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Abstract

Discriminative features extracted from the sparse coding model have been shown to perform
well for classification. Recent deep learning architectures have further improved reconstruction
in inverse problems by considering new dense priors learned from data. We propose a
novel dense and sparse coding model that integrates both representation capability and
discriminative features. The model studies the problem of recovering a dense vector x and
a sparse vector u given measurements of the form y = Ax + Bu. Our first analysis relies
on a geometric condition, specifically the minimal angle between the spanning subspaces of
matrices A and B, which ensures a unique solution to the model. The second analysis shows
that, under some conditions on A and B, a convex program recovers the dense and sparse
components. We validate the effectiveness of the model on simulated data and propose a
dense and sparse autoencoder (DenSaE) tailored to learning the dictionaries from the dense
and sparse model. We demonstrate that (i) DenSaE denoises natural images better than
architectures derived from the sparse coding model (Bu), (ii) in the presence of noise, training
the biases in the latter amounts to implicitly learning the Ax + Bu model, (iii) A and B
capture low- and high-frequency contents, respectively, and (iv) compared to the sparse
coding model, DenSaE offers a balance between discriminative power and representation.

1 Introduction

The problem of representing data as a linear mixture of components finds applications in many areas of
signal and image processing (Bertalmio et al., 2003; Mallat & Yu, 2010). Variational partial differential
equations (PDE) approaches in Aujol et al. (2003) and Vese & Osher (2003) develop an image decomposition
model whereby a target image is decomposed into a piecewise smooth component (cartoon) and a periodic
component (texture). Another approach posits that a desirable model should use multiple matrices, each
capturing different structures in the image; for example, ®; is a matrix modeling texture and ® is a matrix
modeling cartoon. Along these methods is Morpohological Component Analysis (MCA) (Elad et al., 2005)
which utilizes pre-specified dictionaries and a a sparsity prior on the representation coefficients. In the
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simplest setting, an image y is modeled in MCA as y = Zi:l P x; where @1, P, are the pre-specified
structured dictionaries capturing different morphologies of the image. The MCA model is then based on the
idea that the sparsest representation of each component is attained in the pre-set dictionary component. In
contrast to MCA which imposes sparsity for all mixture coefficients, the proposed model in this paper adopts
a combination of smooth and sparse regularization.

Related motivating problems for representing data as a linear mixture are the background/foreground
separation problem (Zhou et al., 2012) and anomaly detection in images (Chang & Chiang, 2002). In the
former problem, a widely used approach is the robust principal component analysis (RPCA) algorithm
(Candeés et al., 2011) which is based on decomposing a data matrix into low rank (background) and sparse
(foreground) components. The latter problem, anomaly detection with images, arises in most manufacturing
processes and methods based on decomposing the images into smooth and sparse components have been
studied (Yan et al., 2017; Shen et al., 2022); however, to the best of the authors’ knowledge, no theoretical
analysis has been conducted for that decomposition. In addition, the sparse and smooth components in image
anomaly detection are localized, inhibiting the generality of the model.

In this paper, we study a model which decomposes a signal or image in consideration into a smooth part, a
sparse part, and noise. The prototypical form of our model is y = Ax+Bu+e, where y € R™ is the measured
signal, Ax is the smooth component, Bu is the sparse component and e is the noise. The smooth component
is generated from the dictionary A € R™*? using a smooth coefficient x. In turn, the sparse component is
generated from the dictionary B € R™*" using a sparse vector u. We use Tikhonov regularization (Tikhonov
et al., 1995) and ¢; regularization to promote smoothness and sparsity, respectively. With that, the general
non-noisy problem we study in this paper is

i Gx||3 bject t =Ax+B 1
min G+ Jjully subject to y = Ax + Bu, (1)
where G is the Tikhonov regularization operator. Here on, we refer to the model in (1) as the dense and
sparse coding problem. The word dense here refers to the smooth part and is used to emphasize that we do
not require any sparsity.

Both MCA and the dense and sparse coding problem naturally lend themselves to and share a common
theme with sparse coding and dictionary learning. Sparsity regularized deep neural network architectures
have been used for image denoising and discriminative tasks such as image classification (Simon & Elad, 2019;
Tolooshams et al., 2020; Rolfe & LeCun, 2013). Recent work has highlighted some limitations of convolutional
sparse coding (CSC) autoencoders and its multi-layer and deep generalizations (Sulam et al., 2019; Zazo
et al., 2019) for data reconstruction. The work in Simon & Elad (2019) argues that the sparsity levels that
CSC allows can only accommodate very sparse vectors, making it unsuitable to capture all features of signals
such as natural images, and propose to compute the minimum mean-squared error solution under the CSC
model, which is a dense vector capturing a richer set of features. Moreover, the majority of CSC frameworks
subtract low-frequency components of images prior to applying convolutional dictionary learning (CDL)
for representation purposes (Garcia-Cardona & Wohlberg, 2018); however, this is not desired for denoising
tasks where noise corrupts low frequencies in addition to the high spectrum. The goals of the paper are
twofold. First, it presents a theoretical analysis of the dense and sparse coding problem. Second, we argue
the dense representation x in a dictionary A is useful for reconstruction and the sparse representation u has
discriminative capability.

1.1 Organization of paper

Section 2 discusses related work. In Section 3, we give some technical background to the main analysis.
Section 4 presents the theoretical analysis of the paper. Phase transition, classification, and denoising
experiments appear in Section 5. We conclude in Section 6. We start by defining notations.

1.2 Notation

Lowercase and uppercase boldface letters denote column vectors and matrices, respectively. Given a vector
x € R™ and a support set S C {1,...,n}, xg denotes the restriction of x to indices in S. supp(x) denotes
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the support of a vector, defined as supp(z) = {i : x; # 0}. Given a set S, S¢ denotes its complement. For a
matrix A € R™*P| Ag is a submatrix of size m x |S| with column indices in S. The column space of a matrix
A is designated by Col(A), its null space by Ker(A). We denote the Euclidean, £y, ¢1, and £, norms of a
vector x, respectively as ||x]||2, ||x]||o, ||x]|1, and ||x||oc. The operator and infinity norm of a matrix A are
respectively denoted as ||A|| and ||A||. The sign function, applied componentwise to a vector x, is denoted
by sgn(x). The indicator function is denoted by 1. The column vector e; denotes the vector of zeros except a
1 at the i-th location. The orthogonal complement of a subspace W is denoted by W . The operator Pw
denotes the orthogonal projection operator onto the subspace W. log(z) denotes the logarithm of = in base
e. @ denotes the direct sum of subspaces. E(X) denotes the expectation of a random variable X.

2 Related work

2.1 Compressive sensing from union of dictionaries

The dense and sparse coding problem is similar in flavor to sparse recovery in the union of dictionaries (Donoho
& Stark, 1989; Donoho & Huo, 2001; Elad & Bruckstein, 2002; Donoho & Elad, 2003; Kuppinger et al., 2011).
Consider two sets of orthonormal bases, A € R"*™ and B € R™>*™ in R™. One setting is based on the idea
that a given signal will have a sparse representation with respect to suitably predefined A or B (Mallat, 1999;
Daubechies, 1992; Dobson & Santosa, 1996). The concept of the union of bases is based on constructing an
overcomplete dictionary [A B] from A and B. This model then posits that a signal y can be represented as
y = Ax + Bu, where x and u are sparse. Notably, the signal may not be individually sparse with respect to
A and B, but it has sparsity in the joint representation (Elad & Bruckstein, 2002; Donoho & Huo, 2001). In
Donoho & Stark (1989), the authors apply this model to error-correcting encryption and the separation of two
signals. In both cases, the measured signal is assumed to be a superposition of two components, each sparse
in a predefined dictionary. Most results in the literature of union of bases take the form of an uncertainty
principle that relates the sum of the sparsity of x and u to the mutual coherence between A and B, and
which guarantees that the representation is unique and identifiable by ¢; minimization. In Donoho & Stark
(1989), the authors study the problem of recovering x and u from y = Ax + Bu, where A € R™*™ is a
discrete Fourier matrix (DFT) and B € R™*™ is the identity matrix. Therein, under the assumption that
the support of u is known, the result shows that x can be exactly recovered if 2||x||o||ullo < m. This result
for the Fourier-identity pair was further generalized to the case where A and B are orthonormal bases (Elad
& Bruckstein, 2002) and when the measurements come from a union of non-orthogonal bases (Donoho &
Elad, 2003; Kuppinger et al., 2011). We remark that all the aforementioned results assume sparsity on both
x and u.

