
1

An ARIMA-Based Windowing Model for Software

Reliability

Priscila Silva1, Mini Kusum Paudel1, Vidhyashree Nagaraju2, and Lance Fiondella1

1Electrical and Computer Engineering, University of Massachusetts Dartmouth, MA, USA
1{psilva4, mpaudel, lfiondella}@umaasd.edu, 2vidhyashreenagaraju@gmail.com

Abstract—Software reliability growth models (SRGMs) are
crucial to predict failure rates during software testing to en-
hance performance and mitigate risks before deployment. Many
SRGMs rely on the non-homogeneous Poisson process (NHPP),
which face difficulties when dealing with non-stationary data
and short-term fluctuations. Consequently, researchers have been
applying time series modeling techniques such as the Auto-
Regressive Integrated Moving Average (ARIMA) model to cap-
ture sudden anomalies in software reliability over time. However,
ARIMA relies on the assumption of linearity within the predicted
time series data, which diverges from the evident non-linearity
observed in many instances of software failures. To address
this limitation, this paper integrates a windowing technique into
ARIMA models (ARIMA-W) to mitigate the impact of non-
linearity in software failure observations by allowing them to con-
tinuously update their parameters based on recent observations.
The models are assessed with a dataset containing the number of
software failures over 181 intervals, and goodness-of-fit measures
are computed to compare the performance of ARIMA and
ARIMA-W. Results indicate that ARIMA tracked the number
of software failures well but failed to characterize new instances
when data used for model development was limited. How-
ever, the ARIMA-W exhibited significant enhancements across
all goodness-of-fit metrics, specifically in predictive root mean
squared errors (PRMSE), when more data becomes available
for model fitting. Notably, when 70% and 80% of the data are
utilized for model fitting, ARIMA-W achieves approximately 5
and 8 times lower PRMSE, respectively, compared to ARIMA,
indicating higher accuracy in predicting future software failures
when fitted to a larger historical dataset.

Index Terms—Software reliability, ARIMA, windowing tech-
nique, software failure predictions, goodness-of-fit measures

I. INTRODUCTION

Software reliability growth models (SRGM) [1] hold a

significant position in the realm of software reliability engi-

neering [2], as they facilitate the prediction of failure rates

during testing phases to enhance software performance and

mitigate risks before deployment. Numerous SRGMs have

been proposed based on the Non-homogeneous Poisson Pro-

cess (NHPP) [3], [4] to estimate changes in failure intensity

over time. However, NHPP faces challenges when dealing with

non-stationary data and short-term fluctuations. Consequently,

researchers have proposed to address these limitations with

time series models [5], which offer a flexible framework well-

suited for capturing sudden changes or anomalies in software

reliability. Nonetheless, time series models typically presume

linearity in the data to be predicted, which is not always

observed in many software failure data. Therefore, alternative

methodologies to overcome this challenge would contribute to

a more accurate and reliable application of time series models,

ultimately enhancing the predictive capabilities of SRGMs.

Different parametric forms of NHPP SRGM have been

proposed [6]–[8] to estimate the number of failures remaining

in a software system. However, NHPP SRGM often requires

data to be stationary over time and assumes a failure inten-

sity function that may not capture the complex patterns and

dynamics present in real-world software failure data. As an

alternative, time series models [9] were applied to adapt to

diverse software reliability scenarios and potentially provide

more accurate predictions in environments encountering non-

stationary time series data, trends, and seasonality. For ex-

ample, Auto-Regressive Integrated Moving Average (ARIMA)

models were applied [10]–[12] to predict the number of

software failures expected in the subsequent interval based

on failure counts observed in past intervals during the testing

phase of software systems. Moreover, alternative methods

were explored to enhance ARIMA predictions for software

reliability. Such methods include optimization of parameter es-

timation using genetic algorithms [13], integration of ARIMA

and Support Vector Machines [14] models to capture data

characteristics in linear and nonlinear patterns, or inclusion of

seasonal patterns [15]–[17] to improve long-term predictions.

