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Abstract

Powerful artificial intelligence (AI) tools that have emerged in recent years—including large language
models, automated coding assistants, and advanced image and speech generation technologies—are the
result of monumental human achievements. These breakthroughs reflect mastery across multiple technical
disciplines and the resolution of significant technological challenges. However, some of the most profound
challenges may still lie ahead. These challenges are not purely technical but pertain to the fair and
responsible use of Al in ways that genuinely improve the global human condition. This article explores
one promising application aligned with that vision: the use of Al tools to facilitate and enhance education,
with a specific focus on signal processing (SP). It presents two interrelated perspectives: identifying and
addressing technical limitations, and applying Al tools in practice to improve educational experiences.
Primers are provided on several core technical issues that arise when using Al in educational settings,
including how to ensure fairness and inclusivity, handle hallucinated outputs, and achieve efficient use of
resources. These and other considerations—such as transparency, explainability, and trustworthiness—are
illustrated through the development of an immersive, structured, and reliable “smart textbook.” The article

serves as a resource for researchers and educators seeking to advance Al’s role in engineering education.
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I. INTRODUCTION

Academic disciplines grounded in the physical sciences and mathematics tend to be viewed as among
the most difficult courses of study for students [1], a sentiment to which many educators in these fields
can relate. Characterized by foundational paradigms that are technically rigorous but often abstract,
and sometimes lacking concrete physical intuition, STEM-related disciplines can indeed present unique
educational challenges. One potential explanation comes from cognitive load theory, which suggests
that learning tasks requiring heightened attention tend to demand a higher cognitive load, overloading
“short-term” memory, and ultimately hampering learning effectiveness [2]. This insight suggests that
personalized learning paradigms — wherein a student can learn at their own pace, potentially aided by an
expert “tutor” able to answer intermediate questions — may be among the more appropriate methodologies
for STEM education. Unfortunately, this approach can be largely at odds with more traditional classroom-
based lecture-type learning paradigms which must, by design, adhere to a number of more rigid timing
and instructor availability constraints.

On the other hand, the rapid pace of technological advancement continues to make available a number of
avenues to help address these challenges. Indeed, the large (and continuously-growing) amount of high-
quality digital educational content available online, and the widespread proliferation of computational
resources generally, have ushered in entirely new learning pathways with the potential to reduce or
eliminate some of the barriers to technical education. For example, for many challenging technical
topics, one can now watch specialized, narrated, guided-tour videos on services such as YouTube. Highly
technical questions can be posed by students and answered by a competent community of like-minded
participants on forums such as Stack Exchange or Stack Overflow. Many topics may even have their own
live and active discussion forums on venues like Reddit or Discord. This is occurring even as resources
such as OpenStax serve as repositories for free digital textbooks, and many university educators continue
to create and make freely available their own curated educational content.

Innovative pedagogical strategies such as “flipped classrooms,” in which students digest content outside
of a classroom setting first, and then participate in an interactive classroom-based problem-solving session
afterwards, were perhaps among the earliest forays exploring and evaluating new kinds of technology-
fueled learning in the technical disciplines. To wit, in the past decade numerous studies have established
that flipped classrooms can be effective alternatives to the traditional lecture-based learning paradigm,

including in engineering education, and signal processing (SP) in particular [3]. With the recent advances
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in artificial intelligence (Al) tools however, it is becoming increasingly feasible that the next iterations

on this general theme are more likely to be revolutionary rather than evolutionary.

A. The promise of artificial intelligence

Without a doubt, the emergence of Al in the past few years has been one of the most consequential
technological advances in generations, disrupting the state-of-the-art on numerous fronts. In natural
language processing, for instance, as more modest rule-based language models used even just five years
ago gave way to massively parameterized attention-based large language models (LLMs) with millions,
billions, or even over a trillion parameters new waves of automated “chatbots” have emerged as powerful
multipurpose agents with unprecedented abilities. These tools are now able to correctly answer a broad
range of queries; hold cogent conversations; provide accurate summarizations of articles, web pages,
books, and even health records; and even perform on par with human counterparts on standardized
evaluations across a broad array of disciplines. Further, their capabilities continue to advance at an
astounding rate, thanks in large part to an active worldwide community spanning scientists, industry,
commerce, and hobbyists.

On the audiovisual front, new diffusion-based image and video generation and enhancement tools are
now revolutionizing digital content creation. The natural artistic talent that was traditionally a prerequisite
for success in many of these disciplines is now being superseded by prompt engineering as a neo-artistic
means to an aesthetic end. Indeed, a well-constructed prompt or sequence of prompts now suffices to
generate high-resolution images, such as illustrations or graphics for artistic works, or even high-definition
videos that have found utility in advertising, entertainment, and even film-making.

