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Abstract—Software reliability growth models (SRGMs) are
crucial to predict failure rates during software testing to en-
hance performance and mitigate risks before deployment. Many
SRGMs rely on the non-homogeneous Poisson process (NHPP),
which face difficulties when dealing with non-stationary data
and short-term fluctuations. Consequently, researchers have been
applying time series modeling techniques such as the Auto-
Regressive Integrated Moving Average (ARIMA) model to cap-
ture sudden anomalies in software reliability over time. However,
ARIMA relies on the assumption of linearity within the predicted
time series data, which diverges from the evident non-linearity
observed in many instances of software failures. To address
this limitation, this paper integrates a windowing technique into
ARIMA models (ARIMA-W) to mitigate the impact of non-
linearity in software failure observations by allowing them to con-
tinuously update their parameters based on recent observations.
The models are assessed with a dataset containing the number of
software failures over 181 intervals, and goodness-of-fit measures
are computed to compare the performance of ARIMA and
ARIMA-W. Results indicate that ARIMA tracked the number
of software failures well but failed to characterize new instances
when data used for model development was limited. How-
ever, the ARIMA-W exhibited significant enhancements across
all goodness-of-fit metrics, specifically in predictive root mean
squared errors (PRMSFE), when more data becomes available
for model fitting. Notably, when 70% and 80% of the data are
utilized for model fitting, ARIMA-W achieves approximately 5
and 8 times lower PRM SE, respectively, compared to ARIMA,
indicating higher accuracy in predicting future software failures
when fitted to a larger historical dataset.

Index Terms—Software reliability, ARIMA, windowing tech-
nique, software failure predictions, goodness-of-fit measures

I. INTRODUCTION

Software reliability growth models (SRGM) [1] hold a
significant position in the realm of software reliability engi-
neering [2], as they facilitate the prediction of failure rates
during testing phases to enhance software performance and
mitigate risks before deployment. Numerous SRGMs have
been proposed based on the Non-homogeneous Poisson Pro-
cess (NHPP) [3], [4] to estimate changes in failure intensity
over time. However, NHPP faces challenges when dealing with
non-stationary data and short-term fluctuations. Consequently,
researchers have proposed to address these limitations with
time series models [5], which offer a flexible framework well-
suited for capturing sudden changes or anomalies in software
reliability. Nonetheless, time series models typically presume
linearity in the data to be predicted, which is not always
observed in many software failure data. Therefore, alternative
methodologies to overcome this challenge would contribute to

a more accurate and reliable application of time series models,
ultimately enhancing the predictive capabilities of SRGMs.

Different parametric forms of NHPP SRGM have been
proposed [6]—[8] to estimate the number of failures remaining
in a software system. However, NHPP SRGM often requires
data to be stationary over time and assumes a failure inten-
sity function that may not capture the complex patterns and
dynamics present in real-world software failure data. As an
alternative, time series models [9] were applied to adapt to
diverse software reliability scenarios and potentially provide
more accurate predictions in environments encountering non-
stationary time series data, trends, and seasonality. For ex-
ample, Auto-Regressive Integrated Moving Average (ARIMA)
models were applied [10]-[12] to predict the number of
software failures expected in the subsequent interval based
on failure counts observed in past intervals during the testing
phase of software systems. Moreover, alternative methods
were explored to enhance ARIMA predictions for software
reliability. Such methods include optimization of parameter es-
timation using genetic algorithms [13], integration of ARIMA
and Support Vector Machines [14] models to capture data
characteristics in linear and nonlinear patterns, or inclusion of
seasonal patterns [15]-[17] to improve long-term predictions.
Although ARIMA models offer advantages over SRGM NHPP
models to predict software failures over time, estimating
ARIMA parameters and selecting the appropriate model order
can be challenging for large and complex software failure
datasets involving nonlinear patterns, adding complexity to the
model development and implementation.

To address these limitations, this paper employs a win-
dowing technique [18]-[20] to enhance the performance of
ARIMA models to predict the failure count of software
systems. The windowing technique, which is popular in the
areas of finance and traffic management, breaks down the
time series data into smaller windows and applies the ARIMA
model to each window individually. The models are assessed
with a dataset containing the number of software failures over
181 intervals. Goodness-of-fit measures including RMSE,
PRMSE, and r? 4; are computed to compare the performance
of traditional ARIMA versus the ARIMA-based windowing
(ARIMA-W) model. Results indicate that the ARIMA-W
model exhibited significant enhancements across all goodness-
of-fit metrics, especially in PRMSFE, when more data be-
comes available for model fitting, achieving at least 5 times
lower PRM SE compared to ARIMA. Thus, the windowing
technique allows the model to capture local patterns and



non-linearities within each segment, improving the overall
prediction accuracy.