Although ARIMA models offer advantages over SRGM NHPP

models to predict software failures over time, estimating

ARIMA parameters and selecting the appropriate model order

can be challenging for large and complex software failure

datasets involving nonlinear patterns, adding complexity to the

model development and implementation.

To address these limitations, this paper employs a win-

dowing technique [18]–[20] to enhance the performance of

ARIMA models to predict the failure count of software

systems. The windowing technique, which is popular in the

areas of finance and traffic management, breaks down the

time series data into smaller windows and applies the ARIMA

model to each window individually. The models are assessed

with a dataset containing the number of software failures over

181 intervals. Goodness-of-fit measures including RMSE,

PRMSE, and r2adj are computed to compare the performance

of traditional ARIMA versus the ARIMA-based windowing

(ARIMA-W) model. Results indicate that the ARIMA-W

model exhibited significant enhancements across all goodness-

of-fit metrics, especially in PRMSE, when more data be-

comes available for model fitting, achieving at least 5 times

lower PRMSE compared to ARIMA. Thus, the windowing

technique allows the model to capture local patterns and
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non-linearities within each segment, improving the overall

prediction accuracy.

The remainder of this paper is organized as follows: Sec-

tion II reviews ARIMA modeling. Section III presents ARIMA

models incorporating windowing technique. Section IV de-

scribes goodness-of-fit measures for model validation. Sec-

tion V illustrates the proposed approaches using an actual

software failure dataset. Section VI offers conclusions and

identifies opportunities for future research.

II. ARIMA MODELING

Auto-Regressive Integrated Moving Average (ARIMA) [9]

models are a class of time series forecasting that uses past

observations, also known as lags, and their own forecasting

errors to predict future values of the time series. These

models are widely used in various fields, including economics,

finance, and engineering for their simplicity, interpretability,

and effectiveness in capturing the underlying patterns and

dynamics of time series data. To apply time series models, the

data must be stationary, without exhibiting trends, also known

as seasonality, and possess a constant mean and variance

over time. In cases where the data is non-stationary, it can

be converted to stationarity with differentiation, which may

require multiple differentiation steps. ARIMA models are

defined by the number of lagged observations indicating the

order of the auto-regressive component (p), the degrees of

differentiation (d) required to make the series stationary, and

the number of lagged forecast errors q to specify the order of

the moving average component, denoted as ARIMA(p, d, q).

In the context of software reliability, the ARIMA predicts

the number of software failures in future time intervals,

given information on the number of failures discovered in the

previous intervals as

F̂C(i) = β0 +

p
∑

k=1

βkFC(i− k) +

q
∑

k=1

θkε(i− k) (1)

where FC is the failure count in interval i, β0 is the baseline

number of failures, βk is the coefficient describing the number

of failures in intervals (i−p) ≤ (i−k) ≤ (i−1), and θk is the

coefficient associated with k times steps prior to the present

time step (i−q) ≤ (i−k) ≤ (i−1) of a sequential white noise

process (ε), which are statistically independent and normally

distributed with zero mean and finite variance.

To identify numerical estimates of parameters β0, βk and

θk contained in Equation (1), least squares estimation [21]

is applied to determine the values of the parameters that

minimize the disagreement between the actual FC data and

the predictions F̂C in time interval i, which is computed as

min

n−ν
∑

i=1

(FC(i)− F̂C(i))2 (2)

where n is the total sample size available, and ν is the

observations not used for model fitting.

III. ARIMA-BASED WINDOWING MODEL

Auto-Regressive Integrated Moving Average models incor-

porating windowing technique (ARIMA-W) [18] divide the

(n − ν) time series data available for model fitting into m
smaller windows of fixed length nw to enable the model to

capture local patterns and non-linearities within each segment.