2.2 Error correction

The problem of recovering a signal x given the measurement model y = Ax + u, where u is a sparse error
vector, is known as the sparse error correction problem (Candes et al., 2005). The work therein considers
a tall measurement matrix A and assumes that the fraction of corrupted entries is suitably bounded. To
obtain a sparse minimization program, the matrix A is eliminated by a matrix B, where BA = 0, resulting
By = Bu. The resulting model is then solved via ¢; minimization and exactness is shown under the restricted
isometry condition on B. The works in Wright & Ma (2010); Nguyen & Tran (2013); Pope et al. (2013);
Studer et al. (2011); Studer & Baraniuk (2014) study the general error correction problem y = Ax + Bu
under different models of the signal x, the sparse interference vector u and the matrices A and B.

We note that all the aforementioned works consider a single sparsifying norm to recover the components x
and u. In contrast, we use mixed norms that impose the Tikhonov and sparsity regularization. We also note
that when A has more columns than rows, one of the settings we consider in this paper, our problem departs
from the sparse error correction problem.

2.3 Weighted Lasso

When there is some prior on the support of the underlying sparse vector u given measurements of the form
y = Bu, the works in Lian et al. (2018); Mansour & Saab (2017); Vaswani & Lu (2010); Oymak et al. (2012);
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Friedlander et al. (2011); Flinth (2016) consider a weighted Lasso program. Assume that the estimate of the
support of uis T'C {1,...,n}. The standard weighted Lasso considers the following optimization program

min ||Jul|;,» subject to y = Bu,
u

where [[ull1,» = Y1, wiu; and w € R™ indicates the vector of weights. For instance, Mansour & Saab
(2017) set the weights as follows: w; € [0,1] if ¢ € T and 1 otherwise. The aforementioned works discuss
the recovery of the underlying signal using weighted Lasso under some conditions on the weights, size and
accuracy of the estimated support. One approach for the feasibility constraint in (1) is to reformulate it
as a weighted Lasso problem in a combined dictionary [A B] where the support estimate is the support of
x. This formulation has few limitations. First, the recovery guarantees in weighted Lasso require accuracy
of the estimated support which would depend on the number of columns of A. Second, these guarantees
impose uniform structure on the combined dictionary, such as the weighted null space conditions, whereas
our conditions allow a deterministic dictionary A and a random dictionary B. Finally, even in the regime
where weighted Lasso might succeed in recovering the underlying x and u, it does not guarantee that Ax is
smooth as that regularization is not reflected in the Lasso optimization.

2.4 Morphological component analysis (MCA)

Morphological Component Analysis (MCA) considers the decomposition of a signal or image into different
components with each component having a specific structure (morphology) (Starck et al., 2004; 2005; Bobin
et al., 2007; Elad et al., 2005). In MCA, the specific structure is imposed via sparsity with respect to pre-
specified dictionaries. Specifically, given K dictionaries {®1, ..., ® x }, we model the data y as a superposition
of K linear components as follows: y = Zfil ®,y; where y; is assumed to be sparse in ®; but it is not as
sparse (or not sparse at all) in other dictionaries. With this set up, the dictionaries discriminate between
the different components. In Starck et al. (2004) a basis pursuit approach to solve the MCA is employed
and its utility is demonstrated in examples such as separating texture from the smooth part of an image.
The main difference of our model from MCA is a smooth-sparse decomposition as opposed to sparse-sparse
decomposition with pre-set dictionaries that contain information about targeted morphologies. The theory
and analysis of the two models is also markedly different as we consider a smoothness regularizer.

2.5 Dictionary learning and unrolling

Given a data set, learning a dictionary in which each example admits a sparse representation is useful in a
number of tasks (Aharon et al., 2006; Mairal et al., 2011). This problem, known as sparse coding (Olshausen
& Field, 1997) or dictionary learning (Agarwal et al., 2016; Garcia-Cardona & Wohlberg, 2018), has been
the subject of investigation in recent years in the signal processing community. A growing body of work,
referred to as algorithm unrolling (Monga et al., 2021), has mapped the sparse coding problem into encoders
for sparse recovery (Gregor & Lecun, 2010). In this paper, we unroll the dense and sparse coding problem for
a principled design of an autoencoder. The designed autoencoder efficiently learns a dense representation x,
useful for reconstruction, and a sparse representation u with discriminative capability.

2.6 Contribution

We focus on (1) and start by first providing theoretical guarantees for the feasibility problem y = Ax+Bu. Our
first result is based on a geometric condition on the minimum principal angle between certain subspaces. Next,
we prove that the convex program in (1) recovers the underlying components x and u under some assumptions
on the measurement matrices and the Tikhonov regularizer. We empirically validate the effectiveness of
our methods through phase transition curves and make a direct comparison to noisy compressive sensing,
highlighting the latter’s inability to recover signals adhering to our proposed model. We then apply our
optimization algorithm to sense real data and validate the expected properties of the sparse and smooth
components.

We connect the proposed model to dictionary learning/algorithm unrolling by proposing a dense and sparse
autoencoder (DenSaE). We demonstrate the superior discriminative and representation capabilities of DenSaE
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compared to sparse coding networks in the task of reconstruction and classifying MNIST dataset. In this
task, we characterize the role of dense and sparse learned components; we argue that the dense representation
x is useful for reconstruction and the sparse representation u has discriminative capability. Moreover, for
image denoising, we show that DenSaE outperforms other networks which are based only on sparse coding.

3 Technical background

We start by briefly reviewing uniqueness results for compressive sensing with exact measurements. The
typical assumption in these analysis is to assume the measurement matrices satisfy certain conditions such as
the restricted isometry property (RIP) and coherence. In our setting, we employ RIPless recovery analysis
(Candes & Plan, 2011; Kueng & Gross, 2014), which will be referred to and used in the proof of Theorem
6. We note that existing anisotropic analysis is based on a single measurement matrix. For our model, the
anisotropic analysis is applied to a certain matrix derived from A, B and the Tikhonov regularizer G.

3.1 Compressive sensing with exact measurements

An underdetermined linear system y = Bu where y € R”™ and B € R™*" with n > m generally has infinitely
many solutions. One prior for the recovery of the solution is sparsity of the underlying vector u. This leads
to the following optimization problem

m]iRn [lul[, subject to y = Bu. (2)
ue n

While (2) is a natural program, it is known to be computationally intractable. Common alternatives are basis
pursuit (BP) (Tropp, 2004; Chen et al., 2001) and iterative greedy methods such as orthogonal matching
pursuit (OMP)(Davis et al., 1997; Pati et al., 1993; Tropp & Gilbert, 2007). In basis pursuit, (2) is modified
by considering a convex relaxation of the £y norm leading to the ¢; minimization problem.

min  ||u||; subject to y=DBu. (3)
ueRk”
A fundamental question is under what conditions the above optimization program identifies the underlying
solution for (2). A related part of this question is when the o minimization problem admits a unique solution.
One condition is the restricted isometry property (RIP) (Candes & Tao, 2005). The s-restricted isometry
constant of an m X n measurement matrix B is the smallest constant §, such that

(1= d9)ull* < [|Buf|* < (1 +d,)]full?,

holds for all s-sparse signals u (an s-sparse vector has at most s non-zero entries). Small RIP constants ensure
unique solution of the ¢y minimization problem and further provide the guarantee that the ¢; relaxation
in (3) is exact (Candes, 2008). It is known that random measurement matrices have small RIP constants
(Candes & Tao, 2006; Baraniuk et al., 2008). Another condition for analysis is based on the coherence of a
measurement matrix B defined as
p = max [bi by,
i#]

where b; denotes the i-th column of B which is assumed to be unit-norm. To state the next result, consider
y = Bu*, where u* is the underlying sparse vector. If |[u*||, < % (1 + %), the ¢y problem admits a unique

solution and both BP and OMP relaxations are exact (Donoho & Elad, 2003; Gribonval & Nielsen, 2003;
Tropp, 2004). We note that coherence conditions are typically stronger than those based on the restricted
isometry property, specially for random matrices.

3.2 Compressive sensing with structured random matrices

We review the technical results in Candes & Plan (2011); Kueng & Gross (2014) which consider conditions for
the exact recovery of the ¢; minimization problem for the setting of structured measurement matrices. In this
setting, we do not assume restricted isometry property (RIP) of the measurement matrices (Candes & Tao,
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2005) and this broadens the sensing matrices that can be employed. We consider a sequence of i.i.d. random
vectors by, ..., by, drawn from some distribution F' on R™ and with measurements defined as y; = biTu*. Two
properties are essential to the analysis. The first is the isotropy property which states that E[bbT] =T for
b ~ F. The second property is the incoherence property. The incoherence parameter is the smallest number
w(F) such that

2
; <
Jnax |{b, )" < u(F), (4)
holds almost surely for any b ~ F. Given these assumptions, the work in Candes & Plan (2011) provides the
following theoretical result.

