
Optimal Admission Policy in a Cloud
Data Center with Priority
and Non-Priority Tasks

Wenlong Ni(B), Yuhong Zhang, and Wei Li

Texas Southern University, 3100 Cleburne St, H ouston, TX 77004, USA
{wenlong.ni,yuhong.zhang,wei.li}@tsu.edu

Abstract. This paper studies a cloud datacenter (DC) consisting of two
types of tasks with different priority levels. While non-priority tasks gen-
erally request the use of a single virtual machine (VM), priority tasks
may utilize multiple available VMs to accelerate processing. We focus
on determining whether to accept or reject non-priority tasks to maxi-
mize overall system benefits. By formulating the problem as a stochastic
dynamic program, it is verified that the best approach for handling non-
priority tasks adheres to a control-limit framework. Both experimental
outcomes and numerical evaluations highlight the efficacy of the proposed
method, leading to the identification of the optimal threshold. The key
contribution of this paper is the development of a stochastic dynamic
program for DC resource management and the explicit derivation of an
optimal control-limit policy. Both value iteration and linear program-
ming methods are utilized to solve optimization p roblems. These results
offer essential understanding for assessing the performance of various DC
models, optimizing both rewards and resources efficiently.

Keywords: Cloud data center · Resource utilization · Optimal
policy · Cost and Reward · Stochastic dynamic program

1 Introduction

Authors in [1, 5, 9,15] studied various cloud computing paradigms that delivers
dynamically elastic and virtualized resources over the Internet. It functions as a
core framework for data services, integrating networks, computational resources,
storage systems, and software elements. The term “cloud” sym bolizes the focus
on resource utilization rather than the underlying implementation mechanisms.
In CC, the c ost for computation and energy consumption is less at current cloud
DCs [3] because it exploits virtualization technology, which segregates the ele-
mentary functions of computers f rom the hardware resources and t he physical
infrastructure.

This work has been funded in part by the National Science Foundation through
awards numbered 2302469 and 2318662, alongside support from NASA under Grant
80NSSC22KM0052.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
K. Arai (Ed.): CompCom 2025, LNNS 1423, pp. 256–268, 2025.
https://doi.org/10.1007/978-3-031-92602-0_16

Optimal Admission Policy in a Cloud Data Center 257

CC leverages virtualization technology [7, 8,19,20] to create virtual machines
(VMs) which uses hypervisors to abstract physical hardware, allowing multiple
VMs running independently on a single server. This technology supports cloud
environments by optimizing hardware u sage, reducing operational costs, and
enabling rapid deployment of services, making it a cornerstone of modern IT
infrastructure.

The primary goal of a cloud service provider (CSP) is to maximize profitabil-
ity while ensuring adherence to key performance indicators and service l evel
agreements [11]. By efficiently managing infrastructure, leveraging automation,
and implementing dynamic pricing models, operators aim to balance customer
satisfaction with revenue growth. Additionally, they focus on reducing energy
consumption and improving resource utilization to enhance sustainability and
cost-effectiveness. Ultimately, the op erator’s success lies in achieving a competi-
tive edge by delivering high-quality services at optimal costs, ensuring long-term
profitability and customer retention.

Cloud computing (CC) has revolutionized large-scale big data pro cessing and
intricate computational analysis [6,10]. Due to the underutilization of data cen-
ter (DC) power [2] and the growing demand for scientific computations [4, 6], this
study introduces an innovative resource allocation strategy for DCs to enhance
the efficiency of virtual machine (VM) resource usage. The standard operations
of a DC are categorized as priority tasks, while computationally intensive tasks
are classified as non-priority. The system exhibits several unique features [11,18],
including task categorization, urgency levels, resource optimization, a preemp-
tion mechanism, and task queuing.

In one of our previous work [12], we investigated a general scenario with-
out cognitive characteristics. We studied both an average-reward model and
a discounted-expected-reward model. The key difference between the model in
that paper and the one in the current study is the absence of task prioritiza-
tion. Furthermore, in the model presented in [14], a task T2 will utilize as many
VMs as possible, whereas in the proposed model, each T2 task occupies only one
VM. The primary objective of this paper is to optimize the processing of non-
priority tasks and identify an optimal policy that maximizes the total exp ected
discounted reward for every initial state. Some more related ideas and notation
discussed in the paper can be found in our unpublished work [13], which includes
more theoretic details. Below, we outline the ma jor contributions of t his study:

1. Separate buffers are allocated for two types of tasks with different priority
in this model. When a priority task requesting a number of VMs arrives, it
may preempt a non-priority task that is currently being processed by using
one VM. We demonstrate that the optimal strategy for determining whether
to accept or decline a non-priority task follows a state-dependent t hreshold
policy, also known as a control-limit policy.

