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Evidence bounds in singular models:
probabilistic and variational perspectives
Anirban Bhattacharya, Debdeep Pati, Sean Plummer, and Yun Yang

Abstract. In Bayesian statistics, the marginal likelihood, a.k.a. the evidence,
contains an intrinsic penalty accounting for larger model sizes and is of
fundamental importance in Bayesian model comparison. Over the past two
decades, there has been steadily increasing activity to understand the nature
of this penalty in singular statistical models, building on pioneering works by
Sumio Watanabe. Unlike regular models where the Bayesian information cri-
terion (BIC) encapsulates a first-order expansion of the evidence, parameter
counting gets trickier in singular models where a quantity called the real log-
canonical threshold (RLCT) summarizes the effective model dimensionality.
In this article, we offer a probabilistic treatment to recover non-asymptotic
versions of established evidence bounds as well as prove a new result based
on the Gibbs variational inequality. In particular, we show that mean-field
variational inference correctly recovers the RLCT for any singular model in
its standard form. We additionally exhibit sharpness of our bound empirically
in dimension d= 2 and provide two conjectures concerning the asymptotics
of the mean-field ELBO for singular models in standard form.

Key words and phrases: Bayesian model selection, Coordinate ascent, Gibbs
variational inequality, Laplace approximation, Mean-field approximation,
Real log-canonical threshold.

1. INTRODUCTION

The marginal likelihood (a.k.a. evidence) is a funda-
mental object in Bayesian model comparison [32], which
encapsulates an intrinsic penalty for model complexity,
and can be readily used to compare models with different
parameter dimensions. However, barring conjugate set-
tings, the marginal likelihood is rarely available in closed-
form, necessitating approximate methods. A classical ap-
proach is to make analytic approximations, of which the
Laplace approximation [34, 36, 22] is the most promi-
nent. Applied to regular parametric models — the data
generating distribution q(x) is said to be regular for the
model {p(x | ξ)}ξ∈Ω if the minimum locus of the av-
erage log loss function L(ξ) := −

∫
q(x) log p(x | ξ)dx
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is a singleton {ξ0} and there exists an open neighbor-
hood U ⊂ Ω containing ξ0 such that the Hessian matrix
∇2L(ξ0) is positive definite on U — the Laplace ap-
proximation yields an asymptotic expansion of the log-
marginal likelihood as ℓn(ξ̂n)− d/2 · logn+Rn, where
ℓn(ξ̂n) is the log-likelihood evaluated at the maximum
likelihood estimate ξ̂n based on the data, d is the param-
eter dimension, and the remainder term Rn is bounded in
magnitude with high probability by a constant.1

In this article, our focus will be on singular statis-
tical models. The data generating distribution q(x) is
said to be singular for the model {p(x | ξ)}ξ∈Ω if ei-
ther the minimum locus of L(ξ) contains more than
one point or there exists points in the minimum locus
for which the Hessian matrix ∇2L fails to be positive
definite. Singular models are commonly encountered in
many modern applications such as artificial intelligence,
robotics, and bioinformatics [49]. Examples of singular
models include mixture models, factor models, hidden
Markov models, latent class analysis, Bayesian networks,
reduced rank regression, and neural networks; see [14]

1See [22] for the necessary technical assumptions for the Laplace
approximation.
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for a more comprehensive list. As a simple concrete il-
lustration, suppose the true data generating distribution
is given by the standard matrix Gaussian distribution
q(X) = (2π)−2 exp{−∥X∥2/2} and consider a Gaus-
sian matrix factorization model for the 2× 2 real-valued
matrix X , p(X | A,B) = (2π)−2 exp{−∥X −AB∥2/2}
with A = (a, b)T, B = (c, d), and (a, b, c, d) ∈ R4. The
map (a, b, c, d) 7→ p( · | a, b, c, d) is clearly not one-to-
one; the entire region Ω0 := {(a, b, c, d) ∈ R4 | (a, b) =
(0,0) or (c, d) = (0,0)} inside the parameter space maps
to the true data generating distribution q(·). In statistical
terms, the Fisher information matrix is not positive defi-
nite on Ω0.

While it may be apparent that developing a statistical
theory for singular models is important, one is unable to
utilize many of the existing tools from classical statistical
theory which rely on the regularity assumptions. For ex-
ample, the derivation of the Laplace approximation pro-
ceeds by localizing the log-marginal likelihood to a neigh-
borhood of the maximum likelihood estimate (or the pos-
terior mode) and subsequently applying a second-order
Taylor series expansion of the log-likelihood around θ̂n
to reduce the marginal likelihood to a Gaussian integral.
It should perhaps then be intuitive that this approximation
will face difficulties for singular models where the Hes-
sian matrix can be singular. This is indeed the case and
can be verified via simulation in a straightforward man-
ner; see, e.g., the instructive Example 1 of [14]. Hence, in
general, the usual Laplace approximation no longer pro-
vides a correct approximation to the log-marginal likeli-
hood.

The foundational groundwork for a general theory of
singular models has been laid in a series of seminal con-
tributions by Watanabe [46, 47, 48], with much of the
subsequent development condensed into book-level treat-
ments in [50, 52]. Watanabe shows that for a singular
model which satisfies some mild technical conditions, the
asymptotic behavior of the log-marginal likelihood can be
characterized through

ℓn(ξ
⋆)− λ logn+ (m− 1) log(logn) +Rn,(1)

assuming the data is generated from P ⋆ ≡ p(· | ξ⋆), with
the stochastic error term Rn =OP ⋆(1). The quantity λ ∈
(0, d/2] is called the real log-canonical threshold (RLCT)
and the integer m≥ 1 its multiplicity. For a regular statis-
tical model, we have (λ,m) = (d/2,1) and the expansion
(1) reduces to the usual Laplace approximation. For more
on model selection in singular settings, we refer the reader
to [51, 14].

REMARK 1.1. The leading order term of Watanabe’s
expansion for the log-marginal likelihood is evaluated at
the true parameter ξ⋆, while the leading order term for the

BIC is the maximum likelihood estimator (MLE). Watan-
abe’s theory of singular models is also capable of analyz-
ing the behavior of MLEs if the set of parameters Ω is
compact. If the set of parameters Ω is not compact, then
an MLE may not exist. Watanabe shows that under simi-
lar conditions to Eq. 1, the log-marginal likelihood at the
MLE can be asymptotically expanded about the true pa-
rameter ξ⋆,

ℓn(ξ̂n) = ℓn(ξ
⋆)− 1

4n
max{0,Wn(ξ

⋆)}2 + op

(
1

n

)
.

where Wn(·) is a Gaussian process constructed from the
statistical model; see Eq. (7). The details for this result can
be found in section 6.4 in [52]. From the above expansion,
we see that the log-marginal likelihood is also given by

ℓn(ξ̂n)− λ logn+ (m− 1) log(logn) +Op(1).

See remark 1.17 in [50] and remark 50 in [52] for more
information on why maximum likelihood estimation may
not be appropriate for singular models.

Watanabe’s original derivation of Eq. (1) is an asymp-
totic approximation to the marginal likelihood based on
several deep results in modern mathematics which are
less commonly known among the statistical community.
In this article, we revisit the general problem of comput-
ing the evidence of a singular model. Our primary mo-
tivation behind this work is to provide a non-technical
overview of Watanbe’s original derivation of Eq. (1) and
to explore the possibility of deriving Eq. (1) exclusively
using probabilistic arguments, such as stochastic ordering
and conditioning, readily accessible to the wider statistics
and machine learning audience. As a by-product of the
probabilistic treatment, all our results are non-asymptotic
in nature. We carry out this program in § 3. We follow
standard practice to first analyze a deterministic version
of the problem, replacing the log-likelihood ratio with
its expectation under the data generating model, and then
proceed to handle the stochastic component. Interestingly,
the RLCT and its multiplicity appear as the rate and shape
parameters of a certain Gamma distribution in our analy-
sis.

Analytic approximations are not the only tool which we
can use to approximate the log-marginal likelihood. Vari-
ational approaches [25, 9, 39] have increasingly grown
in popularity in Bayesian statistics as a different set of
probabilistic tools to approximate the evidence. Varia-
tional Bayes (VB) aims to find the best approximation to
the posterior distribution from a class of tractable prob-
ability distributions, with the approximation error most
commonly measured in terms of Kullback–Leibler diver-
gence; see [10] for an excellent recent survey of varia-
tional inference.

For the posterior distribution Π(ξ | X) of a model
P (X | ξ) with prior φ(ξ) and any probability measure ρ
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on Ω with ρ ≪ φ, the following well-known identity is
easy to establish,

D
(
ρ∥Π(· |X)

)
= logP (X)+(2) [

−
∫
Ω
logP (X | ξ)ρ(ξ)dξ +D(ρ∥φ)

]
,

where D(µ∥ν) :=Eµ(logdµ/dν) is the Kullback–Leibler
divergence between µ and ν. An immediate upshot of this
is the Gibb’s variational inequality, which states that for
any probability density ρ≪ φ on Ω,

logP (X)≥
∫

logP (X | ξ)ρ(ξ)dξ −D(ρ∥φ),(3)

with equality attained if and only if ρ = Π(ξ | X). The
Gibb’s variational inequality is central to a variational
approximation to the normalizing constant P (X). The
quantity in the right hand side of (3) is a lower bound
to logP (X) for any ρ≪ φ. A variational lower bound to
logP (X) is then obtained by optimizing the variational
parameter ρ over a family of probability densities F on
Ω,

logP (X)≥ ELBO(F) :=(4)

sup
ρ∈F

{∫
logP (X | ξ)ρ(ξ)dξ −D(ρ∥φ)

}
The notation ELBO here abbreviates Evidence Lower
Bound, which is commonly used to designate the vari-
ational lower bound in Bayesian statistics. If the supre-
mum in (4) is attained at some ρ⋆ ∈ F , the density ρ⋆

is called the optimal variational approximation. It fol-
lows from equation (2) that ρ⋆ is a best approximation to
Π(ξ |X) in terms of KL divergence from the class F , i.e.,
D
(
ρ⋆ ∥Π(· | X)

)
= infρ∈F D

(
ρ∥Π(· | X)

)
. The choice

of the family F typically aims to balance computational
tractability and expressiveness. A popular example is the
mean-field family,

FMF :=
{
ρ= ρ1 ⊗ . . .⊗ ρd : ρ≪ φ a prob. measure on Ω

}
,

(5)

where ρ is assumed to be a product-measure, with no fur-
ther restriction on the constituent arms.

The statistical properties of VB have been studied for
some specific examples of singular models such as vari-
ous mixture models [42, 43, 44, 45], Bayesian graphical
models [20, 21, 41, 28], and neural networks [30]. The
primary focus of these works is deriving asymptotic, large
n, bounds for the variational stochastic complexity, the
negative ELBO, similar to the asymptotic expansion in
Eq. (1). These asymptotic bounds allow us to measure the
performance of mean-field variational inference in singu-
lar models as the gap between the two expansions bounds
KL divergence between the optimal variational approxi-
mation and the posterior distribution.

In § 4 we show that mean-field variational inference
correctly recovers the RLCT for models in standard form,
even though the posterior distribution itself has strong de-
pendence and is far from a product structure (see Figure 1
for a representative example). Furthermore, our analysis
shows that this bound is sharp, i.e., the mean-field ELBO
is not capable of recovering the log logn term in (1). Our
findings are supported by numerical computations.

FIG 1. Contour plots of 2d target density proportional to
exp(−nK(ξ1, ξ2)) on [0,1]2, with n = 100 and K(ξ1, ξ2) = ξ21ξ

2
2

(top) and K(ξ1, ξ2) = ξ21ξ
4
2 (bottom); see §2 for the relevance of such

densities to singular models. The darker regions (red) represent smaller
values close to 0 and the lighter regions (yellow) represent values close
to 1. Notice that the shape of these distributions differ significantly
from both the elliptical shape defined by the contour of a normal dis-
tribution or the rectangular shape of a typical product distribution.

2. A REVIEW OF SINGULAR MODEL THEORY

Our goal in this section is to provide a non-technical
overview of Watanabe’s original derivation of Eq. (1).
In order to maintain a non-technical discussion of this
derivation, many key results will be provided in a heuris-
tic form together with motivation for the need and use of
these tools as they arise in each step of the derivation. We
will begin the section by introducing notation. We pro-
ceed by introducing three key tools, (a) Hironaka’s reso-
lution of singularities (page 3), (b) the standard form of
the posterior (page 5), and (c) the state density function
(page 5), that are needed for Watanabe’s derivation. After
introducing these tools we will sketch Watanabe’s deriva-
tion of Eq. (1). We also refer the reader to Shaowei Lin’s
thesis [24] and the background section of [14] for lucid
summaries of this theory.

