
Azorus: Commitments over Protocols for BDI Agents

Amit K. Chopra
Lancaster University

Lancaster, UK
amit.chopra@lancaster.ac.uk

Matteo Baldoni
Università degli Studi di Torino

Torino, Italy
baldoni@di.unito.it

Samuel H. Christie V
North Carolina State University

Raleigh, NC, USA
schrist@ncsu.edu

Munindar P. Singh
North Carolina State University

Raleigh, NC, USA
mpsingh@ncsu.edu

ABSTRACT

Commitments support �exible interactions between agents by cap-

turing the meaning of their interactions. However, commitment-

based reasoning is not adequately supported in agent programming

models. We contribute Azorus, a programming model based on

declarative speci�cations centered on commitments and aligned

with information protocols. Azorus supports reasoning about goals

and commitments and combines modeling of commitments and

protocols, thereby uniting three leading declarative approaches

to engineering decentralized multiagent systems. Speci�cally, we

realize Azorus over three existing technology suites: (1) Jason, a

popular BDI-based programming model; (2) Cupid, a formal lan-

guage and query-based model for commitments; and (3) BSPL, a

language and its associated tools for information protocols, includ-

ing Jason programming. We implement Azorus and demonstrate

how it enables capturing interesting patterns of business logic.

CCS CONCEPTS

• Computing methodologies → Multi-agent systems.

KEYWORDS

Agent Programming; Meaning; Asynchrony; Causality

ACM Reference Format:

Amit K. Chopra, Matteo Baldoni, Samuel H. Christie V, and Munindar

P. Singh. 2025. Azorus: Commitments over Protocols for BDI Agents. In Proc.

of the 24th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS,

10 pages.

1 INTRODUCTION

Important domains such as business and healthcare that involve

autonomous principals lend themselves to the application of decen-

tralized multiagent systems (MAS). Engineering �exible MAS calls

upon programming abstractions for social meaning, operational

interactions, and agent reasoning.

Commitments are a high-level abstraction that capture the social

meaning of a communicative act [31]. For example, an o�er from

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

a seller to a buyer for some Item and Price may be modeled as a

commitment from the seller to the buyer that if payment of Price

happens, then the shipment of Item will happen. Commitments

model autonomy by both enabling �exible engagements between

agents and yielding a standard for compliance [23, 39, 43]. Several

previous works address languages for specifying commitments

[2, 10, 15].

However, much of the work on commitments does not address

decentralized settings. To support such settings, commitments need

to be layered on �exible, decentralized interaction protocols that

minimally constrain when agents may perform communicative

acts [14]. For example, refund without a prior payment would be

meaningless; and accept and reject should be mutually exclusive

to be meaningful; however, shipment and payment may happen

in any order. Because of their emphasis on message ordering, tra-

ditional protocol speci�cation approaches [3, 5, 20, 41] are not

suited to specifying �exible protocols. For this purpose, we turn

toward information protocols, speci�cally BSPL [32], a declarative

approach for specifying �exible protocols. Indeed a motivation for

information protocols was to provide a suitable operational layer

for commitments [32, p. 498].

Commitments are not adequately supported in programming

models for multiagent systems. Popular approaches such as JADE

[6], Jason [8], JaCaMo [7], and SARL [24] provide diverse, use-

ful abstractions for engineering multiagent systems. However, the

abstractions for communication in these approaches are either low-

level (e.g., messaging in JADE and Jason and event spaces in SARL),

limited in repertoire, in�exible (support for FIPA Interaction Pro-

tocols [22] in JADE), or promote centralization (via artifacts in

JaCaMo). MOISE (the ‘Mo’ in JaCaMo) [26] supports a notion of

commitments but tightly couples them to agent goals. Baldoni et al.

[1] model communicative acts and their e�ects on commitments

via JaCaMo artifacts. Kiko [17], an information protocol-based pro-

gramming model supports creating �exible, decentralized MAS but

does not support commitments.

We contribute Azorus (named after the helmsman of Jason’s

ship, the Argo), a commitment-based programming model that

enables implementing �exible MAS via BDI agents. We synthesize,

for the �rst time, three declarative MAS paradigms: commitments,

information protocols, and cognitive agents. For the latter, we adopt

BDI (belief-desire-intention) agents, which have beliefs and goals,

and execute plans in response to changes in beliefs and goals. Jason

[8] is a prominent exemplar of the paradigm (and the ‘Ja’ in JaCaMo).

The synthesis makes conceptual sense because, in a multiagent

AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA Amit K. Chopra, Ma�eo Baldoni, Samuel H. Christie V, and Munindar P. Singh

Azorus melds

three major

paradigms

Cognitive

programming

Information

protocols

Commitments

fl
ex
ib
le
, d
ec
en
tr
al
iz
ed
,

ve
ri
fia
bl
e

goal-driven
agents,

plan
generation

interaction meaning,

query processing

Figure 1: Azorus in a nutshell.

system, agents depend on others for the satisfaction of their goals

[30]. Commitments capture such dependencies between agents [25],

and, as described above, motivate information protocols. Winiko�

[40] notes the lack of support for �exible interactions in agent

programming. Accordingly, we contribute:

• A formalization of Cupid [15], an expressive commitment

language, as abstract Jason rules. We provide a compiler en-

abling a declarative, high-level abstraction for commitments

in Jason plans.

• A Jason communication adapter that supports an agent’s

internal reasoning by maintaining the mapping between

commitments and enactments of information protocols and

providing abstractions for querying and reacting to commit-

ment events and performing valid communicative acts.

• Reasoning patterns for realizing �exible agents in Azorus.

Organization. The rest of the paper is organized as follows. Sec-

tion 2 provides background on Jason. Section 3 describes how we

specify MAS via commitments in Cupid and information protocols.

Section 4 introduces the Azorus programming model via its archi-

tectural elements, including a semantics in Jason for inferring com-

mitment events from communicative acts. Section 5 demonstrates

patterns for implementing �exible agents. Section 6 evaluates our

contributions conceptually. Section 7 summarizes our contributions

and identi�es some future directions.

2 JASON BACKGROUND

Jason extends the AgentSpeak logic-programming language for

specifying agent behavior [8]. An agent is modeled as having be-

liefs, which capture the state of the world; goals, which capture

its objectives; and plans, which are methods for realizing its goals.

Jason adopts communication primitives based on the Knowledge

Query and Manipulation Language, better known as KQML [9].

To illustrate Jason’s programming model, especially how it com-

bines communication and reasoning, Listing 1 gives a snippet of

how an agent Bob, who plays seller in Ebusiness, might be imple-

mented in Jason without any special support for protocols.

Listing 1: Jason snippet of a seller agent Bob.

buyer (a l i c e) .

i n _ s t o c k (f i g s) .

g o e s _ f o r (f i g s , 1 0) .

! s t a r t .

+ ! s t a r t <−

? buyer (Buyer) ;

? g o e s _ f o r (Item , P r i c e) ;

. random (Id) ;

. send (Buyer , t e l l , o f f e r (Id , Item , P r i c e)) .

+ a c c ep t (Id , Item , P r i c e , De c i s i on) [sou r c e (Sender)]

: i n _ s t o c k (Item) & buyer (Sender)

<− . send (Sender , t e l l , shipment (Id , Item , P r i c e ,

done)) .

