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A B S T R A C T

We introduce a novel approach for decomposing and learning every scale of a given multiscale objective function in ℝý , where ý ⩾ 1. This approach 
leverages a recently demonstrated implicit bias of the optimization method of gradient descent [44], which enables the automatic generation of data 
that nearly follow Gibbs distribution with an effective potential at any desired scale. One application of this automated effective potential modeling 
is to construct reduced-order models. For instance, a deterministic surrogate Hamiltonian model can be developed to substantially soften the stiffness 
that bottlenecks the simulation, while maintaining the accuracy of phase portraits at the scale of interest. Similarly, a stochastic surrogate model can 
be constructed at a desired scale, such that both its equilibrium and out-of-equilibrium behaviors (characterized by auto-correlation function and 
mean path) align with those of a damped mechanical system with the original multiscale function being its potential. The robustness and efficiency 
of our proposed approach in multi-dimensional scenarios have been demonstrated through a series of numerical experiments. A by-product of our 
development is a method for anisotropic noise estimation and calibration. More precisely, Langevin model of stochastic mechanical systems may 
not have isotropic noise in practice, and we provide a systematic algorithm to quantify its covariance matrix without directly measuring the noise. 
In this case, the system may not admit closed form expression of its invariant distribution either, but with this tool, we can design friction matrix 
appropriately to calibrate the system so that its invariant distribution has a closed form expression of Gibbs.

1. Introduction

Physical and data sciences encompass numerous problems that involve multiple spatial and temporal scales. For example, these 
problems may involve the evolution of a meta-particle within a multiscale energy landscape.

Consequently, a desirable approach to address these challenges is to reduce the complexity of the model in order to improve 
interpretability, computational efficiency, and reliability. This can be achieved by quantifying the model’s features at different scales 
based on practical interests and separating macroscopic scales from microscopic scales. For instance, it is always desirable to have 
a surrogate model that captures only the macroscopic behaviors of the full, complex model. This paper proposes an automated and 
systematic method for decomposing and learning effective models at an arbitrary scale specified by the user, for a given multiscale 
objective or energy function in multiple dimensions.

Powerful methods for scale decomposition have been developed over several decades. Many of these approaches aim to decompose 
the scales of a time-series signal or eliminate high-frequency component and/or noise from the time-series [15,17–19,21,25,26,29,
31,48,54,66,67]. These are in some sense data-based, model-free approaches and thus are different from ours in scope.

There is also a vast body of literature dedicated to addressing multiscale problems and obtaining effective solutions or surrogate 
systems at specific scales of interest. Several reviews and books on multiscale modeling and simulations cover this area extensively 
[8,11,28,61,73]. For example, by employing appropriate numerical homogenization and discretization techniques, it is possible to 
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directly obtain effective approximations of solutions at a chosen scale, even without explicitly obtaining the effective systems that 
produce these solutions. Various methods exist, including but not limited to the equation-free methods [41–43], the Heterogeneous 
Multiscale Methods [2,22,24,74], FLAVORs [69,70], multigrid methods [12,13,50], generalized finite element methods [7,9,27,35,
68], multiscale Galerkin methods [16,23,34,36,72], operator-adapted wavelets [55,56], asymptotic-preserving methods [37,38], etc. 
Meanwhile, modal decomposition techniques, such as the reduced basis methods with proper orthogonal decomposition [14,33,63]
and the dynamic-mode decomposition [47,64], provide effective scale decomposition of systems. These breakthroughs mainly focus 
on approximating the solution, as opposed to constructing approximations of the system that produces the solution, although we 
note there are also great work that construct effective surrogate models simultaneously with or after the solution approximation 
[7,23,33,34,47,63].

Instead of directly procuring effective solutions, numerous methods aiming at deriving surrogate models of multiscale problems 
have also been proposed. Here, the surrogate/effective models mainly refer to surrogate differential equations which are simpler and 
easier to simulate/analyze. They can, for example, be attained through averaging/homogenization [2,5,10,11,20,45,52,57,61,65]. 
The estimation of effective models can also be achieved via spectral information of the underlying systems [3,4,40]; or through 
filtering approaches and parameterized kernels [15,29,30,49,51,53,76], among others. Moreover, machine-learning approaches have 
become increasingly popular for constructing effective models from data. Inference learning can be conducted through statistical 
tools, such as maximum likelihood, methods of moments, and Bayesian inference [1,46,58], or through neural network and deep 
learning techniques [6,32,39,62,75].

However, many existing methods are based on analytical tools (e.g., asymptotic analysis such as averaging or homogenization) 
which assume an explicit scale separation. Machine learning-based methods may be less constrained by scale separation, but they 
typically require a good amount of training data a priori, making it challenging to simultaneously and flexibly learn different scales 
of interest.

This work proposes a novel approach that complements the existing literature, by providing a method that can decompose and 
learn any scale of a given multiscale objective function, in multi-dimensional Euclidean spaces. Moreover, in cases where there is 
only moderate or insignificant scale gaps, it can still construct some effective potential that leads to good approximations (see e.g., 
Sec. 4.3 for more precise statements).

The main idea of our method is leaned on an interesting fact that smaller scale components of a function can be traded for 
stochasticity, if one introduces an artificial step of optimizing it using gradient descent, and the scale at which this trading starts 
can be controlled by the learning rate of gradient descent. This idea is inspired by a recent advance in machine learning, where 
the problem of whether/how local minima of the training objective function can be escaped is of vital importance. Kong and Tao 
[44] demonstrated how gradient descent with large learning rate can quantitatively lead to such escapes, providing an alternative 
to the common escape mechanics based on noises from stochastic gradients. More precisely, the authors proved that when an 
objective function exhibits multiscale behaviors and is optimized by gradient descent with a large learning rate (a.k.a. time-step), 
the deterministic optimization dynamics acts like Langevin dynamics with potential that only describes the macroscopic part of the 
objective function, while its microscopic part effectively gets turned into noise via chaotic dynamics. As a result, gradient descent 
does not converge to a local minimizer of the objective, but instead to a statistical distribution characterized by the macroscopic 
component of the objective function.

Building upon this insight that a large time-step converts under-resolved scales into noise, we design a self-learning approach 
to learn components of a function at different scales. Firstly, we artificially introduce a damped deterministic mechanical system, 
specifically noiseless Langevin dynamics, with the given function as its potential. Then, we choose an appropriate time step size, 
corresponding to the cutoff scale above which we’d like to approximate this function, and simulate the damped mechanical system 
using this (large) step size. Next, we simulate the system numerically for a long time, and collect position-momentum values at 
different time points into a set. Points in this set will approximate a statistical distribution governed by a coarse-grained effective 
energy function, which however may not be Gibbs distribution yet, due to the an-isotropicity of effective noise. We will thus provide 
a way to estimate the covariance of the effective noise, which is nontrivial because we don’t have access to the effective noise as it 
is only part of the underlying theory. Consequently, we will calibrate the damped mechanical system by choosing its friction matrix 
according to the noise covariance, and simulate the system for a long time again. This time, the collected values will approximately 
follow Gibbs distribution. Finally, we fit from the data the corresponding potential, which will give the effective approximation of 
the given function above (including) the designated scale. The resulting function can subsequently be used to construct surrogate 
models based on practical interests.