Theorem 1 (Candes & Plan (2011)). Let B = \/% S eb] be a measurement matriz and let u be a fived

but otherwise arbitrary s-sparse vector in R™. Then with probability at least 1 — % — e B for some positive
constant 3, u is the unique minimizer to

min |ully subject to y = Bu,
ueR”

provided that m > Cgp(F)slogn. The constant Cg = Co(1 + B) where Cy is some constant.

We note that the definition of B based on re-scaling the vectors by, bs, ..., b, is done so that the columns of
B are approximately unit-normed. The work in Kueng & Gross (2014) extends the above result without
assuming the isotropy property. Let 3 = F [bbT]%7 where as before b is drawn from distribution F' on R",
denote the covariance matrix. The anisotropic analysis in Kueng & Gross (2014) is based on two properties
pertaining to the measurement matrix. The first is the incoherence property which is formally defined as
follows. The incoherence parameter is the smallest number p(F') such that

max |(b,e)|? < u(F) and max |(b, E[bb*]"e)|* < u(F), (5)

1<i<n 1<i<n

hold almost surely. The second property is based on the conditioning of the covariance matrix. Specifically, it
is based on an s-sparse condition number, for which we restate the definition from Kueng & Gross (2014).

Definition 1 (Kueng & Gross (2014)). The largest and smallest s-sparse eigenvalue of a matriz X are given

by Amax (s, X) := \I\nﬁx< H‘)‘i‘l'llzlz and Amin (s, X) := I\m\iln< HI)‘?"'!Q. The s-sparse condition number of X is
vi||v]|lo<s v:||v]|lo<s
)\max(s7X)
d(s,X) = Lmax\$H 2
con (S ) )\min(57X)

Given these assumptions, the main result in Kueng & Gross (2014) is stated below.

Theorem 2 (Kueng & Gross (2014)). Let B = ﬁ S ebl be a measurement matriz and let u be a fived

but otherwise arbitrary s-sparse vector in R™. Define ks = max{cond(s,X), cond(s,X"1)} and let 3 > 1.
If the number of measurements fulfills m > Crs u(F) % slogn, then the solution u of the convex program
min ||ul|; subject to y = Bu, is unique and equal to u* with probability at least 1 — e .

u

The proofs of Theorem 1 and Theorem 2 are based on the dual certificate approach. The approach involves
assuming the existence of a dual certificate vector v that satisfies certain conditions which ensures the
uniqueness of the minimization problem. The remaining task is then to construct a dual certificate that
satisfies these conditions. Since the conditions on the dual certificate will be used in our main analysis, we
summarize the conditions on v in the following lemma.

Lemma 1 (Kueng & Gross (2014),Candes & Plan (2011)). Under the assumptions of 1 and Theorem 2,

there exists a dual certificate vector v, in the row space of B, such that

lvs —sgn(ug)ll2 < ¢ and |[vse|loo < - (6)

In addition, it follows that
[|As|le < 2||Asell2, forany A € Ker(B). (7)
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4 Theoretical Analysis

The dense and sparse coding problem studies the solutions of the linear system y = Ax + Bu. Given matrices
A € R™*P and B € R™*™ and a vector y € R™, the goal is to provide conditions under which there is a
unique solution (x*,u*), where u* is s-sparse, and an algorithm for recovering it. For ease of navigating the
main results, Figure 1 shows the road-map of the main theoretical results.

Theoretical analysis)

/ .

Technical background Feasibility analysis Convex optimization
Theorem 1 Theorem 2 Lemma 1 Theorem 3 Theorem 4 Theorem 5| |Theorem 6 Theorem 7

Figure 1: A road-map of the main theoretical results in the manuscript.

4.1 Feasibility problem

In this subsection, we first study the uniqueness of solutions to the linear system accounting for the different
structures the measurement matrices A and B can have. A uniqueness result can be readily obtained by
assuming orthogonality of Col(A) and Col(B). In what follows, we establish uniqueness results for the general
setting. The main result of this subsection is Theorem 4 which, under a natural geometric condition based on
the minimum principal angle between the column space of A and the span of s columns in B, establishes a
uniqueness result for the dense and sparse coding problem. Since the vector u in the proposed model is sparse,
we consider the classical setting of an overcomplete measurement matrix B with n > m. The next theorem
provides a uniqueness result assuming a certain direct sum representation of the space R™. We first note
that, for A € R™*P with p > m, any z € Ker(A) can be added to any solution x. With that, we consider
uniqueness modulo the vectors in Ker(A), meaning any feasible solution is assumed to be in Ker(A)*.

Theorem 3. Assume that there exists at least one solution to y = Ax + Bu, namely the pair (x*,u*). Let
S, with |S| = s, denote the support of u*. If Bg has full column rank and R™ = Col(A) @ Col(Bg), the only
unique solution to the linear system, with the condition that any feasible s-sparse vector u is supported on S
and any feasible x is in Ker(A)*, is (x*,u*).

Proof. Let (x,u), with u supported on S and x € Ker(A)*, be another solution pair. It follows that
Ad1 +Bg(02)s = 0 where §; = x — x* and d2 = u — u*. Let U € R™*" and V € R™*9 be matrices whose
columns are the orthonormal bases of Col(A) and Col(Bg), respectively. The equation Ad; +Bg(d2)s =0
can equivalently be written as >.._; (A8, U;)U; + 3.7 (Bs(d2)s, V;)V; = 0 with U; and V; denoting
{(Ad1, Ui) iy

Bs(d2)s, Vi),
Noting that the matrix [U V] has full column rank, the homogeneous problem admits the trivial solution
implying that Ad; = 0 and Bg(d2)s = 0. Since Bg has full column rank and §; € {Ker(A) N Ker(A)1}, it
follows that 1 = d2 = 0. Therefore, (x*,u*) is the unique solution. O

the i-th columns of U and V, respectively. More compactly, we have [U V] { =0.

The uniqueness result in the above theorem hinges on the representation of the space R™ as the direct sum
of the subspaces Col(A) and Col(Bg). We use the definition of the minimal principal angle between two
subspaces, and its formulation in terms of singular values (Bjorck & Golub, 1973), to derive an explicit
geometric condition for the uniqueness analysis of the linear system in the general case.

Definition 2. Let U € R™*" and V € R™*? be matrices whose columns are the orthonormal basis of Col(A)
and Col(B), respectively. The minimum principal angle between the subspaces Col(A) and Col(B) is defined
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as follows

llTV

cos(u(U,V)) = (8)

max —_—
ueCol(U),veCol(V) ||u|\2||v|\2
In addition, cos(u(U, V)) = o1(UTV) where o1 denotes the largest singular value.

Theorem 4. Assume that there exists at least one solution to'y = Ax + Bu, namely the pair (x*,u*).
Let S, with |S| = s, denote the support of u*. Assume that Bg has full column rank . Let U € R™*" and
V € R™*4 be matrices whose columns are the orthonormal bases of Col(A) and Col(Bg), respectively. If
cos(u(U, V)) = 01(UTV) < 1, the only unique solution to the linear system, with the condition that any
feasible s-sparse vector u is supported on S and any feasible x is in Ker(A)*, is (x*,u*).

Proof. Consider any candidate solution pair (x* 4+ d1,u* + d2) with d2 supported in S. We will prove

uniqueness by showing that Ady + Bg(d2)s = 0 if and only if §; = 0 and d2 = 0. Using the orthonormal
T

basis set U and V, Ady + Bg(d2)s can be represented as : Ady + Bg(dz2)s = [U V] [V;Jngi)s} For

simplicity of notation, let K denote the block matrix: K = [U V}. If we can show that the columns of K

are linearly independent, it follows that Ad; + Bg(d2)s = 0 if and only if Ady = 0 and Bg(d2)s = 0. We

now consider the matrix K”K which has the following representation

al e
=l ]+ [, Mo

With the singular value decomposition of U7V being UTV = QXRT”, the last matrix in the above

. . . o UTV] [qQ o]f[o x][qQ o]
representation has the following equivalent form [VTU 0 } = [ 0 R} [2 0] [ o Rl - It now

T
follows that { 0 U V} is similar to the matrix [0

vTu 0 X 0
1404, 1 <i < min(p,q), with o; denoting the i-th largest singular value of UTV. Using the assumption
o1 < 1 results the bound A (KTK) > 0. It follows that the columns of K are linearly independent, and
hence Ad; = 0 and Bg(d2)s = 0. Since By is full column rank and §; € {Ker(A) N Ker(A)*+}, it follows
that 4 = 0 and 65 = 0.