The potential of deep learning and Al in general has also been unleashed on the scientific front,
to tremendous effect. Al can now perform complicated high-level tasks such as proving mathematical
theorems; predicting protein folding structures; and automating drug discovery, product development, and
clinical trial design. The applications are as pervasive and broad as the scientific disciplines themselves, as
more and more promising near-term and long-term future applications continue to emerge. For instance,
Al is envisioned to be an integral part of the integration, management, and even the SP aspects of 6G
(and beyond) wireless communications systems. It is clear that Al technologies collectively have the
potential to rapidly and simultaneously transform and reshape scientific discovery, the global workforce,
and countless other aspects of the human condition.

In light of this, one can envision a number of exciting potential applications of Al in education and
information dissemination. Consider, for example, a trusted resource capable of automatically preparing

highly-specialized and immersive topic videos, answering highly-specific technical questions across a
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broad range of topics, engaging in cogent conversations to help dispel uncertainties that a learner may
have, or even creating curated (hyper-)personalized text books complete with figures and interactive
demonstrations. This vision may have sounded like science fiction even just a few years ago, but today
is entirely plausible given the potential of Al

With this as motivation, our overall objective for this article is twofold: first, we identify and discuss
several technical challenges in Al that are associated with putting this concept into practice along with the
current state-of-the-art on these fronts, and second, we assess the efficacy of current Al tools in creating
some of this kind of content in a purely automated and frustable way. Our target audience thus includes
both researchers who are interested in technical primers on some of the latent challenges present in
contemporary Al systems, as well as practitioners who aim to utilize Al tools to create their own curated
and reliable educational content. We provide a brief motivation for each of our aims next, and further

elaborate on these aims in the subsequent sections of this article.

B. Outline: Challenges and opportunities

According to a recent global survey exploring public perception on the trustworthiness of Al, ap-
proximately 3 in 5 respondents (61%) were generally “wary about trusting Al systems” [4]. While the
motivations for the distrust expressed in these survey results could be many, the overarching theme
highlights a latent skepticism of the factual reliability of these tools. This can likely be traced, at least in
part and perhaps anecdotally, to the “black box™ or opaque nature of many of these tools. Typically trained
on massive repositories of digital content, and often refined or fine-tuned with user-specific feedback,
many commonly-used Al systems offer an obscure glimpse into the semantic meanings of the massive
collection of parameters underlying the specific operational mechanisms that turn prompts or queries
into useful or actionable outputs. In other words, even though the specific architectures and operational
principles inherent to these systems are well-understood, their sheer scale, and the fact that the training
processes and the final model parameters that ultimately result from them are comparatively less well-
understood, makes it more complicated to derive useful a posteriori insights about their operation that
can be parlayed into quantifiable metrics of trust.

However, that is not to say that these shortcomings should merely be tolerated as unavoidable aspects
intrinsic to Al. On the contrary, the structural aspects associated with some of these challenges give rise
to promising new research directions. In our exposition here we discuss, in detail, some current advances
in dealing with notions of bias, fairness, and privacy; hallucinations; and query efficiency in Al models

in Sections II, III, and IV, respectively.
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Trustworthiness issues seem to not bode well for the immediate use of Al as an educational tool,
either. However, notwithstanding the aforementioned technical challenges, the use of Al for education
in technical disciplines enjoys a unique opportunity that may not be present in other general Al use
cases. Namely, many components of technical education are based fundamentally on foundational (that
is, axiomatic or derived) principles which can be proven, verified, or demonstrated. In this way, Al-
based educational tools created for and tailored to technical disciplines have, at their disposal, rigorous
methods for establishing fundamental, or at the very least, vicarious, legitimacy and credibility. This can
be achieved, for instance, by appealing to rigorous technical foundations or established analytical results
or models, using repeatable experimentation based on sound underlying fundamentals, and endowing
themselves with vicarious credibility from reliable referenced sources (or a combination of these).