2. Both the value iteration (VI) and linear programming (LP) methods are
utilized to solve Bellman optimization problems. Our approach ensures that
resource allocation is maximized while adhering to predefined constraints. The

258 W. Ni et al.

use of LP not only streamlines the optimization process, but also guarantees
precise and a ctionable insights.

The paper is structured as follows. Section 2 presents the system model of the
DC. Section 3 discusses the optimal policy framework aimed at maximizing the
reward, including the verification process t hat confirms it as a control limit
policy. Section 4 provides a numerical analysis supported by tables and diagrams
to validate the theoretical findings. The paper concludes with final remarks in
Sect. 5.

2 Model Description and Analysis

A CC environment offers users and various application systems the ability to
obtain computing power, storage capacity, or VM services on demand from a
dynamically virtualized resource pool. It is a continuously operating and chang-
ing system, and thus a continuous-time Markov decision process (CTMDP)
framework is well-suited for modeling dynamic stochastic processes. We begin
by presenting a system model for a DC, incorporating the necessary assump-
tions for all relevant parameters. Subsequently, we outline the construction of
key components within the constructed CTMDP model. We will consider the
following assumptions in the proposed model:

1. The system handles two types of tasks: priority tasks, referred to as type-
1 (T1) tasks, and non-priority tasks, referred to as type-2 (T2) tasks. The
number of VMs (denoted by C) will serve both tasks fluctuates dynamically
in response to the workload within the system.

2. Tasks of type T1 are time-critical and require a predetermined number (say b,
a positive integer) of VMs for their execution, while tasks of type T2, w hich
involve additional payment, can be processed using a regular VM.

3. The arrival of tasks T1 and T2 follows Poisson processes [17] with arrival rates
λ1 and λ2, respectively. The processing time for these tasks on a single VM
follows a negativ e exponential distribution with rates μ1 and μ2 , respectively.

Based on these assumptions, we are now ready to c onstruct a CTMDP model
as follows:

1. Our emphasis is on decision-making states, which include both standard sys-
tem states and events occurring at decision points. The conventional state,
the first component of a decision-making state, is defined by the number
of ongoing tasks of each type in the DC. This is denoted as S = {s : s =
(n1, n2), n1 ≥ 0, n2 ≥ 0}, where n1 and n2 are the number of T1 and T2 tasks.
The event space is defined by e ∈ E = {Di, Ai, i = 1, 2}, where Di indicates
the departure of a Ti task from the system after service completion, and Ai sig-
nifies the arrival of a Ti task. Thus, a decision-making state can be expressed
as ŝ = 〈s, e〉 = 〈(n1, n2), e〉. The state space is the collection of all possible
decision-making states, represented as Ŝ = S × E = {ŝ|ŝ = 〈(n1, n2), e〉}.

Optimal Admission Policy in a Cloud Data Center 259

2. Once a service in progress completes, the controller remains inactive and
makes no decision. We introduce the notation aD to represent a hypothetical
action corresponding to the completion (departure) of a service. Let aA denote
the action to admit and aR denote the action to reject the request. The action
space A is defined as the s et of three actions: A = {aD, aA, aR}.

3. Per our assumption, the time duration between two epochs is exponentially
distributed. Let V1(n1) be the number of VMs occupied by T1 tasks, V2(n1, n2)
be the number of VMs occupied by T2 tasks.

V1(n1) = bn1, n1 < N1,
V1(n1) = C, n1 ≥ N1,

V2(n1, n2) = min(C − V1(n1), n2), n1 < N1,
V2(n1, n2) = 0, n1 ≥ N 1.

Denote by s = (n1, n2) and β0(s) = λ1 + λ2 + V1μ1 + V2μ2, we know that the
average duration for the system to transition from state s to any other state
is, is 1/β0(s).