By treating each window as a separate time series of non-

overlapping data points, ARIMA models are applied inde-

pendently to each window of data to predict the number of

software failures at each interval as follows:

(S.1) Failure count is predicted in the first window as

F̂Cw1
(i) = β0 +

p1
∑

k=1

βkFC(i− k) +

q1
∑

k=1

θkε(i− k) (3)

where F̂Cw1
is the failure count prediction at interval i

contained in the first window w1 of data, and p1 and q1
are the orders of the auto-regressive and moving average

components of the ARIMA model applied to the first window

w1, respectively. Least squares estimation is then applied as

min

nw1
∑

i=1

(FC(i)− F̂Cw1
(i))2 (4)

to estimate the parameters β0, βk and θk in the first window

w1, containing nw1 observations.

(S.2) Failure count is predicted for the remaining windows as

F̂Cwj
(i) = β0+

pj
∑

k=1

βkF̂Cw(j−1)
(i−k)+

qj
∑

k=1

θkε(i−k) (5)

where F̂Cwj
is the prediction in interval i contained in the

window wj

(

nwj−1 < i ≤ nwj

)

, for a total of 2 ≤ j ≤ m
windows, and pj and qj are the orders of the auto-regressive

and moving average components of the ARIMA model applied

to the jth window, respectively. To predict the failure count

in the window wj , predictions F̂Cw(j−1)
of the previous

window are used as inputs of Equation (5), which allows the

model to capture patterns and relationships in the most recent

observations to forecast the next window of data. Least squares

estimation is applied for each window with

min





nwj
∑

i=nw(j−1)
+1

(FC(i)− F̂Cwj
(i))2



 (6)

to estimate their individually predictors β0, βk and θk.

(S.3) The failure count is predicted for future instances in the

(n − ν) ≤ i ≤ n intervals, which contain the ν observations

not used for model fitting, utilizing the model parameters and

the failure count (F̂Cwm
) predicted in the last window wm.

IV. MODEL VALIDATION

Goodness-of-fit measures [22] offer an objective quantita-

tive method to compare alternative models to evaluate their

performance on a specific dataset. In most real-world sce-

narios, no single model performs best on all metrics. There-

fore, model selection often involves subjective judgment and
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decision-making, with a preference for models that achieve

lower errors. Common goodness-of-fit measures applied to

validate model predictions include the root mean squared error,

predictive root mean squared error, and adjusted coefficient of

determination.

Root mean squared error is calculated by fitting a model

with n − ν observations and then computing the root mean

squared difference between the actual FC observations and

predicted F̂C

RMSE =

√

√

√

√

1

(n− ν)− ρ

n
∑

i=1

(FC(i)− F̂C(i))2 (7)

where (n − ν) − ρ denotes the degrees of freedom, which

represent the quantity of independent information available

for variation. This is calculated by subtracting the number of

parameters ρ in the model from the sample size n − ν used

for model fitting. Lower values of RMSE are preferred.

Predictive root mean squared error involves fitting a model

with the initial n − ν observations, and subsequently calcu-

lating the sum of squares of the prediction residuals for the

remaining ν observations that were not utilized in model fitting

PRMSE =

√

√

√

√

1

ν

n
∑

i=(n−ν+1)

(FC(i)− F̂C(i))2 (8)

where a lower PRMSE value indicates greater predictive

accuracy.

Adjusted coefficient of determination [23] is the proportion

of the variation in the number of failures FC that is explained

by the model according to

r2adj = 1−

(

1−
SSY − SSE

SSY

)(

(n− ν)− 1

(n− ν)− ρ− 1

)

(9)

where

SSY =

n−ν
∑

i=1

(

FC(i)− FC
)2

(10)

is the sum of squared errors associated with the naive predictor

FC computed as the mean of the first n−ν observations used

for model fitting, and

SSE =

n−ν
∑

i=1

(FC(i)− F̂C(i))2 (11)

is the sum of squared errors between actual (FC(i)) and

predicted (F̂C(i)) values by the model. The r2adj can take

values in the range (−∞, 1] [24], where a value closer to 1.0
implies that the model explains the variance in the set of data

used for fitting well.