] . Hence, the nonzero eigenvalues of KTK are

O

A restrictive assumption of the above theorem is that the support of the sought-after s-sparse solution u* is
known. We can remove this assumption by considering Col(A) and Col(Br) where T is an arbitrary subset
of {1,2,...,n} with |T| = s. More precisely, we state the following corollary whose proof is similar to the
proof of Theorem 4.

Corollary 1. Assume that there exists at least one solution to y = Ax + Bu, namely the pair (x*,u*). Let
S, with |S| = s, denote the support of u* and T be an arbitrary subset of {1,2,...,n} with |T| < s. Assume
that any 2s columns of B are linearly independent. Let U € R™*P and V € R™*4 be matrices whose columns
are the orthonormal bases of Col(A) and Col(Bsur), respectively. If (U, V) = o1 (UTV) < 1, holds for all
choices of T, the only unique solution to the linear system is (x*,u*) with the condition that any feasible u is
s-sparse and any feasible X is in Ker(A)L.

Of interest is the identification of simple conditions such that o1 (UTV) < 1. The following theorem proposes
one such condition to establish uniqueness.

Theorem 5. Assume that there exists at least one solution to'y = Ax + Bu, namely the pair (x*,u*).
Let S, with |S| = s, denote the support of u*. Assume that Bg has full column rank. Let U € R™*" and
V € R™*? be matrices whose columns are the orthonormal bases of Col(A) and Col(Bg), respectively. Let
n}z}x \uiij\ =pu Ifs< ﬁ, the only unique solution to the linear system, with the condition that any

feasible s-sparse vector u is supported on S and any feasible x is in Ker(A)*, is (x*,u*).
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Proof. 1t suffices to show that o1 < 1. Noting that o1 = |[UTV]||y, we use the following matrix norm
inequality |[UTV||s < /7||[UT V|| as follows: o1 < /7 ||[UT V|| < rus < 1. O

The constant y is the coherence of the matrix U7V (Donoho et al., 2005; Tropp, 2004). The above result
states that if the mutual coherence of UTV is small, we can accommodate increased sparsity of the underlying
signal component u*. We note that, up to a scaling factor, o1(UTV) is the block coherence of U and V
(Eldar et al., 2010). However, unlike the condition in Eldar et al. (2010), we do not restrict the dictionaries
A and B to have linearly independent columns. In the next subsection, we propose and analyze a convex
program to recover the dense and sparse vectors.

4.2 Dense and sparse recovery via convex optimization

We propose the following convex optimization program for the dense and sparse coding problem

i Gx||? biject t = Ax + Bu. 9
i ||Gx||5 + [[u]]; subject to y = Ax+ Bu 9)

Proof strategy: The Tikhonov matrix G is assumed to have full column rank. Our goal is to establish
that, under certain conditions, the above minimization problem admits a unique solution (x*,u*). The proof
strategy is as follows: First, we make the change of variables z = Gx, which allows us to rewrite the linear
constraint as y = Hx + Bu, where H = AG'. The second step is to eliminate the dense component in the
constraint by applying the projection operator Pcoi(gryr- This yields Pooiays (¥) = Pooicay: (Bu). Denoting
C= Peom): (B), we obtain Pogiey: (y) = Cu. Focusing on the optimization problem with respect to u,
we have a sparse recovery problem with the measurement matrix C. To guarantee exact recovery for this
problem, certain conditions on the matrix C are required. For instance, the results discussed in Section 3.2
require the rows of C to be sampled i.i.d. from some distribution F. However, if A and B are realized as
random i.i.d. matrices, the projection operator does not necessarily preserve the i.i.d. property, meaning
C may not meet the conditions for exact recovery. Therefore, a crucial part of our analysis is the careful
construction of the measurement matrices A and B to ensure that the resulting sparse recovery problem has
a measurement matrix with the desired structure for unique recovery, as detailed below.

Construction of measurement matrices: First, note that Col(A)' is an r-dimensional subspace of R™,
where 7 = dim Col(A)1. Given A € R™*P, either generated from a deterministic or random model, we first
form the matrix H = AGT. We then sample r i.i.d. random vectors ¢y, ca, ..., c, from some distribution F
on RP, meaning each sampled vector is a random vector of size RP. Let C = % >oi_ eicl be the scaled

measurement matrix. Before we proceed to construct the matrix C, we make the following observations. Let
the size of G be ¢ x p. Since G has full column rank, the rank of G is p. It then follows that the rank of
G' is also p. Considering the matrix H = AGT, since G has full row rank, the rank of H € R™*? is the
rank of A. Hence, dim Col(H)* = 7. We form a matrix C of size m x p where its r rows are the sampled
random vectors, scaled by \%, and the remaining m — r rows are such that each column of C lies in Col(H)*.

Note this can always be achieved since Col(H)* is an r-dimensional space in R™. Therefore, any point in
Col(H)* can be realized by picking the first » points at random and determining the rest of the entries from
the constraints that define Col(H)*. It is important to note that the rows of C are not i.i.d. (except the
first r rows generated from the random model). The matrix C will be essential to our main analysis, as its
rows are sampled from the distribution F. We now form the matrix B € R™*™ by constructing each of its
columns as follows: b; = & + h;, where b; is the i-th column of B, &; is the i-th column of C, and h; is
an arbitrary vector that is in the column space of H. This ensures that C = Pcol(a) as desired. Figure 2
summarizes the construction of the measurement matrices.

Theorem 6. Let F' a distribution of random vectors on RP and ci,ca,...,c, be r vectors sampled from
F. The constants u(F) and ks denote the coherence and sparse condition number associated to F. Let
z* = Gix* € T, where T = Ker(?’col(B)LH)L and u* be an s-sparse vector. Set’y = Ax* +Bu*. Let § > 1
and r = dimCol(A)L. If r > Crs u(F) B2 slogn, (x*,u*) is the unique minimizer to (9) with probability at
least 1 —e=P.
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1. Given A € R™*? and G € R?*?, construct H = AGT.

l

2. Sample r i.i.d. random vectors ¢y, Cs, ..., c, from F on RP

l

3. Construct C = %ﬁ S el

1 1 1
co-(F B H)

5. Complete each column of C such that it lies in Col(H)™.

6. Construct each column of B: b; = ¢; + h; where h; € Col(H).

Figure 2: Flow chart that shows the construction of the measurement matrices.

Proof. We make a change of variable z = Gx and rewrite the optimization in (9) as follows

min [|z|]5 + |[ul|, subject to y = AG'z+ Bu=Hz+ Bu. (10)

We structure the proof into 3 parts.

1. Optimality in the mixed objective

We consider a generic feasible solution pair (z* + d1,u* + d2). Let the function f(z,u) define the objective
in the optimization program. The idea of the proof is to show that any feasible solution is not minimial in
the objective value, f(z* 4 d1,u* + d2) > f(z*,u*), with the inequality holding for all choices of d; and
02 and equality obtained if and only if ; = d2 = 0. Before we proceed, two remarks are in order. First,
using the duality of the ¢; norm and the fo, norm, there exists a A with supp(A) C S¢, ||A||c = 1 and
such that (A, (d2)se) = ||(d2)s¢||1. Second, the subgradient of the ¢; norm at u* is characterized as follows:
Jllu*|l1 = {sgn(uk) + g | supp(g) € 5, ||gsc|loc < 1}. It follows that sgn(u*) + A is a subgradient of the ¢;
norm at u*. It then follows that the inequality ||u||1 > ||u*||1 + (sgn(uf) + A, u — u*) holds for any u. We
lower bound f(z* 4 d1,u* + d2) as follows.

[l2" + 013 + [[u” + 82/l >||2"||3 + [|d2]]* + 2(2", 61) + [[u*[|1 + (sgn(ug) + A, d2)
=f(z",u") + [|61]|* + (sgn(ug) + A, 82). (11)

Above, the second equality uses the fact that z* € T and §; € T*. The latter fact follows from the feasibility
condition that Hé;y + Bd2 = 0, and the application of the projection operator Pco g+ on both sides.