1.1. Problem setup and overview

Consider a function ý (ÿ), which could either be the objective function of an optimization problem, as often encountered in 
machine learning, or in a conservation law setup, the energy function used for various physical and chemical simulations. Due to 
the complex nature of these application problems, ý (ÿ) usually involves multiple scales. By decomposing these scales of ý (ÿ), we 
can create a hierarchy of problems that are usually simpler to simulate, analyze, and interpret. However, it often occurs in practice
that we are only given the expression of ý without knowing the details of an explicit decomposition. Mathematically, we can thus 
assume that ý (ÿ) ∶ℝý ³ℝ with ý ⩾ 1 implicitly admits a multi-scale decomposition

ý (ÿ) = ý0(ÿ) +

ÿ∑
ÿ=1

ýÿ, ÿÿ (ÿ), (1.1)
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Fig. 1. The illustration of a one-dimensional potential function ý = ý0(ÿ) + ý1(ÿ) + ý2(ÿ) with three scales: ý0 = ÿ2

2
∼ ÿ(1), ý1 = 0.1 × sin(

ÿ

0.1
) ∼ ÿ(0.1) and ý2 =

0.01 × sin(
ÿ

0.01
) ∼ÿ(0.01).

where ý0(⋅) denotes the macroscopic component, and other meso- and micro-scale components {ýÿ,ÿÿ (⋅)}
ÿ
ÿ=1

satisfy ýÿ,ÿÿ =ÿ(ÿÿ ) with 
scaling parameters 1 ≫ÿ1 ≫⋯ ≫ÿÿ > 0. An illustration example of ý (ÿ) with three distinct scales is given in Fig. 1.

The main goals and contributions of this work are:

• Our aim is to learn each component of ý at different scales, specifically ý0 and the series {ýÿ,ÿÿ }ÿ . We make the assumption that 
we do not possess explicit access to each individual scale, meaning the values of ÿÿ ’ are unknown a priori, let alone any ýÿ,ÿÿ .

• Once an effective potential function ýý(ÿ) that approximates ý up to scale ÿý is learnt (e.g., if ÿý ≫ ÿý+1, then ýý ∶= ý0 +∑ý
ÿ=1 ýÿ,ÿÿ , but note ýÿ,ÿÿ ’s are not a priori known), various surrogate models can be constructed, and two will be focused on. 

In a deterministic case, a surrogate model of Hamiltonian dynamics can produce approximate phase space dynamics with less 
stiffness and thus allowing much larger time steps for numerical integration. In a stochastic case, a surrogate model can nearly 
reproduce the equilibrium distribution, auto-correlation function, and mean path of data produced by kinetic Langevin dynamics 
using the original ý (ÿ) at the desired scale.

• In order to enable the above contributions, we have also developed an approach to estimate and calibrate kinetic Langevin 
systems under anisotropic stochastic forcings, which pose a challenge as the system’s invariant distribution no longer admits 
an analytical expression, unlike in the isotropic case where the invariant distribution is Gibbs. This is based on estimating the 
covariance of noise, however without directly measuring it. Instead, we use equilibrium properties only, and by intelligently 
adjusting the system’s mass matrix, a robust and accuracy estimation can be obtained. We can then adjust the system’s friction 
coefficient so that the invariant distribution is put back to the analytically available Gibbs.

The organization of this paper is as follows: In Section 2, we review the theoretical foundations of proposed approach. In Section 3, 
we present the algorithm and explore the analytical attributes of the proposed method. The 1D case is easier as noise will always 
be isotropic, and it is first discussed. Then we detail the workings of the algorithm in the multivariate scenario, after describing our 
additional tool for kinetic Langevin estimation and calibration. Then, Section 4 delivers numerical simulations of various examples 
in both 1D and higher dimension. These results substantiate the robustness and efficiency of our proposed approach. Section 5
summarizes this study and suggests possible future directions.

2. Motivation and theoretical background

In this section, we will briefly review some theoretical results in [44] that motivate, and will be used by this work. We will also 
review some background knowledge about kinetic Langevin which will be used later.

2.1. Large step size effectively turns under-resolved scale into noise

Informal version For quantitative understanding of deep learning, Kong and Tao [44] quantified how the optimization algorithm 
of gradient descent escapes local minimizers of a function. They considered the optimization of a multiscale objective function by 
gradient descent with large learning rate, i.e. iterations given by

ýý+1 = ýý − ÿ∇ÿ (ýý), (2.1)

where ÿ ∶ℝý ³ℝ was assumed to be admitting a macro-micro decomposition given by
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ÿ (ý) ∶= ÿ0(ý) + ÿ1,ÿ(ý)

where ÿ0 is the macroscopic, (1) component of the potential, and ÿ1,ÿ(ý) = ÿÿ1(ý∕ÿ) is the microscopic component as it squeezes 
an (1) function ÿ1 in both the x and y directions. ÿ was referred to as the learning rate. Large learning rate is in the sense that 
ÿ ≫ 1∕ÿ, where ÿ is the Lipschitz constant of ∇ÿ , because classical analysis of gradient descent assumed ÿ < 1∕ÿ, in which case the 
iterates provably converge to a (nearby) local minimizer of ÿ .

They showed that in this case, the iteration ýý+1 = ýý − ÿ∇ÿ0(ýý) − ÿ∇ÿ1(ýý∕ÿ), where albeit being deterministic, exhibits 
behaviors similar to those of a stochastic iteration

ýý+1 = ýý − ÿ∇ÿ (ýý) − ÿÿý, (2.2)

where ÿý ’s are random variables i.i.d. to ÿ which will be defined. The condition ÿ ≫ 1∕ÿ actually leads to ÿ ≫ ÿ, which means step 
size ÿ is too large to resolve the details of ÿ1,ÿ . As a consequence, the effective contribution from the microscopic, under-resolved 
gradients ∇ÿ1(ýý∕ÿ) over many iterations can be approximated by contributions from noise ÿý. Therefore, gradient descent (2.1)
with large learning rate ÿ is not a time discretization of gradient flow ODE

ý̇ = −∇ÿ (ý) = −∇ÿ0(ý) − ∇ÿ1(ý∕ÿ)

but can be intuitively understood as a stepsize ÿ time discretization of SDE

ýý = −∇ÿ0(ý)ýý+
√
ÿΣýÿý (2.3)

for some constant covariance matrix Σ given by ΣΣÿ = ý[ÿÿÿ ].

Selected rigorous details They considered ÿ ≪ 1, ÿ0, ÿ1,ÿ ∈ 2(ℝý ) and microscopic potentials ÿ1,ÿ satisfying the following two con-
ditions:

• (1) gradient condition: there exists a bounded and nonconstant random variable (r.v.) ÿ ∈ℝý with ý(ÿ) = 0, such that: ∀ÿ > 0

and ∀ý ∈ℝý there exists a positive measured set Γý,ÿ ⊂ ý(ý, ÿ(ÿ) with limÿ´0 ÿ(ÿ) = 0, such that a uniformly distributed r.v. on 

Γý,ÿ , denoted by ÿΓý,ÿ , satisfies ∇ÿ1,ÿ(ý + ÿΓý,ÿ ) 
ý
←←←←←←←←³ −ÿ as ÿ³ 0, uniformly with respect to ý.

• (1∕ÿ) Hessian condition: ÿ∇2ÿ1,ÿ is uniformly bounded as ÿ ³ 0. Also ∃ÿ > 0, such that for any bounded and nonempty 
rectangle Γ ⊂ℝý , the expectation ý 

[
ln‖ÿ∇2ÿ1,ÿ(ÿΓ)‖2

]
³ÿ as ÿ³ 0, where ÿΓ is a uniform r.v. on Γ.

