be combined with other BDI architectures [48].

Improvements to Argus Currently, an agent can play at most one role.
This is a limitation not of BSPL, but of Argus. More than one agent cannot play a role; however, there can be many multiagent 

systems, which can simulate the effect of more than one agent per role, as demonstrated in the Grading scenario, where each student 
is in a separate MAS. Our approach works with BSPL, which is limited to one agent per role. Splee [49] addresses this limitation of 
BSPL with the concept of set roles, where a set of agents may play a role.

Argus guides programmers in implementing protocol-compliant agents. Using the adapter is an indispensable part of the program-
ming model. Due to implementation errors, however, it remains possible for an agent to instruct the adapter to attempt an action 
that violates the protocol. Currently, these attempts are detected by the adapter, which silently abandons them. Although this ensures 
compliance, a better approach would be to log and signal the failure to the agent9s internal reasoning.

Moreover, even if an agent is itself compliant, other agents may not be. Therefore, an agent could receive noncompliant messages. 
In such cases, Argus will again catch the error at runtime but silently discard the offending messages. The adapter could be extended 
to tag such messages as corrupted and notify the agent. The agent could, for example, use that information to update its estimate of 
the trustworthiness of the other agents.

In general, there is the problem of dealing with malicious agents in open systems. It is worth extending the adapter with support for 
signed messages and other measures for validation. However, even robust technical architectures such as those based on blockchain 
cannot guarantee correctness and perhaps shouldn9t try to do so [50]. The problem is fundamentally sociotechnical; to address it 
effectively presupposes social components for effective governance [51].

Protocol-based programming models Several works address programming models based on role skeletons derived from protocols [52–
54]. Typically, in these works, the protocol is speciûed via something like a UML sequence diagram, and role skeletons are expressed 
via rules or state machines that can be üeshed out with internal reasoning to realize an agent. However, in these approaches, there is 
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no formal model of the protocol and its messages. As such, these approaches don9t support the kind of ûne-grained reasoning about 
information we can use to (1) help the programmer via a programming model and (2) check each message for whether it (or its 
sender) respects the protocol semantics. Moreover, the protocols in these approaches are neither fully declarative nor supportive of 
asynchronous, order-insensitive communication channels.

Social meaning Communication meaning guides action by agents. For purposes of open MAS, social meaning approaches based on 
norms represent a compelling alternative to approaches such as KQML. Architecturally, the norms would be layered over protocols. 
Whereas a protocol speciûes the basic communicative acts and inviolable operational constraints on their occurrence, norms capture 
how violable expectations between agents progress with the performance of those acts [17]. Recent efforts [55,56] have begun to 
address programming with commitments in a BDI framework.

JaCaMo JaCaMo [57] is a powerful framework for programming multiagent systems that brings together Jason and CArtAgO. (Recall 
the discussion of CArtAgO in Section 6.7.) JaCaMo models the environment via CArtAgO-based shared artifacts that agents may invoke 
operations on and use to coordinate their interactions, in a style reminiscent of Web services. JaCaMo currently does not support 
protocol-based communication, although Boissier et al. [57, footnote on p. 748] acknowledge its importance. Argus addresses this 
gap by improving the communicative foundation of Jason. Baldoni et al. [58] show how to extend and apply JaCaMo for reasoning 
about commitments. Argus could help place such approaches in decentralized multiagent systems, especially in light of new results 
demonstrating how to enact commitments over protocols [18,56].

The environment Modeling the environment of a multiagent system (e.g., shared resources) is crucial to systematically coordinating 
agents in a multiagent system [59,60]. In Argus, in accordance with decentralization, the requisite attributes of the environment would 
be captured in an information protocol [15]. In fact, the motivation behind information protocols is to capture the application domain, 
including the relevant resources and decision making by users. Returning to our example, parameters such as Question, Answer, and so 
on, may be thought of as shared resources in the domain. Some applications of multiagent systems may refer to physical incidents and 
resources in the environment, which may themselves be stateful. For example, in an emergency response application, we might see a 
ûre (with states raging, dying, out, and so on) and a ûre alarm (off, armed, triggered, and so on). However, the states of such physical 
entities would have to be modeled in the information exchanged via a protocol. For example, upon noticing a ûre in her building and 
that the ûre alarm had not gone off, a resident could send a message to emergency services that a ûre has erupted without triggering 
the ûre alarm. Naturally, it is the communicated information that counts toward the state of the multiagent system. An interesting 
problem is how to resolve discrepancies between the physical state and the state of the multiagent system [61].