2. Introducing the dual certificate v

We next use the feasibility condition that Hd; + Bds = 0 and introduce the dual certificate v. To eliminate
the component Héy, we project it onto the orthogonal complement of the range of H and obtain Cdy = 0
where C = Pcoir): (B). We note that the previous relation follows from the construction of the measurement
matrices. We further consider a reduced system by considering Cds = 0. Recall that C is a matrix where
each row is sampled i.i.d. from the distribution F. With that, we essentially have a sparse recovery problem
with the measurement matrix C. Using Lemma 1, and the assumptions of the theorem, there exists a dual

10
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certificate v € Col(CT). With this, we continue with lower bounding f(z* + 1, u* + d2).

2" + 845 + |[u* + 82[1 >||z*[15 + [|61]15 + [[u*||1 + (sgn(ug) + A — v, d2)
=f(x*,u") + (sgn(us) + A — v, d2). (12)

It remains to show that (sgn(u¥)+ A — v,d2) > 0. By considering projections onto S and S¢ and using the
fact that (A, (dz2)sc) = ||(d2)s<||1, we obtain

(sen(us) + A — v, d2) =(sgn(uy) - vs,(d2)s) = (Vse, (92)se) + [[(2) e[
> — |Isgn(ug) = vsll2[l(d2)sll2 = [[Vsellool[(2)sel[1 + [[(02) 522

> 1 1@2)sllz = 1G2)selly + [1(B)s: s (13)

1 3 1
== 7 11(d2)sll2 + 71[(02)se[l1 = 7[[(82)s¢||1- (14)
4 4 4
The inequality in (13) the last inequality follow from the conditions on v from Lemma 1. Combining (12)

and the above bound with the final result noted in (14), we have

1
(2" 4 81,0 +82) > (2", u") + [|0a13 + 4 [1(82)se - (15)

3. Uniqueness of solution

We note that f(z* 4+ d1,u* 4+ d2) = f(z,u) if and only if ||(d2)ge|[s = 0 and d; = 0. Since ||(d2)g]|2z <
2||(82)s¢<]|2, the equality ||(d2)s<||1 = 0 implies that ||(d2)s||2 = 0. With this, f(x* + d1,u* + d2) = f(x,u)
if and only if 2 = 0. Therefore, the solution (z*,u*) achieves the minimal value in the objective, and is
a unique solution to (10). Finally, using the relation x* = Gfz* guarantees unique solution to (9). This
concludes the proof. O

Remark 1. Consider the following optimization program

min ||Gx||§ + AJul|; subject to y = Ax+ Bu, (16)

where A > 0 is a constant that balances the two terms in the objective. Following the same steps as in the
proof of Theorem 6 also guarantees unique solutions for the modified objective.

4.3 Special cases of analysis and discussion

We note a few special cases of our main theorem in Theorem 6. First, when the Tikhonov matrix G is the
identity matrix, the regularization on x is the standard ¢s (minimum norm least squares) regularization. The
main result continues to hold, with additional assumptions, when G = A. In this case, the optimization
problem is

i Ax 2+ u subject to = Ax + Bu. 17
it A3+l subject to (7)

We note that the uniqueness result for the above problem is modulo restriction to the subspace Ker(A)=.
We now state the following result.

Theorem 7. Let F a distribution of random vectors on RP and ci,ca,...,c, be r vectors sampled from
F. The constants u(F) and ks denote the coherence and sparse condition number associated to F. Set
y = Ax* + Bu*. Let 3> 1 and r = dimCol(A)*. Assume the two conditions

1 1
IBSA|| < oo, max|(BE.A)

, il < . 18
el 1< B (18)

If r > Cks u(F) % slogn, (x*,u*) is the unique minimizer to (17) with probability at least 1 —e=5.

11
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Proof. The proof follows the proof of Theorem 6. The main difference is that we need to show that
(sgn(uf) + A — v — 2BTAx* ,§2) > 0. By considering projections onto S and S¢ and using the fact that
<A 5 (52)SC> = ||(52)SC||17 we obtain

(sgn(uf) + A — v — 2BTAx* | 52)
=(sgn(ug) — vs, (d2)s) = (vse, (82)s) + [[(82)s¢ |1 — (2[BTAx"]s, (d2)s)
—(2[BT Ax*]se , (02)s¢)

> — |Isen(us) — vs|l2[l(d2) sl = [[Vsellool[(92) e[l + [[(82)se 1

— 2B Al |7l 1(02)s]le — 2 max | (BeA)il[1x"looll(J2) sl

1 1 1 1
>——||(o — —||(d2)ge 62)se|l1 — —=|(d — —|(d2) se
2 = 7 1102)sll2 = 711(82)sellx +1[(82) sells = 76 11(02)sll2 = 76 1(d2)se
) 11
~ 2 ll@2)slle + 15 1162)sell
10 11 1
> — — 6 c - 6 c - — 6 c .
>~ 215l + 16l1(82)selly = o l1(82)sel
The rest of the proof is similar to the proof of Theorem 6. O

4.4 Comparison to compressive sensing

We note that the dense and sparse coding problem problem can equivalently be formulated as y = Ax+Bu =
A B]|*

u
may lead to sub-optimal recovery guarantees. We will use Theorem 5 to illustrate the difference between the
CS approach and ours. For a concrete example, let A be a 20 x 20 invertible matrix, B be 20 x 80 matrix and

] . Applying standard compressive sensing (CS) results imposes uniform conditions on [A B], which

set k = 2. To recover [ﬂ exactly, one condition based on CS (see Theorem 1.7 in Davenport et al. (2012)) is:

1 1 1 1
prk<y (14 mm) <3 ()

where p[A B] denotes the mutual coherence of the combined dictionary. Note that the range of p[A B]
is [uo, 1] where po denotes the Welch bound (see Definition 1.5 in Davenport et al. (2012)). We make the
following observations:

¢ The maximum sparsity decreases as p increases. With p = 20, mutual coherence of the combined dictionary
needs to be at most 1/43 ~ 0.0233.

« In our approach, to allow for sparsity k = 2, the block coherence needs to be at most 1/(2v/20) ~ 0.1118.

e Theorem 5 relies on block coherence and does not require coherence within the blocks A and B. This
provides a flexible model, allowing A to be a deterministic coherent dictionary, for example.

Next, consider applying ¢; minimization and standard compressive sensing theory to guarantee uniqueness
given the measurement matrix R = [A B]. One guarantee based on incoherence (see Theorem 1.1 in Candes
& Plan (2011)) states that the number of measurements must be on the order of . (p + k) log(p + n), where
1« is the coherence of the combined dictionary R. In contrast to the mutual coherence mentioned earlier, .
is the smallest number such that the following equality holds for any row of R denoted by a:
12
Kggﬂmwl<m,

where a(7) denotes the i-th entry of a. It is typically assumed that there is an underlying distribution F' from
which the rows of R = [A B] are sampled independently and identically. We note that the range of p., for
the measurement setup in Candes & Plan (2011), is [1,n + p]. The implication of this is that the sample
complexity implicitly requires . = O(1). In the case of mixed dictionaries, as in our setup, a coherent matrix
A can lead to sub-optimal number of measurements.

12



Published in Transactions on Machine Learning Research (8/2024)

5 Experiments

The codes for reproducing the experiments in this section can be found on GitHub: https://github.com/
manosth/densae/ and https://github.com/btolooshams/densae.

5.1 Phase transition curves

We generate phase transition curves and present how the success rate of the recovery, using the proposed
model, changes under different scenarios. To generate the data, we sample random matrices A € R™*P and
B € R™*™ whose columns have expected unit norm and fix the number of columns of B to be n = 100.
The vector u € R™ has s randomly chosen indices, whose entries are drawn according to a standard normal
distribution, and « € RP is generated as x = AT~ where v € R™ is a random vector. The construction
ensures that x does not belong in the null space of A, and hence degenerate cases are avoided. We normalize
both x and u to have unit norm, and generate the measurement vector y € R™ as y = Ax + Bu.

To generate the transition curves we vary the sampling ratio o = nTp € [0.05,0.95] and the sparsity ratio
p = 7= in the same range. Note that the sensing matrix in our model is [A BJ; therefore, our definition
of o takes into account both the size of A and B. In the case where we revert to the compressive sensing
scenario (p = 0), the sampling ratios coincide. We solve the convex optimization problem of (17) to obtain

the numerical solution pair (%, 1) using CVXPY (Diamond & Boyd, 2016; Agrawal et al., 2018), and register a

successful recovery if both ”T‘;ﬂjh < e and Hfﬁ;ﬁljz < ¢, with e = 1073, For each choice of o and p, we average

100 independent runs to estimate the success rate.