We begin with introducing some notation. Let X(n) =
(X1, . . . ,Xn)

T denote n independent and identically dis-
tributed observations from a probability density function
q. A Bayesian analysis in this setting proceeds by setting
up (i) a statistical model consisting of a family of proba-
bility distributions {p(· | ξ) : ξ ∈Ω} for the individual ob-
servations, indexed by a parameter ξ taking values in the
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compact parameter space Ω ⊆ Rd, and (ii) a prior (prob-
ability) distribution φ(·) on Ω. The posterior distribution
is given by

Π(ξ |X(n)) =
eℓn(ξ)φ(ξ)

m(X(n))
,(6)

ℓn(ξ) :=

n∑
i=1

log p(Xi | ξ), m(X(n)) =

∫
Ω
eℓn(ξ)φ(ξ)dξ,

with ℓn(ξ) the log-likelihood function, and m(X(n)) the
marginal likelihood or evidence.

REMARK 2.1. The requirement that the parameter
space Ω be compact is to reduce additional technical as-
sumptions on the model. For example, without compact-
ness one would need further tail conditions on the log-
likelihood ratio of the model [52, CH 3] and other addi-
tional technical assumptions in order to establish conver-
gence of the empirical log-likelihood ratio [52, CH 10].

To simplify the following discussion, we will as-
sume that the true data generating distribution is re-
alizable, i.e. q(x) = p(x | ξ⋆) for some ξ⋆ ∈ Ω. We
call ξ⋆ the true data generating parameter, and reserve
the notations E⋆ and P⋆ to respectively denote expec-
tation and probability under (the n-fold product of)
p(· | ξ⋆). Let Kn(ξ) = n−1 [ℓn(ξ

⋆) − ℓn(ξ)] be the neg-
ative log-likelihood ratio scaled by a factor of n−1,
so that its E⋆-expectation is the Kullback–Leibler di-
vergence, K(ξ) := E⋆

[
Kn(ξ)

]
= D

[
p(· | ξ⋆)∥p(· | ξ)

]
.

Watanabe’s analysis is based on the equivalent normal-
ized evidence and its deterministic version, Z(n) =∫
Ω e−nKn(ξ)φ(ξ)dξ and ZK(n) =

∫
Ω e−nK(ξ)φ(ξ)dξ. It

is immediate that logZ(n) = logm(X(n))− ℓn(ξ
⋆), and

studying the asymptotic behavior of logm(X(n)) for
large n is equivalent to studying that of logZ(n). The de-
terministic quantity ZK(n) is closely related to Z(n) as
it is obtained by replacing the stochastic quantity Kn(ξ)
with its expectation K(ξ) under the true distribution.

Our goal is to study the asymptotic behavior of the nor-
malized evidence Z(n) and its deterministic counterpart
ZK(n) defined above. The integrals which define Z(n)
and ZK(n) are known as Laplace integrals. The asymp-
totic behavior of a Laplace integral as n → ∞ concen-
trates on the minimum locus of K(ξ), i.e., the set Ω0 =
{ξ ∈ Ω |K(ξ) = 0}; see Ch. 7 and Ch. 8 of [7] for more
information on Laplace integrals and their asymptotic ex-
pansions. When K(ξ) is a real analytic function, Ω0 is
called a real analytic set. For example, the asymptotic be-
havior of

∫
[0,1]2 e

−n(ξ22−ξ31)
2

dξ as n → ∞ will be deter-
mined in a neighborhood of the set Ω0 = {ξ | ξ22−ξ31 = 0}.

The study of real analytic sets is a part of the field of math-
ematics known as algebraic geometry. 2

2.1 Mathematical Issues in Singular Models

We briefly summarize some of the mathematical issues
that arise when the regularity conditions are not met. The
first issue is geometric in nature and arises from the fact
that the set Ω0 = {ξ :K(ξ) = 0} of global minimizers of
K(·), or optimal parameters, may contain singular points.

A point ξ0 ∈ Ω0 is a non-singular point of Ω0 if
there exists open sets U,V ⊂ Rd, U ∋ ξ0, and an ana-
lytic isomorphism f : U → V , such that f(Ω0 ∩ U) =
{(x1, x2, . . . , xr,0,0, . . . ,0) |xi ∈R}∩V , for some r ≤ d
[50, Definition 2.6].3 Informally, this definition says that
Ω0 can be expressed locally by a Euclidean coordinate
system defined by real analytic functions. Singular points
are defined as points which fail to be non-singular. No
neighborhood of a singular point can be viewed as a real
analytic coordinate transform of an open ball in some Eu-
clidean space. This creates significant difficulties in ana-
lyzing the behavior of ZK(ξ) on the set of nearly opti-
mal parameters Ωε = {ξ : K(ξ) < ε}. The second issue
is probabilistic and arises while attempting to study the
convergence of a stochastic process containing a singular
point. This issue is illustrated by example 5.5 in Sec. 5.3
of [50]. Consider the function f(a, b,X,Y ) = aX + bY ,

where X,Y
ind.∼ N(0,1) and Ω= {(a, b) ∈ [−1,1]2}. For

Xi, Yi
ind.∼ N(0,1) for i ∈ [n], the function

fn(a, b) =
1√
n

n∑
i=1

f(a, b,Xi, Yi)√
a2 + b2

=
a√

a2 + b2

(
1√
n

n∑
i=1

Xi

)
+

b√
a2 + b2

(
1√
n

n∑
i=1

Yi

)
defines an empirical process on Ω1 = {(a, b) = [−1,1]2 :
a2 + b2 ̸= 0}. This empirical process is not well defined
at the origin, lim(a,b)→(0,0) fn(a, b) does not exist, despite
E[fn(a, b)

2] = 1, as the origin is a singularity of this pro-
cess.

Both of these issues can be resolved by Hironaka’s the-
orem on the resolution of singularities for real analytic
functions [46]. Herein this result will be referred to as
the resolution of singularities. As noted by Watanabe,
the resolution of singularities guarantees the existence of
a real analytic manifold M and real analytic transform

2Most literature on algebraic geometry focuses on zero-locus of
polynomial systems. For introductions to algebraic geometry see [12,
17]. The geometry of real analytic sets is further discussed in [2].

3For an alternative definition of a singular point based on the rank
of the Jacobian; see Theorem 3.4 of [50].
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g :M→ Ω, u 7→ ξ, such that the log-likelihood ratio af-
ter the transform can be represented as

nKn(g(u)) = nu2k −
√
nukWn(u)(7)

:= nu2k1

1 u2k2

2 · · ·u2kd

d −
√
nuk1

1 uk2

2 · · ·ukd

d Wn(u)

where Wn(u) is a well-defined mean-zero stochastic pro-
cess converging in distribution to a mean-zero Gaussian
process W (u) as n → ∞. Surprisingly, all of the math-
ematical issues we discussed above are resolved in this
transformed coordinate system.

The resolution of singularities guarantees that any
neighborhood of a real analytic set can be understood
as the image of normal crossing functions. A real ana-
lytic function f : Rd → R is normal crossing at a point
x∗ if there exists a neighborhood U of x∗ such that
f(x) = a(x) ·

∏
j(xj − x∗j )

kj for x ∈ U , where a(·) is
a positive real analytic function and k1, k2, . . . , kd are
non-negative integers with at least one kj positive. The
importance of normal crossing functions derives from
their ability to generalize the following result known
as the factor theorem. If a one-dimensional real ana-
lytic function f : R → R satisfies f(a) = 0, then there
exists a second real analytic function g(x) for which
f(x) = g(x)(x − a). Unfortunately, this does not gen-
eralize to higher dimensions in general [50, Remark 2.9].
However, when zeros of a real analytic function f(x) can
be identified with the zeros of a normal crossing function
h(x), we have a multivariate analog of the factor theorem.
If {x : f(x) = 0} = {x : h(x) = 0} and h(x) is normal
crossing, then there exist another real analytic function
g(x) such that f(x) = g(x)h(x). See Ch. 2, Sec. 5 of [50]
for further details.

Watanabe calls the coordinate system M arising from
the resolution of singularities the standard form of the
model [52, Definition 9]. A statistical model is said to
be in standard form if there exist real analytic func-
tions a(x,u) and b(u) > 0 such that: (i) K(u) = u2k :

= u2k1

1 . . . u2kd

d is a monomial, where k = (k1, . . . , kd)
T ∈

Nd is a multi-index having at least one positive entry; (ii)
for the same multi-index k, Kn(u) = n−1

∑
i a(Xi, u)u

k

[52, Theorem 8]. This condition is used to prove the con-
vergence of Wn(u) to a centered Gaussian process W (u)
; (iii) the prior density is φ(u) = b(u)uh, where h =
(h1, . . . , hd)

T ∈Nd is another multi-index.4 Moreover, the
stochastic process Wn(u) = n−1/2

∑
i[u

k − a(Xi, u)] is
well-defined through Eq. (7) as it is now the ratio of the
normal crossing functions.

For a given K(ξ), none of the real analytic manifold
M, the real analytic map g :M→Ω from the resolution

4The function a(x,u) satisfies the following mathematical con-
dition for arbitrary s > 0 and multi-index k ≥ 0,

∫
supu |(∂/

∂u)ka(x,u)|sp(x | u⋆)dx <∞

of singularities, or the multi-indices k and h are neces-
sarily unique [52, Remark 46]. There are, however, nu-
merical summaries of these objects which do not depend
on the choice of M or g. These quantities are the real
log-canonical threshold (RLCT) λ and the multiplicity
m that arise in Eq. (1) and are determined using the lo-
cal coordinates that compose M. In each local coordi-
nate system Uℓ of M, the local standard form of a model,
K(gℓ(u)) = u2kℓ and φ(gℓ(u)) = bℓ(u)u

hℓ, can be used
to determine the local RLCT λℓ and the multiplicity mℓ

via simple closed-form expressions, with

λℓ =min
j∈[d]

(hℓ,j + 1)/(2kℓ,j),(8)

mℓ =#
{
i ∈ [d] : (hℓ,i + 1)/(2kℓ,i) = λℓ

}
.

The RLCT λ and multiplicity m of the singular model are
defined by

λ=min
ℓ

λℓ, m=max{mℓ : λℓ = λ}.

The RLCT has an important geometric interpretation as a
measure of effective dimension of the set of optimal pa-
rameters Ω0 since λ = limε→0[logVol(ε)/ logn], where
Vol(ε) =

∫
K(ξ)<εφ(ξ)dξ.

REMARK 2.2. The resolution of singularities should
be perceived as a purely theoretical result that only guar-
antees the existence of such a coordinate system. While
this theorem provides a recursive algorithm to compute
the real analytic manifold which puts the model into stan-
dard form, an application of this algorithm to specific sin-
gular models is far from being straightforward.

REMARK 2.3. Even for regular models the resolution
of singularities is typically necessary to put the model
in standard form. For example, the model p(y | x, s, t) =
exp{−(y1 − s)2 − (y2 − t)2}/π, for W = {(s, t) | s2 +
t2 ≤ 1} and y ∈ R2. This model is regular if the true
model is q(x) = p(y | 1,0), but the average log-density
ratio K(s, t) = s2+ t2− 1, which is not in standard form.

2.2 The State Density Function and the Asymptotic
Expansion of the Evidence

The main analytic approximation that arises in Watan-
abe’s derivation comes from the state density function of
a statistical model. The combination of the state density
function and the standard form, together with some ad-
ditional tools from complex analysis allow Watanabe to
derive an asymptotic form of the deterministic normalized
evidence. Using the standard form of the model Watanabe
connects the asymptotic form of the normalized evidence
to the asymptotic expansion of the deterministic normal-
ized evidence to the through convergence in distribution
of stochastic process which defines their difference.
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The state density function is the Schwartz distribution,

v(t) =

∫
Rd

δ(t−K(ξ))φ(ξ)dξ.(9)

See Appendix A for the formal definition of a Schwartz
distribution. It is important to understand that the state
density function is not actually an integral in the Lebesgue
sense. The notation

∫
F (x)ϕ(x)dx is typically adopted

when the explicit presence of the variable x is notationally
helpful [15].

The importance of the state density function comes
from is its action as a Schwartz distribution. As a Schwartz
distribution, the state density function v(t) acts as a
change of variables in the integration,∫ ∞

0
F (t)v(t)dt=

∫
Ω
F (K(ξ))φ(ξ)dξ.

From a probabilistic perspective, the state density func-
tion arises as the density measure for the level set random
variable T = K(ξ) with ξ ∼ φ, via the vector-to-scalar
change of variables. The cumulative density function of
T is V (t) = P[K(ξ) ≤ t] =

∫
{K(ξ)≤t}φ(ξ)dξ, and v can

be heuristically thought of as the a.e. derivative of V .
Using the identity in the above display, the marginal

likelihood ZK(n) can be viewed as the action of the state
density function v(t) on the function F (t) = e−nt,

ZK(n) =

∫
Ω
e−nK(ξ)φ(ξ)dξ =

∫ ∞

0
v(t)e−ntdt.