An agent can act upon information from diverse sources in its environment. What information should we capture in a protocol 
and what should be left to agents9 internal states? The following informal rule answers the question and helps the engineering of 
modular, loosely coupled multiagent systems.

If a source of some relevant information is interactive, then the information should be modeled via parameters in the protocol. If 
the source is not interactive, it just affects some agent9s internal state. The agent may decide to put it into a protocol enactment by 
binding it to parameters in the protocol.

Session types Session types [62] specify a protocol from a global perspective in terms of the emissions and receptions on channels 
between agents, with choice operators to indicate which agent drives the interaction at any point in time. As such, the meaning 
of a message in a session type derives from its position in the sequence of transmissions, in contrast with BSPL and information 
protocols, where the meaning of a message (its parameters and their relationships) determines when the emission of that message is 
enabled. Thus, session types are susceptible to several of the same criticisms we raised against previous BDI communication models 
in Section 6: speciûcally, the lack of semantic correlation and selective reception. Chopra et al. [15] presents a substantial critique 
of session types.

Although session types may be a reasonable model for existing BDI agent implementations, Argus shows how information-based 
communication models can be a good ût for the logic programming style of BDI agents, better support agent autonomy, and reduce 
coupling.

Data-driven approaches Information protocols provide abstractions that ût well with other data-driven approaches for interaction 
and business process modeling [63,64]. These approaches typically enhance worküows with operations on databases and support 
high-level abstractions for specifying an agent9s internal reasoning. Argus, by providing a connection with Jason, can further help 
relate data-driven and rule-based BDI approaches. Conceivably, the more üexible parts of agents—those dealing with interaction—
could be generated in Jason (as we do in this paper), whereas the rules corresponding to the internal reasoning could be generated 
from a data-driven speciûcation.

Microservices and the Internet of Things (IoT) Both are popular industry paradigms that emphasize decentralization. In the microser-
vices paradigm [65], the ideal is that the system is constituted from autonomous microservices that interact via asynchronous 
messaging. Such a system conception is essentially multiagent. Today, however, the design of microservices is not based on pro-
tocols. BSPL and Argus demonstrate how a microservices-based system could be modeled in terms of protocols and implemented 
accordingly. Khadse et al. [66] represents a start in this direction. The IoT often features decentralized applications that feature ex-
treme asynchrony: a sensor could come alive, ûre off a transmission, and go to sleep. We have initiated exploration of this direction 
via a Node-RED implementation of BSPL [16].
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Rule-based programming and testing Protocols and protocol-based programming, as Argus supports, lead to greater decoupling be-
tween agents and between an agent and a protocol. In addition, protocols help modelers and programmers avoid ad hoc functions, 
such as ÿý , that operate outside of the BDI structure. Further, the generated code facilitates an agent programmer9s primary task by 
providing clear points for plugging in an agent9s internal reasoning. The concomitant increased clarity in code structure and reduced 
programmer effort can help address the difficult task of testing BDI programs [67] by focusing testing on the internal reasoning of 
agents. In rule-based programming, errors involving pattern matching are potentially easy to make and hard to ûnd. For example, any 
difference in parameter ordering would bind parameters to the wrong values, and missing or extra parameters would silently prevent 
the plan from matching at all. Code generation even of agent skeletons, as we demonstrate here, helps alleviate these problems.

Going further, ideally, the programming model should make it clear—via some form of typing—the parameters of an enabled 
message that an agent9s plan needs to bind. Another future direction we are considering is generalizing to an enablement-based 
programming model to handle sets of possible messages. A beneût would be that an agent could optimize its interactions if it could 
evaluate a set of alternatives in one shot.

Uncertainty A general problem though is how to model uncertainty in the information (and beliefs) being generated by enacting 
protocols and what that means for protocol enactment. For example, the resident may claim a ûre with 80% certainty. Would that 
enable the emergency services to dispatch a ûreûghting team? Uncertainty is widely considered important in cognitive reasoning. 
Yao et al. [68] study the problem of intention selection under the uncertainty of beliefs. Techniques from this body of work could 
possibly be adapted for protocols.