The remainder of this paper is organized as follows: Sec-
tion II reviews ARIMA modeling. Section III presents ARIMA
models incorporating windowing technique. Section IV de-
scribes goodness-of-fit measures for model validation. Sec-
tion V illustrates the proposed approaches using an actual
software failure dataset. Section VI offers conclusions and
identifies opportunities for future research.

II. ARIMA MODELING

Auto-Regressive Integrated Moving Average (ARIMA) [9]
models are a class of time series forecasting that uses past
observations, also known as lags, and their own forecasting
errors to predict future values of the time series. These
models are widely used in various fields, including economics,
finance, and engineering for their simplicity, interpretability,
and effectiveness in capturing the underlying patterns and
dynamics of time series data. To apply time series models, the
data must be stationary, without exhibiting trends, also known
as seasonality, and possess a constant mean and variance
over time. In cases where the data is non-stationary, it can
be converted to stationarity with differentiation, which may
require multiple differentiation steps. ARIMA models are
defined by the number of lagged observations indicating the
order of the auto-regressive component (p), the degrees of
differentiation (d) required to make the series stationary, and
the number of lagged forecast errors q to specify the order of
the moving average component, denoted as ARIMA(p, d, ¢).

In the context of software reliability, the ARIMA predicts
the number of software failures in future time intervals,
given information on the number of failures discovered in the
previous intervals as

FC(i)=Bo+ Y BeFC(i—k)+ Y bkeli—k) (1)
k=1

k=1

where F'C is the failure count in interval 4, 3y is the baseline
number of failures, 3, is the coefficient describing the number
of failures in intervals (i—p) < (i—k) < (i—1), and 0y, is the
coefficient associated with %k times steps prior to the present
time step (i—¢q) < (i—k) < (i—1) of a sequential white noise
process (g), which are statistically independent and normally
distributed with zero mean and finite variance.

To identify numerical estimates of parameters 3y, O and
0y contained in Equation (1), least squares estimation [21]
is applied to determine the values of the parameters that
minimize the disagreement between the actual F'C' data and
the predictions FC in time interval 4, which is computed as

min z_:(FC’(i) — FO®i))? 2)

where n is the total sample size available, and v is the
observations not used for model fitting.

III. ARIMA-BASED WINDOWING MODEL

Auto-Regressive Integrated Moving Average models incor-
porating windowing technique (ARIMA-W) [18] divide the
(n — v) time series data available for model fitting into m
smaller windows of fixed length n,, to enable the model to
capture local patterns and non-linearities within each segment.
By treating each window as a separate time series of non-
overlapping data points, ARIMA models are applied inde-
pendently to each window of data to predict the number of
software failures at each interval as follows:

(S.1) Failure count is predicted in the first window as

p1 q1
FCu, (i) =Bo+ Y BFCG—k)+ Y Ope(i—k) (3)
k=1

k=1

where FC,, is the failure count prediction at interval i
contained in the first window w; of data, and p; and ¢
are the orders of the auto-regressive and moving average
components of the ARIMA model applied to the first window
wy, respectively. Least squares estimation is then applied as

Ny

min Z(Fcu) — FC,y, (i))? (4)

to estimate the parameters [y, O and 6 in the first window
w1, containing n,,, observations.
(S.2) Failure count is predicted for the remaining windows as

pPj a5
FCu, (i) = Bo+ > BeFCuy,_, (i—k)+ > Ope(i—k) (5)
k=1

k=1

where FACw]. is the prediction in interval ¢ contained in the
window w; (nu,_, < i < ny,), for a total of 2 < j < m
windows, and p; and g; are the orders of the auto-regressive
and moving average components of the ARIMA model applied
to the j** window, respectively. To predict the failure count
in the window w;, predictions FACw(Fl) of the previous
window are used as inputs of Equation (5), which allows the
model to capture patterns and relationships in the most recent
observations to forecast the next window of data. Least squares
estimation is applied for each window with

Naw

2

i:n'xu(j71) +1

(FC(i) — FC., (i))? (6)

min

to estimate their individually predictors 3y, 8x and 6.

(S.3) The failure count is predicted for future instances in the
(n —v) < i < n intervals, which contain the v observations
not used for model fitting, utilizing the model parameters and
the failure count (FAC’wm) predicted in the last window w,,.

IV. MODEL VALIDATION

Goodness-of-fit measures [22] offer an objective quantita-
tive method to compare alternative models to evaluate their
performance on a specific dataset. In most real-world sce-
narios, no single model performs best on all metrics. There-
fore, model selection often involves subjective judgment and



decision-making, with a preference for models that achieve
lower errors. Common goodness-of-fit measures applied to
validate model predictions include the root mean squared error,
predictive root mean squared error, and adjusted coefficient of
determination.