Notice that the integral on the right hand side is the
Laplace transform of the state density function v(t) eval-
uated at n, L[v](n) =

∫∞
0 v(t)e−ntdt, where L[f ](z) =∫∞

0 f(t)e−ztdt denotes the Laplace transform of a func-
tion f evaluated at the point z ∈ C; The Laplace trans-
form is defined for locally integrable functions satisfy-
ing the following two conditions: 1. The support of f
is contained in [0,∞) and 2. There exists a c ∈ R such
that f(t)e−ct ∈ L1(R). The Laplace transform can also
be extended to a well defined transform on the space of
Schwartz distributions. For more details see [56, 11].

This view point allows Watanabe to derive an asymp-
totic expansion for the normalized evidence ZK(n) by
first deriving an asymptotic expansion for the correspond-
ing state density function v(t), and then pushing it back to
the normalized evidence through the Laplace transform.
In particular, the asymptotic behavior of the determinis-
tic normalized evidence ZK(n) as n→∞ corresponds to
the asymptotic behavior of state density function v(t) as
t→+0.

Due to the resolution of singularities, we only need to
focus on the case when the model is in standard form and
defined on the positive cone K+ = {ξ ∈W | ξ1, . . . , ξd ≥
0}. In this case the state density function is given by,

v(t) =

∫
Rd

δ(t− ξ2k) |ξh| b(ξ)χ(ξ)dξ,

where χ(ξ) is the indicator function for the positive cone
K+. Analysing the behavior of above state density func-
tion as t → +0 requires a little technical finesse be-
cause the state density function is not technically a func-
tion, but a Schwartz distribution [16], which is not well-
defined as t → +0. Watanabe derives an asymptotic ex-
pansion for the state density function in terms of a well-
defined Schwartz distribution D(ξ) using the connection
between the state density function and its Mellin trans-
form, M[v](z) =

∫∞
0 tzv(t)dt, which can be computed in

closed form when the model is written in standard form,

δ(t− ξ2k) |ξh| b(ξ)χ(ξ) ∼= tλ−1(− log t)m−1D(ξ),

(10)

here the real-log-canonical threshold (RLCT) λ and its
multiplicity m are determined by the standard form of the
statistical model; See Ch. 4 of [50], also Ch. 5 Theorem 9
and Remark 31 of [52].

Watanabe recovers an asymptotic expansion for the
normalized evidence Z(n) =

∫
Ω e−nKn(ξ)φ(ξ)dξ by con-

necting it back to the deterministic normalized evidence
ZK(n). For a statistical model in standard form, we
have nKn(ξ) = nξ2k −

√
nξkWn(ξ), where Wn(ξ) is a

stochastic process that can be shown to converge in dis-
tribution5 to a Gaussian process W (ξ). Under the same
setting, we can expand the evidence as

Z(n) =

∫
Ω
e−nKn(ξ)φ(ξ)dξ

=

∫
Ω
e−nξ2k+

√
nξk Wn(ξ) |ξh| b(ξ)χ(ξ)dξ.

Performing a change of variables using the state density
function,

Z(n) =

∫
Ω

∫ ∞

0
e−ns+

√
nsWn(ξ)v(s)dsdξ.

Finally, applying a change of variables t= ns and rewrit-
ing the right hand side with the asymptotically equivalent
tλ−1(− log t)m−1D(ξ), we obtain

Z(n) =
(logn)m−1

nλ

∫
Ω
D(ξ)

∫ ∞

0
tλ−1e−t+

√
tWn(ξ)dtdξ

(11)

+ op

(
(logn)m−1

nλ

)
.

Hence, the log-marginal likelihood has the following
asymptotic expansion

logZ(n)≍−λ logn+ (m− 1) log logn+Op(1).

5The convergence in distribution follows from a technical condition
on the log-likelihood ratio. See Chapter 5 of [50].
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In summary, Watanabe analyzes the asymptotic behav-
ior of normalized evidence Z(n) by first noticing the con-
nection between the deterministic normalized evidence
ZK(n) for a model in standard form and the Laplace
transform of the state density function Eq. (9). Watan-
abe then shows that the state density function correspond-
ing to a model in standard form, where K(ξ) = ξ2k, is
asymptotically given by the well-defined Schwartz distri-
bution tλ−1(− log t)m−1D(ξ), where λ is the RLCT of
the model and m is the multiplicity. This allows Watan-
abe to properly study the asymptotics of ZK(n) and hence
Z(n) as n→∞ through the asymptotics of the state den-
sity function as t→ 0+. This yields the following asymp-
totic expansion for the normalized log-marginal likeli-
hood,

logZ(n)≍−λ logn+ (m− 1) log logn+ Const.

The full details of this approach can be found in Chapter
5 of [52].

2.3 Watanabe’s Original Derivation

In the above sections we have individually discussed
the various tools Watanabe uses to establish an asymp-
totic expansion for the log-marginal likelihood. We will
now discuss how to combine all of these tools together
and provide a sketch of the proof of Watanabe’s asymp-
totic expansion for the log-marginal likleihood of a gen-
eral singular model. Further details can be found in Chap-
ter of [52].

Unlike the previous sections, we do not assume that
the singular model is in standard form. Given a singu-
lar model in some parameter coordinate system w ∈ Rd,
the first step in Watanabe’s analysis is to decompose the
normalized evidence Z(n) into the essential and non-
essential parts, defined by

Z1(n) =

∫
{w:K(w)<ε}

e−nKn(w)φ(w)dw,

Z2(n) =

∫
{w:K(w)≥ε}

e−nKn(w)φ(w)dw.

The essential set Ωε = {w :K(w)< ε} is the ε-neighborhood
of the optimal parameter set Ω0; the non-essential set is
the complement of the essential set. Note, this step pro-
ceeds the application of the resolution of singularities.

For both singular and regular models, the non-essential
part can be shown to exponentially decay in n of order
Z2(n) = op(exp{−nε/3}). The major difference arises
for the techniques used to handle the essential part. For
regular models, the essential neighborhood is equivalent
to {w : ∥w − w⋆∥ < ε} and the Laplace expansion can
now be invoked to show that Z1(n)∝ n−d/2; see chapter
4 of [52] for details.

For singular models, we now invoke the resolution of
singularites to express the essential set Ωε as the image of

a finite number of local coordinate systems Ξj in which
the model is in standard form. On each local coordinate
system the discussion in Sec. 2.2 applies and we have
that the evidence restricted to the local coordinate system
asymptotically behaves like

Zj(n) =
(logn)mj−1

nλj

∫
Ξj

Dj(ξ)

∫ ∞

0
tλj−1e−t+

√
tWn(ξ)dtdξ

+ op

(
(logn)mj−1

nλj

)
,

and the RLCT λj , its multiplicity mj , and the Schwartz
distribution Dj(ξ) will each be determined locally on the
coordinate system Ξj . The leading order asymptotic be-
havior of the evidence is given by those local coordinate
systems for which the local RLCT λj and its multiplicity
mj are equal to the global RLCT λ=minj λj and its mul-
tiplicity m=#{j ∈ [d] λj = λ}. Watanabe calls the local
coordinate systems the essential local coordinates (ELC).
The leading order asymptotic behavior of the evidence is
given by

Z(n)≍

(logn)m−1

nλ

∫ ∑
j∈ELC

Dj(ξ)

∫ ∞

0
tλ−1e−t+

√
tWn(ξ)dtdξ

+ op

(
(logn)m−1

nλ

)
.

It follows that the log-marginal likelihood of a singular
model is asymptotically

logm(X(n))≍ nℓn(ξ
⋆)− λ logn

+ (m− 1) log logn+Op(1).

It is important to realize that these results only hold
asymptotically as the equivalence between the two Schwartz
distributions in Eq. (10) only holds asymptotically. Fur-
thermore, this expansion is unique up to an equivalence
that arises in the blow-up of singularities in the resolution
of singularities. It is possible to perform the blow-up pro-
cedure in multiple ways which result in different multi-
indexes h, k. However, the RLCT and its multiplicity are
birational invariants and will be the same for any properly
constructed sequence of blow-ups of the singularities of
the model.

This concludes our overview of Watanabe’s asymptotic
expansion of the log-marginal likelihood. Next we will
present several examples of these calculations in action.
In the next section we will present our original results, an
exact expansion for the evidence using only probabilistic
arguments.
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2.4 Examples

We now present three simple examples to demonstrate
some of the ideas introduced above. We have chosen these
examples specifically because all of the necessary demon-
strative computations are easily verified by straight for-
ward computations.

In order to perform these computations by hand we will
utilize an alternative, but equivalent, approach based on
the Mellin transform of the state density function. The
Mellin transform of the state density function for a gen-
eral singular model not in standard form is given by the
zeta function ζ(z) =

∫
K(ξ)zφ(ξ)dξ = M[v](z). This

function can be analytically continued to a meromorphic
function defined on the entire complex plane whose poles
{−λk} are all real, negative, rational numbers with the or-
der of the kth pole denoted by mk. An asymptotic expan-
sion of the state density function is then derived using the
inverse Mellin transform of the Laurent expansion of this
zeta function ζ(z), which shows v(t)≍ tλ−1(− log t)m−1

with λ =mink λk and m =mk. More details of this ap-
proach can be found in [50]. For a model in standard form,
the smallest pole λ and its multiplicity m in this zeta func-
tion are the RLCT and its multiplicity defined in the ex-
pansion (1).

Note that the RLCT and its multiplicity are both in-
trinsic characteristics of a meromorphic function, and are
therefore invariant to real analytic transformations.

REMARK 2.4. The connection with the poles of the
zeta function of a statistical model allows an alternative
route to computing the RLCT and its multiplicity. [5] uti-
lizes this approach to compute the RLCT and its multi-
plicity for the general reduced rank regression model. Ad-
ditional work in recent years has attempted to determine
the RLCT and its multiplicity using this and alternative
approaches [54, 33, 6, 3, 19, 13, 4].

2.4.1 Reduced Rank Regression Our first example
is the 1-dimensional reduced rank regression on Ω =

{(a, b) ∈ [−1,1]2}, yi | xi, a, b
ind.∼ N(abxi,1) for i ∈ [n],

xi
ind.∼ Unif[−1,1] for i ∈ [n], and a, b

ind.∼ Unif[0,1]. The
true data generating distribution is given by a⋆ = b⋆ = 0.
The set of optimal parameters is given by Ω0 = {(a, b) :
a= 0 or b= 0}. Straightforward computation shows that
the log-likelihood ratio and the KL-divergence are respec-
tively given by nKn(a, b) = ab(nSxxab− 2nSxy)/2 and
K(a, b) = a2b2/6. Notice that the model is in standard
form in the original (a, b)-coordinate system. Hence we
do not need to use the resolution of singularities. The
asymptotic expansion of the evidence can be computed
by first determining the RLCT and its multiplicity, and
then applying the Laplace transform to the corresponding
state-density function. In this example, we have k = (1,1)
and h= (0,0), so λ= 1/2 and m= 2.

To obtain the state density function, we shall view it
as the inverse Mellin transform of the zeta function of
the statistical model. The zeta function for this model
is given by ζ(z) =

∫ 1
0

∫ 1
0 (a

2b2)zdadb = (z + 1/2)−2/
4. The inverse Mellin transform of a function F of the
form F (z) = c0(z + λ)−m, with c0 being a constant, is
given by f(s) = c0s

λ−1 (log 1/s)m−1 /(m− 1)!. Hence,
the state density function for this example is given by
v(t) = tλ−1(− log t)m−1/4 = t−1/2(− log t)/4, for 0 <
t < 1, and v(t) = 0 for t= 0. Finally, the evidence is the
Laplace transform of the state density function,

ZK(n) =

∫ 1

0
v(t)e−ntdt= n−1

∫ n

0
v (t/n) e−tdt

=C1n
−1/2 log(n)−C2/

√
n+C3(n),

C1 =

∫ ∞

0
t−1/2e−tdt,C2 = 1/4

∫ ∞

0
t−1/2 log(t)e−tdt,

|C3(n)| ≤Cn−1/2 log(n) exp(−n/2),

with C a constant. Taking logarithms on both sides, we
obtain logZK(n) ≍ −1/2 logn + log log(n) + o(1) as
n→∞.

Analogous results for the general reduced rank regres-
sion can be found in [5]. The proof of the general reduced
rank regression model requires the use of the resolution
of singularities along with several approximation tech-
niques that are necessary to derive the standard form of
non-trivial singular models.

2.4.2 Normal Mixture Model Our second example is
the normal mixture model on Ω = {(s, t) : 0 ≤ s ≤
1, −1≤ t≤ 1}. Let N(x) denote the density function of
the univariate standard normal distribution. Our mixture
model is given by p(x | s, t) = (1− s)N(x) + sN(x− t)
with prior φ(s, t) = 1/2, where the true data generating
distribution is given by N(x). The set of optimal param-
eters is given by Ω0 = {(s, t) : s= 0 or t= 0}. A slightly
tedious computation shows that the log-likelihood ratio
has the form f(x, s, t) = st · a(x, s, t) and KL-divergence
has the form K(s, t) = s2t2K0(s, t), with K0 ∈ C1(Ω),
K0(s, t) > 0. The model is rendered to a standard form
by the change of variables u=K0(s, t)

1/2s, w = t. It fol-
lows that the RLCT for this model is given by λ = 1/
2 and its multiplicity is given by m = 2. Repeating the
calculations from the previous example, we can reach
logZK(n)≍−1/2 logn+ log log(n) + o(1) as n→∞.