Multiagent organizations A strength of several agent-oriented approaches is their focus on modeling multiagent systems via orga-
nizational notions. Ferber and Gutknecht [69] structure an organization into roles and groups based on the idea that only agents 
within a group may communicate. Hübner et al. [70] deûne organizational goals and agents commit to missions that promote those 
goals. Moreover, obligations and permissions are attached to the roles that agents adopt. Cossentino et al. [71] deûne organizations 
of agents via tasks, individual goals, and collective goals. Whereas this paper does not deal with organizational notions, they are 
crucial for enabling programming at a higher level of abstraction.

10. Conclusions and future directions

This paper has demonstrated that communication protocols based on information üow can be combined with a BDI approach in a 
way that highlights the beneûts of protocols without compromising the beneûts of BDI programming. The paper has also shown the 
net beneûts of decoupling agents in multiagent systems and, through the avoidance of hidden functions, the development of purer 
BDI agents than is possible traditionally.

Fig. 4 shows the Argus operations of Emit and Receive placed with the Jason reasoning cycle. In essence, with the exception 
of Jason9s transition from ýýÿýýÿý to ÿÿýýýýý, which is removed in Argus, all other transitions are kept. The ýýÿýýÿý to ÿýÿýÿý
and ÿÿýýýýý to ÿÿýýÿ transitions are changed to accommodate the BSPL semantics, as explained below. We did not ûnd theorems 
about the soundness and completeness of the operational semantics of Jason. Therefore, we content ourselves with the hint of an 
informal argument here. Assuming Jason9s semantics is sound and complete, we would be able to decide for each agent whether it 
would eventually return to its initial (and ûnal) <state,= i.e., the ÿÿýýýýý step. In addition, let9s suppose the BSPL protocol being 
implemented is safe and live (these properties, respectively, being the interactional analogs of soundness and completeness) [14,8]. 
Then, the agents in a multiagent system based on Argus would repeatedly return to their respective ÿÿýýýýý steps. We defer the 
formulation of the requisite notions of soundness and completeness and their establishment to future research.

The ideas advanced in this paper set the stage for further research. An important direction concerns the development of new 
programming models that take better advantage of protocols and BDI representations to improve the modularity and maintainability 
of implementations of agents in multiagent systems. A related challenge concerns support for application-level fault tolerance: initial 
work uses interaction protocols to derive agent expectations that indicate failures when unmet [72], but uses an ad hoc policy language 
for specifying recovery policies; a BDI-based approach, building on Orpheus [55] or Azorus [56], might offer improved üexibility 
and simplify establishing consistency. Extending the Argus programming model to support exploiting group-oriented communication 
abstractions provided by platforms such as Janus [73] is also an interesting direction.

The architectural style underlying BSPL, called Local State Transfer (LoST), has been compared to the REST architectural style 
for Web services [27]. LoST is indeed RESTful in spirit but goes beyond REST in that LoST (due to BSPL) promotes decentralized 
architectures, whereas REST is client-server. HATEOAS, a REST constraint, promotes a view of Web services as state machines, where 
resource representations returned by a service determine the operations that can be invoked on it next. Conceptually, an Argus agent 
(following LoST) does something similar: Its local state, as maintained by the adapter, determines which among the set of enabled 
actions it can perform next.

Kiko [25] and Azorus [56] make the notion of enabled actions explicit in their programming models. Since most applications 
today run on the Web, it would be interesting to explore how decentralized applications based on interaction protocols could be 
realized on top of the Web. Fluid [74] takes a step in that direction.

Our model of how much the parties trust each other can inüuence MAS design, for example, by introducing mediators, audits, and 
so on [75,76]. Work on identifying and applying trust-promoting organizational patterns to protocols would be valuable. However, 
it is worth keeping in mind that no MAS design can obviate trust. Agents may always engage in untrustworthy behaviors by violating 
protocols. Even protocol-compliant agents may violate the relevant norms. Argus helps engineer protocol-compliant agents, but it 
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makes no assumption that the agents are trustworthy. Work on estimating trust based on actual enactments with the aim of more 
judicious decision making would also be valuable.

The purpose behind Lamport9s inüuential idea of potential causality (as captured in the happens before relation) is to infer an 
ordering of events in a distributed system [77]. By contrast, one of our guiding principles (as exempliûed by BSPL) is that any event 
ordering or occurrence requirement falls out from the speciûcation of causality in protocols and physical causality (sends before 
receives).

Our approach captures true causality between events and enables a causal analysis of protocols [8,78,79], which helps make 
veriûcation tractable in many cases. New types of causal analysis with additional beneûts would be a direction with rich dividends.