Root mean squared error is calculated by fitting a model
with n — v observations and then computing the root mean
squared difference between the actual F'C' observations and
predicted F'C

n

> (FC(i) — FC@)>  (7)

i=1

1

RMSE = | ————
(=) —p
where (n — v) — p denotes the degrees of freedom, which
represent the quantity of independent information available
for variation. This is calculated by subtracting the number of
parameters p in the model from the sample size n — v used
for model fitting. Lower values of RM SE are preferred.
Predictive root mean squared error involves fitting a model
with the initial n — v observations, and subsequently calcu-
lating the sum of squares of the prediction residuals for the
remaining v observations that were not utilized in model fitting

n

>

i=(n—v+1)

PRMSE = |1 (FC(i) — FC(i))2  (8)

where a lower PRMSE value indicates greater predictive
accuracy.

Adjusted coefficient of determination [23] is the proportion
of the variation in the number of failures F'C' that is explained
by the model according to

2 SSY — SSE (n—v)—1
o () () @
where .
ssy =3 (FC(i) - FC)? (10)
=1

is the sum of squared errors associated with the naive predictor
FC computed as the mean of the first n — v observations used
for model fitting, and

SSE =Y (FC(i) - FC(i))?

i=1

(1)

is the sum of squared errors between actual (F'C(7)) and
predicted (FC(i)) values by the model. The rgdj can take
values in the range (—oo, 1] [24], where a value closer to 1.0
implies that the model explains the variance in the set of data
used for fitting well.

V. ILLUSTRATIONS

To illustrate the ability of time series models to predict the
number of software failures in future intervals, the ARIMA
and ARIMA-W models were applied to the J2 dataset [25]
composed of the number of software failures per interval. To
identify the order of the models applied to the J2 dataset,

the autocorrelation function (ACF) and partial autocorrelation
function (PACF) [26] were used to analyze the relationship
between observations at different time lags. ACF computed
the correlation between the original time series and its lagged
values at different lag intervals to identify the order of the
moving average component, while PACF measured the corre-
lation between the original time series and its lagged values,
after removing the effects of intermediate lags to identify
the order of the auto-regressive component. For the ARIMA
models, The ACF and PACF were applied to (n — v) data
points, where n = 181 intervals for the J2 dataset, and v was
varied to illustrate four scenarios using 50%, 60%, 70%, and
80% of the data for model fitting. For ARIMA-W models, the
ACF and PACF were applied to each window of data. For
the sake of illustration, each portion of the dataset considered
for model fitting was divided into four windows of equal
length n,,, each containing the sequential time series and non-
overlapping data points. For example, for the scenario where
50% of the data was used for model fitting, the length of
the windows was n,, = (n % 0.5)/4 = (181 % 0.5)/4 ~ 23.
This approach allowed each window to possess the necessary
order of auto-regressive and moving average components to
accurately capture patterns and relationships present within
that specific window.

The ARIMA model development proceeded through a sys-
tematic sequence of steps. (i) Initially, time series models
were constructed using the earliest correlated lagged values
identified from the ACF and PACF. (ii) Subsequently, least
squares estimation was applied to a subset of the data to
estimate model parameters, followed by the computation of
goodness-of-fit measures to validate the models. (iii) The num-
ber of lagged values for the time series variable F'C' was then
systematically increased following the ACF and PACF lists
of correlated lags. (iv) This iterative process continued until
no combination of lags for the auto-regressive and moving
average components could enhance the adjusted coefficient
of determination rgdj. (v) This approach was carried out for
50%-80% of the data, with the remaining data serving as a
validation set to assess models’ performance. The application
of the ARIMA-W model followed a similar process, yet with
a key difference: the dataset used for model fitting was divided
into four sequential windows of equal length. Consequently,
these models identified lags specific to each window and
independently estimated parameters for each. As discussed in
Section III, predictions of future intervals were made using
the model constructed in the 4" window. The goodness-of-
fit measures for ARIMA-W models were computed using the
joint F'C predictions from all four windows and the future
instances.

Table I reports the order of models representing the lagged
observations and forecast errors as well as the degrees of
differentiation required to maximize the rgdj. In the tra-
ditional approach, a single ARIMA model was applied to
the complete dataset, whereas the ARIMA incorporating the
windowing method applied an ARIMA model to each window
individually. Table I also shows the number of parameters
p contained in each model, and the associate goodness-of-
fit values achieved, which were penalized for the number of



TABLE I
VALIDATION OF MODELS’ PREDICTION ON J2 DATASET

Data Subset for Model Fit | Method Model | Parameters (p) | RMSE | PRMSE e

Traditional | ARIMA(1,0,3) 5 | 11.9627 32.6696 | 0.9637
50% = 90 data points . . ARIMA(1,0,3) + ARIMA(1,0,2) +