The �rst few lines of Listing 1 assert beliefs that buyer is alice,

figs are in stock, and that they go for the price of 10. Then the

goal start is asserted. The following lines show two plans. The �rst

is for the goal start and is executed whenever it is asserted. This

plan executes two queries to bind variables Buyer, Item, and Price,

respectively. It then uses a library function to bind variable Id to a

random identi�er. Finally, it uses the built-in function for sending

an o�er to Buyer using the KQML speech act tell.

Jason asserts beliefs corresponding to received messages. The

second plan is for handling a belief corresponding to a received

accept and is executed whenever the belief is asserted. The plan

checks (via guards in the context) that the speci�c Item is in stock

and that the Sender is the buyer and, if so, sends a shipment message.

3 MODELING MULTIAGENT SYSTEMS

As explained below, we use information protocols to specify the

basic communicative acts in a MAS; meaning-level commitment

speci�cations refer to these acts.

3.1 Information Protocols in BSPL

Information protocols are declarative interaction speci�cations

[32, 33]. An interaction is speci�ed as a composition of protocols—a

message being an atomic protocol with a special syntax—in terms

of the information dependencies between them. The idea is that an

agent can emit any message whose information dependencies are

satis�ed given its local state, that is, its communication history. We

adopt information protocols because they support �exible and asyn-

chronous multiparty enactments better than traditional message

ordering-oriented representations of protocols [12].

We explain BSPL via the protocol Ebusiness in Listing 2. It speci-

�es several messages, eachwith a sender, a receiver, and information

parameters. The parameter Id is annotated key, meaning it serves

to identify enactments (and correlate messages). Adornments ?in@,

?out@, and ?nil@ for parameters capture information dependencies

and are interpreted relative to enactments. A message in some en-

actment is viable (i.e., legal for emission) if the sender’s local state

includes bindings for all the ?in@ parameters and none of the ?out@

Azorus: Commitments over Protocols for BDI Agents AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA

or ?nil@ parameters. Sending the message adds it to the agent’s

local state (along with the bindings for the ?out@ parameters, which

are computed at that point, thus making them known); the ?nil@

parameters remain unbound. Receiving a message adds it to the

receiver’s local state (along with the bindings for all its parameters,

thus making them known). Notably, information protocols do not

specify message reception order.

Listing 2: An information protocol in BSPL.

Ebus i n e s s {

r o l e s Buyer , S e l l e r , Bank

paramete r s out Id key , out Item , out P r i c e , out

S t a t u s

S e l l e r −> Buyer : o f f e r [out Id key , out Item ,

out P r i c e]

Buyer −> S e l l e r : a c c ep t [i n Id key , i n Item , i n

P r i c e , out Dec i s i on]

Buyer −> Bank : i n s t r u c t [i n Id key , i n P r i c e ,

out D e t a i l s]

Bank −> S e l l e r : t r a n s f e r [i n Id key , i n P r i c e ,

i n De t a i l s , out Payment]

S e l l e r −> Buyer : shipment [i n Id key , i n Item ,

i n P r i c e , out S t a t u s]

S e l l e r −> Bank : r e fund [i n Id key , i n Item , i n

Payment , out Amount , out S t a t u s]

}

In an enactment of Ebusiness, seller may send o�er anytime

since all its parameters are ?out@. Once seller has sent o�er, it

would know the bindings for Id, Item, and Price, which means it

may send shipment provided it does not already know the binding

for Status. Analogously, buyermay send accept or instruct anytime

after receiving o�er; bank may send a transfer anytime after re-

ceiving instruct; and sellermay send refund anytime after sending

o�er and receiving transfer. And, shipment and refund are mutually

exclusive since they both bind Status (it is ?out@ in both).

To get a sense of how �exible Ebusiness is, consider the fact

that it has 658 distinct maximal enactments (each a causally valid

permutation of sends and receives of its messages extended until

no agent is left with any viable message), including the enactment

depicted in Figure 2, which is notable because accept and transfer

are “reordered” in the communication infrastructure and seller

sends shipment even though it has not received accept.

3.2 Specifying Commitments

Cupid is an approach for specifying commitments over databases

of business events [15].

Listing 3: Commitment speci�cation in Cupid.

commitment OfferCom S e l l e r to Buyer

c r e a t e o f f e r

detach t r a n s f e r [, c r e a t e d OfferCom + 5]

where " Payment >= P r i c e "

d i s c h a r g e shipment [, detached OfferCom + 5]

commitment AcceptCom Buyer to S e l l e r

c r e a t e a c c ep t

BUYER SELLER BANK

o�er

accept

instruct

transfer

shipment

Figure 2: Ebusiness enactment in which shipment is sent by

seller even as accept was in transit, based on [12, p. 1380].

detach shipment [, c r e a t e d AcceptCom + 5]

d i s c h a r g e t r a n s f e r [, detached AcceptCom + 5]

where " Payment >= P r i c e "

commitment RefundCom S e l l e r to Buyer

c r e a t e o f f e r

detach v i o l a t e d OfferCom

d i s ch a r g e re fund [, detached RefundCom + 2]

where " Amount >= Payment "

commitment TransferCom Bank to S e l l e r

c r e a t e i n s t r u c t

d i s c h a r g e t r a n s f e r [, c r e a t e d TransferCom + 2]

where " Payment = P r i c e "

Listing 3 gives a Cupid speci�cation that gives the meaning of

messages in the Ebusiness protocol in Listing 2. Speci�cally, events

such as o�er, transfer, and so on refer to the observation of the

corresponding message. These events constitute the base events for

the speci�cation. The attributes of a base event are the parameters

of its message plus a unique timestamp attribute.

The commitment OfferCom speci�es that o�er creates a commit-

ment (instance) from seller to buyer. This commitment is detached

if transfer happens within 5 time units (for purposes of this paper,

seconds) of the creation and Payment in the transfer is at least

as much as Price in the o�er. The commitment expires (fails to be

detached) if either of these conditions is not met. The commitment

is discharged if shipment happens within 5 time units of being

detached. The commitment is violated (fails to be discharged) if

shipment fails to occur within the stipulated time.

AcceptCom speci�es that accept creates a commitment from

buyer to seller that if shipment happens within 5 time units of

its creation, then transfer will occur within 5 time units of its be-

ing detached. RefundCom speci�es that o�er creates a commitment

from seller to buyer that if OfferCom is violated, then refund of

at least the Amount paid will be done with 2 time units of the vio-

lation (else, obviously, the RefundCom will be violated). RefundCom

demonstrates the use of nested commitments, which may be used

to capture patterns such as compensation. TransferCom captures

bank’s commitment to buyer to do transfer upon instruct.

AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA Amit K. Chopra, Ma�eo Baldoni, Samuel H. Christie V, and Munindar P. Singh

Table 1 de�nes the formal syntax of Cupid, which we include

here since we give it a new formal semantics based on Jason. Below,

A and T are the sets of agent names and time instants, respectively;

in particular, T = N ∪ {∞}, where N is the set of natural numbers

and ∞ is an in�nitely distant time instant.