While these conditions are nontrivial, Kong and Tao noted that they include but are strictly weaker than periodicity (e.g., ÿ1,ÿ(ý) =

ÿ sin(ý∕ÿ), for which Σ = 1∕
√
2) or quasiperiodicity.

They then considered the deterministic dynamical system induced by iteration map

ÿ ∶ ý↦ ý− ÿ∇ÿ (ý) = ý− ÿ∇0ÿ (ý) − ÿ∇ÿ1,ÿ(ý), (2.4)

and proved the following results (selected):

1. Fix ÿ and let ÿ³ 0. If ÿ has a family of nondegenerate invariant distributions for {ÿÿ}
∞
ÿ=1

³ 0 which converges in the weak sense, 
then the weak limit is an invariant distribution of ÿ̂, where ÿ̂ defines a stochastic map

ÿ̂ ∶ ý↦ ý− ÿ∇ÿ0(ý) + ÿÿ. (2.5)

2. In a special case where the macroscopic potential ÿ0 is strongly convex and ÿ-smooth, there exists some constant ÿ > 0 inde-
pendent of ÿ, such that the mapping ÿ̂ has a unique invariant distribution for any fixed ÿ ⩽ ÿ and the iteration of ÿ̂ converges 
exponentially fast to this distribution. Moreover, if the covariance matrix of ÿ is isotropic, i.e., ÿ2Iý , then the rescaled Gibbs 

distribution 1

ý
exp

(
−

2ÿ0(ý)

ÿÿ2

)
dý is an ÿ(ÿ2) approximation of that of ÿ̂.

However, it is worth noting that [44] only considered two scales in the objective function ÿ (ý), whereas this work heuristically 
extends the application to arbitrary ÿ scales. In addition, note ÿý in (2.2) is actually bounded, unlike ‘ýÿý’ in (2.3), but (2.3) is 
still a reasonable interpretation in a central limit theorem sense (see [44] for details). Additionally, the stochastic behavior of the 
deterministic mapping with a large LR was only proved for gradient descent dynamics, and if one considers a damped deterministic 
mechanical system instead, with ∇ÿ being its forcing, and discretize its time using a stepsize that under-resolves part of ÿ , the 
quantitative stochasticity of its dynamics was only a conjecture. While this work relies on this conjecture, our empirical results 
appear to be consistent with it, namely deterministic simulations of damped mechanical systems with large step size exhibit behaviors 
resemblant to (stochastic) kinetic Langevin dynamics.
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2.2. Review of kinetic Langevin dynamics

Kinetic Langevin equation models how particles evolve subject to a combination of conservative forcing, damping, and thermal 
noise. Let (ÿ, ý) denote the position and momentum of particles, and ý denote the corresponding mass matrix, then it gives the 
evolution of (ÿ, ý) by

{
ýÿ =ý−1ýýý,

ýý = (−∇ý (ÿ) − Γý−1ý)ýý+Σýÿ ý,
(2.6)

where ∇ý denotes the potential force, ÿ ý denotes the standard multivariate Wiener process, ý is a positive definite mass matrix, 
Γ is the friction coefficient matrix for the dissipative force, and Σ denotes the diffusion coefficient matrix for the thermal random 
forces.

It is known (e.g., [59]) that if the diffusion coefficient matrix Σ and the friction coefficient matrix Γ satisfy the following 
fluctuation–dissipation relation

ΣΣÿ = 2Γ, (2.7)

then the equilibrium distribution is a Gibbs distribution

ýÿ(ÿ, ý) =
1

ý
exp−(

(
ý (ÿ) + ýÿý−1ý∕2)

)
ýÿýý. (2.8)

The most commonly discussed case is when the thermal noises are isotropic, that is ΣΣÿ = ÿ2Iý for some scalar ÿ. In this case, the 

equilibrium distribution is always Gibbs as long as Γ = ÿ2

2
Iý = ÿIý .

However, if the noises are anistropic, the invariant distribution of (2.6) still exists under mild conditions, but it may not admit an 
analytical expression.

3. Main results

In this section, we propose a self-learning algorithm that automatically identifies macroscopic scales of a function ý (eq. (1.1)) 
up to a desired scale ÿ. Here, ÿ corresponds to a cutoff level ý with 1 ⩽ ý ⩽ ÿ satisfying ÿý ≳ ÿ ≫ ÿý+1, meaning we seek ýý =

ý0 +
ý∑
ÿ=1

ýÿ, ÿÿ . Of course, if the goal is to separate all the scales instead, we can just repeat this procedure for different ÿ values.

3.1. The proposed self-learning methodology for multi-dimensions

Our first step of identifying components of ý above scale ÿ, solely based on ý ,1 is to extend the gradient descent iterations 
analyzed in [44] (see Sec. 2.1 for a quick summary) by including momentum.

More precisely, we consider a large step size simulation of the following damped mechanical system
{

ÿ̇ =ý−1ý,

ý̇ = −∇ý (ÿ) − Γý−1ý,
(3.1)

where the step size is chosen to be at the order of ÿ, i.e. ÿ ∼ ÿ, so that it underresolves undesired smaller scales. Here ý and Γ
are mass and friction coefficient matrices that we can choose, but ý (ÿ) is given and we have to use it in its entirety as its scale 
decomposition is not yet known (this actually poses a significant challenge in high dimension in general, which will be described 
and addressed in Sec. 3.2).

The choice of numerical integrator for (3.1) for the purpose of turning unresolved small scales effectively into ‘noise’ needs not 
to be unique, but here we simply apply a dissipative generalization of Störmer–Verlet, where friction is handled by an exponential 
integrator. The evolution of discrete solution (ÿÿ, ýÿ) at time grid ÿ thus becomes

ÿ
ÿ+ 1

2

= ÿÿ +ý
−1 ÿ

2
ýÿ,

ýÿ+1 = ÿ
−Γý−1ÿ ýÿ − ÿ∇ý (ÿ

ÿ+ 1
2

),

ÿÿ+1 = ÿ
ÿ+ 1

2

+ý−1 ÿ

2
ýÿ+1,

(3.2)

and with given initial condition (ÿ0, ý0) from a suitable region. We conjecture that the gradient of under-resolved microscopic 
components of ý can effectively be approximated by noises as ÿý+1 ³ 0, similar to Sec. 2.1. This conjecture means that invariant 
distribution of the deterministic dynamics can be approximated by that of the stochastic system

1 More precisely, only 1st-order oracle, no additional data or information.
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{
ýÿ =ý−1ýýý,

ýý = (−∇ýý(ÿ) − Γý−1ý)ýý+Σýÿý,
(3.3)

with the effective potential ýý = ý0 +
∑ý
ÿ=1 ýÿ,ÿÿ , Γ = 1

2
ΣΣÿ , and the diffusion coefficient matrix given by

ΣΣÿ ∶ = ÿý

[
∇

(
ÿ∑

ÿ=ý+1

ýÿ,ÿÿ (ÿ)

)
⊗∇

(
ÿ∑

ÿ=ý+1

ýÿ,ÿÿ (ÿ)

)]
, (3.4)

where the expectation is with respect to an auxiliary random variable ÿ defined in the gradient conditions in Section 2, i.e. a uniformly 
distributed r.v. on any bounded rectangle in ℝý with size independent of ÿý+1, ⋯ , ÿÿ , i.e. (1). The sense of approximation is that 
the invariant distribution of (3.3) differs from that of (3.2) by at most (ÿ) (in weak* topology) as scale separation goes to infinity 
(i.e. ÿ∕ÿý+1 ³∞).