2.4.3 Layered Neural Network Neither of our previ-
ous examples required any significant algebraic reduc-
tions before applying the resolution of singularities to put
the model into standard form. In general, there may be a
significant amount of work necessary to express the set
of optimal parameters in a form for which we can apply
the resolution of singularities. We now present a simple
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model which requires such techniques prior to the appli-
cation of the resolution of singularities; this is example
7.1 from [50].

Consider the layered neural network model with one
input, two hidden units, and activation function σ(x) =

ex−1. Let yi | xi
ind.∼ N(aσ(bxi)+cσ(dxi),1) and xi

ind.∼
Unif(−1,1). We assume the true distribution to be given

by yi
ind.∼ N(0,1). The log-likelihood ratio function is

given by f(x,a, b, c, d) = aσ(bx) + cσ(dx).
The set of optimal parameters is given by {(a, b, c, d) :

K(a, b, c, d) = 1/2
∫
(aσ(bx) + cσ(dx))2q(x)dx= 0}. In

its current form we cannot directly apply the resolution of
singularities with out first applying Hilbert’s basis theo-
rem for real polynomials to represent the set of optimal
parameters with a finite number of polynomial equations.
The Taylor expansion of f is given by f(x,a, b, c, d) =∑

k
xk

k! · (ab
k + cdk). Since {xk} is a set of linearly inde-

pendent functions, {(a, b, c, d) |K(a, b, c, d) :=∫
(f(x,a, b, c, d))2 · q(x)dx= 0 is equivalent to

gk(a, b, c, d) := abk + cdk = 0 for all k ∈ N. Notice that
for any k ∈N, we have the identity

2gk+2(a, b, c, d) = g2(a, b, c, d)(b
k + dk)

− g1(a, b, c, d)(bd
k + dbk) + gk+1(a, b, c, d)(b+ d).

This shows that gk for any k ∈ N can be generated6 us-
ing g1 and g2. Hence gk(a, b, c, d) := abk + cdk = 0 for
all k ∈ N is equivalent to g1(a, b, c, d) = g2(a, b, c, d) =
0. Computing the resolution of singularties allows us
to construct the coordinate system which renders the
model in standard form. This coordinate system7 is
given by (a, b, c, d) = g(u), where a = u1, b = u2u4,
c = u1(u2 − 1)u2u3u4 − u1u2, d = u4, with Jacobian
|u1(u2−1)u2u

2
4|. Rewriting the KL divergence in the new

coordinate system yields K(u) = u21u
2
2u

4
4K0(u), with

K0(u) ∈ C1(Ω), K0(u) > 0. Using the change of vari-
ables8 w1 =K

1/2
0 u1, wj = uj for j > 1, puts the system

in standard form with k = (1,1,0,2) and h= (1,1,0,2).
Thus the RLCT is given by λ = 3/4 with multiplic-
ity m = 1. Repeating the zeta function calculations, we
can obtain logZK(n)≍−3/4 logn+ o(1) =−λ logn+
(m− 1) log log(n) + o(1) as n→∞.

3. NONASYMPTOTIC PROBABILISTIC BOUNDS FOR
MODELS IN STANDARD FORM

In this section we present a non-asymptotic stochastic
expansion of the evidence Z(n) using purely probabilis-
tic arguments. Our proof proceeds in two parts. First, we

6See CH 3 of [50] for more details.
7See pgs 102-103 in [50] for the derivation.
8This change of variables is well defined when {(s, t) ∈ Ω |

K0(s, t)
1/2 + s/2 · K0(s, t)

−1/2 · ∂K0(s, t)/∂s = 0} is a set of
measure zero. The K0 for this example satisfies this condition.

provide a non-asymptotic two-sided bound to ZK(n) for
models in standard form based entirely on basic proba-
bilistic arguments. Second, we utilize the previously es-
tablished two-side bound, conditioning, and stochastic or-
dering to derive the non-asymptotic stochastic expansion
of the evidence Z(n).

Connections with Watanabe’s result: Our proof tech-
nique relies on simple probabilistic tools avoiding the
highly technical nature of Watanabe’s analytic approx-
imation using the state density function and its Mellin
transform. The main differences are as follows:

• The use of Dirac delta function as a generalized
function is avoided by taking the conditional dis-
tribution of ξ with respect to ξ2k and multiplying
with the marginal density of ξ2k.

• The conditioning neutralizes the effect of the singu-
lar part along with the stochastic component, while
the marginal density provides the overall order.

• No approximation is made during the process. In
contrast, while taking the inverse Mellin’s trans-
form, smaller order terms are dropped. Hence our
representation of Z(n) in Theorem 3.4 is exact as
opposed to Theorem 11 in [52]. Theorem 3.4 recov-
ers Theorem 11 in [52] asymptotically as n→∞;
see Appendix B.7.

3.1 The Deterministic Quantity ZK(n)

Our goal here is to provide a non-asymptotic two-sided
bound to ZK(n) for models in standard form based en-
tirely on basic probabilistic arguments. Interestingly, the
quantities λ and m turn out to be related to the rate and
shape parameters of a collection of gamma densities, as
we shall see below. In the first result, we assume b(ξ) = 1
and treat the general case as a corollary.

THEOREM 3.1. Let K(ξ) = ξ2k for ξ ∈ Ω = [0,1]d

and k = (k1, . . . , kd)
T ∈ Nd with at least one positive

entry, and let φ(·) be a probability density on Ω with
φ(ξ) ∝ ξh, where h = (h1, . . . , hd)

T ∈ (0,∞)d. Then,
there exists positive constants C1 and C2 independent of
n such that

C1
(logn)m−1

nλ
<ZK(n)<C2

(logn)m−1

nλ
,

where the RLCT λ and multiplicity m satisfy Eq. (8).

Below we provide an overview of the proof of the above
theorem. The full proof can be found in Appendix B.1.
Throughout, we use the convention that an Expo(β) dis-
tribution has density βe−βx

1(0,∞)(x), that is, β denotes
the rate parameter of the distribution. Let d̄ denote the
number of non-zero kj in multi-index k. Define λj :=
(hj +1)/(2kj) and without loss of generality assume that
these are sorted in non-decreasing order λ1 ≤ λ2 . . .≤ λd̄.
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Our analysis of the deterministic quantity ZK(n) is an
adaptation of Watanabe’s proof using purely probabilistic
tools. The main idea behind our proof is to exploit the nat-
ural representation of ZK(n) as the expectation of a non-
negative random variable with respect to the prior mea-
sure. Specifically, let T =K(ξ), where ξ ∼ φ is a random
variable distributed according to the prior measure. Then,
it immediately follows that the non-negative random vari-
able T takes values in the unit interval [0,1] and ZK(n) =
E[e−nT ]. To obtain a handle on the distribution of T , we
consider the random variable Z :=− logT which can be
expressed as a sum of d̄ independent Expo(λj) random
variables with λj = (hj + 1)/(2kj) as defined above; in-
terestingly, observe the quantities (hj +1)/(2kj)s appear
as the exponential rate parameters. Using a change of
measure argument; see proof for details; we can express
ZK(n) in terms of the density of Z , denoted by gZ ,

ZK(n) =

∫ n

0
e−t 1

t
gZ
(
log(n/t)

)
dt.(12)

The intuition for the most general case of the proof fol-
lows from two special cases. First, consider the special
case where λj = λ for all j = 1, . . . , d̄ and m= d̄. In this
case Z is a Gamma(m,λ) random variable with density(
λm/Γ(m)

)
e−λxxm−1

1(0,∞)(x). It follows that for any
t ∈ (0, n),

gZ
(
log(n/t)

)
=

λm

Γ(m)
n−λ tλ

(
log(n/t)

)m−1
.

It follows that

ZK(n) =Cn−λ

∫ n

0
tλ−1 e−t

(
log(n/t)

)m−1
dt(13)

≍ n−λ (logn)m−1.(14)

As a second special case, suppose λ1 < . . . < λd̄, which
implies that λ = λ1 and m = 1. The distribution of Z is
known as the Hypoexponential distribution [35, 23] and
an analytic expression for its density is available in the
literature as quoted below.

THEOREM 3.2 ([26, 8]). Let Zk
ind.∼ Expo(λk) with

density gk(z) = λke
−λkz1(0,∞)(zk) for k = 1, . . . ,K ,

where λ1 < . . . < λK . Then, the density gZ of Z =∑K
k=1Zk is

gZ(z) =

K∑
k=1

(∏
r ̸=k

λr

λr − λk

)
︸ ︷︷ ︸

bk

gk(z).

The coefficients {bk} can be both positive and negative,
and thus the above is not a mixture of exponential den-
sities. However, the coefficient b1 corresponding to the

smallest rate parameter λ1 is positive. We have, for any
t ∈ (0, n),

gZ
(
log(n/t)

)
=

d̄∑
j=1

bj λj n
−λj tλj .

In this case we have

ZK(n) =

d̄∑
j=1

bj λj n
−λj

∫ n

0
e−ttλj−1dt

≍
d̄∑

j=1

bjn
−λj ≍ n−λ1 .

This proves the theorem for this special case. The fact
that b1 > 0 has been crucially used to arrive at the last
conclusion in the above display, along with the fact that
n−α1 > n−α2 for α2 > α1 > 0. This example carries the
takeaway message that the exact form of the density gZ
is of secondary importance, and the focus should be on
extracting the most significant contribution in terms of n.
This is our strategy for the most general case.

In the general case, Z can be expressed as the sum of
independent Gamma random variables. While there exist
expressions for the density of sum of independent Gamma
random variables [23, 26], they are much more cumber-
some than the simpler case of exponentials in Theorem
3.2. Hence, we do not attempt to work with the density
gZ and instead aim to bound ZK(n) from both sides.
Using the idea of stochastic ordering of random vari-
ables we show that Z is stochastically bounded by two
Gamma random variables whose expectations are of or-
der n−λ(logn)m−1.

We now state a corollary to Theorem 3.1 relaxing the
assumption on the prior.

COROLLARY 3.3. Assume the setup of Theorem 3.1.
Let b : U → R be an analytic function with b(0) ̸= 0,
where U is any open subset of Rd containing Ω. Then,∫

Ω
b(ξ) e−nK(ξ)φ(ξ)dξ ≍ n−λ(logn)m−1.

Corollary 3.3 shows that the assumption of a product
prior in Theorem 3.1 can be relaxed to more general priors
of the form φ̃(ξ) ∝ b(ξ)φ(ξ), with the same asymptotic
order of the normalizing constant as before.

3.2 The Stochastic Quantity Z(n)

We now extend our probabilistic analysis from the pre-
vious subsection to analyze the stochastic quantity Z(n).
Let us denote

Zi(ξ) = log

{
p(Xi | ξ⋆)
p(Xi | ξ)

}
−E⋆ log

{
p(Xi | ξ⋆)
p(Xi | ξ)

}
,

(15)

i= 1, . . . , n,
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so that n−1
∑n

i=1Zi(ξ) = [Kn(ξ)−K(ξ)] characterizes
the difference between Kn and K as an average of i.i.d.
random variables. The log-marginal likelihood can be
written as,

Z(n) =

∫
Ω
e−nK(ξ)−

√
nξkWn(ξ)φ(ξ)dξ,

where

Wn(ξ) =
1√
n

n∑
i=1

ξ−kZi(ξ). (16)

We make some simplifying assumptions to keep the pre-
sentation from getting notationally too heavy. We shall
assume φ(ξ) ∝ ξh, and also that λj = λ for all j =
1, . . . , d̄ < d. Recall from § 3.1 that m = d̄ in this case.
Denote by I the set {1, . . . ,m} and J = {m+ 1, . . . , d}.
Clearly, under φ(·), the common distribution of the inde-
pendent random variables ξj for j ∈ I is Beta(hj + 1,1)

and hence ξ
2kj

j is Beta(λ,1) distributed for j ∈ I .
We now state a stochastic approximation result for

Z(n) in Theorem 3.4 that can be considered as a non-
asymptotic version of Theorem 11 in [52]. The main idea
lies in decoupling the effect of the singular part ξI con-
trolled by K(ξ) from the non-singular ξJ part of ξ. As we
shall see in Theorem 3.4, our proof relies heavily on the
properties of the conditional density of ξI given K(ξ).

Since the distribution of Z =− logT =−
∑m

j=1 2kj log ξj
is Gamma(m,λ), the conditional distribution

(−2k1 log ξ1, . . . ,−2km log ξm) := (Z1, . . . ,Zm) | Z

is given by Z × Dirichlet(1m) and is expressed as

fZ1,...,Zm|Z(z1, . . . , zm) =
Γ(m)

Zm−1
,

0≤
m−1∑
i=1

zi ≤ Z, zm = Z −
m−1∑
i=1

zi.