Figure 3 shows the phase transition curves, indicating the probability of successful recovery, for p €
{0.1m,0.5m} to highlight different ratios between p and n. We observe that increasing p leads to a
deterioration in performance. This is expected, as this creates a greater overlap on the spaces spanned by A
and B. We can view our formulation as modeling the noise of the system. In such a case, the number of
columns of A encodes the complexity of the noise system: as p increases, so does the span of the noise space.
Extending the signal processing interpretation, note that we model the noise signal x as a dense vector, which
can be seen as encoding smooth areas of the signal that correspond to low-frequency components. On the
contrary, the signal u has, by construction, a sparse structure, containing high-frequency information, an
interpretation that will be further validated on real data in Section 5.4.

p=0.Im p=0.5m
1 - 1.0 2 -1.0
S S
. -0.8 & -0.8
S S
"5 3 0.6 oz g 0.6
[ e
S S 0.4 SO 04
S S
] 0.2 Q 0.2
S s i
3 1 1 1 1 1 0.0 3 . I 0.0
S 0.1 0.26 0.42 0.58 0.74 0.9 S 0.1 0.26 042 0.58 0.74 0.9
— _m o= m
n+p T n+p

Figure 3: Phase transition curves for p = 0.1m (left) and p = 0.5m (right). Colors represent the
probability of successful recovery, ranging from black (vector recovery failed in all trials) to yellow (recovery
was always successful).

5.2 Noisy compressive sensing

If x can be interpreted as a noise vector, how does our model compare to noisy compressive sensing?
Compressive sensing can be extended to the noisy case, which allows for the successful recovery of sparse
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signals under the presence of noise, assuming an upper bound on the noise level. In the rest of the section we
examine how the proposed model, which incorporates both sparse and dense components, fares against this
noisy variant.

o =10.5,p=0.05p=0.1m c=05,p=05p=0.1m 0=095p=05p=01m
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Figure 4: Normalized recovery error of u as the SNR varies (lower is better).

We, again, fix the number of columns in B to be n = 100, and generate the matrices A € R"™*P and
B € R™*" as well as the vectors * € RP and u* € R", as before. We define the signal-to-noise ratio

as SNR = 20log;, %, and iterate over the range [—40dB, 40dB]. To vary the SNR, we normalize both

vectors and scale u* by 10°%" . For our proposed method, we solve the optimization of (9), whereas for noisy
compressive sensing we solve

0 =argmin |[ul|; subjectto |ly —Bu||, <|[Ax"],, (19)
u

and report the normalized error 7HT‘;?‘L”2 for the two methods averaging 100 independent runs.

We present the SNR curves in Figure 4. As an initial observation, note that noisy compressive sensing, in
every case, recovers a vector when the energy of the noise is less than that of the signal (for a SNR> 0dB),
and in most scenarios full recovery is not achieved unless the ratio is very large (SNR> 25dB). That is
expected, since the results for those settings assume an upper bound on the noise level. In contrast, our
proposed model is able to recover both signals even when the norm of x is 100 times larger than that of u, at
the cost of having access to the additional measurement matrix A.

For low sparsity ratios (Figures 4(a) and (d)), we are able to recover both signals in every experiment using
our model, whereas compressive sensing exhibits the behaviour we discussed above. Increasing the sparsity
ratio while keeping the number of samples the same (Figures 4(b) and (e)) results in a significant reduction in
performance for both models (note the different axis scaling for these figures). This is in line with both the
results for noisy compressive sensing and our results presented in Section 4 (as well as the phase transition
curves of the previous subsection). When the overlap between A and B is greater (Figure 4(e)) our model
suffers a greater performance hit, as is expected from our analysis; note that noisy compressive sensing is
unaffected by the relative size of A and B, since it only makes assumptions about the noise level and not
its span. Finally, we observe that increasing the number of measurements (Figures 4(c) and (f)) restores
performance, in line with our analysis.

Remark: Note that the large sparsity ratios (p = 0.5, corresponding to Figures 4(b), (c), (e), and (f)) violate
our assumptions in Section 4 and recovery is not expected based on the transition curves of the previous
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subsection. However, we include them for illustration, as for smaller values of p our model always recovered
both vectors. As a key takeaway from this line of experimentation, we recommend the use of our model in
every case where there is a structured interference with significant norm. In cases where the norm of the
signal of interest is dominating (SNRa 40dB) and there is some form of degeneracy (there is a large overlap
between the signal spaces and u is barely sparse), noisy compressive sensing may be more appropriate.

5.3 Sensing with real data

In this section, we present experiments on real data using random sensing matrices. The real data we consider
is the MNIST database of handwritten digits (LeCun, 1998; LeCun et al., 1998). Through these experiments,
we want to (i) showcase the performance of our model on actual, real data and (ii) show the efficacy of our
algorithm when using overcomplete sensing matrices. To generate overcomplete dictionaries, we proceeded as

Ax

Figure 5: Decomposition of an MNIST image to its sparse and dense components. We visualize
the minimization of the terms in (20): the input y is adequately reconstructed (left), the component Ax is
smooth relative to Bu (middle), and u is sparse.

follows: as MNIST images can be seen as vectors y € R34, we first generated a random orthogonal matrix

in R"™4x784 We used half of the columns of that matrix as a base for A € R784x1024 anqd the other half for
B € R784x1024. the rest of the columns were generated as linear combinations of each base. To avoid artificial
orderings that might result when using certain optimizers, we conclude the matrix generation with random
column permutations. These matrices, while in combination they do span R7®*, were not the generating
model for the MNIST dataset. As such, we slightly alter the optimization problem of (9) to relax the exact
reconstruction, yielding:

min [|Ax +Bu — ][5 + || Ax|[; + Al ull; . (20)

In our experiments, we use ¢ = 3 and A = 0.01. A visual decomposition of such an image is presented in
Figure 5.

Both u and x have their expected properties: u is visibly sparse, with few nonzero elements and x has a
fairly dense structure. Moreover, we observe that the component of Ax seems slightly more fainted compared
to that of Bu.

To further validate this observation we computed both the Euclidean norm and total variation for each
component, as a proxy for smoothness, and plotted the distributions of total variation in Figure 6. The
distributions were computed using 10000 training samples. The distribution of the Euclidean norm was very
similar and can be found in the Appendix, Figure 13. Observing the distributions of Az and Bu we note
that the distribution corresponding to the sparse component is skewed to higher values of total variation.
This empirically validates the effectiveness of the smoothness regularization of (9), even when sensing using
random matrices. As a final remark, we attempted to use B in a sparse coding framework to recover a sparse
vector. However, in every instance the solver failed to converge and produce a sparse vector; this is, to an
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Figure 6: Total variation distribution for the components Ax and Bu of MINIST images. We
quantify the qualitative difference in smoothness between Ax and Bu in (20), supporting the qualitative
difference of Figure 5.

extent, expected as B was generated using only half the columns of an orthogonal matrix and therefore is
unable to fully span the image space, failing to adequately represent all the images in the data set.

The main analysis in this paper is based on the measurement matrices and the Tikhonov matrix satisfying
certain conditions, such as randomness in the matrix B. However, in practice, efficient matrices are not
always available, and random matrices might not be optimal for every data set. Dictionary learning refers to
the problem of learning A and B from data (Agarwal et al., 2014; Chatterji & Bartlett, 2017; Garcia-Cardona
& Wohlberg, 2018). Based on unrolled neural architectures for the sparse coding model (B = 0) (Tolooshams
et al., 2020; Gregor & Lecun, 2010), the next section proposes an unrolled autoencoder to infer dense and
sparse representations and learn dictionaries from data.

5.4 Dictionary learning based neural architecture for dense and sparse coding

We mitigate the drawbacks of convolutional sparse coding model in capturing a wide range of features from
natural images by proposing dense and sparse dictionary learning; the framework learns a diverse set of
features (smooth features via A and high-frequency features appearing sparsely through B). We formulate
the dense and sparse dictionary learning problem as minimizing the objective

1 , 1 )
Al 5~ AX = BUJ} + 5 [AX]E + A U] (21)

which can be solved using the following alternating minimization steps

1 1
XW UW = argmin =[|[Y — AOX - BOU|Z + —|ADX]||Z + A\ ||U|J1. (22)
XU 2 2s

1
AUD BUHD — argmin SIY - AXD —BU®|Z, (23)
AB

where Y € R™*! X € RP*! and U € R™*! with I is the total number of data examples. By design choice,
we optimize only the reconstruction loss when updating the dictionaries. Based on the above alternating
updates, we use deep unrolling to construct an unrolled neural network (Tolooshams et al., 2020; Gregor &
Lecun, 2010), which we term the dense and sparse autoencoder (DenSaE), tailored to learning the dictionaries
from the dense and sparse model. The encoder maps Y into a dense matrix X and a sparse one U using
two sets of filters of A and B through a recurrent network. A encodes the smooth part of the data (low
frequencies), and B encodes the details of the signal (high frequencies). The encoding is achieved by unrolling
T proximal gradient iterations shown below

Xy =X 1 +a, (AT(Y — (1 + Al) AX; | — BUt1)> ,

U, = 8 (Us1 + a,BT(Y — AX;_; — BU,_4)),

(24)
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where «, and «,, are step sizes, and Sy, with b = a, A\, is the activation function; for non-negative sparse
coding, the activation is ReLU,(z) = (z — b) - 1,5, and for general sparse coding, it is Shrinkage,(z) =
ReLUy(z) — ReLU(—2) (Tolooshams et al., 2020).