In addition, if the system is mixing, (unfortunately, the precise necessary and sufficient condition for so is still a major open 
problem, but it was conjectured to be the case for large learning rate gradient descent; see Section 2 for semi-quantitative discussions), 
then (3.2) will converge to its invariant/equilibrium distribution, denoted by ÿÿ . This in the sense that 1) an ensemble of trajectories 
with random initial condition following any smooth density will converge to the invariant distribution as ÿ ³∞, and 2) except for 
measure zero initial conditions, any single trajectory will have an ergodic limit with respect to the invariant distribution ÿÿ , meaning 
for any smooth test function ÿ, we have

lim
ý³∞

1

ý

ý∑
ÿ=1

ÿ(ÿÿ,ýÿ) = ýÿ,ý∼ÿÿ
ÿ(ÿ,ý).

This means, given data {ÿÿ, ýÿ} generated from ý via (3.2), the empirical distribution of {ÿÿ, ýÿ}ÿ=1,⋯,ý converges to ÿÿ , which is 
an (ÿ) approximation of ÿ, whose density is ý−1 exp(−ýý(ÿ) − ýÿý−1ý∕2) for (3.3).

Therefore, for a given Γ, Step Two of our approach is to run the deterministic system (3.2) for sufficiently long on time interval 
[0, ÿ ] until (ÿÿ, ýÿ) reach their statistical equilibrium, which can be tested from the normality test [71] of the distribution of {ýÿ}. 
Note our introduction of momentum is rather important, despite the fact that the whole dynamics is just artificially introduced, 
because the convergence of ý to simple Gaussian enables accurate detection of near convergence.

This Step Two generates a training data set solely out of ý , which will be used later for the learning of an effective macroscopic 
function, hence the name ‘self-learning’.

Remark 3.1. Due to the addition of momentum considered in this work, we could not establish conditions like those in [44] on 
the gradient and Hessian and prove convergence to near Gibbs under these conditions, because such a proof seems to require a 
completely different machinery. Even if we could replace the bounded, correlated, and anisotropic microscopic gradients in our 
dynamics (3.1) and (3.2) by unbounded, uncorrelated, and isotropic white noise process, which would turn the dynamics into kinetic 
Langevin, the convergence remains more challenging to prove compared to the overdamped Langevin. Meanwhile, our results seem 
very robust in all sorts of numerical experiments in Section 4.

Remark 3.2. Although in principle it is very flexible to choose the initial condition (ÿ0, ý0) because of the stochasticity induced 
by microsuitable large step size, it becomes subtle in practice as good initial conditions can greatly improve the exploration of the 
dynamics and speed-up the convergence of the algorithm. We will provide more details for specific examples in Section 4.

Remark 3.3. In Step Two, the normality test is suggested on the distribution of {ýÿ} to check if the system reach its statistical 
equilibrium. However, it is only a necessary condition but not always sufficient. This test is more trustworthy when the temperature 
parameter 1∕(ÿ̂) is comparable to or greater than the energy barriers of the objective function ý (ÿ). For systems with higher energy 
barriers, global exploration is usually lost. Lowering ÿ̂ too much introduces statistical noise that overwhelms the information about 
{ýý}. Otherwise, the simulation may lead to the system relaxing into one metastable state (with ý following a normal distribution), 
but ÿ never explores other metastable states. Therefore, we only consider the objective function ý0 with energy barriers of order 
ÿ(1).

Remark 3.4. We explain the strategy here when the energy barriers of ý0 are of ÿ(1) and the scale separation among {ÿÿ}
ÿ
ÿ=1

exists 
with range of scales knowing, but the value of each ÿÿ keeps unknown.

The idea is to firstly use an isotropic friction matrix Γ = ÿý and run the damped mechanical system (3.2) using ÿ from an array of 
time-stepping sizes, which are arranged in a decreasing order and are compatible with the range of scales of ý (ÿ). For each selected 
ÿ, we simulate long enough until numerically reach the equilibrium distribution of ÿÿ(ÿ, ý). If the distribution of ý becomes a general 
multi-dimensional normal distribution via a normality test, then it suggests we find a scale ÿý which is proportional to ÿ. Otherwise, 
if the distribution of ý is far away from a normal distribution, then this suggests the system is still under mixed scales and we will 
further decease ÿ and regenerate data. After we find the proper ÿ at a targeting scale, we next tune the friction matrix Γ to achieve 
the Gibbs distribution (3.6).

The successful results of a benchmark test with unknown scales can be found in Fig. 7. Also, notice that the simulations on 
different ÿ are parallelizable, so the total efficiency of distinguish scales will be ensured.
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3.2. Microscopic covariance estimation and the creation of fluctuation-dissipation balance

Recall that the friction coefficient Γ is a parameter we can choose, while Σ is something we cannot control because it characters 
the effective noise that originates from the microscopic gradient. If we can align Γ with Σ so that they commute, or more precisely 
so that ΣΣÿ = 2Γ∕ÿ̂ for some constant scalar ÿ̂ (known as the inverse temperature), then the data collected in the above Step 2 will 
approximately follow a density ∝ exp

(
−ÿ̂

(
ýý(ÿ) + ýÿý−1ý∕2

))
, which means we can recover ýý via regression of the ÿ marginal 

of the data.
However, we do not know Σ a priori because we only have ý , but not the microscopic potential ýý, upon which Σ is based. This 

thus poses a challenge.
When ý is one-dimensional, this challenge is relatively easy to solve, as aligning Γ with Σ is not an issue and we just need the 

inverse temperature, which can be estimated from ý’s variance. When ý is a multi-dimensional function in general, choosing Γ so 
that the system admits Gibbs as its invariant distribution is rather nontrivial, but we will provide a rigorous and systematic method. 
Both cases are now detailed:

One-dimensional strategy When ý = 1, the friction matrix Γ becomes just a scalar ÿ . Hence, the equilibrium distribution of (ÿ, ý) is 
always a Gibbs distribution. Consequently, ý and ÿ can be selected easily in (3.1). Throughout the paper, we select the following 
values for the 1D simulation 0 < ÿ ⩽ 0.5 andý = 1. Once the numerical solution {(ÿÿ, ýÿ)}ÿ is nearly in the statistical equilibrium, 
the distribution of ýÿ will be close to a Gaussian distribution. Following [60], we estimate the equivalent thermal noise effect ÿ̂
induced by the gradient of micro-scale components

ÿ̂ =
1

ÿÿÿ(ý)
. (3.5)

In 1D, ÿÿ(ÿ, ý) is approximated by

ÿÿ(ÿ, ý) ∼ exp

(
−ÿ̂

(
ýý(ÿ) +

ý2

2

))
ýÿ ýý. (3.6)

In 1D simulation with suitable value of ÿ , we can get ÿ̂ in the range around ÿ̂ ∈ (0.2, 1.25), which will lead to better learning results 
for ýý.

Multi-dimensional strategy As mentioned above, due to the anisotropy of microscopic scales in ý (ÿ) the dimension ý ⩾ 2, invariant 
distribution of kinetic Langevin (3.3) in general may not be interpretable. Therefore, we construct a special case by estimating Σ
(originated from the microscopic scales (3.4)) and choose Γ = 1

2
ΣΣÿ to ensure the fluctuation-dissipation relation (2.7). In this case, 

the temperature is always ÿ̂ = 1. We explain the details by a two-stage scheme.