Hence, the conditional density of

ξ | Z = (e−Z1/(2k1), . . . , e−Zm/(2km)) | Z

is given by

φξ|Z(ξI) =
2m
∏m

j=1 kj∏m
j=1 ξj

Γ(m)

Zm−1
,(17)

e−Z ≤ (ξI−m
)2k−m ≤ 1, ξ2kI = Z,

where I−m = I\{m}, k−m = k\{km}. Also, φξ|Z=z(ξI)
is the same as the density φξ|T=e−z(ξI). Define a se-
quence of stochastic processes Dn(t, ξ) with index set
R+ × [0,1]d as

Dn(t, ξ) = tλ−1e−t−
√
tWn(ξ)φξ|Z=− log(t/n)(ξI)φ(ξJ).

Further, define an integrated version of Dn(t, ξ) as Dn(t) =∫
ΩDn(t, ξ)dξ for t ∈R+.

THEOREM 3.4. The following expression provides
a non-asymptotic stochastic expansion of Z(n) with
n−λ(logn)m−1 as the leading term,

Z(n)

d∏
j=1

(hj + 1) =
n−λ(logn)m−1λm

Γ(m)

∫ n

0
Dn(t)dt+Rn

where

Rn =

∫ n

t=0
rn(t)Dn(t)dt,

rn(t) =
λm

Γ(m)
n−λ

m−2∑
j=1

(
m− 1

j

)(
logn

)j
(− log t)m−1−j .

Moreover, the remainder term Rn is smaller order in
comparison with the dominating term. If the sequence of
stochastic processes Wn satisfied ∥Wn∥∞ =Op(1), then

|Rn|
n−λ(logn)m−1

→ 0, as n→∞

almost surely.

The proof follows in two parts. In the first part of
the proof we use the conditional density of ξ | T , the
change of variables T = K(ξ) as in §3.1, and the iden-
tity φK(t) = (1/t)gZ

{
log(1/t)

}
, where gZ(·) is the pdf

of a Gamma(λ,m) to show that

Z(n)

d∏
j=1

(hj + 1)

=
λm

Γ(m)
n−λ

(
logn

)m−1
∫ n

0

∫
Dn(t, ξ)dξdt+Rn.

The second part of the proof shows that

|Rn|= op

(
n−λ(logn)m−1

)
.

4. MEAN-FIELD APPROXIMATION FOR MODELS IN
STANDARD FORM

In this section, our goal is to show that mean-field
variational approximation always correctly recovers the
RLCT for singular models in standard form, which there-
fore constitute an interesting class of statistical exam-
ples where the mean-field approximation is provably bet-
ter than the Laplace approximation. While mean-field in-
ference is known to produce meaningful parameter esti-
mates in many statistical models [55, 31], the algorith-
mic landscape contains both positive and negative results
[40, 57, 27, 18].

Previous work on variational Bayes in singular models
focuses on deriving asymptotic bounds, as a function of
the sample size n, for the ELBO in latent variable models
such as Gaussian mixture models [43], hidden Markov
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models [20], and other latent variable models [45, 28, 21].
These bounds take the form

−ν1 logn+C1 ≤ ELBO≤−ν2 logn+C2

where ν1 and ν2 are constants that are similar to the
known upper bounds on the true RLCT of the correspond-
ing models. The derivations of these bounds are based on
specific inequalities which can be applied to the optimal
variational posterior for these models, which is based on
a block mean-field approximation to the posterior rather
than a full mean-field factorization, and may not be ap-
plicable to other models. More interestingly this analysis
proceeds in the original coordinate system rather than the
resolved coordinate. This is due to the difficulty of deter-
mining the resolution mapping g, from the resolution of
singularities, for any specific model; recall that the reso-
lution of singularities only guarantees the existence of the
transform. Given the key role the resolution of singularti-
ties provides in both Watanabe’s and our analysis of sin-
gular models, it makes sense that it would also play a key
role in the the study of variational inference for singular
models.

We begin our investigation of variational inference in
singular models by first determining the asymptotic be-
havior of the ELBO for the mean-field variation approxi-
mation to the posterior in the resolved coordinate system
given by,

γ
(n)
K (ξ) =

e−nK(ξ)φ(ξ)

ZK(n)
, ξ ∈Ω,(18)

with K(ξ) = ξ2k in standard form as in Theorem 3.1 and
φ(ξ) ∝ b(ξ)ξh is a probability density on Ω (e.g. prior)
with the analytic function b(·) as in Corollary 3.3. Clearly,
ZK(n) is then recognized as the normalizing constant
of γ(n)K (·), which serves as a deterministic version of the
posterior defined in Eq. (6). Recall the Gibb’s variational
inequality, Eq. (3), which states that for any probability
density ρ≪ φ on Ω,

logZK(n)≥Ψn(ρ) :=−
[∫

nK(ξ)ρ(dξ) +D(ρ∥φ)
]
,

(19)

with equality attained if and only if ρ = γ
(n)
K . The quan-

tity Ψn(ρ) on the right hand side of (19) is a lower bound
to logZK(n) for any ρ≪ φ. We are interested in comput-
ing an asymptotic expansion for the evidence lower bound
(ELBO) of the mean-field family,

ELBO(FMF) := sup
ρ∈FMF

Ψn(ρ).(20)

The aim of variational inference is to use the optimal vari-
ational approximation ρ⋆ as a surrogate for the true pos-
terior γ(n)K (ξ). We would like to understand how close the

optimal variational approximation ρ⋆ from a variational
family F approximates the true posterior. One way to
quantify the quality of the approximation is by determin-
ing the discrepancy between the asymptotic behavior of
logZK(n) and the asymptotic behavior of ELBO(FMF).
If the mean-field family is capable of providing a good
approximation to γ

(n)
K (ξ), then the asymptotic expansion

of the ELBO(FMF) should properly capture some of the
leading order terms of the asymptotic expansion of the
log-marginal likelihood logZK(n). Since γ

(n)
K does not

lie in FMF for any n, it follows that the inequality in equa-
tion (20) is a strict one if we restrict F to the mean-field
family. We, however, show below that the optimal mean-
field approximation of Eq. (18) correctly recovers the
leading order term of asymptotic expansion of logZK(n).

THEOREM 4.1. Consider a variational approxima-
tion (20) to logZK(n) in equation (18), where the vari-
ational family F is taken to be the mean-field family
FMF defined in equation (5). Then, there exists constants
C1, C2 independent of n such that

−λ logn−C1 ≤ ELBO(FMF)≤−λ logn−C2,

where the RLCT λ and the multiplicity m satisfy Eq. (8).

Since logZK(n)≍−λ logn+(m−1) log logn, it fol-
lows that the optimal mean-field approximation correctly
recovers the asymptotic behavior of logZK(n). This, in
particular, implies that the relative error Rn due to the
mean-field approximation

Rn :=
| logZK(n)−ELBO(FMF)|

| logZK(n)|
→ 0 as n→∞.

This is rather interesting, as the density γ
(n)
K clearly

does not lie in FMF for any finite n. Similar bounds have
been derived using mean-field VI for specific singular
models [29], but these results heavily rely on model spe-
cific equations and do not readily extend to singular mod-
els in general. Moreover, Theorem 4.1 shows that it is
not possible for the mean-field approximation of Eq. (18)
to recover the lower order (m − 1) log logn term in the
asymptotic expansion of logZK(n) in Eq. (1).

Our strategy is to first show that every mean-field distri-
bution satisfying the stationary equations of Ψn, denoted
by ρ̃ = ⊗d

j=1ρ̃j , satisfies a two sided bound which is of
the order −λ logn − C1 ≤ Ψn(ρ̃) ≤ −λ logn − C2, for
some constants C1, C2 free of n.

We introduce some notation before describing the ρ̃js.
For k,h,β > 0, define a density fk,h,β on [0,1] given by

fk,h,β(u) =
uh exp(−βu2k)1[0,1](u)

B(k,h,β)
,(21)

where B(k,h,β) =
∫ 1
0 xh exp(−βx2k)dx. We record two

useful facts about fk,h,β in the Lemma below. We collect
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some well-known facts first about the incomplete gamma
function; see [1].

REMARK 4.2. For x,a > 0, denote the lower incom-
plete gamma function by γ(a,x) = Γ(a)−1

∫ x
0 ta−1e−t dt.

For any fixed a > 0, γ(a, ·) takes values in (0,1), with
limx→∞ γ(a,x) = 1. Also, limx→0[γ(a,x)/x

a] = 1/
Γ(a+ 1), and γ(a+ 1, x) = γ(a,x)− xae−x/Γ(a+ 1).

LEMMA 4.3. Let the density fk,h,β be as in equation
(21). Then,

(i) The normalizing constant B(k,h,β) is given by
B(k,h,β) = β−λΓ(λ)γ(λ,β)/(2k).
(ii) The quantity

∫ 1
0 u2kfk,h,β(du) depends on k and h

only through λ := (h + 1)/(2k). Call this expectation
G(λ,β), and we have G(λ,β) :=

∫ 1
0 u2kfk,h,β(u)du =

λβ−1 · γ(λ+ 1, β)/γ(λ,β).
(iii) We have, limβ→∞ (| logB(k,h,β)− (−λ logβ)|)/
(λ logβ) = 0 and limβ→∞G(λ,β)/(λ/β) = 1. Thus, for
large β, logB(k,h,β)≍−λ logβ, and G(λ,β)≍ λ/β.
(iv) We have, limβ→0 logB(k,h,β) =− log(2kλ),
G(λ,0) = λ/(λ+ 1). Thus, for small β, there exists con-
statnts C1,C2,C3,C4 such that and C1 ≤ G(λ,β) ≤ C2

and C3 ≤ logB(k,h,β)≤C4.
REMARK 4.4. It follows from Lemma 4.3 that there

exist constants C1, C2 > 0 and constants C3, C4,

C1

max{β,1}
≤G(λ,β)≤ C2

max{β,1}

β ∈ [0,∞) and, C3 − λ logβ ≤ logB(k,h,β) ≤ C4 −
λ logβ for all β ∈ [1,∞).

Define λj = (hj +1)/(2kj) for 1≤ j ≤ d. Without loss
of generality, we assume that λ= λ1 = λ2 = · · ·= λm ≤
λm+1 ≤ · · · ≤ λd, where λ is the RLCT and m its multi-
plicity. It follows from variational calculus that the opti-
mal marginals of the mean-field approximation to γK(ξ)
are of the form

ρj(ξj)∝ exp{E−j [logγK(ξ)]}, 1≤ j ≤ d,

where E−j denotes the expectation with respect to

ρ−j(ξ−j) :=
∏
k ̸=j

ρk(ξk).

A straightforward computation shows that the optimal
marginals are of the form, ρj(ξj)∝ exp{−βjξ

2kj

j }, βj ∈
[0,∞), for j = 1, . . . , d. Hence, we consider ρ̃j = fkj ,hj ,βj

for j = 1, . . . , d, with the {βj} terms to be specified at a
later point. Let us now bound

Ψn(ρ̃) =−
[∫

Ω
nK(ξ)ρ̃(ξ)dξ +D(ρ̃∥φ)

]

by bounding its two parts. First, we have∫
Ω
nK(ξ)ρ̃(ξ)dξ = n

d∏
j=1

G(λj , βj)

where recall that λj = (hj + 1)/(2kj). From Remark 4.4
there exist constants C1,K , C2,K , free of n, such that

nC1,K∏d
j=1max{βj ,1}

≤
∫
Ω
nK(ξ)ρ̃(ξ)dξ ≤

nC2,K∏d
j=1max{βj ,1}

.

Next, consider D(ρ̃∥φ). Let φ be the probability den-
sity on Ω with φ̄(ξ) ∝ ξh. Write

D(ρ̃∥φ) =D(ρ̃∥ φ̄) +
∫
Ω
ρ̃ log

φ̄

φ
.