4. Let q(j|ŝ, a) denote the probability that the system occupies state j in the
next epoch if taking action a from state ŝ. For a event D1 under the condition
of (n1 > 0), (ŝ, a) = (〈(n1, n2), D1〉, aD), if denote by sd1 = (n1 − 1, n2), then
q(j|〈(n1, n2), D1〉, aD) can be derived as

⎧ ⎪⎪⎨

⎪⎪⎩

λ1/β0(sd1), j = 〈(n1 − 1, n2), A1〉,
λ2/β0(sd1), j = 〈(n1 − 1, n2), A2〉,
V1(n1 − 1)μ1/β0(sd1), j = 〈(n1 − 1, n2), D1〉,
V2(n1 − 1, n2)μ2/β0(sd1), j = 〈(n1 − 1, n2), D 2〉.

The transition probabilities for other states can also be derived similarly.
5. The reward function is involved with the income award k(ŝ, a) and the system

cost at rate c(ŝ, a), and can be derived by:

r(ŝ, a) = k(ŝ, a) + c(ŝ, a)
α + β(ŝ, a)

,

where

k(ŝ, a) =
{

R, e = A2, a = aA,
0, otherwise.

After accepting a T2 task, the reward is received after the service completion,
which is equal to putting it with the accept action. Let f (s), s = (n1, n2) be
the cost rate of state s, then c(ŝ, a) fulfills the following conditions:

c(ŝ, a) =

⎧ ⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−f(n1 − 1, n2), e = D1, n1 > 0,
−f(n1, n2 − 1), e = D2, n2 > 0,
−f(n1 + 1, n2), e = A1,
−f(n1, n2 + 1), e = A2, a = aA,

−f(n1, n2), e = A2, a = aR.

260 W. Ni et al.

A policy specifies the decision rule to be used at every decision epoch. Our
objective is to determine the optimal policy π that maximizes vπ

α(ŝ) for all initial
states ŝ.

3 Optimal Stationary State-Related Control Limit Policy

Furthermore, a policy is called a control limit policy (or a threshold policy) if
there exists a threshold in the policy for accepting task arrivals. In this research,
since we only focus on admitting T2 task, when there are n1 tasks of T1 in the
system, there is a threshold T (n1) ≥ 0 such that the system will only accept
the arriving T2 whenever the number of T2 tasks currently in the system is less
than T (n1), and r eject the T2 arrivals otherwise. This means the decision rule
for T2 tasks is:

d(n1, n2, A2) =
{

aA, n2 ≤ T (n1),
aR, n2 > T (n1).

(1)

It is easy to see that a threshold policy makes the c hoices for decision makers
(CSP) very simple.

3.1 Optimal State Value Function

Let V ∗(s) denote the optimal state value function, which represents the maxi-
mum expected cumulative reward starting from state s and following the optimal
policy π∗ thereafter. The Bellman optimality equation for the state value func-
tion is given by:

V ∗ (s) = max
a∈A(s)

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

)
,

where:

– R(s, a) is the immediate reward for taking action a in state s.
– γ ∈ [0, 1) is the discount factor, which weighs future r ewards.
– P (s′|s, a) is the transition probability from state s to state s′ given action a.

The optimal policy π∗ can be derived by choosing the action that maximizes the
right-hand side of the equation for each state s:

π∗(s) = arg max
a∈A(s)

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

)
.

Optimal Admission Policy in a Cloud Data Center 261

3.2 Optimal Result By Value Iteration

By using above equation, for a departure event of D1, we h ave

v(〈(n1 + 1, n2), D1〉) = 1
α + β0(n1, n2)

[−f(n1, n2) + λ1v(〈(n1, n2), A1〉)
+λ2v(〈(n1, n2), A2〉) + n1μ1 v(〈(n1, n2), D1〉)
+n2μ2v(〈(n1, n2), D2〉)]. (2)

From above equations, it is seen that the values of v(ŝ) is mainly dependent
on the number of n1 and n2, so we can define a new function B(s), s = (n1, n2),
which is

B(n1, n2) = v(〈(n1 + 1, n2), D1〉) = v(〈(n1, n2 + 1), D2〉).
From these analysis, since there is only accept/reject actions for the T2 arrivals,
it is not too hard to verify that

v(〈(n1, n2), A2〉) = max
[
B(n1, n2), R + B(n1, n2 + 1)

]
.

For the T1 tasks, we h ave

v(〈(n1, n2), A1〉) = B(n1 + 1, n 2).
For any two-dimensional integer function X(n1, n2), n1 ≥ 0, n2 ≥ 0, we

introduce the following definitions:

Δn2X(n1, n2) = X(n1, n2 + 1) − X(n1, n2).
Δ(2)

n2
X(n1, n2) = Δn2X (n1, n2 + 1) − Δn2X(n1, n2).