V. ILLUSTRATIONS

To illustrate the ability of time series models to predict the

number of software failures in future intervals, the ARIMA

and ARIMA-W models were applied to the J2 dataset [25]

composed of the number of software failures per interval. To

identify the order of the models applied to the J2 dataset,

the autocorrelation function (ACF) and partial autocorrelation

function (PACF) [26] were used to analyze the relationship

between observations at different time lags. ACF computed

the correlation between the original time series and its lagged

values at different lag intervals to identify the order of the

moving average component, while PACF measured the corre-

lation between the original time series and its lagged values,

after removing the effects of intermediate lags to identify

the order of the auto-regressive component. For the ARIMA

models, The ACF and PACF were applied to (n − v) data

points, where n = 181 intervals for the J2 dataset, and ν was

varied to illustrate four scenarios using 50%, 60%, 70%, and

80% of the data for model fitting. For ARIMA-W models, the

ACF and PACF were applied to each window of data. For

the sake of illustration, each portion of the dataset considered

for model fitting was divided into four windows of equal

length nw, each containing the sequential time series and non-

overlapping data points. For example, for the scenario where

50% of the data was used for model fitting, the length of

the windows was nw = (n ∗ 0.5)/4 = (181 ∗ 0.5)/4 ≈ 23.

This approach allowed each window to possess the necessary

order of auto-regressive and moving average components to

accurately capture patterns and relationships present within

that specific window.

The ARIMA model development proceeded through a sys-

tematic sequence of steps. (i) Initially, time series models

were constructed using the earliest correlated lagged values

identified from the ACF and PACF. (ii) Subsequently, least

squares estimation was applied to a subset of the data to

estimate model parameters, followed by the computation of

goodness-of-fit measures to validate the models. (iii) The num-

ber of lagged values for the time series variable FC was then

systematically increased following the ACF and PACF lists

of correlated lags. (iv) This iterative process continued until

no combination of lags for the auto-regressive and moving

average components could enhance the adjusted coefficient

of determination r2adj . (v) This approach was carried out for

50%-80% of the data, with the remaining data serving as a

validation set to assess models’ performance. The application

of the ARIMA-W model followed a similar process, yet with

a key difference: the dataset used for model fitting was divided

into four sequential windows of equal length. Consequently,

these models identified lags specific to each window and

independently estimated parameters for each. As discussed in

Section III, predictions of future intervals were made using

the model constructed in the 4th window. The goodness-of-

fit measures for ARIMA-W models were computed using the

joint FC predictions from all four windows and the future

instances.

Table I reports the order of models representing the lagged

observations and forecast errors as well as the degrees of

differentiation required to maximize the r2adj . In the tra-

ditional approach, a single ARIMA model was applied to

the complete dataset, whereas the ARIMA incorporating the

windowing method applied an ARIMA model to each window

individually. Table I also shows the number of parameters

ρ contained in each model, and the associate goodness-of-

fit values achieved, which were penalized for the number of



4

TABLE I
VALIDATION OF MODELS’ PREDICTION ON J2 DATASET

Data Subset for Model Fit Method Model Parameters (p) RMSE PRMSE r
2

adj

50% = 90 data points
Traditional ARIMA(1,0,3) 5 11.9627 32.6696 0.9637

Windowing
ARIMA(1,0,3) + ARIMA(1,0,2) +

16 5.1277 100.3612 0.9928
ARIMA(2,0,1) + ARIMA(1,0,1)

60% = 108 data points
Traditional ARIMA(6,0,16) 23 8.2421 134.5442 0.9827

Windowing
ARIMA(11,0,11) + ARIMA(2,0,9) +

45 3.3541 163.0272 0.9966
ARIMA(1,0,1) + ARIMA(3,0,3)

70% = 126 data points
Traditional ARIMA(1,0,3) 5 9.6629 46.9954 0.9812

Windowing
ARIMA(1,0,11) + ARIMA(2,0,2) +

27 5.0928 9.7801 0.9944
ARIMA(1,0,2) + ARIMA(2,0,2)