The second term in the above display can be bounded
away by constants independent of n on Ω. We bound
D(ρ̃∥ φ̄) =

∑d
j=1D(ρ̃j ∥ φ̄j), where φ̄j is the jth marginal

of φ̄ with density φ̄j(u) ∝ uhj for u ∈ [0,1], term-wise.
Bounding each D(ρ̃j ∥ φ̄j), for j = 1, . . . , d, using Re-
mark 4.4 and summing the bounds yields the two sided
bound

A1 +

d∑
j=1

λj logβj ≤D(ρ̃∥ φ̄)≤A2 +

d∑
j=1

λj logβj ,

for some constants A1, A2 free of n. Combining these
two bounds produces the two-sided bound

−Ã2 +
nC2,K∏d

j=1max{βj ,1}
−

d∑
j=1

λj logβj ≤Ψn(ρ̃)

≤−Ã1 −
nC1,K∏d

j=1max{βj ,1}
−

d∑
j=1

λj logβj .

for some constants Ã1, Ã2 free of n. Maximizing Ψn over
the class of mean-field distributions FMF is equivalent to
minimizing the equations of the form

nC∏d
j=1max{βj ,1}

+

d∑
j=1

λj logβj

over β1, . . . , βd ∈ [0,∞). This equation is minimized by
choosing βj = Cjn

1/m, for 1 ≤ j ≤m and βs = Cs, for
m+ 1≤ s≤ d, where Cj and Cs are constants indepen-
dent of n. Putting the pieces together, we have proved that

C1 − λ logn≤ sup
ρ∈FMF

Ψn(ρ)≤C2 − λ logn,

for some constants C1, C2 free of n. This completes the
proof.
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4.1 Algorithmic achievability of the lower bound

In this section, we investigate the “algorithmic achiev-
ability" of the bounds from Theorem 4.1. In particular,
the theorem guarantees that the ELBO corresponding to
the optimal variational approximation in the mean-field
family achieves the correct asymptotic order, i.e. that of
logZK(n). However, the theorem does not guarantee that
this global optimum can be achieved by any algorithm
used to numerically optimize the ELBO, such as Coor-
dinate Ascent Variational Inference (CAVI). In practice,
this algorithm may get stuck at a local optima of the
mean-field class that does not properly capture the cor-
rect asymptotic behavior of the ELBO. We empirically
study the behavior of CAVI for the optimization problem
supρ∈FMF

Ψn(ρ) in the d = 2 case, which naturally con-
strains the coordinate updates to lie in the family of densi-
ties {fk,h,β}. Our empirical results suggest that the CAVI
algorithm is sub-optimal and is only capable of recover-
ing the leading order term of the asymptotic expansion of
logZK(n).

The Coordinate Ascent Variational Inference (CAVI)
algorithm is popular in statistics and machine learning for
maximizing an evidence lower bound over a mean-field
family; see Chapter 10 of Bishop for a book-level treat-
ment. The CAVI can be interpreted as a cyclical coordi-
nate ascent algorithm which at any iteration t≥ 1 cycles
through maximizing Ψn(ρ) as a function of ρj , keeping
{ρℓ}ℓ̸=j fixed at their current value {ρ(t)ℓ }ℓ̸=j . For exam-
ple, in the d = 2 case, the iterates ρ(t) = ρ

(t)
1 ⊗ ρ

(t)
2 for

t≥ 1 are given by

ρ
(t)
1 = argmax

ρ1

Ψn

(
ρ1 ⊗ ρ

(t−1)
2

)
,

ρ
(t)
2 = argmax

ρ2

Ψn

(
ρ
(t)
1 ⊗ ρ2

)
,

with an arbitrary initialization ρ(0) = ρ
(0)
1 ⊗ρ

(0)
2 ≪ φ, and

assuming the first component gets updated first. The ob-
jective function Ψn(ρ1 ⊗ ρ2) is concave in each argu-
ment9 so that the maximization problems in the update
step above have unique solutions. Moreover, these maxi-
mizers admit a convenient integral representation, which
facilitates tractability of the updates in conditionally con-
jugate models. It is straightforward to see that the succes-
sive CAVI iterates increase the objective function value,
since for any t≥ 1,

Ψn

(
ρ
(t)
1 ⊗ ρ

(t)
2

)
≥Ψn

(
ρ
(t)
1 ⊗ ρ

(t−1)
2

)
≥Ψn

(
ρ
(t−1)
1 ⊗ ρ

(t−1)
2

)
,

(22)

although convergence to a global optimum is not guaran-
teed in general.

9although, it is rarely jointly concave

Returning to the present case, consider the standard
form of a singular model with parameter dimension d= 2,

γ
(n)
K (ξ1, ξ2) ∝ ξh1

1 ξh2

2 exp(−nξ2k1

1 ξ2k2

2 ), (ξ1, ξ2) ∈ [0,1]2,

(23)

resulting from setting b(ξ)≡ 1 in equation (18). Let λi =
(hi + 1)/2ki for i = 1,2 as usual; we assume without
loss of generality that λ1 ≤ λ2, implying the real log-
canonical threshold for this model is λ = λ1. The mean
field family FMF in this case consists of product distribu-
tions ρ1 ⊗ ρ2, where ρ1 and ρ2 are absolutely continu-
ous densities on [0,1]. We derive in Appendix C that the
tth iteration of the CAVI algorithm (22) in this case is
ρ(t)(ξ) = ρ

(t)
1 (ξ1) · ρ(t)2 (ξ2), with

ρ
(t)
1 (ξ1) = fk1,h1,nµ

(t)
1
(ξ1),(24)

ρ
(t)
2 (ξ2) = fk2,h2,nµ

(t)
2
(ξ2),

where recall the density fk,h,β is defined in equation (21)
and for t≥ 1,

µ
(t)
1 =G

(
λ2, nµ

(t−1)
2

)
,(25)

µ
(t)
2 =G

(
λ1, nµ

(t)
1

)
.

We also record the value of the ELBO at iteration t,

Ψn(ρ
(t)) =− nG

(
λ1, nµ

(t)
1

)
G
(
λ2, nµ

(t)
2

)
+ nµ

(t)
1 G

(
λ1, nµ

(t)
1

)
+ nµ

(t)
2 G

(
λ2, nµ

(t)
2

)
(26)

+ logB
(
h1, k1, nµ

(t)
1

)
+ logB

(
h2, k2, nµ

(t)
2

)
.

This shows that the ELBO’s behavior is fully determined
by the convergence properties of the discrete time dynam-
ical system in Eq. (25). Let ρ⋆CAVI(ξ) = limt→∞ ρ(t)(ξ)
denote the optimal mean-field distribution computed us-
ing the CAVI algorithm.

Numerical experiments for d= 2, random initialization
of the dynamical system (µ

(t)
1 , µ

(t)
2 ), and different combi-

nations of (λ1, λ2) suggest that the asymptotic behavior of
the ELBO of the converged CAVI algorithm, denoted by
Ψn(q

∗), is given by −λ logn+C . Table 4.1 contains the
estimated coefficients and the corresponding p-values for
the regression Ψn(q

∗) = β0 + β1 logn+ β2 log logn. We
see that this regression fails to properly capture the mul-
tiplicity m= 2 in λ1 = 1, λ2 = 1 and λ1 = 2.3, λ2 = 2.3.
Figure 2 visually summarizes these findings.

Our empirical results suggest that CAVI is capable of
recovering the true global optima of ELBO(FMF ) as pre-
dicted by Theorem 4.1 for dimension d= 2.

5. DISCUSSION

In this article, we have taken a tour through the fascinat-
ing literature on evidence approximation in singular sta-
tistical models, and complimented some existing asymp-
totic results with non-asymptotic probabilistic bounds.
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FIG 2. Optimized value of the ELBO for the example in Eq. (23) as a
function of logn for different combinations of (λ1, λ2). Notice that
the lines corresponding to (2,2.5) and (2.3,2.3) do not cross each
other near log(n) ≈ 30. This indicates that the ELBO is missing the
log log(n) terms. Table 4.1 shows estimated coefficients and the cor-
responding p-values for the regressions Ψn(q

∗) = β0 + β1 logn +
β2 log logn.

(λ1, λ2) Parameter Estimate p-value

(0.5, 1) β0 −-4.165e-01 2e-16
β1 −5.000e-01 2e-16
β2 5.336e-06 1.95e-06

(1,1) β0 −3.930e-01 2e-16
β1 −1.000e+00 2e-16
β2 2.538e-03 1.62e-09

(2,2.5) β0 −1.351e+00 2e-16
β1 −2.000e+00 2e-16
β2 4.834e-05 2.03e-06

(2.3,2.3) β0 −7.011e-01 2e-16
β1 −2.300e+00 2e-16
β2 2.842e-03 2.13e-08

TABLE 1
A table containing the estimated coefficients and P-values

corresponding to the regressions
Ψn(q

∗) = β0 + β1 logn+ β2 log logn when Ψn(q
∗) is computed

using mean-field VI. We see that the regression fails to correctly
capture the multiplicity m= 2 in λ1 = 1, λ2 = 1 and λ1 = 2.3,

λ2 = 2.3.

With the growing popularity of complex generative mod-
els in various applications, we hope the results and ap-
proaches discussed in this article aid future investigations
into model selection guarantees involving singular mod-
els. We are also intrigued by the promise shown by mean-
field variational inference in these problems. There are
numerous open questions for variational inference in the
singular setting.

The first line of open questions concerns the brief dis-
cussion in Sec. 4. Theorem 4.1 shows that ELBO(FMF ),
the optimal evidence lower bound over the mean-field
class, recovers the leading order term of the asymptotic

expansion of the log-marginal likelihood logZK(n), but
is not capable of recovering the lower order term (m −
1) log logn. With the ELBO over the mean-field class
provably unable to recover the correct asymptotic behav-
ior of logZK(n), a natural follow-up question would be
to determine if this could be done with a more structured
variational family?

The second line of open questions concerns the brief
discussion in Sec. 4.1. Is it possible to achieve the theo-
retical bound in Theorem 4.1 with any of the numerical
optimization algorithms such as CAVI or (stochastic) gra-
dient descent? Our preliminary numerical results suggest
that CAVI is able to recover the leading order term in the
asymptotic expansion in dimension d= 2.

A third line of open questions stems from the fact that
we have only studied the problem in the most simplified
setting. Our first simplification arises from using the de-
terministic normalized posterior γ

(n)
K instead of the true

normalized posterior γn ∝ exp{−nKn(ξ)}φ(ξ). Addi-
tionally, we have not considered a model whose standard
form is comprised of multiple sets of local coordinates.
Theorem 4.1 will need to be re-verified in either of these
more general contexts. New and interesting phenomena
may arise as we relax these assumptions. It is entirely
possible that the CAVI may fail to produce the correct
asymptotic bounds for the ELBO when there are multiple
standard form coordinate regions in the model.

Finally, we lack a full understanding of the role the
standard form of the model plays in the algorithmic appli-
cation of VI. The standard form of the model plays a cen-
tral role in the derivations of both the asymptotic expan-
sion in Sec. 2, and non-asymptotic expansion in Sec. 3, of
the log-marginal likelihood as a change of variables for
which we can easily study the behavior of the correspond-
ing log-marginal likelihood. When studying the asymp-
totics of the ELBO using Ψn(ρ) in Eq. (19), the standard
form of the model also arises through a change of vari-
ables. However, when applying the CAVI algorithm to
compute the optimal variational approximation, we can
either compute the variational approximation in the orig-
inal coordinate system, or first transform the model to
standard form coordinate system and then compute the
variational approximation in the standard coordinate sys-
tem. It is not clear if these computations will result in op-
timal variational approximations that produce equivalent
ELBOs. It may be the case that the ELBO is not numer-
ically stable in the original coordinate system due to the
singularity in the model, but is numerically stable in the
standard form of the model, which resolves the singular-
ities of the model. The answer to this question has im-
portant consequences for applications. If both coordinate
systems produce equivalent behavior, then we could sim-
ply apply mean-field VI to singular models without hav-
ing to determine the standard coordinates of the model.
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Recall that the standard coordinate system for the model
is found by computing the resolution of singularities of
the model, which can be quite challenging10 for even rel-
atively simple examples such as the layered neural net-
work example from Sec. 2.4.3. If the coordinate systems
produce differing results, it may become necessary to de-
termine the standard form of the model prior to apply the
mean-field approximation. At this point, another possi-
ble approach to VI in singular model would be to use
a more flexible transformation based variational family,
such as the variational auto-encoder or normalizing flows,
to learn a transformation to the standard form simultane-
ously while computing the optimal variational approxi-
mation. See [53] for recent work in this direction.

APPENDIX A: DEFINITION OF A SCHWARTZ
DISTRIBUTION

Classically, functions are viewed in a point-wise man-
ner. A function f : R → R is a maps which assigns
to each point x ∈ R a numerical value f(x) ∈ R. The
Lebesgue spaces Lp, 1≤ p≤∞, hint at a different way to
think about the idea of a function. Alternatively, a func-
tion f ∈ Lp can be fully specified by studying the fam-
ily of linear functionals

∫
fϕdµ, for ϕ ∈ Lq , where 1/

p + 1/q = 1. An Lp function can be view as a linear
map from Lq → R instead of a point-wise map from R
to R. Schwartz distributions follow this same approach
to defining generalized functions on the space of test
functions. For E ⊂ Rd, denote by C∞

c (E) the space of
all C∞ functions whose support is compact and con-
tained in E. The space of test functions over E ⊂ Rd

is classically denoted by D(E) and represents the space
C∞
c (E) together with the topology defined by sequen-

tial convergence ϕj → ϕ if and only if ∂αϕj → ∂αϕ uni-
formly for all multi-indexes α ∈ {0,1,2,3, . . .}d, where
∂αf denotes ∂|α|f/(∂α1x1∂

α2x2 · · ·∂αdxd) and |α| =
α1 + α2 + · · ·+ αd. The space of Schwartz distributions
on E, denoted by D′

(E), is the space of continuous lin-
ear functional on C∞

c (E) with the weak* topology. For
F ∈ D′

(E) and ϕ ∈ D(E) the value of F at ϕ will be
denoted by ⟨F,ϕ⟩. Two distributions F, G ∈ D′

(E) are
equal if ⟨F,ϕ⟩= ⟨G,ϕ⟩ for every ϕ ∈D(E). Our first ex-
ample of a Schwartz distribution is the distribution de-
fined by integration against a locally integrable function
f ∈ L1

loc(E), ⟨f,ϕ⟩ :=
∫
E f(x)ϕ(x)dx.11 Similarly every

Radon measure µ on E defines a distribution ⟨µ,ϕ⟩ :=∫
E ϕdµ. Not all distributions arise from integrals. The

10The only practical model for which the full resolution map is
currently known is Reduced Rank Regression [5].