We need automated tools for porting legacy Jason implementations to Argus. These tools could assist humans in abstracting out 
protocols, assuming agent implementations are available. These tools could also help us repurpose Jason9s plans for Argus by replacing 
each use of a KQML performative, including ýýý and its variants, with corresponding messages or protocols.

In principle, an agent9s local state is ever-growing, which obviously has costs and efficiency implications. As in real life, the way 
to address such concerns is by introducing methods for archiving old state (as captured by some heuristic) to low-cost storage. Based 
on the assumption that old state would be rarely needed, this would save costs and make querying the agent9s <working= state more 
efficient. Identifying patterns of archival policies and supporting them in an agent programming model would be another interesting 
direction.

11. Reproducibility

The entire Argus codebase and all examples are available online at https://gitlab.com/masr/bspl, where the Argus AgentSpeak 
components have been merged into the protocol adapter. The grading scenario is available there in the scenarios/grading 
directory.
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Appendix A

Listing 23: An alternative grading protocol that allows Professor to declare the end of a test (meaning that there will be no more 
challenges) and Student to resign from a test (meaning that there will be no more responses).

1 M o r e − R e g i m e n t e d − G r a d i n g { 
2 r o l e s P r o f e s s o r , S t u d e n t , T A 
3 p a r a m e t e r s o u t T I D k e y , o u t R e p o r t 
4 p r i v a t e Q I D , Q u e s t i o n , S o l u t i o n , A n s w e r , G r a d e , N u m C h a l l e n g e s , N u m R e s p o n s e s , D o n e , F i n i s h e d 
5 
6 P r o f e s s o r ↦ S t u d e n t : b e g i n T e s t [ o u t T I D k e y ] 
7 P r o f e s s o r ↦ S t u d e n t : c h a l l e n g e [ i n T I D k e y , o u t Q I D k e y , o u t Q u e s t i o n , n i l D o n e , n i l F i n i s h e d ] 
8 P r o f e s s o r ↦ S t u d e n t : e n d [ i n T I D k e y , o u t N u m C h a l l e n g e s , o u t D o n e ] 
9 
10 P r o f e s s o r ↦ T A : r u b r i c [ i n T I D k e y , i n Q I D k e y , o u t S o l u t i o n ] 
11 S t u d e n t ↦ T A : r e s p o n s e [ i n T I D k e y , i n Q I D k e y , i n Q u e s t i o n , o u t A n s w e r , n i l F i n i s h e d ] 
12 S t u d e n t ↦ P r o f e s s o r : r e s i g n [ i n T I D k e y , o u t N u m R e s p o n s e s , o u t F i n i s h e d ] 
13 T A ↦ P r o f e s s o r : r e s u l t [ i n T I D k e y , i n Q I D k e y , i n A n s w e r , i n S o l u t i o n , o u t G r a d e ] 
14 P r o f e s s o r ↦ S t u d e n t : p e r f o r m a n c e [ i n T I D k e y , o u t R e p o r t ] 
15 } 

Listing 23 gives an alternative grading protocol that enables students to resign from a test and professors to declare the end of 
a test. Professor cannot send any more challenges after sending end or receiving resign because they bind parameters Done and 
Finished, respectively, that must be unbound (?ÿÿý@) in challenge. Student is sender of both response and resign.
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Fig. 9. The original Create Lab Order worküow [43]. The worküow is complex and informally speciûed, which makes implementation difficult. This worküow is 
available at http://wiki.hl7.org/index.php?title=Laboratory_Order_Conceptual_Speciûcation.

Student cannot send any more responses after sending resign because resign binds Finished, which must be unbound to send 
response. However, Student may receive and respond to a challenge even after receiving end, illustrating how BSPL elegantly deals 
with message reordering in the network.

Notice that the parameter line is different compared to Listing 4: It refers to only the test-level, that is, TID-level parameters. This is 
necessary to ensure the liveness of the protocol because a test may terminate with no questions asked (Professor sends end without 
sending any challenges) or not all solutions offered (Student sends resign without sending a response to every challenge). In the former 
case, there will be no QID binding; in the latter case, there will be no Grade binding. Professor can send performance anytime after 
the test begins, generating a binding for Report, which means there is always a path to completion for protocol enactments, although 
the normative expectation will be that the Report accounts for all of the Student9s timely responses. BSPL is silent on the normative 
expectations, as on trust and any disputes that may arise (e.g., about the timeliness of a response); however, it gives an operational 
substrate for layering on these considerations.
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Data availability

We have included a link to a public code repository in the Reproducibility section of the paper.
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