ComSpec gives the syntax for a commitment: the debtor and cred-

itor agents, and the create, detach, and discharge clauses. Listing 3

uses a surface syntax for readability. We write and, or, and except

for ⊓, ⊔, and ¸ respectively. In time intervals, we omit lower and

upper instants when they are 0 and ∞, respectively. An omitted

detach clause means the commitment is unconditional. We label

commitments to simplify referring to commitment events.

Table 1: Syntax of Cupid [15].

Event −→ Base | LifeEvent

LifeEvent −→ created(A, A, Expr, Expr, Expr) |

detached(A, A, Expr, Expr, Expr) |

discharged(A,A, Expr, Expr, Expr) |

expired(A, A, Expr, Expr, Expr) |

violated(A,A, Expr, Expr, Expr)

Expr −→ Event[Time, Time] | Expr ⊓Expr |Expr ⊔Expr |

Expr ¸ Expr | Expr where ą

Time −→ Event + T | T

ComSpec −→ commitment(A, A, Expr, Expr, Expr)

Cupid speci�es �ve life events for every commitment: created,

detached, expired, discharged, and violated. The semantics of Cupid

gives a query for each life event for a commitment. The idea is

to infer the life events (including their timestamps) from the base

events. Time intervals for an event ([Time, Time] in Table 1) are

interpreted strictly: the event is required to occur after (including

at) the initial moment but before the �nal moment of the interval.

Chopra and Singh [15] give Cupid’s semantics in relational al-

gebra; its existing implementation compiles each life event of a

commitment into an SQL query. Azorus provides a new imple-

mentation of Cupid into Jason to enable BDI programming using

commitments.

4 PROGRAMMING MODEL,

ARCHITECTURALLY

Figure 3 describes the Azorus architecture and programming model.

A MAS is speci�ed in terms of commitments and an information

protocol. The Azorus tooling generates an adapter for the role

being played by the agent based on the speci�cations. The adapter

supports implementing agents via programming abstractions for

commitments and protocols. The �gure shows the computational

components of the adapter. Beliefs represent an agent’s state.

Each agent sends and receives messages via an Asynchronous

Communication Service. An agent’s Local State is the protocol state

projected to the messages sent or received by the agent and is repre-

sented as a set of beliefs corresponding to themessages. The Protocol

Adapter captures the protocol constraints relative to the role played

by the agent. It sends messages using Jason’s communication prim-

itives and adds them to the Local State. (Received messages are

added to the Local State automatically by Jason.) Moreover, the

Internal Logic

Commitment Materializer

Commitment �eries

Base Event Adapter

Protocol Adapter

Commitment Events

Local State

Reasoning

Beliefs

Azorus Agent

Decentralized

Social State

partitioned across agents

Azorus Tool

Commitments (Cupid)

Protocol (BSPL)

MAS Specification

Asynchronous Communication Service

no central store

Figure 3: Azorus architecture and programming model.

Protocol Adapter computes the set of enabled communicative acts

(explained below) from the Local State.

As messages are added to the Local State, the Base Event Adapter

asserts the corresponding base events as timestamped beliefs. These

events are used by Commitment Queries to compute the commit-

ment events. The Internal Logic is a set of Jason plans that cap-

ture agent behavior (modulo protocol constraints, of course). These

plans use Commitment Queries and Protocol Adapter to reason about

commitments and send only enabled communications.

Commitment Queries may be used in the context of a Jason plan.

To accommodate a programming style where a Jason plan is trig-

gered by the occurrence of a commitment event, the Commitment

Materializer asserts commitment events as beliefs as they occur.

In Figure 3, developers provide the MAS speci�cations and the

internal logic of the agents. The value of Azorus arises from gener-

ating the Protocol Adapter, Base Event Adapter, Commitment Queries,

and Commitment Materializer from commitments and protocols

and packaging them as the Azorus adapter. Speci�cally, the agent

programmer may focus on writing the Internal Logic based on the

interface a�orded by Azorus adapter: local state (the communica-

tive acts that have occurred), enabled acts (the acts that may be

performed), and commitment queries and materialized commitment

events (as capturing meaning).

Below we describe each computational component, including

how they update the stateful ones.

4.1 Protocol Adapter

Baldoni et al. [4] present Orpheus, a programming model for im-

plementing protocol-based Jason agents. Given an information

protocol, the Orpheus protocol adapter enables the implementa-

tion of Jason agents that play roles in the protocol. Speci�cally,

an agent’s protocol adapter maintains its local state. Based on the

state and the protocol speci�cation, it keeps track of information-

enabled forms. The forms are necessarily partial message instances

that would be legal to send if completed. Speci�cally, a form’s ?in@

parameters have bindings from the local state, whereas the ?out@

Azorus: Commitments over Protocols for BDI Agents AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA

parameters are unbound because their bindings don’t exist in the

local state; ?nil@ parameters are omitted from the form because

they are neither bound in the local state nor can be bound.

Listing 4 gives a possible local state for a seller agent and List-

ing 5 shows the forms available to it in that state.

Listing 4: A possible local state for a seller agent. It contains

instances of messages in the Ebusiness protocol.

o f f e r (1 , f i g , 1 0)

o f f e r (2 , jam , 1 0 0)

a c c ep t (2 , jam , 100 , yes)

t r a n s f e r (1 , 1 0 , done , 1 0)

Listing 5: Enabled forms, showing parameters to be bound.

o f f e r (Id , Item , Price)

shipment (1 , f i g , 1 0 , Status)

r e fund (1 , f i g , 1 0 , Amount , Status)

shipment (2 , jam , 100 , Status)

To write an Orpheus agent, a programmer writes a set of plans.

Each plan is an event-triggered piece of code that gets some enabled

forms; completes them via some logic; and then attempts to send

them. If the attempt passes the required integrity checks, the adapter

turns the completed forms into messages on the wire and records

them in the local state. Listing 6 shows a Jason code snippet (blue for

Orpheus constructs; red for what a programmer must implement)

that represents a seller agent’s internal reasoning. The �rst plan

concerns communicating o�ers. If there is an enabled o�er form,

then it completes the form by checking if it has something to o�er,

and then attempts to send it. The listing also contains a plan for

completing and attempting shipment forms. The enabled predicate

and attempt are adapter abstractions. The programmer uses them

and also writes the plan for completing the form. Notably, the

programmer never writes code to receive messages.

Listing 6: Some Orpheus snippets.

@of fe r_p lan [atomic]

+ ! s e n d _ o f f e r

: enab led (o f f e r (out , out , out) [r e c e i v e r (out)])

<− ! comple te (o f f e r (Id , Item ,

P r i c e) [r e c e i v e r (Buyer)]) ;

! a t tempt (o f f e r (Id , Item ,

P r i c e) [r e c e i v e r (Buyer)]) .

@shipment_plan [atomic]

+ ! send_shipment (Id , Item , P r i c e , Buyer)

: enab led (shipment (Id , Item , P r i c e ,

out) [r e c e i v e r (Buyer)])

<− ! comple te (shipment (Id , Item , P r i c e ,

S t a t u s) [r e c e i v e r (Buyer)]) ;

! a t tempt (shipment (Id , Item , P r i c e ,

S t a t u s) [r e c e i v e r (Buyer)]) .