Stage 1 and 2: apply various ý to estimate ΣΣÿ The key idea of our innovation is to exploit the effects of different choices of mass 
matrix ý in the following stochastic Langevin dynamics:

{
ýÿ =ý−1ýýý,

ýý =
(
−ÿý−1ý−∇ý (ÿ)

)
ýý+Σýÿ ý,

(3.7)

where 0 < ÿ is some scalar friction constant. Note ∇ý ýý +Σýÿ ý come together from the under-resolved small scales, and thus again 
Σ cannot be chosen or determined a priori. The positive-definite mass matrix ý however can be arbitrarily chosen, because (3.7)
is just some auxiliary dynamics designed for obtaining an algorithm. We will design ý values so that Σ can be estimated from 
‘solutions’ of (3.7), which are actually collected as the deterministic iterations with step size ÿ

ÿ
ÿ+ 1

2

= ÿÿ +ý
−1 ÿ

2
ýÿ,

ýÿ+1 = ÿ
−ÿý−1ÿ ýÿ − ÿ∇ý (ÿ

ÿ+ 1
2

),

ÿÿ+1 = ÿ
ÿ+ 1

2

+ý−1 ÿ

2
ýÿ+1.

Meanwhile, the relation between ΣΣÿ and the solutions is established in the following proposition.

Theorem 3.1. Consider a stochastic Langevin dynamics (3.7) with a positive scalar friction constant ÿ and a constant diffusion coefficient 
matrix Σ, then Σ satisfies

ÿÿ
(
(ΣΣÿ )ý−1

)
= ÿý

[
ýÿý−2ý

]
, (3.8)

where the expectation is taken with respect to the invariant distribution of (ÿ, ý).

Proof. We recall the definition of Hamiltonian ÿ(ÿ, ý) = 1

2
ýÿý−1ý+ ý (ÿ) and evaluate it along the solutions of (3.7). Itô formula 

shows that the Hamiltonian satisfies the following SDE
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ýÿ = (ý−1ý)ÿ
[
−ÿý−1ý−∇ý (ÿ)

]
ýý+∇ý (ÿ)ÿý−1ýýý+ ÿÿ

(
(ΣΣÿ )ý−1

)
ýý+

(
ý−1ý

)ÿ √
2Σýÿ ý

= − ÿýÿý−2ýýý+ ÿÿ
(
(ΣΣÿ )ý−1

)
ýý+

√
2ýÿý−1Σýÿ ý.

Integrating it from time 0 to ý, we get

ÿ(ý) =ÿ(0) +

ý

∫
0

−ÿýÿ (ÿ)ý−2ý(ÿ)ýÿ +

ý

∫
0

ÿÿ
(
(ΣΣÿ )ý−1

)
ýÿ +

√
2

ý

∫
0

ýÿ (ÿ)ý−1Σýÿ ÿ .

We take expectation of ÿ with respect to the invariant distribution and notice that the last Itô integral term is a martingale, so

ý(ÿ(ý)) =∶ý(ý) =ý(0) +

ý

∫
0

−ÿý
[
ýÿ (ÿ)ý−2ý(ÿ)

]
ýÿ +

ý

∫
0

ÿÿ
(
(ΣΣÿ )ý−1

)
ýÿ.

Hence we get the differential equation of ý(ÿ(ý)), which is

ý̇(ý) = − ÿý
[
ýÿ (ý)ý−2ý(ý)

]
+ ÿÿ

(
(ΣΣÿ )ý−1

)
.

When the system reaches its statistical equilibrium, we have ý̇(ý) = 0, so

0 = ý̇(ý) = − ÿý
[
ýÿ (ý)ý−2ý(ý)

]
+ ÿÿ

(
(ΣΣÿ )ý−1

)
.

Consequently, we can set up a relation between ý and Σ at the statistical equilibrium of system, that is

ÿÿ
(
(ΣΣÿ )ý−1

)
= ÿý

[
ýÿý−2ý

]
,

which proved the proposition. □

In order to estimate ý ∶=
(
ΣΣÿ

)
=
(
ÿÿÿ

)
ý×ý

, we then can design the entries of inverse of mass matrix ý ∶=ý−1 =
(
ÿÿÿ

)
accord-

ingly and apply the following steps:

• Step 1: choose a set of ý different diagonal matrices ý(ý) = ýÿÿý(ÿ
(ý)
ÿÿ
) and run the Langevin dynamics (3.7) to reach its statistical 

equilibrium. Thus, we get a system of ý linear equations to solve all diagonal entries ÿÿÿ:

ý∑
ÿ=1

ÿ
(ý)
ÿÿ
ÿÿÿ = ÿý

[
ý(ý)

ÿ
ý−2ý(ý)

]
, ý = 1,… , ý.

• Step 2: fix a pair of off-diagonal entries with ý ≠ ÿ, set this pair ÿÿý = ÿýÿ = 1∕2, set all diagonal entries ÿÿÿ = 1, and set the rest 
of off-diagonal entries ÿÿÿ = 0, then run the Langevin dynamics (3.7) until reaching the equilibrium. We thus have

(
ÿýÿ +

ý∑
ÿ=1

ÿÿÿ

)
= ÿý

[
ýÿý−2ý

]
,

which can solve ÿýÿ. Hence, after repeating this procedure for 
ý(ý−1)

2
times, we can get all values of the off-diagonal entries of 

ý = (ΣΣÿ ).

Combining step 1 with step 2, overall we need to solve ý(ý+1)
2

linear systems. However, each one of them is independent of the others 
which means all the simulations can be run in parallel.

Remark 3.5. To demonstrate the scheme in details, we consider a two-dimensional case ý = 2.

Stage 1: apply various ý . In step 1, we choose the two inverse of mass matrices to be

ý(1) =ý−1,(1) =

(
1 0

0 2

)
and ý(2) =ý−1,(2) =

(
2 0

0 1

)
.

In step 2, we choose the inverse of mass matrices to be

ý(3) =ý−1,(3) =

(
1 1∕2

1∕2 1

)
.

Stage 2: estimate Γ. Once we get the estimation of Σ from stage 1, we set the mass matrix to be ý = ýý and set the friction coefficient 
matrix Γ to be

2Γ = ΣΣÿ =ý.
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Input: Target function ý (ÿ), a step size ÿ ∼ÿ(ÿý).
Output: Effective function ýý(ÿ) ∼ÿ(ÿý) and effective covariance matrix ΣΣÿ from unresolved scales.
1: Stage 1 and 2 : estimate ΣΣÿ and Γ:
Set Γ = ÿý with 0 < ÿ ⩽ 0.1, fix the step size ÿ, run (3.2) with ý (ÿ) for a total of ý(ý+1)

2
independent trajectories using different mass matrices. Solve entries of 

ΣΣÿ via (3.8). Set Γ = ΣΣÿ ∕2.
2: Estimate ÿÿ(ÿ) and ýý(ÿ):
Set ý = ý , fix the step size ÿ, run (3.2) with ý (ÿ) for one trajectory. Estimate the empirical distribution ÿÿ(ÿ) from the data {ÿÿ}. Learn ýý(ÿ) via (3.6).

Algorithm 1. Learn effective function ý =ýý +(ÿý).