11A function f :Rd →R is called locally integrable if
∫
K |f |dx <

∞, for every bounded measurable set K ⊂ Rd. The space of locally
integrable functions is denoted by L1

loc(R
d).

point mass at the origin, denoted by δ, defines a distri-
bution ⟨δ,ϕ⟩ := ϕ(0). New distributions can be defined
as linear transformations of existing distributions. Two
important examples of this idea are differentiation and
translation. For F ∈D′

(E), the derivative ∂αF ∈D′
(E),

is given by ⟨∂αF,ϕ⟩ = (−1)|α|⟨F,∂αϕ⟩ and the transla-
tion τyF ∈ D′

(E + y) is given by ⟨τyF,ϕ⟩ = ⟨F, τ−yϕ⟩,
where τy denotes translation by y, τyf(x) = f(x−y) and
E + y = {x+ y |x ∈ E}. In this manner the point mass
at a point t is given by the distribution τtδ and the deriva-
tive ∂H of distribution H ∈D′

(R) defined by the Heavy-
side step function H(x) = 1{x≥0}(x) is ∂H = δ. Indeed
for ϕ ∈ D(R), ⟨∂H,ϕ⟩ = −⟨H,∂ϕ⟩ = −

∫∞
0 ϕ′(t)dt =

ϕ(0) = ⟨δ,ϕ⟩.

APPENDIX B: PROOFS FROM SECTION 3

B.1 Proof of Theorem 3.1

PROOF. The main idea behind our proof is to exploit
the natural representation of ZK(n) as the expectation of
a non-negative random variable with respect to the prior
measure. Specifically, let T = K(ξ), where ξ ∼ φ is a
random variable distributed according to the prior mea-
sure. Then, the non-negative random variable T takes val-
ues in the unit interval [0,1] and ZK(n) = E[e−nT ] =∫ 1
0 e−ntφK(t)dt, where φK is the density function of T

to be derived below. Before proceeding to simplify this
expectation, we note some conventions and notation. Let
d̄ =

∑d
j=1 1(kj ̸= 0), and without loss of generality as-

sume that kj > 0 for j = 1, . . . , d̄ and kj = 0 for j > d̄.
Define λj := (hj + 1)/(2kj) for j = 1, . . . , d̄, and with-
out loss of generality, further assume that these are sorted
in non-decreasing order λ1 ≤ λ2 . . . ≤ λd̄. By definition,
d̄ ≥ m, and the first m of the λjs all equal λ. Through-
out, we use the convention that an Expo(β) distribution
has density βe−βx

1(0,∞)(x), that is, β denotes the rate
parameter of the distribution.

The random variable Z := − logT can be expressed
as Z =

∑d̄
j=1Zj with Zj =− log(ξ

2kj

j ) for j = 1, . . . , d̄.
An application of the change of measure formula yields
that Zj ∼ Expo(λj) with λj = (hj + 1)/(2kj) as de-
fined above; interestingly, observe the quantities (hj +
1)/(2kj)s appear as the exponential rate parameters.
Moreover, since the prior measure φ has a product form,
the Zjs are independent across j. Letting ΦK(·) denote
the cumulative distribution function of T , we then have,
for any t ∈ (0,1),

ΦK(t) = P (T ≤ t) = P (− logT ≥− log t)(27)

= P

( d̄∑
j=1

Zj ≥ log(1/t)

)
.

It follows from the above display that limt↓0ΦK(t) = 0,
limt↑1ΦK(t) = 1, and ΦK is an absolutely continuous cdf
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that admits a density φK(·) with respect to the Lebesgue
measure, given by,

φK(t) =
1

t
gZ
(
log(1/t)

)
1(0,1)(t),(28)

where gZ is the density of Z with respect to the Lebesgue
measure. Our object of interest,

ZK(n) =

∫ 1

0
e−ntφK(t)dt(29)

=

∫ n

0
e−t 1

t
gZ
(
log(n/t)

)
dt.

Before proceeding to prove the theorem in its entire
generality, we consider two special cases which are in-
structive in themselves and also help build towards the
general proof.

First, consider the special case where λj = λ for all j =
1, . . . , d̄. Then, m = d̄ and Z ∼ Gamma(m,λ), where a
Gamma(α,β) distribution has density(

βα/Γ(α)
)
e−βxxα−1

1(0,∞)(x).

It follows that for any t ∈ (0, n),

gZ
(
log(n/t)

)
=

λm

Γ(m)
n−λ tλ

(
log(n/t)

)m−1
.

Substituting in equation (29), we obtain that

ZK(n) =Cn−λ

∫ n

0
tλ−1 e−t

(
log(n/t)

)m−1
dt︸ ︷︷ ︸

Im(n)

(30)

≍ n−λ (logn)m−1.

The proof of the assertion that Im(n) ≍ (logn)m−1 for
any m ≥ 1 is straightforward and hence omitted. This
completes the proof for this particular case.

As a second special case, suppose λ1 < . . . < λd̄, which
implies that λ= λ1 and m= 1. This is known as the Hy-
poexponential distribution [35, 23] and an analytic ex-
pression for its density is available in the literature as
quoted below.

THEOREM B.1 ([26, 8]). Let Zk
ind.∼ Expo(λk) for

k = 1, . . . ,K , with λ1 < . . . < λK . Then, the density gZ
of Z =

∑K
k=1Zk is

gZ(z) =

K∑
k=1

(∏
r ̸=k

λr

λr − λk

)
︸ ︷︷ ︸

bk

gk(z),

where gk(z) = λke
−λkz is the density of Zk.

The coefficients {bk} can be both positive and negative,
and thus the above is not a mixture of exponential den-
sities. However, the coefficient b1 corresponding to the
smallest rate parameter λ1 is positive. We have, for any
t ∈ (0, n),

gZ
(
log(n/t)

)
=

d̄∑
j=1

bj λj n
−λj tλj .

Substituting this expression in equation (B), we get

ZK(n) =

d̄∑
j=1

bj λj n
−λj

∫ n

0
e−ttλj−1dt(31)

≍
d̄∑

j=1

bjn
−λj ≍ n−λ1 .

This proves the theorem for this special case. The fact
that b1 > 0 has been crucially used to arrive at the last
conclusion in the above display, along with the fact that
n−α1 > n−α2 for α2 > α1 > 0. This example carries the
takeaway message that the exact form of the density gZ
is of secondary importance, and the focus should be on
extracting the most significant contribution in terms of n.
This is our strategy for the most general case.

In the general case, assume that there are d∗ ≤ d̄ unique
λ-values λ∗

1 < λ∗
2 . . . < λ∗

d∗ among {λj}d̄j=1 with corre-
sponding multiplicities m1, . . . ,md∗ . It is then immediate
that

∑d∗

s=1ms = d̄. Also, (λ∗
1,m1) = (λ,m) from the the-

orem statement. Exploiting the independence of the Zjs,

we write Z =
∑d∗

s=1Ws, with Ws
ind.∼ Gamma(ms, λ

∗
s)

for s = 1, . . . , d∗. While there exist expressions for the
density of sum of independent Gamma random variables
[26], they are much more cumbersome than the simpler
case of exponentials in Theorem 3.2. Hence, we do not
attempt to work with the density gZ and instead aim to
bound ZK(n) from both sides. To that end, we crucially
use the idea of stochastic ordering of random variables.

Recall that for real random variables X1,X2, X1 is said
to be stochastically smaller than X2 if for every x ∈ R,
P (X2 > x) ≥ P (X1 > x). We use the notation X1 <st

X2 to denote this stochastic ordering. We now record a
useful result.

LEMMA B.2. Consider the random variable Z =∑d∗

s=1Ws, with Ws
ind.∼ Gamma(ms, λ

∗
s). Assume λ∗

1 <

. . . < λ∗
d∗ and let d̄ =

∑d∗

s=1ms. Define Zℓ = W1 and

Zc =
∑d∗

s=2 W̃s, where W̃s
ind.∼ Gamma(ms, λ

∗
2) are also

independent of W1. Then, Zℓ ∼ Gamma(m1, λ
∗
1), Zc ∼

Gamma(d̄ − m2, λ
∗
2), Zℓ and Zc are independent, and

with Zu := Zℓ +Zc,

Zℓ <st Z <st Zu.
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With this result in place, we now aim to bound ZK(n) =
Ee−nT . Since e−nT is a non-negative random variable
taking values in (0,1), we have

Ee−nT =

∫ 1

u=0
P
(
e−nT > u

)
du(32)

=

∫ 1

u=0
P
(
T < log(1/u)/n

)
du

=

∫ 1

u=0
P
(
Z > logn− log(log 1/u)

)
du.

For any z > 0, we have the following two-sided inequality
from Lemma B.2,

P (Zℓ > z)<P (Z > z)<P (Zu > z)<P (Zℓ > z) + P (Zc > z).

Here, the last inequality follows from an application of
the union bound. Substituting this inequality at the end
of equation (32) for every u and working backwards, we
obtain

Ee−nTℓ <Ee−nT <Ee−nTℓ +Ee−nTc ,

where Tℓ = e−Zℓ and Tc = e−Zc . Since Zℓ and Zc are
both gamma random variables, it follows from equa-
tion (13) that Ee−nTℓ >Cn−λ(logn)m−1 and Ee−nTℓ +
Ee−nTc < C1n

−λ(logn)m−1 + C2n
−λ2(logn)m2−1 <

C3n
−λ(logn)m−1. This delivers the desired bound.

B.2 Proof of Theorem 3.4

First part: By abuse of notation we shall assume that
φ corresponds to a product Beta density

∏d
j=1 Beta(ξj |

hj + 1,1). Multiplying Z(n) by
∏d

j=1(hj + 1) we have

Z(n)

d∏
j=1

(hj + 1) =

∫
e−nK(ξ)−

√
nξkWn(ξ)φ(ξ)dξ

=

∫ 1

0
e−nt

[∫
e−

√
ntWn(ξ)φξ|T=t(ξI)φ(ξJ)dξ

]
φK(t)dt

where φK(t) is the density of T =K(ξ) as in §3.1. Sub-
stituting φK(t) = (1/t)gZ

{
log(1/t)

}
, where gZ(·) is the

pdf of a Gamma(λ,m) random variable, we have by an-
other change of variable, nt 7→ t that,

Z(n)

d∏
j=1

(hj + 1) =

∫ n

0
e−t 1

t
gZ

(
log

n

t

)[∫
e−

√
tWn(ξ)φξ|T=t/n(ξI)φ(ξJ)dξ

]
dt.

Noting,

gZ
(
log(n/t)

)
=

λm

Γ(m)
n−λ tλ

(
log(n/t)

)m−1

=
λm

Γ(m)
n−λ tλ

(
logn

)m−1
+ rn(t)t

λ

it follows

Z(n)

d∏
j=1

(hj + 1)

=
λm

Γ(m)
n−λ

(
logn

)m−1
∫ n

0

∫
Dn(t, ξ)dξdt+Rn.

Second part: Since the maximum exponent of all loga-
rithmic terms inside the summation is (m− 2) we have

|rn(t)|
n−λ(logn)m−1

≤C(m)(logn)−1
m−2∑
j=1

| log t|m−1−j

for some constant C(m) depending on m. Also Dn(t)≤
tλ−1e−t+

√
t∥Wn∥∞ and hence

|Rn|
n−λ(logn)m−1

≤

C(m)

logn

m−2∑
j=1

∫ ∞

t=0
e−t+

√
t∥Wn∥∞tλ−1| log t|m−1−jdt

Since the function e−t+
√
t∥Wn∥∞tλ−1| log t|m−1−j is inte-

grable and ∥Wn∥∞ = Op(1), the result follows immedi-
ately.

B.3 Proof of Lemma B.2

For G∼ Gamma(α,λ) and any t > 0,

P (G≤ t) =
λα

Γ(α)

∫ t

0
e−λxxα−1dx=

1

Γ(α)

∫ λt

0
e−xxα−1dx.

is an increasing function of λ (for fixed α and t). Thus,
if Zi ∼ Gamma(α,λi) for i = 1,2 with λ1 > λ2, then
Z1 <st Z2.

The proof then follows from the fact that if Z1,Z2,Z3

are non-negative random variables with Z1 <st Z2, then
Z1 +Z3 <st Z2 +Z3.