+ ! comple te (o f f e r (Id , Item ,

P r i c e) [r e c e i v e r (Buyer)])

: o n _ o f f e r (Id , Item , P r i c e) & buyer (Buyer)

<− − on_o f f e r (Id , Item , P r i c e) .

+ ! comple te (shipment (Id , Item , P r i c e ,

S t a t u s) [r e c e i v e r (Buyer)])

: i n _ s t o c k (Item) & c ond i t i o n (S t a t u s) &

buyer (Buyer)

<− − i n _ s t o c k (Item) .

Orpheus abstracts away the maintenance of the local state and

presents an interface to the programmer that supplies the enabled

communicative acts. However, it does not support meaning-based

reasoning—the programmer must encode when messages should

be sent using low-level reasoning.

4.2 Base Event Adapter

Every time a message< with parameters ®? is sent or received, a

belief for the corresponding base event 1 is asserted with its times-

tamp C as the current system time. C1 gives the corresponding rule

pattern, whose instance the tooling generates for every message

and corresponding base event pair (<(®?), 1 (®?, C)). We explain the

goal update in Section 4.4.

C1 +<(®?) : system_time(Now) <- +1(®? , Now); !update(®:).

4.3 Commitment Queries

To support commitment queries, we give abstract Jason rules of the

form head :- body. The rules are substantially more modular than

in the previous semantics [15], which facilitates comprehension

and enhances con�dence that they capture intuitions correctly.

We treat all expressions of type Expr in Table 1, e.g.,- ⊓. ,- ⊔. ,

and so on, uniformly as events. [[-]] refers to the predicate for event

- . For a base event � with attributes ®0 and timestamp C , [[�]] is

simply � (®0, C) and its instances are asserted beliefs. For example,

the predicate for o�er is o�er(Seller,Buyer, Id, Item, Price,Otime).

The rules below lift [[]] to all events.

Below, �, � , and� are base or commitment life events; ! is a life

event; more generally, - and . are events; ®0Ĕ and CĔ refer to the

attributes and timestamp of - , respectively; CĦ stands for a globally

unique timestamp name in every application of the rules in which

it appears. [[-]] ®ėĪ means that [[-]]’s attributes and timestamp are

®0 and C , respectively (omitted where obvious from the rule).

C2 says that an instance of [[� [2,∞]]] is an instance of � that

has occurred at or after 2 . C3 is similar.

C2 [[� [2,∞]]] :- [[�]] & 2 ⩽ Cā .

C3 [[� [0, 3]]] :- [[�]] & Cā < 3.

A compiler uses the abstract Jason to produce actual Jason.

Thus, for example, when the compiler encounters the expression

o�er[0, 5], it will map it to a unique name such as o�erPred1 and

generate the Jason rule in Listing 7.

Listing 7: Compiler-generated Jason from applying C3.

o f f e r P r e d 1 (S e l l e r , Buyer , Id , Item , P r i c e , Otime)

: − o f f e r (S e l l e r , Buyer , Id , Item , P r i c e ,

Otime) & Otime < 5 .

C4 says that an instance of - ⊓. represents correlated instances

of - and . and whose timestamp value is the max of their times-

tamps. Further, the set of attributes of the instance is the union of

the attributes in the - and the . instances.

AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA Amit K. Chopra, Ma�eo Baldoni, Samuel H. Christie V, and Munindar P. Singh

C4 [[- ⊓ .]] ®ėĔ∪®ėĕ
ĪĦ

:- [[-]] & [[.]] & .max ([CĔ , Cĕ], CĦ) .

Suppose the compiler encountered the expression o�er[0,5] ⊓

accept[0,6]. Listing 8 gives the kind of actual Jason code generated.

Listing 8: Compiler-generated Jason from applying C4.

andPred3 (S e l l e r , Buyer , Id , Item , P r i c e , T1) : −

/ / o f f e r P r e d 1 as d e s c r i b e d i n Listing 7

o f f e r P r e d 1 (S e l l e r , Buyer , Id , Item , P r i c e , Otime) &

/ / Assume a r u l e f o r a c c e p t [0 , 6] from app l y i n g C3

accep tP r ed2 (S e l l e r , Buyer , Id , Item , P r i c e , Atime) &

. max ([Otime , Atime] , T1) .

C6 says that an instance of � [� +2,∞] is an instance of � that has

occurred no earlier than 2 time units after the correlated � instance.

C8 says that an instance � [0,� + 3] is an instance of � such that

if the correlated � instance has occurred, then the � should have

occurred before 3 units after the � ’s occurrence. The rest of the

rules in C5–C10 are straightforward applications of C4.

C5 [[� [2, 3]]] :- [[� [2,∞] ⊓ � [0, 3]]] .

C6 [[� [� + 2,∞]]] ®ėāĪā :- [[�]] & [[�]] & CĂ + 2 ⩽ Cā .

C7 [[� [� + 2, 3]]] :- [[� [� + 2,∞] ⊓ � [0, 3]]].

C8 [[� [0,� + 3]]] ®ėāĪā :- [[�]] & (not [[�]] | ([[�]] & Cā < Că + 3)) .

C9 [[� [2,� + 3]]] :- [[� [2,∞] ⊓ � [0,� + 3]]].

C10 [[� [� + 2,� + 3]]] :- [[� [� + 2,∞] ⊓ � [0,� + 3]]] .

C11 says that an instance of - ⊔. is either an - instance or a .

instance. If correlated - and . instances have both occurred, then

the timestamp is the min of the two. To avoid unbound attributes

in the - ⊔ . instance, the set of its attributes is the intersection of

the attributes of the - instance and the . instance. C12 is straight-

forward.

C11 [[- ⊔ .]] ®ėĔ∩®ėĕ
ĪĦ

:- ([[-]] & [[.]] & .min([CĔ , Cĕ], CĦ) |

([[-]] & not . & CĦ = CĔ) |

([[.]] & not - & CĦ = Cĕ).

C12 [[- where i]] :- [[-]] & i .

Let commitment(G,~, 2, A,D) be a speci�cation with debtor G ,

creditor ~, and create, detach, and discharge expressions 2 , A , and D,

respectively. Below, we write commitment(2, A,D) since the debtor

and creditor are the same throughout.

C13–C15 give the rules for some of the commitment life events

of interest. For commitment(2, A,D), the created instances are the

2 instances; detached instances represent correlated created and A

instances; and discharged instances represent correlated created

and D instances. Notice that a commitment may be detached even if

it has been discharged. In coming up with the rules, we are guided

by �exibility and simplicity.

C13 [[created (2, A,D)]] :- [[2]] .

C14 [[detached (2, A,D)]] :- [[created (2, A,D) ⊓ A]] .

C15 [[discharged (2, A,D)]] :- [[created (2, A,D) ⊓ D]] .

Formulating rules in Jason for computing expired and violated

instances of commitments require the notion of failed events. C16

says that an instance of � fails to occur at or after 2 if it occurs

before 2 . C17 says that an instance of � fails to occur before 3 either

if it occurs at or after 3 or it does not occur at all. In both cases,

the timestamp of failure is 3 . C21 says that an instance of � fails to

occur before Că +3 if either � occurs at or after Că +3 or � does not

occur at all. In both cases, the timestamp of failure is Că + 3 . The

rest of the rules in C16–C23 are straightforward.