Theorem 1. If the cost function f(n1, n2) is convex and increasing function on
n2 for any given n1, which means Δn2f(n1, n2) ≥ 0 and Δ (2) n2 f (n1, n2) ≥ 0, the
optimal policy for admitting T2 arrivals is then a control limit policy.

Proof: For any n2 > 0, we can easily get

β0(n1, n2) =
{

λ1 + λ2 + bn1μ1 + V2(n1, n2)μ2, n 1 < N1,
λ1 + λ2 + Cμ1, n1 ≥ N1.

(3)

Furthermore, by using the notation of B(n1, n2), we can rewrite the Eq. (2) as
b elow:

1. If n1 < N1,

B(n1, n2) = 1
α + β0(n1, n2)

[
− f(n1, n2)

+λ1v(〈(n1, n2), A1〉) + λ2v(〈(n1, n2), A2〉)
+bn1μ1B((n1 − 1, n2)) + V2(n1, n2)μ2B((n1, n2 − 1))

]
. (4)

262 W. Ni et al.

2. If n1 ≥ N1,

B(n1, n2) = 1
α + β0(n1, n2)

[
− f(n1, n2) + λ1v(〈(n1, n2), A1〉)

+λ2v(〈(n1, n2), A2〉) + Cμ1B((n1 − 1, n2))
]
. (5)

From the observation in Eqs. (3), (4) and the Eq. (5), we will ha ve

1. If n1 < N1,(
α + β0(n1, n2 + 1)

)
Δn2B(n1 + 1, n2)

= −Δn2f (n1, n2) + λ1Δn2v(〈(n1, n2), A1〉) + λ2Δn2v(〈(n1, n2), A2〉)
+bn1μ1Δn2B(n1, n2) + V2(n1, n2)μ2Δn2B(n1, n2 − 1). (6)

2. If n1 ≥ N1, (
α + β0(n1, n2 + 1)

)
Δn2B(n1, n2)

= −Δn2f(n1, n2) + λ1Δn2v(〈(n1, n2), A1〉)
+λ2Δn2v(〈(n1, n2), A2〉) + Cμ1Δn2B(n1, n2). (7)

By a similar implementation with above Eqs. (6) and (7), we ha ve

1. If n1 < N1,

(α + β0(n1, n2 + 2))Δ(2)
n2

B(n1, n2)
= −Δ(2)

n2
f(n1, n2)

+λ1Δ
(2)
n2

v(〈(n1, n2), A1〉) + λ2Δ
(2)
n2

v(〈(n1, n2), A2〉)
+bn1μ1Δ

(2)
n2

B(n1 − 1, n2) + V2(n1, n2)μ2Δ
(2)
n2

B(n1, n2 − 1). (8)

2. If n1 ≥ N1,

(α + β0(n1, n2 + 2))Δ(2)
n2

B(n1, n2)
= −Δ(2)

n2
f(n1, n2) + λ1Δ

(2)
n2

v(〈(n1, n2), A1〉)
+λ2Δ

(2)
n2

v(〈(n1, n2), A2〉) + Cμ1Δ
(2)
n2

B(n1 − 1, n2). (9)

With the preparations on all equations from Eqs. (8) to (9), we can now adopt
Value Iteration Method with three steps to prove that for any given n1, the
values of B(n1, n2) is concave and nonincreasing on n2 as below:

Define B(0)(n1, n2) = 0 as the value of B((n1, n2) in the initial (0th) itera-
tion and v(0) being the corresponding v, we know v(0)(〈(n1, n2), A2〉) = R and

Optimal Admission Policy in a Cloud Data Center 263

v(0)(〈(n1, n2), A1〉) = 0. Next, define B(1)(n1, n2) as the value of B((n1, n2) in
the (1st) iteration, we will have

B(1)(n1, n2) = −f(n1, n2) + λ 2R
α + c

.

Therefore, for any n1, B(1)(n1, n2) i s concave and nonincreasing on n2.
By using above concavity and non-increasing property of B(1)(n1, n2), let v(1)

be the corresponding v in the (1st) iteration, we know that v(1)(〈n1, n2, A1〉) i s
concave and non-increasing functions for any n2. By further applying the result
in Lemma 1 of [12], we know that v(1)(〈n1, n2, A2〉) is also concave and non-
increasing functions for any n2 . With these results in mind, and u sing the results
in Eqs. (6), (7) and (8), (9) we will know that

Δn2B
(2)(n1, n2) ≤ 0, and Δ(2)

n2
B(2)(n1, n2) ≤ 0.