While it may be challenging to directly ensure that existing Al models automatically adhere to and
utilize these principles, especially on the consumer end, and without access to model specifics or the
dataset(s) used for training, there are mechanisms by which a user can try to ensure that educational
content produced is reputable and reliable. Among these are explicit generation of learning graphs that
demonstrate viable learning paths through concepts that build on one another to ultimately achieve certain
learning objectives. Additional methods include automatic generation of bibliographies, perhaps with
specific pointers to which parts of the generated content was derived from each source (not unlike how
some search engines have begun augmenting their Al-generated search results), restriction to content
extracted only from reputable sources (measured, e.g., by their number of citations), and simulation-
based modules that demonstrate key learning concepts. We highlight several of these in our “case study”

assessment in Section V. Finally, a few brief concluding remarks are presented in Section VI.

II. PERSONALIZED AND FAIRNESS-AWARE Al FOR EDUCATION

Personalized Al in education has gained significant attention as a tool to enhance learning experiences.
Al-driven educational technologies leverage machine learning algorithms, data analytics, and adaptive
learning strategies to customize instruction to individual student needs. It has been demonstrated that Al-
powered personalized learning can markedly improve student engagement and academic performance. Al
facilitates adaptive learning environments that adjust content delivery based on students’ learning styles,
and performance metrics. Personalized Al tutors can thus provide real-time feedback and customized
learning pathways, leading to improved knowledge retention and motivation among learners. Moreover,
Al has been shown to enhance inclusivity by catering to diverse student needs, including those with

disabilities [5].
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In particular, LLMs contribute to personalized education through various applications, including intelli-
gent tutoring systems, automated feedback generation, and Al-driven content creation. Intelligent tutoring
systems, such as ChatGPT-based learning assistants, have been shown to deliver personalized explanations
and scaffolded problem-solving guidance [6]. Recent efforts have also developed Al-driven assessment
tools that leverage LLMs to analyze student responses, provide formative feedback, and suggest tailored
learning materials [7]. Furthermore, Al-powered analytics are capable of assisting educators in monitoring

student progress and adapting instructional strategies [8].

A. Fairness-aware Al

With its advantages granted, implementing Al in education presents challenges. Potential unfairness in
Al algorithms arises, as improper training data can result in inequitable learning experiences. Multiple
notions of fairness have been advocated, including the group fairness measures of statistical parity, equal
opportunity, equalized odds, and the individual fairness measures of (un)awareness, and counterfactual
fairness; see e.g., [9], [10] for definitions of statistical parity and equal opportunity. Formally speaking,
given a binary sensitive attribute s and two sensitive subgroups Sy, S1, the measures of statistical parity

[9] and equal opportunity [10] are given, respectively, by

Aspi=IP(H=1]s=0)~PG=1]s=1) 1)

Apo=|P(g=1|y=1,5s=0)—Pg=1|y=1,s=1)] 2)

where y denotes the ground-truth label and ¢ denotes the predicted label. In particular, Agp equalizes the
positive rate in two sensitive groups, and thus achieves an equal distribution in the long run, while Ago
considers the ground-truth label, and aims to achieve similar accuracy across different sensitive groups.

Fairness and bias can lead to serious consequences when adopting Al to education systems. For
example, suppose an Al-powered academic advising tool is used to recommend engineering courses and
career paths to students based on their academic performance, interests, and historical data. However,
the Al tool was trained on historical data, where female and minority students were underrepresented
in certain engineering fields, including electrical or mechanical engineering. As a result, Al may rarely
recommend those fields to women, instead steering them toward disciplines such as environmental or
biomedical engineering, thus reinforcing existing gender and diversity gaps in the profession.

A potential remedy for this issue is to introduce fairness-aware techniques — Al tools should be
explicitly designed to recognize and correct for systemic underrepresentation. For example, if the system
sees that a female student has strong math and design skills, it can recommend mechanical or electrical

engineering, even if past data would typically suggest otherwise. Furthermore, interest-driven matching
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could also facilitate fairness in decision-making of Al-guided education systems. Specifically, rather than
relying heavily on demographic or historical data, the Al tool can focus on individual student preferences,
goals, and learning styles to suggest personalized pathways. In addition, bias correction techniques could
be introduced, including i) preprocessing, where the training data is carefully selected to avoid bias
due to historical skewness in training data distributions; ii) in-processing, by introducing fairness-aware
objective functions or neural network architectures to incorporate fairness during model training; and
iii) post-processing, by monitoring the model output and adjusting for skewed patterns to align with
individual preference and need.

It is also worth noting that reliance on Al may lead to reduced human interaction, which is essential
for social and emotional learning. Addressing these challenges requires transparent Al governance and
continuous monitoring of Al-driven educational systems. Hence, future LLMs in education can focus
on advances in Al personalization, explainability, and human-Al collaboration. One potentially viable

approach advocates hybrid educational models, where LLMs support rather than replace educators.