C16 [[� [2,∞]]] :- [[� [0, 2]]].

C17 [[� [0, 3]]]ĪĦ :- [[� [3,∞]]] | not [[�]]) & CĦ = 3 .

C18 [[� [2, 3]]] :- [[� [2,∞] ⊔ � [0, 3]]].

C19 [[� [� + 2,∞]]] :- [[� [0, � + 2]]].

C20 [[� [� + 2, 3]]] :- [[� [� + 2,∞] ⊔ � [0, 3]]].

C21 [[� [0,� + 3]]] ®ėāĪĦ :- [[�]] & ([[� [� + 3,∞]]] | not [[�]]) &

CĦ = Că + 3 .

C22 [[� [2,� + 3]]] :- [[� [2,∞] ⊔ � [0,� + 3]]].

C23 [[� [� + 2,� + 3]]] :- [[� [� + 2,∞] ⊔ � [0,� + 3]]].

C24—C26 apply De Morgan’s laws to extend failure.

C24 [[- ⊓ .]] :- [[- ⊔ .]].

C25 [[- ⊔ .]] :- [[- ⊓ .]].

C26 [[- where i]] :- [[- ⊔ (- where not i)]].

C27 says that an instance of - ¸ . is an instance of - such that

the correlated . has failed to occur. Its timestamp is the max of the

two. C28 says that an instance of the failure of - ¸ . is either an

instance of the failure of - or an instance of . .

C27 [[- ¸ .]] ®ėĔĪĦ :- [[-]] & [[.]] & .max ([CĔ , Cĕ], CĦ).

C28 [[- ¸ .]] :- [[- ⊔ .]].

C29–C30 compute expired (failed to detach) and violated (failed

to discharge) instances.

C29 [[expired (2, A,D)]] :- [[2A40C43 (2, A,D) ¸ A]] .

C30 [[violated (2, A,D)]] :- [[detached (2, A,D) ¸ D]] .

Often, we are interested in life events that have occurred, that is,

their timestamp is no later than the current time, as C31 captures.

C31 [[now!]] :- [[!]] & CĈ ⩽ Now & system_time(#>F).

4.4 Commitment Materializer

To materialize commitment events as beliefs, we assert an update

commitment events goal every time an agent asserts a base event

(as described above). Any base event a�ects commitments that are

relevant to some subset of enactments, as identi�ed by the bindings

of its key attributes. Therefore, for e�ciency, the update goal is

parameterized by key attributes ®: that are common to all base events

and are therefore guaranteed to occur in every life event predicate.

C1 triggers the update (®: is the set of key attributes common to all

base events, therefore ®: ¦ ®? in C1).

C32 gives the abstract Jason plan for materializing commitment

events; [[4E_nowL]] is a predicate with the same attributes and

timestamp as [[nowL]]. The plan for the update goal consists of

asserting a belief corresponding to a life event if it is an instance of

the life event predicate but not yet asserted. Assume that the life

event predicates are [[!1]],. . . , [[!Ĥ]].

C32 +!update(®:) <- if ([[nowL1]] & not [[4E_nowL1]])

{ +[[4E_nowL1]]; }

Azorus: Commitments over Protocols for BDI Agents AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA

. . .

if ([[nowLĤ]] & not [[4E_nowLĤ]])

{ +[[4E_nowLĤ]]; }.

Agent programmers do not need to know either the abstract

Jason rules (C1–C32) or the generated Jason rules. Their API consists

of the predicates [[!]], [[=>F!]], and [[4E_=>F!]], where ! is a

lifecycle event.

5 IMPLEMENTING FLEXIBLE AGENTS

We now give examples of how Azorus agents can reason about

commitments to �exibly enact protocols.

5.1 With Commitments as Queries

Azorus o�ers a set of queries for each commitment as a module

(see Figure 3). These queries can be used for driving the choices of

the enabled messages computed by the protocol adapter module.

Listing 9: Commitments as queries in Azorus.

+ ! handle_form ([shipment (Id , Item , P r i c e ,

out) [r e c e i v e r (Buyer)] | _])

: i n _ s t o c k (Item) &

now_detached_OfferCom (S e l l e r , Buyer , Id ,

Item , P r i c e , Bank , Payment , Timestamp)

<− ! send_shipment (Id , Item , P r i c e , Buyer) .

+ ! handle_form ([shipment (Id , Item , P r i c e ,

out) [r e c e i v e r (Buyer)] | _])

: not i n _ s t o c k (Item) &

now_detached_OfferCom (S e l l e r , Buyer , Id ,

Item , P r i c e , Bank , Payment , Timestamp)

<− ! s end_re fund (Id , Item , Payment , Bank) .

+ ! handle_form ([re fund (Id , Item , Payment , out ,

out) [r e c e i v e r (Bank)] | _])

: now_detached_RefundCom (S e l l e r , Buyer , Id ,

Item , P r i c e , Bank , Payment , Timestamp)

<− ! s end_re fund (Id , Item , Payment , Bank) .

A common reasoning pattern is for an agent to discharge a

commitment if it is detached. The �rst plan in Listing 9 embodies

this pattern. The seller executes the goal send_shipment if the Item

is in stock and the commitment OfferCom is detached, that is, the

shipment occurs if the transfer has been done in a timely manner.

Otherwise, by the second plan, if the Item is not in stock but

OfferCom is detached, the goal send_refund is executed. The plan

for send_shipment is as in Listing 6 and the plan for send_refund is

analogous. The last plan is for when the commitment OfferCom is

violated (because shipping does not occur by the deadline); again,

the goal send_refund is executed. Both plans intend refund; how-

ever, the second does it simply on the basis of the detachment of

OfferCom whereas the last plan does it upon its violation.

5.2 With Commitments as Events

Besides the set of queries for each commitment, an agent program

can exploit the commitment materializer (see Figure 3), which as-

serts beliefs corresponding to the occurrence of commitment events.

These events can be exploited to support reasoning.

Listing 10: Commitments as events in Azorus.

+ ! o f f e r : o n _ o f f e r (Id , Item , P r i c e)

<− ! s e n d _ o f f e r .

+ev_now_detached_OfferCom (S e l l e r , Buyer , Id ,

Item , P r i c e , Bank , Payment , Timestamp)

: i n _ s t o c k (Item)

<− ! send_shipment (Id , Item , P r i c e , Buyer) .

+ev_now_detached_RefundCom (S e l l e r , Buyer , Id ,

Item , P r i c e , Bank , Payment , Timestamp)

<− ! s end_re fund (Id , Item , Payment , Bank) .

For example, in Listing 10, the agent seller sends an o�er to a

potential buyer. Upon a timely transfer, the commitment OfferCom

is detached and, by exploiting the rule C32, the event

+ev_now_detached_O�erCom is produced by adding the corre-

sponding belief to the seller agent’s belief base. This triggers the

plan for dealingwith such an event: the agent performs the shipment.

Analogously, in the case the event +ev_now_detached_RefundCom

is generated (the shipment does not occur within the deadline) the

agent performs the refund.

5.3 Timestamp-Based Reasoning

Recall that for a life event !, an instance of [[=>F!]] is an [[!]]

instance that has actually occurred (that is, with current time as

the reference point). In general, any time instant, in the past or the

future, could be the point of reference.