Windowing | ol A2.0.1) + ARIMA(1.0.1) 16 5.1277 | 100.3612 | 0.9928

Traditional ARIMA(6,0,16) 23 8.2421 134.5442 | 0.9827
60% = 108 data points . . ARIMA(11,0,1T) + ARIMA(2,0,9) +

Windowing ARIMA(1,0,1) + ARIMA(3.0.3) 45 3.3541 | 163.0272 | 0.9966

Traditional | ARIMA(1,0,3) 5 9.6629 46.9954 | 0.9812
70% = 126 data points . ARIMA(1,0,11) + ARIMA(2,0,2) +

Windowing ARIMA(1.0.2) + ARIMA(2.0.2) 27 5.0928 9.7801 | 0.9944

Traditional | ARIMA(7,0,2) 10 8.5367 20.4357 | 0.9871
80% = 144 data points . . ARIMA(3,0,3) + ARIMA(2,0,2) +

Windowing | '\ prvia (3.03) + ARIMA(9.0.9) 38 5.1627 2.5883 | 0.9950
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Fig. . ARIMA and ARIMA-W fits with first 50%-80% of the J2 dataset.

parameters in the model, to quantitatively compare ARIMA
and ARIMA-W models. The model that performed best overall
by exhibiting the highest rgdj and lowest RMSE is high-
lighted in bold in Table I for each of the four subsets of data
used for model fitting. Table I indicates that the ARIMA-W
models exhibited superior 72 q; and the best RM SE in all four
cases considered, suggesting effective tracking of software
failure counts. However, when 50% and 60% of the data were
used to fit the model, the traditional ARIMA model exhibited
lower PRMSE. This outcome implies that the numerous
parameters in the ARIMA-W models were able to adjust to
minor variations in the sample used for model fitting, but
struggled to discern the underlying patterns that could gen-
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eralize to new instances. Nevertheless, as more data became
available, the performance of ARIMA-W models improved
progressively, exhibiting significant enhancements particularly
in PRMSE, where ARIMA-W achieved 46.9954/9.7801 =
4.8 and 20.4357/2.5883 = 7.9 times lower PRMSE than
ARIMA for the 70% and 80% subsets, respectively. These
results indicate that ARIMA-W models are much more precise
in predicting future software failures when fitted with a larger
historical dataset of software failures.

To visually compare the ARIMA and ARIMA-W model
fits on each subset of data used for model fitting reported in
Table I, Figure 1 shows the empirical data as well as how each
model tracks and predicts, where the dashed light gray vertical



line correspond to each window considered in the ARIMA-W
model, and the dashed dark gray vertical line corresponds to
the data point where tracking ends and prediction begins for
all models. In Figure 1-(a) it becomes apparent that when
only half of the available data was employed for model
fitting, the models successfully captured the general trend
present in the dataset. However, they struggled to accurately
replicate this trend when applied to the unseen subset of data,
indicating a limitation in their ability to generalize beyond
the data they were fitted on. Figure 1-(b) shows that when
60% of the data was used to fit the models, both models
achieved a very notable improvement in the model fit, but
still exhibited difficulty in accurately characterizing the unseen
data subset. Figure 1-(c) and Figure 1-(d) show that increasing
the subset of data used for model fitting to 70% or 80%
considerably improved the predictive ability of the ARIMA-
W models. By dividing the dataset into smaller windows and
allowing the model to adapt to the nuances present within
each window, the models were better equipped to handle the
variations and complexities inherent in the data. Consequently,
this results in a significant enhancement in their predictive
accuracy, highlighting the critical role that data availability and
partitioning strategies play in refining the predictive capability
of models to predict software failures.

VI. CONCLUSION AND FUTURE RESEARCH

This paper introduced an ARIMA model incorporating
a windowing technique (ARIMA-W) to track and predict
the number of software failures over time. The ARIMA-
W mitigates the impact of non-linearity in software failure
observations, which is a challenge faced by traditional ARIMA
models. To validate the proposed model, both ARIMA and
ARIMA-W models were evaluated using an actual dataset
composed of the number of software failures in 181 intervals,
using 50%, 60%, 70% and 80% of the data for model
fitting. Our results revealed that while both the ARIMA and
ARIMA-W performed well with limited data, the ARIMA-
W outperformed ARIMA when more data were available for
model fitting, where ARIMA-W achieved approximately 5 and
8 times lower PRMSE when 70% and 80% of the data
were used to fit the models. Visual comparisons of model
fit further supported the superiority of ARIMA-W to capture
data complexities. These findings suggested the importance of
data availability and partitioning strategies to refine predictive
capability to forecast the number of software failures.

Future research will focus on refining the windowing
technique for software failure predictions by identifying the
optimal number of windows to be used. Moreover, non-
equally sized windows will be considered to further enhance
the predictive accuracy of the models to improve long-term
predictions.
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