3.3. Estimate the effective potential

We apply the Verlet scheme (3.2) to the damped mechanical system (3.1) (not kinetic Langevin), with appropriate Γ, for suffi-
ciently long, and record the trajectory as {ÿÿ, ýÿ}, i.e. our data. We propose to learn the effective potential ýý from the invariant 
distribution (3.6), which is

log
(
ÿÿ(ÿ)

)
= −logý + ÿ̂ýý(ÿ), (3.9)

where ÿÿ(ÿ) is the marginal of invariant distribution, approximated empirically by {ÿÿ}. For 1D case, ÿ̂ =
1

ÿÿÿ(ý)
, while for multi-

dimensional case ÿ̂ = 1 as Γ is set to satisfy Γ = 1

2
ΣΣÿ .

Learning ýý(ÿ) from data via (3.9) is a function approximation / interpolation problem. There are of course many ways to 
interpolate the data, but since function approximation is not the main point of this paper, we will just pick one approach. Specifically, 
we choose a set of suitable basis functions, for instance the piecewise spline basis, {ÿÿ(ÿ)}

ÿ
ÿ
to approximate ýý(ÿ) by

ýý(ÿ) ≈

ÿ∑
ÿ=1

ÿÿÿÿ(ÿ),

where we can solve a regression problem to learn the coefficients {ÿÿ}
ÿ
ÿ=1
.

Remark 3.6. To apply the method to high-dimensional scenarios, there are at least two aspects that should be considered. One is to 
estimate a probability distribution from data, and the other is the computational cost of covariance matrix estimation. The dimension 
dependence for covariance matrix estimation should be polynomial, and this part is thus not a curse of dimensionality because it 
is not an exponential dependence. The density estimation, on the other hand, is an important, well-known statistical problem. 
Whether there is a curse of dimensionality will depend on the distribution and the estimation method. We feel these questions, albeit 
important, are beyond the scope of this work, and in this paper we just use some naive method (polynomial fitting), which does face 
a curse of dimensionality.

3.4. Summary of the algorithm

See Algorithm 1.

4. Surrogate models and numerical experiments

We now numerically test the efficacy of our approach in two senses. One is about the accuracy of the learned effective function 
ýý(ÿ). The other is about the approximation abilities of derived surrogate models; i.e., if the learned ýý replaces the full ý when 
used in a dynamical setup, how would the resulting dynamics differ. For this latter point, we will illustrate two dynamical setups, 
one being Hamiltonian dynamics and the other being kinetic Langevin, in both cases ý or ýý will be the potential. The versions with 
ýý are the surrogate models, whose benefits are that they can be simulated using larger setups, easier to analyze, and sometimes 
more intuitive to interpret as well.

More precisely, the surrogate models are given by

Hamiltonian:

{
ÿ̇ =ý−1ý,

ý̇ = −∇ýý(ÿ),
(4.1)

and

Kinetic Langevin:

{
ÿ̇ =ý−1ý,

ý̇ = −∇ýý(ÿ) − Γý−1ý+
√
2Γýÿ ý.

(4.2)

For the comparison of the deterministic Hamiltonian system, we will mainly focus on the comparison of the phase portraits (ÿ, ý)
generated by ý (ÿ) and ýý(ÿ). For the case of kinetic Langevin, we will compare the equilibrium distribution, mean path (ensemble 
average of trajectories) and normalized auto-correlation functions (Normalized ACF) of ÿ. Note that this is not a tautology, as we will 
not only inspect the equilibrium aspect of the surrogate model, which should match that of the full model as long as the proposed 
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trading of small-scale for effective noise is correct, but we will also investigate out-of-equilibrium dynamical aspects by comparing 
the mean trajectories and normalized ACF.

(Empirical) mean trajectory is defined as

ÿ̄(ýÿ) =
1

ý

ý∑
ý=1

ÿ(ý)(ýÿ), (4.3)

for which we evolve ý independent trajectories from i.i.d. random initial condition, and ÿ(ý)(ýÿ) denotes the ý-th one of them. We 
also define the normalized ACF as

Normalized ACF(ÿ) =
1

C̃ov(ÿ)

(
ý̃[ÿ ÿ⋅+ÿ ] − ý̃[ÿ] ý̃[ÿ⋅+ÿ ]

)
, (4.4)

where C̃ov(ÿ) denotes the covariance of ÿ across time as well as the ensembles; and ý̃ denotes the time average with respect to the 
ensembles. Here, ý̃[ÿ] approximates ý̂[ÿ], which in the continuous case is defined as

ý̂[ÿ] ∶= lim
ÿ³∞

1

ý

ý∑
ý=1

»¼¼½
1

ÿ

ÿ

∫
0

ÿ
(ý)
ý ýý

¾¿¿À
and ý̂[ÿ⋅+ÿ ] ∶= lim

ÿ³∞

1

ý

ý∑
ý=1

»¼¼½
1

ÿ

ÿ

∫
0

ÿ
(ý)
ý+ÿ ýý

¾¿¿À
.

In the discrete case, an empirical approximation for uniform time-stepping size is defined as

ý̃[ÿ] ∶=
1

ý

ý∑
ý=1

1

ý

ý∑
ÿ=1

ÿ
(ý)
ýÿ

and ý̃[ÿ⋅+ÿ ] ∶=
1

ý

ý∑
ý=1

1

ý

ý∑
ÿ=1

ÿ
(ý)
ýÿ+ÿÿ

,

with ÿÿ being fixed and satisfying ÿ = ÿÿÿ .
Based on the definition of ý̃, both ý̃[ÿ ÿ⋅+ÿ ] and C̃ov are also computed via the empirical approximation across time and ensem-

bles:

ý̃[ÿ ÿ⋅+ÿ ] ∶=
1

ý

ý∑
ý=1

1

ý

ý∑
ÿ=1

ÿ
(ý)
ýÿ

ÿ
(ý)
ýÿ+ÿÿ

, and C̃ov(ÿ) ∶= ý̃

[(
ÿ − ý̃[ÿ]

)(
ÿ − ý̃[ÿ]

)]
.

In the following examples, we will consider two cases: 1) values of {ÿý} are explicitly known, and 2) values of {ÿý} are not explicitly 
known.

4.1. Parameters for numerical tests

Here, we list some numerical parameters which are commonly used in the following numerical tests. For most 1D examples, we 
fix the total number of time steps to be ýý = 5 × 109 and we set the scalar friction constant to be ÿ = 0.1. For 2D examples, we fix 
the total number of time steps to be ýý = 2 × 107, and use the Algorithm 1 to match the friction matrix and diffusion coefficient 
according to (2.7). In all examples of both dimensions, the time step size ÿ will be chosen according to the scale of interest ÿý. When 
considering the effectiveness of surrogate Hamiltonian (4.1), we only generate one trajectory to compare the results of phase portrait. 
On the other hand, when comparing the Langevin system (4.2), we will use standard normal distributed initial conditions for (ÿ, ý)
to generate ý = 4000 independent trajectories on time interval [0, ÿ ].

4.2. One-dimensional examples with values of scales known

1. Test 1: quadratic potential. We first consider a simple three-scale function, given by a quadratic (1) component modulated 
by two smaller periodic scales

ý (ÿ) =
ÿ2

2
+ ÿ1 sin(ÿ∕ÿ1) + ÿ2 sin(ÿ∕ÿ2) with (ÿ1, ÿ2) = (0.05, 0.001). (4.5)

We run the scheme (3.2) with various time step sizes ÿ and plot the learnt functions in Fig. 2. Notice that for ÿ = 0.5, the learned 

potential greatly resembles ý0 =
ÿ2

2
, and for ÿ = 0.065, the learned potential greatly resembles ý1 =

ÿ2

2
+0.05 sin(ÿ∕0.05). Clearly, 

numerical step size as ÿ acts as a scaling filter to select the resolution of observed data.
Based on learnt ý0, we run the surrogate Hamiltonian (4.1) and the surrogate Langevin system (4.2) using ý0(ÿ) with ÿ = 0.1, 
and compare the simulations results using ý (ÿ) with ℎ = 5ÿ − 4 for the Hamiltonian and Langevin dynamics, respectively. As 
mentioned above, we compare the phase portrait for the Hamiltonian system, the equilibrium distribution, mean trajectory (4.3)
and normalized ACF (4.4). The results are summarized in Fig. 3. For this quadratic example, we see that the surrogate models 
using ý0(ý) work well regarding capturing both statistics.