These two inequalities justify that for any n1, B(2)(n1, n2) is nonincreasing and
concave on n2. Here, B(2)(n1, n2) is the value of B((n1, n2) in the (2nd) iteration.

Finally, by noticing the Theorem 11.3.2 of [16] that the optimality equation
has the unique solution, we know the value iteration B(i)(n1, n2), (i = 0, 1, . . . ,)
will uniquely converges. Therefore, as the iteration continues, with i goes to ∞,
for any n1, B(n1, n2) is always concave nonincreasing for any n2.

Remark: Through the verification process for Theorem 1, it is observed that
the threshold for accepting T2 tasks exists regardless the number of VMs C.
This observation fits the fact that the available VMs in a DC may be constantly
changing due to dynamic loads. Generally speaking, if the number of VMs C
is larger, the processing speeds are higher, so the DC can accept more T2 tasks
waiting in the buffer.

3.3 Optimal Result By Linear Programming

In addition to the Value Iteration method, the Bellman optimality equations
can also be formulated as a linear programming problem to find the optimal
value function V ∗(s). Using the linear programming method, it systematically
tackles the optimization problem, aiming to identify the most efficient strategy
for resource allo cation or decision making. The integration of the threshold policy
with linear programming provides a robust analytical approach, enhancing the
understanding and practical application of the model in various contexts.

A linear programming problem consists of three main comp onents:

– Objective Function: A linear function to b e maximized or minimized.
– Constraints: A set of linear inequalities or equalities that define the feasible

region.
– Decision Variables: Variables that represent the choices available to the

decision maker.

264 W. Ni et al.

In matrix notation, the LP problem can be written as follows:
Objective Function:

M aximizeorM inimize Z = cTx, (10)

where c is the vector of coefficients, and x is the vector of decision variables.
Subject to Constraints:

Ax ≤ b,

where A is the matrix of constraint coefficients, and b is the vector of bounds.
Non-negativity:

x ≥ 0.

For the Bellman equation of the MDP model proposed in this paper, the linear
programming formulation is given by:

M inimize
∑
s∈S

V (s),

subject to the constraints:

V (s) ≥ R(s, a) +
∑
s′∈S

P (s′|s, a)V (s′) ∀s ∈ S, a ∈ A(s).

In this formulation:

– V (s) denotes the approximate value a ssigned to state s.
– The objective function

∑
s∈S V (s) is to minimize the aggregate of state values,

thereby aligning closely with the optimal value function V ∗(s) within the
given constraints.

This linear programming technique offers an alternative strategy for tackling
Bellman optimality equations, particularly advantageous for large or intricate
MDPs where finding exact s olutions is computationally demanding.

4 Numerical Analysis

In this section, we show the threshold policy numerically considering s pecific
parameters as indicated in Table 1:

4.1 Value Iteration Method

Using this parameter configuration, we can determine both the B(n1, n2) values
and the corresponding optimal policy using the v alue iteration method. The
results are presented in the tables below.

Table 2 illustrates that the values of the function B(n1, n2) exhibit a concave
decreasing pattern as n2 increases, which aligns with our theoretical expecta-
tions. To show how the threshold values depend on the value of n1, by choosing

Optimal Admission Policy in a Cloud Data Center 265

Table 1. Parameters selection

Number of VMs C 20
Discount Factor α 0.1
λ1 / μ1 0.5 / 3
λ2 / μ2 1 / 4
b 2
Reward R 3
Cost Function f (n1, n2) n2

1 + n2
2

Table 2. B(n1, n2) values with o ptimal po licy

n2 = 0 1 2 3 4 5 6 7 8 9 10 11
n1 = 0 26.07 25.77 25.22 24.42 23.37 22.08 20.54 18.76 16.72 14.45 11.92 9.15
1 25.89 25.59 25.04 24.24 23.20 21.90 20.37 18.58 16.55 14.27 11.74 8.97
2 25.55 25.25 24.70 23.90 22.85 21.56 20.02 18.24 16.20 13.92 11.40 8.63
3 25.04 24.74 24.19 23.39 22.34 21.05 19.51 17.73 15.70 13.42 10.89 8.12
4 24.37 24.07 23.51 22.72 21.67 20.38 18.84 17.06 15.02 12.74 10.22 7.44
5 23.53 23.23 22.68 21.88 20.83 19.54 18.00 16.22 14.18 11.90 9.37 6.44
6 22.53 22.22 21.67 20.87 19.83 18.54 17.00 15.21 13.18 10.76 8.00 4.84
7 21.36 21.05 20.50 19.70 18.66 17.37 15.83 13.93 11.71 9.10 6.12 2.71
8 20.02 19.72 19.17 18.37 17.32 15.95 14.27 12.22 9.81 6.98 3.74 0.05