B. Graph-based interpretable Al for education

Al tools for education will aim to enhance model interpretability, but also mitigate biases, and ensure
fairness and inclusivity. Graph-based models present a promising venue for the advancement of personal-
ized Al in education; see, e.g., [1 1] These models leverage the interconnected nature of learning concepts
by representing knowledge as nodes and their relationships as edges, allowing for more nuanced and
context-aware recommendations. Using graphs to map student learning pathways, Al systems can better
understand individual progress, identify conceptual gaps, and suggest personalized learning trajectories.
Additionally, graph neural networks (GNNs) can enhance adaptive learning by dynamically adjusting
content based on a student’s evolving knowledge graph, leading to a more efficient and targeted educa-
tional experience [ 1 2]. Future research should focus on optimizing graph-based models for interpretability,
fairness, and integration with existing Al-driven educational platforms. This will enable incorporation of
various fairness-aware and explainability techniques for learning over graphs, including but not limited
to graph data augmentation, fair graph attention, fairness-aware graph SP, and graph generative models,
see e.g., [13]. Employing (graph) generative Al to train models for education is also a fruitful direction
because graphs provide interpretability in encoding causal relationships, but they can also capture prior
knowledge. Notwithstanging, graph generative models can generate synthetic graph data mimicking those
drawn from the distribution of real-world graphs that can be used for data-hungry LLM training. Graphs

can also alleviate privacy concerns associated with educational data sharing.
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Graph-based causal inference has the potential to enhance curriculum adaptability, optimize assess-
ment strategies, and refine LLM-generated feedback. This is a promising area, where SP education
can significantly benefit from Al; see e.g., [14]. Causal inference allows educators and Al tools to go
beyond second-order correlations, and further capture the generally nonlinear underlying cause-effect
relationships between various educational interventions and student outcomes. By leveraging methods
such as propensity score matching, instrumental variables, and causal graphs, Al-driven educational
platforms can more accurately determine the impact of various teaching strategies and adapt learning
materials accordingly; see e.g., [15]. For instance, it can help identify whether changes in instructional
design (such as incorporating more hands-on labs or simulations) directly improve student performance
in SP courses, or whether a student’s engagement with certain types of feedback leads to improvement
in conceptual understanding. Ultimately, introducing graph and causal reasoning to LLLMs has the poten-
tial to revolutionize adaptive learning, making Al-driven education more transparent (by showing why
certain feedback or content is provided), and interpretable (by making the logic behind personalized

recommendations understandable to both students and educators).

III. TOLERATING HALLUCINATION IN LARGE LANGUAGE MODELS

Using generative models, particularly LLMs, can markedly advance the impact of Al to education.
However, tayloring LLMs for education also presents substantial risks due to their tendency to produce
hallucinations, or text that appears credible but is factually incorrect or entirely fabricated. This issue
is particularly concerning in educational contexts, as misleading information can appear authoritative,
potentially confusing students and reinforcing misconceptions. Such inaccuracies are especially harmful in
fields that depend on precise and verifiable knowledge, such as SP, as well as other disciplines in science,
engineering, medicine, and law. Furthermore, social sciences, where interpretation, critical analysis, and
argumentation are fundamental, are also susceptible to misinformation generated by LLMs. For example,
an early version of GPT-4, when prompted to provide 10 research papers on hallucination reduction,
produced a list in which nine out of ten references were non-existent [16]. This demonstrates the potential
for LLMs to fabricate academic sources, misleading students and researchers who may not verify citations
carefully.

While limited research efforts have explored LLMs’ educational use, the impact of hallucinations in
learning settings is underexplored. In this section, we will survey the literature on hallucination detection
and reduction, focusing on methods that enhance the factual accuracy of model-generated content. We

will further outline perspectives on adapting these methods to heighten their suitability for SP education.
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We categorize existing approaches into three paradigms: fine-tuning, retrieval-augmented generation, and
decoding-based approaches.

To strengthen the educational impact of this survey, we emphasize how different hallucination types
and mitigation strategies affect student learning specifically in SP. We compare these methods in terms of
their ability to handle equations, definitions, algorithmic consistency, and logical reasoning, all of which
are essential for SP pedagogy. The aim is to inform both developers of LLM-based tools and educators
who seek to responsibly integrate these models into technical instruction.