Having a non-informative prior on Ax in DenSaE implies that A\, — oco. The parameters «,, oy, A, are
tuned empirically. The decoder reconstructs the image using the generative model y = Ax7r 4+ Bup. For
classification, we use ur and xr as inputs to a linear classifier C that maps them to the predicted class §.
The dictionaries A and B are learned via backpropagation. We remark that b = a, \,. A larger value of b in
the proximal mapping S, enforces higher sparsity on u, and a smaller value of A, promotes smoothness on Ax.
We learn the dictionaries A and B, along with the classifier C, by minimizing the weighted reconstruction
(Rec.) and classification (Logistic) loss, represented as (1 — ) Rec. + § Logistic), where 5 € [0,1]. We note
that, as 3 increases, the network shifts from reconstructing objective into a more predictive one. Figure 7
shows the DenSaE architecture. We examined the following questions

Encoder Decoder

Repeat T' times

EHamATT !t'

e@rm»ﬁ

.............. Classifier

Figure 7: DenSaE. The vector z comprises the normalized features stacked plus a 1 scalar for the classifier
bias, Sy and S,,.., are the soft-thresholding and soft-max operators, respectively.

(i) How do the discriminative, reconstruction, and denoising capabilities change as we vary the number
of filters in A vs. B?

(ii) What is the performance of DenSaE compared to sparse coding networks?

(iii) What data characteristics does the model capture?

As baselines, we trained two variants, CSCNety,, and CSCNetrg, of CSCNet (Simon & Elad, 2019), an
architecture tailored to dictionary learning for the sparse coding problem y = Bu. Since all three networks
are convolutional, A and B are Toeplitz matrices that perform the sum of convolutions using multiple filters.
In CSCNetyyp, the bias is tuned as a shared hyper-parameter. In CSCNetrg, we learn a different bias for
each filter by minimizing the reconstruction loss. When the dictionaries are non-convolutional, we call the
network SCNet.

5.4.1 DenSaE strikes a balance between discriminative capability and reconstruction

We study the case when DenSakE is trained on the MNIST dataset for joint reconstruction and classification.
We show (i) how the explicit imposition of sparse and dense representations in DenSaFE helps to balance
discriminative and representation power, and (ii) that DenSaE outperforms SCNet. We warm start the
training of the classifier using dictionaries obtained by first training the autoencoder with 5 = 0.

Characteristics of the representations x; and up: To evaluate the discriminative power of the
representations learned by only training the autoencoder, we first trained the classifier given the representations.
Specifically, we first trained A and B with 8 = 0, then trained C with g = 1. We call this disjoint training.
Table 1 shows the classification accuracy (Acc.), ¢o reconstruction loss (Rec.), and the relative contributions,
expressed as a percentage, of the dense or sparse representations to classification and reconstruction for
disjoint training. Each column of [A , B], and of C, corresponds to either a dense or a sparse feature. For
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Table 1: DenSaE’s performance on MNIST dataset from disjoint training. ALJFB is defined as

# columns of A
# columns of A + # columns of B x100.

SCNetis SONetws o385 4B 3008
e - - 1.25% 6.25%  50%
Acc. 94.16 % 98.32% 98.18% 98.18% 96.98%
Rec. 1.95 6.80 6.83 6.30 3.04
A contribution to important class features - - 0% 0% 0%
A contribution to important rec. features - - 8% 28% 58%

reconstruction, we find the indices of the 50 most important columns and report the proportion of these
that represent dense features. For each of the 10 classes (rows of C), we find the indices of the 5 most
important columns (features) and compute the proportion of the total of 50 indices that represent dense
features. The first row of Table 1 shows the proportion of rows of [A B] that represent dense features.
Comparing this row, respectively to the third and fourth row reveals the importance of x for reconstruction,
and of u for classification. Indeed, the Acc. and Rec. of Table 1 show that, as the proportion of dense
features increases, DenSaE gains reconstruction capability but results in a lower classification accuracy.
Moreover, in DenSaE, the most important features in classification are all from B, and the contribution of
A in reconstruction is greater than its percentage in the model, which clearly demonstrates that dense and
sparse coding autoencoders balance discriminative and representation power.

Both Tables 1 and 2 show that DenSaE outperforms SCNety,g in classification and SCNetyyp, in reconstruction.
Specifically, for joint training, Table 2 (columns 2,3 and row J;) shows that DenSaE outperforms SCNety,y,,
for reconstruction (32.61 < 47.70) while it is competitive for classification (98.61 > 98.59). Moreover, Table 2
(cols 1, 3 and Jy75 and J1) highlights that DenSAE has significantly better classification (98.61 > 96.06)
and reconstruction (32.61 < 71.20) performances than SCNetrs. Moreover, we observed that in the
absence of noise, training SCNetyg results in dense features with small negative biases, hence, making its
performance close to DenSaE with a large number of atoms in A. We see that SCNetrg in the absence
of a supervised classification loss fails to learn discriminative features useful for classification. On the
other hand, enforcing sparsity in SCNety,,, suggests that sparse representations are useful for classification.

Table 2: DenSaE’s performance on MNIST dataset from
How do reconstruction and classifi- jint (J5) training.

cation capabilities change as we vary

£ in joint training?: In joint training SCNetrs SCNetnyp 5A 25A 200A

of the autoencoder and the classifier, it x - - : 13;55](37 63;55]‘37 ;%0(7]3

is natural to expect that the reconstruc- 2&133 6617 979 97' 07(;, 97' 68;’ 36 460(7
tion loss should increase compared to dis- Jos R ' 2'01 0 0' 37 0 0'58 ¢ 0'58 ¢ 0' 340
joint training. This is indeed the case for Aec. 96 ’917 98 .187 95 '19(7 95 '23(7 97.64V
SCNetrs; as we go from disjoint to joint Jo g5 | DCC | 702770 901070 070 982070 I DR/
training and as f increases (Table 2), the liec. 972'21?;7? 981'52;17 9;‘;;(7 9812411‘7 93.8511‘7
reconstruction loss increases and classifi- Jo.gs | €G- | 702070 900570 4070 IO.AR0 JI.0870
cation accuracy has an overall increase. iec. 4'48(7 1'03(7 1'22(7 1'32(7 0'67(7
HOWGVQI', for /8 < 1’ jOth training of both Jl cc. 196.06% 98.59% 98.61% 98.56% 98.40%
networks that enforce some sparsity on Rec. | 7120  47.70 3261 30.20 2557

their representations, SCNetyy, and Den-
SaE, improves reconstruction and classification.

For purely discriminative training (8 = 1), DenSaE outperforms both SCNetrg and SCNetyy,, in classification
accuracy and representation capability. We speculate that this likely results from the fact that, by construction,
the encoder from DenSaE seeks to produce two sets of representations: namely a dense one, mostly important
for reconstruction and a sparse one, useful for classification. In some sense, the dense component acts as a
prior that promotes good reconstruction.
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Figure 8: Visualization of a test image for 7 = 50. a) DenSaE (4A,60B), b) CSCNetrs. Bu images are
scaled and plotted with a different colormap for visualization purposes.

5.4.2 Denoising

We trained DenSaE for supervised image denoising when 8 = 0 using BSD432 and tested it on BSD68 (Martin
et al., 2001). All the networks are trained for 250 epochs using the ADAM optimizer (Kingma, 2014) and the
filters are initialized using the random Gaussian distribution. The initial learning rate is set to 10~% and
then decayed by 0.8 every 50 epochs. We set € of the optimizer to be 1072 for stability. At every iteration, a
random patch of size 128 x 128 is cropped from the training image and zero-mean Gaussian noise is added
to it with the corresponding noise level. We varied the ratio of number of filters in A and B as the overall
number of filters was kept constant. We evaluate the model in the presence of Gaussian noise with standard
deviation of 7 = {15, 25,50, 75}.