Suppose the seller agent, as a matter of managing its commit-

ments, wanted to discharge the OfferCom commitments that will be

violated within 10 time units from now (unless, of course, shipment

is sent). Listing 11 shows how to accomplish this using a future

time instant as the point of reference.

Listing 11: Deadline-based reasoning.

+ ! handle_form ([shipment (Id , Item , P r i c e ,

out) [r e c e i v e r (Buyer)] | _])

: i n _ s t o c k (Item) & v io l a t ed_Of fe rCom (Id , . . . , T)

& system_t ime (Now) & T <= Now + 10

<− ! send_shipment (Id , Item , P r i c e , Buyer) .

6 CONCEPTUAL EVALUATION

Let’s summarize what must be manually speci�ed or coded and

what Azorus provides as abstractions. The commitment speci�-

cation, the protocol, and an agent’s internal reasoning must be

manually speci�ed. Azorus supports the coding of internal reason-

ing by providing abstractions that enable reasoning about commit-

ments and performing communicative acts that are legal from the

standpoint of the protocol.

In virtually any multiparty application, commitments and pro-

tocols are domain concepts; there is no avoiding reasoning about

them. Specifying them cleanly opens up the possibility of building

a tool-supported methodology around them, including veri�cation

[19, 34, 36, 42] and programming abstractions (as we do in Azorus),

and other productivity tools such as IDEs. Not specifying them

means architects and programmers must �gure out the possible

enactments and encode the reasoning using low-level abstractions.

Naturally, such code is likely to be ad hoc, complex, error-prone,

AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA Amit K. Chopra, Ma�eo Baldoni, Samuel H. Christie V, and Munindar P. Singh

and hard-to-maintain even for simple MAS involving rigid inter-

actions between two parties, let alone MAS with more than two

parties and �exible engagements (such as the Ebusiness protocol

which has 658 enactments).

Even with protocol support, as Orpheus provides, the program-

mer would still have to encode reasoning about commitments man-

ually. Consider Listing 12, which shows a seller’s code snippet.

It says that the agent sends an enabled shipment if transfer has

occurred. Since transfer is required for the detach of OfferCom,

this seems to capture the intent behind the �rst plan in Listing 9.

It does not though because it misses the time-related reasoning.

That is, transfer could have happened late enough that OfferCom

would have expired, in which case the agent may not want to send

shipment.

Listing 12: No support for commitment reasoning can lead

to errors by underspeci�cation.

+ ! handle_form ([shipment (Id , Item , P r i c e ,

out) [r e c e i v e r (Buyer)] | _])

: i n _ s t o c k (Item) &

t r a n s f e r (Id , P r i c e , _ , Payment)

<− ! send_shipment (Id , Item , P r i c e , Buyer) .

Commitments without protocol support can also go wrong. In

Listing 13, shipment and refund (which should be mutually exclu-

sive) are triggered solely by their respective commitment detach-

ments. If transfer takes too long,OfferCom will be violated and

RefundCom detached. Since protocol constraints are not enforced,

both shipment and refund could be sent, violating mutual exclusion.

Listing 13: No support for protocols can lead to erroneous

communication.

+ t r a n s f e r (Id , P r i c e , Payment)

: i n _ s t o c k (Item) &

now_detached_OfferCom (S e l l e r , Buyer , Id ,

Item , P r i c e , Bank , Payment , Timestamp)

<− . send (Buyer , t e l l , shipment (Id , Item , P r i c e ,

done)) .

+ev_now_detached_RefundCom (S e l l e r , Buyer , Id ,

Item , P r i c e , Bank , Payment , Timestamp)

: Amount=Payment

<− . send (Bank , t e l l , r e fund (Id , Item , Payment ,

Amount , done)) .

Without protocol support, in Jason, programmers typically use

tell for every message. We might as well drop KQML support (and

FIPA ACL [21] support from JADE) and instead consider the pro-

tocol messages themselves as �rst-class communicative acts and

express their meaning via social abstractions such as commitments

(see Singh’s essay in [11]), as Azorus does.

7 DISCUSSION

Azorus’ novelty is twofold. One, it shows how protocols as opera-

tional abstractions and commitments as high-level abstractions can

be leveraged in a multiagent programming model. Two, it intro-

duces higher-level communication abstractions to Jason, a popular

BDI-based programming model. Azorus exploits practical, expres-

sive languages for commitments and protocols and the Azorus

adapter is the �rst careful working out of the interplay between pro-

tocol enactment and commitment reasoning. Its signi�cance is also

two-fold. One, Azorus simpli�es the engineering of �exible, decen-

tralized MAS. Two, it brings goals, commitments, and protocols—all

of which represent autonomy—into a single programming model.

Below, we discuss concerns that require further investigation.

Specifying Commitments. Di�erent commitment speci�ca-

tions could be overlaid on the same protocol. The speci�cation in

Listing 3 is "direct" in that it gives the meaning of both o�er and

accept as an exchange of shipment and transfer. An alternative com-

mitment speci�cation could have a "waterfall" �avor: o�er means

that if accept, then shipment, and accept means that if shipment, then

transfer. The possibility of alternative commitment speci�cations

motivates characterizing the speci�cations in terms of properties

and stakeholder requirements that they satisfy.

Implementing Agents. Consider buyer and seller agents imple-

mented such that the seller waited for the buyer to detach OfferCom

by e�ecting transfer and the buyer waited for the seller to detach

AcceptCom by doing shipment. Naturally, in every enactment, the

agents end up deadlocked (even though the Ebusiness protocol

itself is live). Such deadlocked enactments are not necessarily prob-

lematic: they arise from agents exercising their autonomy by not

sending messages.

Notions such as trust and other business requirements can fa-

cilitate progress. For example, if a buyer trusts the seller or if the

monetary amount involved is small, the buyer may be willing to

detach OfferCom from the seller, e�ectively moving �rst in the ex-

change. What we need are novel methodologies for implementing

agents that take into account the various contextual assumptions

and business requirements.

There has been some work on methodologies for specifying com-

mitments and implementing agents. Winiko� [38] and Yolum [42]

give methods for designing and checking speci�cations for proper-

ties related to progress, consistency, and �exibility. Marengo et al.

[28] and Günay et al. [25] relate commitments to notions of safety

and control. Some work has studied relationships between goals

(as representation of requirements) and commitments [13, 29, 37].

Yolum and Singh study commitments from the point of view of

concession (taking a risk by moving �rst) [44]. To ensure moni-

torability of commitments, Azorus could be combined with either

organizations and shared artifacts [18] or use alignment-producing

techniques [16, 27]. Finally, Langshaw [35] is an even higher-level

protocol language than BSPL and may simplify combining commit-

ments and protocols. These works can serve as a starting point for

methodologies for building �exible, decentralized MAS, a direction

that should yield rich dividends.

8 REPRODUCIBILITY

The entire Azorus codebase and examples as well as other related

tools are available online at https://gitlab.com/masr.

ACKNOWLEDGMENTS

MPS thanks the NSF (grant IIS-1908374) for partial support.