b = 2, we plot two different cases when n1 = 4, and n 1 = 8, respectively, in the
Fig. 1.

In this figure, the green color is for the value of R + B(n1, n2 + 1) and the
red color is for the value of B(n1, n2). Since B(n1, n2) is concave on n2 for any
given n1, and thus R + B(n1, n2 + 1), it is easy to identify the optimal threshold
by comparing the red line (B(n1, n2)) and the green line (R + B(n1, n2 + 1)),
as shown in Fig. 1 if the green line is over the red line which means the system
would take the accept action, so the threshold is 11 for n1 = 4, to be 9 for
n1 = 8 , respectively. Next, it is also a straightforward observation that the
optimal threshold is therefore a decreasing function of n1.

4.2 Linear Programming

Similar to the Value Iteration method, to confirm the effectiveness of the pro-
posed Linear Programming (LP) model, we performed a series of numerical
experiments to assess its performance with various parameters of the system.
This linear programming approach provides an alternative method for solving
Bellman optimality equations, especially useful for large or complex MDPs where
exact solutions are challenging to compute.

266 W. Ni et al.

Fig. 1. Optimal threshold v alues

Table 3. Actions for T2 task of linear programming solution

n2 = 0 1 2 3 4 5 6 7 8 9 10 11
n1 = 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 0
7 1 1 1 1 1 1 1 1 1 1 1 0
8 1 1 1 1 1 1 1 1 1 1 0 0

As illustrated in Table 3, the numeral “1” denotes acceptance of a task,
whereas “0” indicates rejection by the system. Given the significant disparity
between the reward R and the associated holding and rejection costs, the table
reveals that the system tends to accept T2 tasks into the buffer, regardless of
whether there are already waiting T2 tasks or even T1 tasks present. It can be
easily found that the actions in Table 3 are the same as those derived from the
values in Table 2.

These experiments and data analysis have clearly demonstrated the effective-
ness of the proposed method. Through rigorous analysis, we have identified the
optimal threshold, which significantly enhances performance. Furthermore, we
have observed a discernible pattern in how this threshold varies with different
parameters. This discovery not only validates our methods but also provides
valuable insights into the dynamic behavior of the system. Our findings pave
the way for further refinement and optimization of the method, ensuring its
robustness and applicability in various contexts.

Optimal Admission Policy in a Cloud Data Center 267

5 Conclusion and Discussion

To optimize VM usage in resource-limited DCs, this paper proposes a scheme
for handling both priority and non-priority tasks. Priority tasks preempt non-
priority scientific computing tasks, which utilize available VM resources. Serving
non-priority tasks generates rewards, while holding or interrupting them incurs
costs. We formulated this as a CTMDP model and identified the optimal pol-
icy for admitting non-priority tasks to be a state-dependent threshold policy.
Furthermore, the use of LP enables the efficient formulation and solution of
complex optimization problems. LP provides a powerful framework for solving
task scheduling problems in CC, and the results of this study suggest that LP
can be a valuable tool for improving efficiency and effectiveness. By continu-
ing to explore and refine LP models, we can develop more robust optimization
strategies that can be applied to real-world cloud data center, ultimately leading
to better outcomes for both users and service providers. Through the integra-
tion of reward for task acceptance and holding cost for task processing, the
MDP model provides a flexible framework for optimizing task scheduling in
cloud environments. Using a Markov Decision Process with linear programming
for optimization, this model balances load distribution, minimizes delay costs,
and ensures efficient VM utilization. By balancing these factors, we achieve a net
increase in system efficiency, which enables a more dynamic approach to resource
allocation under varying load conditions. The findings of this paper can serve
as an economically optimal strategy in diverse cloud data centers (DCs). Our
future research aims to derive optimal system policies for maximizing rewards,
even with incomplete or partial system information, by incorporating advanced
machine learning techniques and other methodologies.