80% = 144 data points
Traditional ARIMA(7,0,2) 10 8.5367 20.4357 0.9871

Windowing
ARIMA(3,0,3) + ARIMA(2,0,2) +

38 5.1627 2.5883 0.9950
ARIMA(3,0,3) + ARIMA(9,0,9)

Fig. 1. ARIMA and ARIMA-W fits with first 50%-80% of the J2 dataset.

parameters in the model, to quantitatively compare ARIMA

and ARIMA-W models. The model that performed best overall

by exhibiting the highest r2adj and lowest RMSE is high-

lighted in bold in Table I for each of the four subsets of data

used for model fitting. Table I indicates that the ARIMA-W

models exhibited superior r2adj and the best RMSE in all four

cases considered, suggesting effective tracking of software

failure counts. However, when 50% and 60% of the data were

used to fit the model, the traditional ARIMA model exhibited

lower PRMSE. This outcome implies that the numerous

parameters in the ARIMA-W models were able to adjust to

minor variations in the sample used for model fitting, but

struggled to discern the underlying patterns that could gen-

eralize to new instances. Nevertheless, as more data became

available, the performance of ARIMA-W models improved

progressively, exhibiting significant enhancements particularly

in PRMSE, where ARIMA-W achieved 46.9954/9.7801 =
4.8 and 20.4357/2.5883 = 7.9 times lower PRMSE than

ARIMA for the 70% and 80% subsets, respectively. These

results indicate that ARIMA-W models are much more precise

in predicting future software failures when fitted with a larger

historical dataset of software failures.

To visually compare the ARIMA and ARIMA-W model

fits on each subset of data used for model fitting reported in

Table I, Figure 1 shows the empirical data as well as how each

model tracks and predicts, where the dashed light gray vertical
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line correspond to each window considered in the ARIMA-W

model, and the dashed dark gray vertical line corresponds to

the data point where tracking ends and prediction begins for

all models. In Figure 1-(a) it becomes apparent that when

only half of the available data was employed for model

fitting, the models successfully captured the general trend

present in the dataset. However, they struggled to accurately

replicate this trend when applied to the unseen subset of data,

indicating a limitation in their ability to generalize beyond

the data they were fitted on. Figure 1-(b) shows that when

60% of the data was used to fit the models, both models

achieved a very notable improvement in the model fit, but

still exhibited difficulty in accurately characterizing the unseen

data subset. Figure 1-(c) and Figure 1-(d) show that increasing

the subset of data used for model fitting to 70% or 80%

considerably improved the predictive ability of the ARIMA-

W models. By dividing the dataset into smaller windows and

allowing the model to adapt to the nuances present within

each window, the models were better equipped to handle the

variations and complexities inherent in the data. Consequently,

this results in a significant enhancement in their predictive

accuracy, highlighting the critical role that data availability and

partitioning strategies play in refining the predictive capability

of models to predict software failures.

VI. CONCLUSION AND FUTURE RESEARCH

This paper introduced an ARIMA model incorporating

a windowing technique (ARIMA-W) to track and predict

the number of software failures over time. The ARIMA-

W mitigates the impact of non-linearity in software failure

observations, which is a challenge faced by traditional ARIMA

models. To validate the proposed model, both ARIMA and

ARIMA-W models were evaluated using an actual dataset

composed of the number of software failures in 181 intervals,

using 50%, 60%, 70% and 80% of the data for model

fitting. Our results revealed that while both the ARIMA and

ARIMA-W performed well with limited data, the ARIMA-

W outperformed ARIMA when more data were available for

model fitting, where ARIMA-W achieved approximately 5 and

8 times lower PRMSE when 70% and 80% of the data

were used to fit the models. Visual comparisons of model

fit further supported the superiority of ARIMA-W to capture

data complexities. These findings suggested the importance of

data availability and partitioning strategies to refine predictive

capability to forecast the number of software failures.

Future research will focus on refining the windowing

technique for software failure predictions by identifying the

optimal number of windows to be used. Moreover, non-

equally sized windows will be considered to further enhance

the predictive accuracy of the models to improve long-term

predictions.
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