Azorus: Commitments over Protocols for BDI Agents AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA

REFERENCES
[1] Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Mical-

izio. 2018. Commitment-based Agent Interaction in JaCaMo+. Fundamenta
Informaticae 159, 1-2 (2018), 1–33. https://doi.org/10.3233/FI-2018-1656

[2] Matteo Baldoni, Cristina Baroglio, Elisa Marengo, and Viviana Patti. 2013. Con-
stitutive and Regulative Speci�cations of Commitment Protocols: A Decoupled
Approach. ACM Transactions on Intelligent Systems and Technology (TIST) 4, 2,
Article 22 (March 2013), 25 pages. https://doi.org/10.1145/2438653.2438657

[3] Matteo Baldoni, Cristina Baroglio, Alberto Martelli, and Viviana Patti. 2006. A Pri-
ori Conformance Veri�cation for Guaranteeing Interoperability in Open Environ-
ments. In Proceedings of the 4th International Conference on Service-Oriented Com-
puting (ICSOC) (Lecture Notes in Computer Science, Vol. 4294). Springer, Chicago,
339–351. https://doi.org/10.1007/11948148_28

[4] Matteo Baldoni, Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra.
2025. Orpheus: Engineering Multiagent Systems via Communicating Agents. In
Proceedings of the 39th AAAI Conference on Arti�cial Intelligence (AAAI). AAAI,
Philadelphia, 1–9.

[5] Bernhard Bauer, Jörg P. Müller, and James Odell. 2000. An Extension of UML by
Protocols for Multiagent Interaction an existing Multi-Agent Planning System.
In Proceedings of the 4th International Conference on Multiagent Systems (ICMAS).
IEEE Computer Society, Boston, 207–214. https://doi.org/10.1109/ICMAS.2000.
858455

[6] Fabio Bellifemine, Giovanni Caire, and Dominic Greenwood. 2007. Developing
Multi-Agent Systems with JADE. Wiley, Chichester, UK. https://doi.org/10.1002/
9780470058411

[7] Olivier Boissier, Rafael H. Bordini, Jomi Fred Hübner, Alessandro Ricci, and
Andrea Santi. 2013. Multi-agent oriented programming with JaCaMo. Science
of Computer Programming 78, 6 (June 2013), 747–761. https://doi.org/10.1016/j.
scico.2011.10.004

[8] Rafael H. Bordini and Jomi Fred Hübner. 2010. Semantics for the Jason Variant
of AgentSpeak (Plan Failure and some Internal Actions). In Proceedings of the
19th European Conference on Arti�cial Intelligence (ECAI) (Frontiers in Arti�cial
Intelligence and Applications, Vol. 215). IOS Press, Lisbon, 635–640. https://doi.
org/10.3233/978-1-60750-606-5-635

[9] Hans Chalupsky, Tim Finin, Rich Fritzson, Don McKay, Stu Shapiro, and Gio
Wiederhold. 1992. An Overview of KQML: A Knowledge Query and Manipulation
Language. TR. University of Maryland Computer Science Department, Baltimore.

[10] Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni. 2013. Repre-
senting and Monitoring Social Commitments using the Event Calculus. Journal of
Autonomous Agents and Multi-Agent Systems (JAAMAS) 27, 1 (July 2013), 85–130.
https://doi.org/10.1007/s10458-012-9202-0

[11] Amit K. Chopra, Alexander Artikis, Jamal Bentahar, Marco Colombetti, Frank
Dignum, Nicoletta Fornara, Andrew J. I. Jones, Munindar P. Singh, and Pınar
Yolum. 2013. Research Directions in Agent Communication. ACM Transactions on
Intelligent Systems and Technology (TIST) 42, 2, Article 20 (March 2013), 23 pages.
https://doi.org/10.1145/2438653.2438655

[12] Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh. 2020. An Evalu-
ation of Communication Protocol Languages for Engineering Multiagent Sys-
tems. Journal of Arti�cial Intelligence Research (JAIR) 69 (Dec. 2020), 1351–1393.
https://doi.org/10.1613/jair.1.12212

[13] Amit K. Chopra, Fabiano Dalpiaz, F. Başak Aydemir, Paolo Giorgini, John My-
lopoulos, and Munindar P. Singh. 2014. Protos: Foundations for Engineering
Innovative Sociotechnical Systems. In Proceedings of the 22nd IEEE International
Requirements Engineering Conference (RE). IEEE Computer Society, Karlskrona,
Sweden, 53–62. https://doi.org/10.1109/RE.2014.6912247

[14] Amit K. Chopra and Munindar P. Singh. 2006. Contextualizing Commitment
Protocols. In Proceedings of the 5th International Joint Conference on Autonomous
Agents and Multiagent Systems. ACM Press, Hakodate, Japan, 1345–1352. https:
//doi.org/10.1145/1160633.1160884

[15] Amit K. Chopra and Munindar P. Singh. 2015. Cupid: Commitments in Relational
Algebra. In Proceedings of the 29th Conference on Arti�cial Intelligence (AAAI).
AAAI Press, Austin, Texas, 2052–2059. https://doi.org/10.1609/aaai.v29i1.9443

[16] Amit K. Chopra and Munindar P. Singh. 2015. Generalized Commitment
Alignment. In Proceedings of the 14th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS). IFAAMAS, Istanbul, 453–461. https:
//doi.org/10.5555/2772879.2772938

[17] Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra. 2023. Kiko:
Programming Agents to Enact Interaction Protocols. In Proceedings of the 22nd
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
IFAAMAS, London, 1154–1163. https://doi.org/10.5555/3545946.3598758

[18] Mehdi Dastani, Leendert W. N. van der Torre, and Neil Yorke-Smith. 2017. Com-
mitments and Interaction Norms in Organisations. Journal of Autonomous
Agents and Multi-Agent Systems (JAAMAS) 31, 2 (March 2017), 207–249. https:
//doi.org/10.1007/s10458-015-9321-5

[19] Mohamed El Menshawy, Jamal Bentahar, Hongyang Qu, and Rachida Dssouli.
2011. On the Veri�cation of Social Commitments and Time. In Proceedings of
the 10th International Conference on Autonomous Agents and MultiAgent Systems

(AAMAS). IFAAMAS, Taipei, 483–490. https://doi.org/10.5555/2031678.2031687
[20] Angelo Ferrando, Michael Winiko�, Stephen Crane�eld, Frank Dignum, and

Viviana Mascardi. 2019. On Enactability of Agent Interaction Protocols: Towards
a Uni�ed Approach. In Proceedings of the 7th International Workshop on Engineer-
ing Multi-Agent Systems (EMAS) (Lecture Notes in Computer Science, Vol. 12058).
Springer, Montréal, 43–64. https://doi.org/10.1007/978-3-030-51417-4_3

[21] FIPA. 2002. FIPAAgent Communication Language Speci�cations. FIPA: The Foun-
dation for Intelligent Physical Agents, http://www.�pa.org/repository/aclspecs.
html.

[22] FIPA. 2003. FIPA Interaction Protocol Speci�cations. http://www.�pa.org/
repository/ips.html. FIPA: The Foundation for Intelligent Physical Agents.
Accessed 2024-11-24.