References

1. Artail, H., et al.: Speedy cloud: cloud computing with support for hardware accel-
eration s ervices. IEEE Trans. Cloud Comput. 7(3), 850–865 (2019)

2. Barroso, L. A., Clidaras, J., Hoelzle., U.: The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan and Cla ypool
(2013)

3. Cao, Z., et al.: Data center sustainability: revisits and outlooks. I EEE Trans. Sust.
Comput. 9 (3), 236–248 (2024)

4. Chen, Y., Zhang, Z., Deng, Y., Min, G., Cui, L.: A combined trend virtual machine
consolidation strategy f or cloud data centers. IEEE Trans. Comput. 73(9), 2150–
2164 (2024)

5. Hu, X., Wang, L., Wong, K., Tao, M., Zhang, Y., Zheng, Z.: Edge and central
cloud computing: a perfect pairing for high energy efficiency and low-latency. IEEE
Trans. Wireless Commun. 19(2), 1070–1083 (2020)

6. Iosup, A., Ostermann, S., Yigitbasi, M.N., Prodan, R., Fahringer, T., Epema, D.:
Performance analysis of cloud computing services for many-tasks scientific com-
puting. IEEE Trans. Parallel Distrib. S yst. 22(6), 931–945 (2011)

7. Jin, H., Pan, D., Xu, J., Pissinou, N.: Efficient VM placement with multiple deter-
ministic and stochastic resources in data centers. In: GLOBECOM - IEEE Global
Telecommunications Conference, pp. 2505–2510 (2012)

268 W. Ni et al.

8. Kamiyama, N.: Trading virtual machines to stabilize revenue in public clouds. In:
NOMS 2018 - 2018 IEEE/IFIP Net work Operations and Management Symp osium,
pp. 1–8 (2018)

9. Kotas, C., Naughton, T., Imam, N.: A comparison of Amazon web services and
Microsoft azure cloud platforms for high p erformance computing. In: 2018 IEEE
International Conference on C onsumer Electronics (ICCE), pp. 1–4, (2018)

10. Liang, B., Bai, J.: Low-energy resource classification algorithm for cross-regional
cloud data centers based on k -means clustering algorithm. IEEE Trans. Industr.
Inf. 20(8), 10084–10091 (2024)

11. Mei, J., Li, K., Li, K.: Customer-satisfaction-aware optimal multiserver configura-
tion for profit maximization in cloud computing. IEEE Trans. Sust. C ompu. 2(1),
17–29 (2017)

12. Ni, W., Zhang, Y., Li, W.W.: An optimal strategy for resource utilization i n cloud
data centers. IEEE Access 7, 158095–158112 (2019)

13. Ni, W., Zhang, Y., Li, W. W.: Task admission control and boundary analysis of
cognitive cloud data centers (2020). https://arxiv.org/abs/2010.02457

14. Ni, W., Zhang, Y., Li, W. W.: Optimal task admission control of private cloud
data centers with limited resources. In: 2024 IEEE 14th Annual Computing and
Communication Workshop and Conference (CCWC), pp. 0167–0172 (2024)

15. Prukkantragorn, P., Tientanopajai, K.: Price efficiency in high performance com-
puting on Amazon elastic compute cloud provider in compute optimize p ackages.
In: 2016 International Computer Science and Engineering Conference (ICSEC),
pp. 1–6 (2016)

16. Puterman, M.: Markov Decision Processes: Discrete Sto chastic Dynamic Program-
ming (2005)

17. Ross, S.: Stochastic Processes. Wiley Series in Probability a nd Statistics. Wiley,
2nd edition (1995)

18. Sharif, S., Watson, P., Taheri, J., Nepal, S., Zomaya, A.Y.: Privacy-aware schedul-
ing SAAS in high performance computing e nvironments. IEEE Trans. Parallel
Distrib. Syst. 28(4), 1176–1188 (2017)

19. Xiao, Z., Song, W., Chen, Q.: Dynamic resource allocation using virtual machines
for cloud computing environment. I EEE Trans. Parallel Distrib. Syst. 24 (6), 1107–
1117 (2013)

20. Yamato, Y., Nishizawa, Y., Nagao, S., Sato, K.: Fast and reliable restoration
method of virtual resources on openstack. IEEE Trans. Cloud Comput. 6(2), 572–
583 (2018)