B.4 Proof of Corollary 2.1

Since b(·) is analytic on U containing Ω, we have, for
any ξ ∈Ω that

b(ξ) = b(0) +
∑
|α|≥1

∂αb(0)

α!
ξα,

where α = (α1, . . . , αd) is a multi-index with |α| =∑d
j−1αj , ∂αb = ∂α1 . . . ∂αdb, and α! = α1! . . . αd!. Now

use the dominated convergence theorem to interchange
the integral and sum, and observe that the constant term
provides the dominating order.

B.5 Proof of Proposition B.3

We show that Wn(ξ) converges weakly to the Gaus-
sian process W ∗. By Theorem 1.5.7 in [37] it suffices
to show the marginal weak convergence and asymptotic
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tightness of Wn(ξ). We begin with the convergence of the
marginals. For ξ1, . . . , ξL ∈ [0,1]d with integer L> 0. Ap-
plying the multivariate central limit theorem, as n→∞,

(Wn(ξ1), . . . ,Wn(ξL))→N(0,C)

where C = (cw(ξi, ξj))1≤i,j≤L. Next we show the asymp-
totic tightness of Wn(ξ) by proving the following three
sufficient conditions. First [0,1]d is totally bounded. The
second condition is the tightness of Wn(ξ0) for a fixed ξ0.
Fix ξ0 ∈ [0,1]d, for ϵ > 0. We need to show that there ex-
ists a compact set K , such that P{Wn(ξ0) ∈K}> 1− ϵ.
We construct K = {|Wn(ξ0)| ≤ t} with t chosen as fol-
lows. By Assumption A1, Z̃i(ξ0) are independent cen-
tered sub-Gaussian and by Theorem 2.6.2 of [38]

P(|Wn(ξ0)| ≥ t)≤ P

(∣∣∣ n∑
i=1

Z̃i(ξ0)
∣∣∣≥√

nt

)
≤ 2exp(−ct2)

for some constant c > 0. Choosing t=
√

2 log(1/ϵ) com-
pletes the proof of tightness.

The third condition is that Wn(ξ) is asymptotically uni-
formly d-equicontinuous, where d(ξ, ζ) = ∥ξ − ζ∥ is the
metric generated by the norm in Assumption A1. Wn(ξ)
is said to be asymptotically uniformly d-equicontinuous
if for any η, ϵ > 0, there exists a δ > 0 such that

P

{
sup

d(ξ,ζ)<δ
|Wn(ξ)−Wn(ζ)|> ϵ

}
< η.

To that end,

sup
d(ξ,ζ)<δ

|Wn(ξ)−Wn(ζ)|

≤ 1√
n

n∑
i=1

|Z̃i(ξ)− Z̃i(ζ)| ≤
δ√
n

n∑
i=1

L(Xi)

and

P
{

sup
d(ξ,ζ)<δ

|Wn(ξ)−Wn(ζ)|> ϵ
}

≤ P
{ n∑

i=1

L(Xi)>

√
nϵ

δ

}

= P
[
exp

{
t

n∑
i=1

L(Xi)
}
> exp

(
t

√
nϵ

δ

)]
≤ exp

{
− t

√
nϵ/δ + ntc2L/2

}
for any t > 0, where the final inequality follows from
Markov’s and Assumption A1. Setting t = ϵ/(δ

√
nc2L),

we obtain

P
{

sup
d(ξ,ζ)<δ

|Wn(ξ)−Wn(ζ)|> ϵ
}
≤ e−ϵ2/(2c2Lδ

2).

Choosing δ = ϵ/(cL
√

2 log(1/η)) completes the proof
of asymptotically uniformly d-equicontinuous. Therefore
the conditions of Theorem 1.5.7 in [37] are met and
Wn(ξ) converges weakly to a Gaussian process.

B.6 Proof of Proposition B.4

We shall prove only the second part; the proof of the
first part is very similar and is omitted. We use the nota-
tion

G(t,W ) := tλ−1e−t−
√
tW .

Observe that
∫ n
0 |Dn(t)−D(t)|dt is bounded above by∫ n

0

{∫
|G(t,W ∗(0, ξJ))−G(t,W ∗(ξI , ξJ))|(33)

φξ|Z=− log(t/n)(ξI)φ(ξJ)
}
dξdt+∫ n

0

{∫
|G(t,Wn(ξI , ξJ))−G(t,W ∗(ξI , ξJ))|

φξ|Z=− log(t/n)(ξI)φ(ξJ)dξ
}
dt

To control the first term, for given any ϵ > 0, there exists
δ > 0, such that sup{∥ξI∥<δ} |e−

√
tW ∗(0,ξJ)−e−

√
tW ∗(ξI ,ξJ)|<

ϵ. Then the first term is less than

ϵ+ 2

∫ n

0
tλ−1e−t+

√
t∥W ∗∥∞

[
(34) ∫

{∥ξI∥≥δ}
φξ|Z=− log(t/n)(ξI)dξI

]
dt

Observe that the second term in the r.h.s of (34) is
bounded above by

(m− 1)P{ξ1 > δ/
√
m− 1 | Z =− log(t/n)}.

The one dimensional marginal ξ1 | Z of the conditional
density (17) is given by

φξ1|Z(ξ1) =
2k1
ξ1Z

, e−Z ≤ ξ2k1

1 ≤ 1.

Note that the sequence of random variables

fn(ξ1) = 1(ξ1 > δ/
√
m− 1)φξ1|Z=− log(t/n)(ξ1)

converges to zero and is bounded above by the integrable
function φξ1|Z=− log(t/n)(ξ1), hence an application of the
dominated convergence theorem shows

∫
fn(ξ1)dξ1 con-

verges to 0. Another application of DCT shows that the
second term in (34) converges to 0.

The second term of (34) can be bounded above by∫ ∞

0
tλ−1e−t

{∫
|e

√
tWn(ξI ,ξJ)

− e
√
tW ∗(ξI ,ξJ)|φξ|Z=− log(t/n)(ξI)φ(ξJ)dξ

}
dt

Since Wn
w→W ∗, by continuous mapping, the above con-

verges weakly to 0.

Finally, we can reach∫ ∞

n
D(t)dt=
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t=n
tλ−1

∫
e−t−

√
tW ∗(0,ξJ)φξ|Z=− log(t/n)(ξI)φ(ξJ)dξIdt

≤
∫ ∞

t=n
tλ−1e−t+

√
t∥W ∗∥∞dt

which converges to 0, concluding the proof.

B.7 Proof of asymptotic equivalence

An important ingredient of making this connection is
to show a weak convergence of the sequence of stochas-
tic processes Wn. The expected value and the covariance
of Zi(ξ) are EZi(ξ) = 0, cov[Zi(ξ),Zi(ζ)] := cz(ξ, ζ), re-
spectively. For Wn(ξ), the same quantities are given by

EWn(ξ) =
ξ−k

√
n

n∑
i=1

EZi(ξ) = 0,

cov[Wn(ξ),Wn(ζ)] =
cz(ξ, ζ)

ξkζk
:= cw(ξ, ζ).

Let W ∗ denote a mean zero Gaussian process on Ω =
[0,1]d with covariance kernel cw. Under appropriate con-
ditions on the stochastic processes {Z̃i(ξ) = ξ−kZi(ξ) :
ξ ∈ [0,1]d}, we show in Proposition B.3 that Wn weakly
converges to W ∗. The proof requires sub-Gaussianity
[38] of Z̃i(ξ). 12

Assumption A1: Suppose that Z̃i(ξ) are iid sub-Gaussian.
Furthermore suppose that there exists a positive function
L :R→R+ with EetL(X1) ≤ et

2/(2cL) for every t > 0 and
for some constant cL > 0, such that

|Z̃i(ξ)− Z̃i(ξ
′)| ≤ L(Xi)∥ξ − ξ′∥.

PROPOSITION B.3. Under Assumption A1, Wn
w→

W ∗.

Sections 10.4 and 10.5 of [52] provide heuristic argu-
ments to study weak convergence of Wn; the assumptions
require ξ−kZi(ξ) to be at least d/2 + 1 times differen-
tiable. On the other hand, our Assumption A1 requires
Z̃i(ξ) to be Lipschitz and sub-Gaussian.

The next ingredient in establishing the connection is to
establish a weak limit of Dn(t) =

∫
Dn(t, ξ)dξ. In Propo-

sition B.4, we show that for each t > 0, Dn(t) converges
weakly to the following fixed stochastic process

D(t) =

∫
tλ−1e−t−

√
tW ∗(0,ξJ)φ(ξJ)dξJ .

In addition, we also show in Proposition B.4 that
∫ n
0 Dn(t)dt

converges in distribution to
∫∞
0 D(t)dt.

12A real valued random variable X is called sub-Gaussian if there
exists a constant cX > 0 such that P(|X|> t)≤ 2e−t2/(2cX), t≥
0.

PROPOSITION B.4. If Wn
w→ W ∗, ∥W ∗∥∞ = Op(1)

and ξI 7→ W ∗(ξI , ξJ) is almost surely continuous, then
for each t > 0, Dn(t)

w→D(t) and
∫ n
0 Dn(t)dt

w→
∫∞
0 D(t)dt.

Using Theorem 3.4 and Proposition B.4,

Z(n)

d∏
j=1

(hj + 1)∼ n−λ(logn)m−1×

(35)

λm

Γ(m)

∫ ∞

0
tλ−1e−t+

√
tW ∗(0,ξJ)φ(ξJ)φ(ξJ)dt

Z(n)∼ n−λ(logn)m−1

2m(m− 1)!
∏m

j=1 kj

∫ ∞

0
tλ−1e−t+

√
tW ∗(0,ξJ)ξhJ

J dt,

(36)

where hJ = (hm+1, . . . , hd). Using the properties of the
Dirac delta function, we can write

D(t) =

∫
tλ−1e−t−

√
tW ∗(ξ)δ0(ξI)φ(ξJ)dξ.

where δ0(ξI) is a Dirac delta measure at 0, which also
appears in Theorem 11 in [50] in the expansion of Z(n).
Observing that that kj = 0 for j =m+ 1, . . . d, (35) ex-
actly matches with the equation (5.32) of Theorem 10 or
the expression under Theorem 11 in [50].

APPENDIX C: REMAINING PROOFS FROM
SECTION 4

C.1 Proof of Lemma 4.3

Part (i) follows from a change of variable v = βu2k. For
part (ii), we have, using the definition of B(k,h,β),

G(λ,β) =
B(k,2k+ h,β)

B(k,h,β)

=
(2k)−1β−(λ+1)Γ(λ+ 1)γ(λ+ 1, β)

(2k)−1β−(λ)Γ(λ)γ(λ,β)

=
λ

β

γ(λ+ 1, β)

γ(λ,β)
.

For the first part of part (iii), we have logB(k,h,β) =
−λ logβ + logγ(λ,β) + terms free of β. The conclusion
follows since limβ→∞ γ(λ,β) = 1.

For the second part of part (iii), use Remark 4.2 to write

G(λ,β) =
λ

β

(
1− βλe−β

Γ(λ+ 1)γ(λ,β)

)
.

From the above, the conclusion follows since
limβ→∞ βλe−β = 0 and limβ→∞ γ(λ,β) = 1.

For the first part of (iv) use (i) and Remark 4.2 to com-
pute limβ→0 logB(k,h,β).

For the second part (iv), use (ii) and Remark 4.2 to com-
pute limβ→0G(λ,β).
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C.2 Derivation of Eq. (24)

It follows from variational calculus that the optimal
marginals of the mean-field approximation to γK(ξ) are
of the form

ρj(ξj)∝ exp{E−j [logγK(ξ)]}, 1≤ j ≤ d,

where E−j denotes the expectation with respect to

ρ−j(ξ−j) :=
∏
k ̸=j

ρk(ξk).

A straightforward computation shows that for d = 2 the
optimal marginals are of the form, ρ1(ξ1)∝ exp{−nµ1ξ

2k1

1 }
and ρ2(ξ2)∝ exp{−nµ2ξ

2k2

2 }, where µ1 =
∫ 1
0 ξ2k2

2 ρ2(ξ2)dξ2

and µ2 =
∫ 1
0 ξ2k1

1 ρ1(ξ1)dξ1. The identities
∫ 1
0 ξ2k2

2 ρ2(ξ2)dξ2 =

G(λ2, nµ2) and
∫ 1
0 ξ2k1

2 ρ2(ξ1)dξ1 = G(λ1, nµ1) follow
from a simple change of variables. Finally the CAVI al-
gorithm updates at time step t are given by

ρ
(t)
1 (ξ1) =

exp{−nµ
(t−1)
1 ξ2k1

1 }∫ 1
0 exp{−nµ1ξ

2k1

1 }dξ1
= fk1,h1,nµ

(t−1)
1

(ξ1),

ρ
(t)
2 (ξ2) =

exp{−nµ
(t)
2 ξ2k2

2 }∫ 1
0 exp{−nµ2ξ

2k2

2 }dξ2
= fk2,h2,nµ

(t)
2
(ξ2).
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