[23] Nicoletta Fornara and Marco Colombetti. 2002. Operational Speci�cation of a
Commitment-Based Agent Communication Language. In Proceedings of the 1st
International Joint Conference on Autonomous Agents and MultiAgent Systems
(AAMAS). ACM Press, Melbourne, 535–542. https://doi.org/10.1145/544862.
544868

[24] Stéphane Galland, Sebastian Rodriguez, and Nicolas Gaud. 2020. Run-time En-
vironment for the SARL Agent-Programming Language: The Example of the
Janus platform. Future Generation Computer Systems 107 (June 2020), 1105–1115.
https://doi.org/10.1016/j.future.2017.10.020

[25] Akın Günay, Michael Winiko�, and Pınar Yolum. 2015. Dynamically Generated
Commitment Protocols in Open Systems. Journal of Autonomous Agents and
Multi-Agent Systems (JAAMAS) 29, 2 (March 2015), 192–229. https://doi.org/10.
1007/s10458-014-9251-7

[26] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. 2007. Developing
Organised Multiagent Systems using the MOISE

+ Model: Programming Issues at
the System and Agent Levels. International Journal of Agent-Oriented Software
Engineering 1, 3/4 (2007), 370–395. https://doi.org/10.1504/IJAOSE.2007.016266

[27] Thomas Christopher King, Akın Günay, Amit K. Chopra, and Munindar P. Singh.
2017. Tosca: Operationalizing Commitments over Information Protocols. In
Proceedings of the 26th International Joint Conference on Arti�cial Intelligence
(IJCAI). IJCAI, Melbourne, 256–264. https://doi.org/10.24963/ijcai.2017/37

[28] Elisa Marengo, Matteo Baldoni, Amit K. Chopra, Cristina Baroglio, Viviana Patti,
and Munindar P. Singh. 2011. Commitments with Regulations: Reasoning about
Safety and Control in Regula. In Proceedings of the 10th International Conference
on Autonomous Agents and MultiAgent Systems (AAMAS). IFAAMAS, Taipei,
467–474. https://doi.org/10.5555/2031678.2031684

[29] Felipe Meneguzzi, Mauricio C. Magnaguagno, Munindar P. Singh, Pankaj R.
Telang, and Neil Yorke-Smith. 2018. GoCo: Planning Expressive Commitment
Protocols. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 32,
4 (July 2018), 459–502. https://doi.org/10.1007/s10458-018-9385-0

[30] Jaime Simão Sichman, Rosaria Conte, Yves Demazeau, and Cristiano Castel-
franchi. 1994. A Social Reasoning Mechanism Based on Dependence Networks.
In Proceedings of the 11th European Conference on Arti�cial Intelligence. John
Wiley and Sons, Amsterdam, 188–192.

[31] Munindar P. Singh. 1998. Agent Communication Languages: Rethinking the
Principles. IEEE Computer 31, 12 (Dec. 1998), 40–47. https://doi.org/10.1109/2.
735849

[32] Munindar P. Singh. 2011. Information-Driven Interaction-Oriented Program-
ming: BSPL, the Blindingly Simple Protocol Language. In Proceedings of the 10th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
IFAAMAS, Taipei, 491–498. https://doi.org/10.5555/2031678.2031687

[33] Munindar P. Singh. 2012. Semantics and Veri�cation of Information-Based
Protocols. In Proceedings of the 11th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS). IFAAMAS, Valencia, Spain, 1149–1156.
https://doi.org/10.5555/2343776.2343861

[34] Munindar P. Singh and Samuel H. Christie V. 2021. Tango: Declarative Semantics
for Multiagent Communication Protocols. In Proceedings of the 30th International
Joint Conference on Arti�cial Intelligence (IJCAI). IJCAI, Online, 391–397. https:
//doi.org/10.24963/ijcai.2021/55

[35] Munindar P. Singh, Samuel H. Christie V, and Amit K. Chopra. 2024. Langshaw:
Declarative Interaction Protocols Based on Sayso and Con�ict. In Proceedings
of the 30th International Joint Conference on Arti�cial Intelligence (IJCAI). IJCAI,
Jeju, Korea, 202–210. https://doi.org/10.24963/ijcai.2024/23

[36] Pankaj R. Telang and Munindar P. Singh. 2012. Specifying and Verifying Cross-
Organizational BusinessModels: AnAgent-Oriented Approach. IEEE Transactions
on Services Computing (TSC) 5, 3 (July 2012), 305–318. https://doi.org/10.1109/
TSC.2011.4 Appendix pages 1–5.

[37] Pankaj R. Telang, Munindar P. Singh, and Neil Yorke-Smith. 2019. A Coupled Op-
erational Semantics for Goals and Commitments. Journal of Arti�cial Intelligence
Research (JAIR) 65 (May 2019), 31–85. https://doi.org/10.1613/jair.1.11494

[38] Michael Winiko�. 2006. Designing Commitment-Based Agent Interactions. In
Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent
Technology. IEEE Computer Society, Hong Kong, 363–370. https://doi.org/10.
1109/IAT.2006.53

AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA Amit K. Chopra, Ma�eo Baldoni, Samuel H. Christie V, and Munindar P. Singh

[39] Michael Winiko�. 2007. Implementing Commitment-Based Interactions. In
Proceedings of the 6th International Joint Conference on Autonomous Agents and
MultiAgent Systems (AAMAS). IFAAMAS, Honolulu, 868–875. https://doi.org/10.
1145/1329125.1329283

[40] Michael Winiko�. 2012. Challenges and Directions for Engineering Multi-Agent
Systems. CoRR abs/1209.1428 (2012), 12 pages.

[41] Michael Winiko�, Nitin Yadav, and Lin Padgham. 2018. A New Hierarchical
Agent Protocol Notation. Journal of Autonomous Agents and Multi-Agent Systems
(JAAMAS) 32, 1 (Jan. 2018), 59–133. https://doi.org/10.1007/s10458-017-9373-9

[42] Pınar Yolum. 2007. Design Time Analysis of Multiagent Protocols. Data and
Knowledge Engineering 63, 1 (Oct. 2007), 137–154. https://doi.org/10.1016/j.datak.

2006.12.001
[43] Pınar Yolum and Munindar P. Singh. 2002. Flexible Protocol Speci�cation and

Execution: Applying Event Calculus Planning using Commitments. In Proceedings
of the 1st International Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS). ACM Press, Bologna, 527–534. https://doi.org/10.1145/544862.
544867

[44] Pınar Yolum and Munindar P. Singh. 2007. Enacting Protocols by Commitment
Concession. In Proceedings of the 6th International Joint Conference on Autonomous
Agents and MultiAgent Systems (AAMAS). IFAAMAS, Honolulu, 116–123. https:
//doi.org/10.1145/1329125.1329158

	Abstract
	1 Introduction
	2 Jason Background
	3 Modeling Multiagent Systems
	3.1 Information Protocols in BSPL
	3.2 Specifying Commitments

	4 Programming Model, Architecturally
	4.1 Protocol Adapter
	4.2 Base Event Adapter
	4.3 Commitment Queries
	4.4 Commitment Materializer

	5 Implementing Flexible Agents
	5.1 With Commitments as Queries
	5.2 With Commitments as Events
	5.3 Timestamp-Based Reasoning

	6 Conceptual Evaluation
	7 Discussion
	8 Reproducibility
	Acknowledgments
	References