2. Test 2: double-well potential. We next consider a three-scale function with its macroscopic component being a non-convex 
double-well function, instead of the previously considered convex quadratic function, and assume that we know the two small 
scales explicitly
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Fig. 2. The plots of learnt functions from simulated data with various time step sizes ÿ and the reference function ýý(ÿ). The exact function of full scales is 
ý (ÿ) = ÿ2

2
+ ÿ1 sin(ÿ∕ÿ1) + ÿ2 sin(ÿ∕ÿ2). Parameters are (ÿ1, ÿ2) = (0.05, 0.001). (For interpretation of the colors in the figure(s), the reader is referred to the web 

version of this article.)

Fig. 3. Fig (a): Comparison on the surrogate Hamiltonian (4.1) via ý0(ÿ) with ÿ = 0.1 and via ý (ÿ) with ℎ = 5ÿ −4. Fig (b)-(d): Comparison on the surrogate Langevin 
(4.2) via ý0(ÿ) with ÿ = 0.1 and via ý (ÿ) with ℎ = 5ÿ −4. ý (ÿ) = ÿ2

2
+ÿ1 sin(ÿ∕ÿ1) +ÿ2 sin(ÿ∕ÿ2). Parameters are (ÿ1, ÿ2) = (0.05, 0.001) and ÿ = 50, initial distributions 

for (ÿ, ý) ∼ (−2, 1).

ý (ÿ) = (ÿ − 1)2 (ÿ + 1)2∕4 + ÿ1 sin(ÿ∕ÿ1) + ÿ2 sin(ÿ∕ÿ2) with (ÿ1, ÿ2) = (0.025,0.001). (4.6)

Similar to the quadratic example, we learnt ýý(ÿ) at each scale by choosing different time-stepping size ÿ. The results of learnt 
ýý with respect to various step sizes are plotted in Fig. 4. We do capture scales of ÿ0 and ÿ1 by employing suitable ÿ for (3.2).
We next compare the performances of surrogate models via ý0 verse ý (ÿ) for both Hamiltonian and Langevin. The results are 
summarized in Fig. 5. We still observe very good match from the plots.

4.3. 1D example with lots of scales but no clear separation between adjacent scales

Practical problems are oftentimes multiscale but without a sharp scale separation (two famous examples are fluid and molecular 
dynamics). Typically there is a wide range of scales, where adjacent two scales are not well separated but the largest and smallest 
scale are very well separated. To consider a simplified version where the focus is just to decompose a multiscale function, we 
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Fig. 4. The plots of learnt functions from simulated data with various time step sizes ÿ and the reference function ýý(ÿ). The exact function of full scales is 
ý (ÿ) = (ÿ2−1)2

4
+ ÿ1 sin(ÿ∕ÿ1) + ÿ2 sin(ÿ∕ÿ2). Parameters are (ÿ1, ÿ2) = (0.025, 0.001).

Fig. 5. Fig (a): Comparison on the surrogate Hamiltonian (4.1) via ý0(ÿ) with ÿ = 0.1 and via ý (ÿ) with ℎ = 5ÿ −4. Fig (b)-(d): Comparison on the surrogate Langevin 
(4.2) via ý0(ÿ) with ÿ = 0.1 and via ý (ÿ) with ℎ = 5ÿ −4. ý (ÿ) = (ÿ2 − 1)2∕4 + ÿ1 sin(ÿ∕ÿ1) + ÿ2 sin(ÿ∕ÿ2) with (ÿ1 , ÿ2) = (0.025, 0.001). ÿ = 50, initial distributions for 
ÿ ∼ (−2, 1) and ý ∼ (0, 1).

investigate again problem (1.1), however with 1 ≳ ÿ1 ≳⋯ ≳ ÿÿ and 1 ≫ÿÿ . Suppose ÿ is chosen at scale ý, i.e. ÿ ≈ ÿý, the effective 
function should not be exactly ý0(ÿ) +

∑ý
ÿ=1 ýÿ,ÿÿ , but with some additional correction as percolated from nearby smaller scales ÿý+1 , 

etc. However, there is no clear or unique theoretical justification on how this correction works. We would like to inspect what our 
approach would produce in this case, and how the corresponding surrogate model approximates the original full model.

For this purpose, we consider a toy test problem

ý (ÿ) =
(ÿ − ÿ∕2)2

4
+

ý∑
ÿ=1

cos(ÿ2 × ÿ)

ÿ2
. (4.7)
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Fig. 6. Zoomed-in plot of ý (ÿ) =
(ÿ−ÿ∕2)2

4
+
∑ý

ÿ=1
cos(ÿ2 ÿ)

ÿ2
with different values of ý .

Fig. 7. Learning potentials ýý(ÿ) at different scales. The exact potential is ý (ÿ) ∶=
(ÿ−ÿ∕2)2

4
+
∑20

ÿ=1
cos(ÿ2 × ÿ)∕ÿ2 .

A demonstration of the exact potential at different scales can be found in Fig. 6. Notice that different ÿ’s (besides the 1st term) only 
nominally correspond to different scales. While adjacent scales are close to each other, when ý is large, ý (⋅) clearly exhibits a wide 
range of well separated scales. In addition, one cannot directly read off {ÿý} and ýý(ÿ) from the expression of ý (ÿ), because different 
ÿ’s can contribute to the same scale (and other scales too) due to a lack of clear scale separation. Instead, it is reasonable to postulate 
the existence of some hidden functions that represent different scales.

To learn the mesocale {ýý(ÿ)} at various scales, we fix ÿ = 0.5, mass ý = 1 and choose the total number of time steps to be 
ýý = 5 × 109. We find several scales of potential functions via tuning the step sizes ÿ. The results are present in Fig. 7. We note from 
simulation that there is a macroscopic scale ÿ0 around ÿ0 ∼ ÿ = 0.65 as the learnt function is close to the referenced ý = 0. The 
two following scales corresponding to ý = 1 and ý = 2 are around ÿ1 ∼ ÿ = 0.2601 and ÿ2 ∼ ÿ = 0.1309. The numerical separation 
between ÿ1 and ÿ2 is not as clear as those at ÿ0 (i.e., ý = 0). In fact, ÿ1 and ÿ2 are just weakly separated due to the narrow value 
gap in ý (ÿ) between ý = 1 and ý = 2. Moreover, as demonstrated in Fig. 8, the accuracy of surrogate Hamiltonian and Langevin 
models constructed by our learning algorithm is better than those constructed by a simple truncation of objective function due to the 
mixed scales among the truncation.

4.4. 2D quadratic function with anisotropic small scale

We now consider multi-dimensional examples. Throughout these examples, we will assume zero knowledge about how ý decom-
poses in scales even though we wrote down its expression analytically.