Ratio of number of filters in A and B: Unlike recon-
Table 3: DenSaE’s denoising performance struction, Table 3 shows that the smaller the number of
on BSD68 as the ratio of filters changes. filters associated with A, the better DenSaE can denoise
images. We hypothesize that this is a consequence of our

. ‘1A63B 1A60B SA56B 16A48B 32A328 findings from Section 4 that if the column spaces of A
and B are suitably unaligned, the easier is the recovery
151 30.21 30.18 30.18 30.14  29.89

x and u.
25| 27.70 27.70 2765 27.56  27.26
50| 24.81 24.81 24.43 2444  23.68 Dense and sparse vs. sparse coding: Table 4 shows

750 23.31 23.33 23.09 22.09 20.09 that DenSaE (best network from Table 3) denoises images
better than CSCNetyy,,, suggesting that the dense and
sparse coding model represents images better than sparse coding.

Dictionary characteristics: Figure 8(a) shows the decom-

Table 4: DenSaE vs. CSCNet position of a noisy test image (7 = 50) by DenSaE. The figure

on BSD68, reporting mean (std). demonstrates that Ax captures low-frequency content while Bu

captures high-frequency details (edges). This is corroborated

7| DenSaE  CSCNetyy, CSCNetrs by the smoothness of the filters associated with A, and the

Gabor-like nature of those associated with B (Mehrotra et al.,

1992). We observed similar performance when we tuned A,, and

found that, as A\, decreases, Ax captures a lower frequencies,
and Bu a broader range.

15/ 30.21 (1.74) 30.12 (1.70) 30.34 (1.79)
25(27.70 (1.89) 27.51 (1.81) 27.75 (1.89)
50(24.81 (1.98) 24.54 (1.85) 24.81 (1.97)
75/23.33 (1.96) 22.83 (1.73) 23.32 (1.95)

CSCNet deviates from sparse coding and implicitly
learns Ax 4+ Bu model in the presence of noise: By training the biases, CSCNetrg deviates from the
sparse coding model; the neural network’s bias is directly related to the sparsity enforcing hyper-parameter A,,.
The larger this bias, the sparser the representations. We observed that CSCNetrg automatically segments
filters into three groups: one with small bias, one with intermediate ones, and a third with large values (see
Figure 12). We found that the feature maps associated with the large bias values are all zero. Moreover, the
majority of features are associated with intermediate bias values, and are sparse, in contrast to the small
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number of feature maps with small bias values, which are dense. We call the dictionary atoms, corresponding
such small biases, implicit A. Similarly, dictionary atoms with moderate biases can be seen as implicit B.

These observations suggest that autoencoders implementing the sparse coding model (y = Bu), when learning
the biases by minimizing reconstruction error, implicitly perform two functions. First, they select the optimal
number of filters. Second, they partition the filters into two groups: one that yields a dense representation of
the input, and another that yields a sparse one. In other words, the architectures trained in this manner
implicitly learn the dense and sparse coding model. Figure 8(b) shows the filters.

The above-mentioned interpretation of CSCNet with learned biases offers to revisit the optimization-based
model used to construct the autoencoder; if the network implicitly learns a bipartite representation, why
not explicitly model that structure? Through our experiments, we showed that doing so leads to increased
performance with the recovered dictionaries and representations not deviating from their expected behavior.
The resulting network is also more interpretable, as we can directly visualize and analyze each component.

6 Conclusions

This paper proposed a novel dense and sparse coding model for a flexible representation of a signal as
y = Ax + Bu. Our first result gives a verifiable condition that guarantees uniqueness of the model. Our
second result uses tools from anisotropic compressed sensing to show that, with sufficiently many linear
measurements, a convex program with ¢; and /5 regularizations can recover the components x and u uniquely
with high probability. Numerical experiments on synthetic and real data confirm our observations.

We proposed a dense and sparse autoencoder, DenSaE, tailored to dictionary learning for the Ax + Bu model.
DenSaE, naturally decomposing signals into low- and high-frequency components, provides a balance between
learning dense representations that are useful for reconstruction and discriminative sparse representations.
We showed the superiority of DenSaFE to sparse autoencoders for data reconstruction and its competitive
performance in classification.
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A Classification and Image Denoising

We warm start the networks by training the autoencoder for 150 epochs using the ADAM optimizer where the
weights are initialized with the random Gaussian distribution. Within the network, a,, «,, and A, are tuned
as follows: «, and «,, are step sizes of the gradient-based iteration; hence, they are chosen to make sure that
the recurrence is contractive while they are large enough to make sure gradient information is effective from
one another to another. Similarly, A\, is empirically chosen based on the training performance where lambda,,
is small enough (to result in non-zero representation), and large enough (to visually observe sparse feature
maps). We note that a systematic grid search may improve upon the reported result; however, we suffice to
the above-discussed approach as the goal of our paper is a comparative study in a similar training/tuning
situation.

The learning rate is set to 1073, We set € of the optimizer to be 10715 and used batch size of 16. For disjoint
classification training, we trained for 1,000 epochs, and for joint classification training, the network is trained
for 500 epochs. All the networks use FISTA (Beck & Teboulle, 2009) within their encoder for faster sparse
coding. Table 5 lists the parameters of the different networks. Figure 9 visualizes the most important atoms
for reconstruction and classification for disjoint training.

Figure 10 visualizes the reconstruction of MNIST test image for the disjoint training, where the autoencoder
is trained for pure reconstruction (8 = 0).
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Table 5: Network parameters for MNIST classification experiment.

DenSaE  CSCNetyy, CSCNetrg

# dictionary atoms 400
Image size 28x28
# training examples 50,000 MNIST
# validation examples 10,000 MNIST
# testing examples 10,000 MNIST
# trainable parameters in the autoencoder | 313,600 313,600 314,000
# trainable parameters in the classifier 4,010 4,010 4,010
S() ReLU
Encoder layers T 15
Quy 0.02
Qy 0.02 - -
Alnit 0.5 0.5 0.0

(d) DenSaE (e) DenSaE

(a) SCNetrg (b) SCNety,
P (c) DenSall 5A395B oe A 3758 200A200B

Figure 9: Most important atoms of the dictionary used for reconstruction (rec.) and classification (class.) for
disjoint training.

The figure shows that SCNety,g has the best reconstruction among all, and the second best is DenSaEgoa 2008,
having the highest number of A atoms. Figures 11 visualizes the reconstruction of MNIST test image for
the joint training when 8 = 1. Notably, in this case, the reconstructions from SCNetrg do not look like the
original image. On the other hand, DenSaE even with 5 =1 is able to reconstruct the image very well. In
addition, the figures show how Ax and Bu are contribution for reconstruction for DenSakE.

We note that as our network is non-convolutional, we do not compare it to the state-of-the-art, a convolutional
network. We do not compare our results with the network in Rolfe & LeCun (2013) as that work does not
report reconstruction loss and it involves a sparsity enforcing loss that change the learning behaviour.

For denoising, all the trained networks implement FISTA for faster sparse coding. Table 6 lists the parameters
of the different networks. Moreover, Figure 12 shows the histogram of learned biases by CSCNetyg for
various noise levels. We note that compared to CSCNet, which has 63K trainable parameters, all the
trained networks including CSCNet™ have 20x fewer trainable parameters. We attribute the difference in
performance, compared to the results reported in the CSCNet paper, to this large difference in the number of
trainable parameters and the usage of a larger dataset.
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(d) DenSaE 5A395B (e) DenSaE 25A375B (f) DenSaE 200A200B

Figure 10: Reconstruction of MNIST test images for disjoint classification.

(e) DenSaE 25A375B (f) DenSaE 200A200B

Figure 11: Reconstruction of MNIST test images for joint classification when § = 1.
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Figure 12: Histogram of biases from CSCNetrg for various noise levels.

Table 6: Network parameters for natural image denoising experiments.

DenSaE CSCNetyy, CSCNetyg
# filters 64
Filter size X7
Strides 5
Patch size 128 x128
# training examples 432 BSD432
# testing examples 68 BSD68
# trainable parameters | 3,136 \ 3,136 \ 3,200
S(.) Shrinkage
Encoder layers T' 15
Qi 0.1
(o7 0.1 - -
T=15 0.085 0.085 0.1
\init T=25 0.16 0.16 0.1
u T =50 0.36 0.36 0.1
T=175 0.56 0.56 0.1

B Euclidean norm distribution

3 1

N

jorm

Figure 13: Euclidean norm distribution for thg components Az and Bu of MNIST images.
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