The first one is a two-dimensional quadratic potential, ÿ = (ý, ÿ) with one known anisotropic small scale

ý (ý, ÿ) = ý0 + ý1

=
1

4
(2ý+ ÿ− 1)2 + (ý− ÿ− 1)2 + ÿ

(
sin(ý∕ÿ) + sin ((ý+ ÿ)∕ÿ)

)
, ÿ = 10−5.

(4.8)

We apply the two-stage Algorithm 1 with ÿ = 0.01 and ýý = 2 × 107 to learn the macroscopic potential ý0 = ý0(ý, ÿ). During stage 
1, the scalar friction ÿ is chosen to be ÿ = 0.15. During stage 2, we estimate the variance of small scale contributions and set Γ
accordingly. We then compare the learning function from using ÿý only with that from the two-stage algorithm. The results are 
summarized in Fig. 9. We emphasize the mismatch of green trajectory data is generated without normalizing the variance of small 
scale, whereas the data from two-stage simulation can capture the macroscopic ý0 very well.
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Fig. 8. Fig (a): Comparison on the surrogate Hamiltonian (4.1) via ý0(ÿ) with ÿ = 0.1309 and via ý (ÿ) with ℎ = 1ÿ − 3. Fig (b)-(d): Comparison on the surrogate 
Langevin (4.2) via ý0(ÿ) with ÿ = 0.1309 and via ý (ÿ) (4.7) for ý = 20 as well as the truncated version ý = 2 with ℎ = 1ÿ − 3. The initial distributions for 
ÿ ∼ (−1∕2, 1∕2) + 0.38 and ý ∼ (−1∕2, 1∕2) with  presenting uniform distribution.

Fig. 9. Learning results of macroscopic ý0 . The exact potential is given in (4.8) and the step size is ÿ = 0.01. Left: the green data represents trajectory generated via 
the scalar friction ÿý with ÿ = 0.15 only; and the red data represents trajectory generated via the two-stage Algorithm 1. Right: zoomed-in view of the two-stage 
learning potential results.

4.5. 2D Müller-Brown potential with one known anisotropic small scale

Müller-Brown potential is a common toy model used in molecular dynamics research, due to its high nonlinearity and the existence 
of multiple minima. We now consider the macrosopic potential to be a modification of Müller-Brown potential, and the microscopic 
scale to be some anisotropic toy function. More precisely, consider

ý (ý, ÿ) = ý0(ý, ÿ) + ý1(ý, ÿ),

ý0(ý, ÿ) = 0.1 ×

(
ýÿ(ý, ÿ) + ýÿ(ý, ÿ)

)
,

ý1(ý, ÿ) = ÿ

(
sin

(
ý∕ÿ

)
+ sin

(
(−ý+ ÿ)∕ÿ

))
, ÿ = 10−5,

(4.9)
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Fig. 10. Learning results of macroscopic ý0 at three wells. The exact potential is given in (4.9) and the simulation step size is ÿ = 0.05163. The three wells of 
ý0(ý, ÿ) = ý0 are learnt simultaneously.

where ýÿ(ý, ÿ) is a simple quadratic potential ýÿ(ý, ÿ) = 35.0136(ý − ý∗ý )
2 + 59.8399(ÿ − ÿ∗ý )

2, and ýÿ(ý, ÿ) denotes the Müller-Brown 
potential

ýÿ(ý, ÿ) = − 200exp
(
− (ý− 1)2 − 10ÿ2

)
− 100exp

(
− ý2 − 10(ÿ− 0.5)2

)

− 170exp
(
− 6.5(ý+ 0.5)2 + 11(ý+ 0.5)(ÿ− 1.5) − 6.5(ÿ− 1.5)2

)

+ 15exp
(
0.7(ý+ 1)2 + 0.6(ý+ 1)(ÿ− 1) + 0.7(ÿ− 1)2

)
.

Here, (ý∗ý , ÿ
∗
ý ) denotes the center of the middle well of ýÿ . Notice that ýÿ(ý, ÿ) is introduced so that the depths of all three wells of 

the modified Müller-Brown (MB) function are better leveled to each order. This is because, the original Müller-Brown without modi-
fication has three local minima with very different function values, and therefore at the thermal equilibrium (i.e. Gibbs distribution) 
some potential well is exponentially less likely visited than the others, which both reduces the learning accuracy of the corresponding 
mode and makes visualization difficult.

We apply the two-stage Algorithm with ÿ = 0.05163 and ýý = 1 × 108 to learn the macroscopic scale ý0 = ý0(ý, ÿ). In the stage 1, 
the scalar friction ÿ is chosen to be ÿ = 0.014. The results are summarized in Fig. 10. Note that we can learn all three energy wells at 
the same time with the existence of anisotropic small scale components.

5. Conclusion, discussion, and future possibilities

In this study, we introduced a novel algorithm for decomposing and learning every scale of a given multiscale objective function in 
multi-dimensions. Our method leverages the controllable algorithmic implicit bias inherent in the stochasticity of large learning rate 
gradient descent, thus facilitating the automatic generation of distinct data sets across varying scales. Upon successfully decomposing 
the multiscale objective function, many applications can be enabled. As a demonstration, we constructed a surrogate model aligned 
with the equilibrium distribution and dynamic mean path and auto-correlation of data produced by the original objective function 
at the scale of interest.

Additionally, we devised a two-stage algorithm to segregate variables of interest within an anisotropic stochastic forcing environ-
ment. By adjusting the system’s mass tensor, we estimated the covariance of the stochastic forcing, and an appropriate friction matrix 
could be chosen to bring the equilibrium distribution back towards a Gibbs distribution, which possesses an analytical expression.

Meanwhile, the proposed strategy has certain limitations. The first limitation is the statistical accuracy due to finite samples. 
Detailed choices for the function fitting also matter; for example, the effective potential can only be resolved to the scale dictated 
by the bin width, and which (parameterized) model to use for the regression makes a difference. Although these are all generic and 
standard problems, we would still like to point them out, because a consequence is, the current implementation requires a large 
amount of (self-generated) data.

The second limitation is that the performance of the proposed method depends on various hyperparameters. For instance, to 
learn the objective function ýý at scale ÿý, the step size (learning rate) ÿ needs to be around ÿý. When the scale separation is large, 
i.e., ÿý ≫ ÿý+1, the choice of ÿ is relatively flexible as demonstrated in examples of Subsection 4.2, 4.4 and 4.5. When the scale 
separation is narrow, the tuning of ÿ becomes more subtle as demonstrated in Subsection 4.3 and Fig. 7. The data size also needs 
to be sufficiently large to reduce statistical errors from simulation and estimation. The artificial mass tensor ý needs to be chosen 
to balance the numerical stability and the efficiency of sampling. The empirically tuned ý , as suggested in Remark 3.5, appears to 
work well in our experiments.

Moreover, the selection of hyperparameters and the global learning performance of the proposed method depend on the energy 
barriers of the macroscopic objective function. When there are no energy barriers or the energy barriers are of order ÿ(1) in ý0, 
we typically select a mass tensor ý with entries ýÿÿ ∈ [1∕2, 1], set ÿ̂ = 1, and choose a suitable step size ÿ to achieve good global 
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learning results for a wide range of initial conditions (ÿ0, ý0). However, when the energy barriers are large, it may be nontrivial to 
find hyperparameter values and a simulation step size ÿ for effectively learning the objective function globally.

Possible future directions include 1) to explore more statistical tools to have better estimation of ÿÿ and more robust regression 
of ýý(ÿ), and 2) to derive a priori error estimate of learning ýý in terms of various problem and hyper parameters settings.
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