In natural language processing, hallucination refers to having generated text that is either nonsensical
or unfaithful to the given source content. In traditional natural language generation, hallucinations are
categorized into intrinsic and extrinsic types. This definition is widely used in tasks such as text summa-
rization and closed-domain question answering, where models are expected to generate outputs based on a
given input, e.g., summarizing a section from a SP textbook. If a model produces content that contradicts
or deviates from the input, it is classified as an intrinsic hallucination. Conversely, if the generated content
contradicts established world knowledge, it is considered an extrinsic hallucination. In both cases, the
content cannot be verified against either the provided input (intrinsic) or external factual sources (extrinsic)
A recent framework distinguishes between factuality hallucinations and faithfulness hallucinations [17].
A factuality hallucination emerges when the generated content is inconsistent with verifiable real-world
facts, regardless of whether it aligns with the provided input. This type of hallucination is particularly
problematic in domains requiring high factual accuracy. For instance, if an LLM generates an explanation
of a SP algorithm but includes an incorrect equation or misrepresents a fundamental principle, it con-
stitutes a factuality hallucination. Because SP relies on precise, mathematically grounded, and verifiable
information, even minor inaccuracies can introduce critical misunderstandings that hinder both theoretical
learning and practical application.

On the other hand, a faithfulness hallucination refers to cases where the generated content lacks self-
consistency or coherence [17]. This can occur when an LLM produces logically inconsistent statements,
fails to maintain coherence across multiple generated responses, or presents conflicting claims within
the same output. Faithfulness hallucinations are particularly concerning in long-form text generation and
reasoning tasks, where maintaining internal logical consistency is critical. In SP education, this issue
can manifest when a model provides incoherent explanations of algorithms, incorrectly links concepts
across different problems, or generates inconsistent interpretations of signal transformations, leading to
confusion rather than clarity.

Given the major role hallucinations can play in SP education, their reduction is of paramount impor-

tance, and can be organized in three forms: (i) fine-tuning, which directly modifies model parameters;
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(ii) retrieval-augmented generation (RAG), which grounds LLM outputs in external knowledge sources
(e.g., textbooks); and (iii) prompt optimization, which mitigates inference-time without altering model

parameters.

A. Fine-tuning LLMs

A core research effort in mitigating hallucination centers on the limitations inherent to the model
architectures, novel model designs, training objectives, and data specifically tailored to address these
flaws. Fine-tuning strategies address limitations in LLM architectures and training objectives that con-
tribute to hallucinations. To overcome issues with unidirectional representation, a bidirectional autoregres-
sive model, namely BATGPT, has been developed to enhance contextual understanding [18]. Likewise,
encoder-decoder models have merits in optimizing context usage [19].

Pretraining objective refinements also help to mitigate hallucinations; cf. In-Context Pretraining, where
related documents are concatenated in training to promote logical coherence across document bound-
aries [20]. Fine-tuning has also been advocated to address hallucinations arising from belief misalignment,
where models prioritize user approval (sycophancy) over factual accuracy. Synthetic-data intervention was
introduced for fine-tuning LLMs on data where claims are independent of user opinions, thus reducing

sycophantic tendencies [21].

B. Retrieval-augmented generation LLMs

Unlike parameter updates that align a model’s internal beliefs with factuality, retrieval-augmented
generation (RAG) mitigates hallucinations by grounding language model outputs to external knowledge
sources, such as textbooks or research papers. This reduces reliance on internal parametric knowledge
and enhances factual accuracy and consistency—particularly valuable in SP education, where theoretical
and mathematical correctness is crucial.

The simplest form of RAG with LLMs follows a retrieve-and-append approach. By appending retrieved
content as input context, this approach ensures responses are grounded by authoritative sources. In-
Context retrieval augmented language models (RALM) were introduced in [22], which directly prepends
the retrieved documents to the LLM’s input, and thus improves factual consistency. Beyond text-based
retrieval, structured knowledge graphs [23]have been leveraged to enhance reasoning and factual accuracy.

In general, RAG can effectively reduce errors due to factual hallucinations by ensuring LLMs reference
accurate formulas and theoretical explanations. But to mitigate faithfulness in hallucinations requires main-

taining a consistent reasoning chain. In order to strengthen logical consistency, chain-of-thought guided
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retrieval (e.g., [24]) integrates external knowledge per reasoning step. Moreover, iterative frameworks

(e.g., [25]) dynamically refine retrieval, while active RAG re-queries low-confidence outputs [26].

C. Decoding-based approaches

Beyond the model architecture and the knowledge it utilizes — whether parametric internal knowledge or
an external knowledge base, a third critical factor contributing to hallucinations is the decoding algorithm,
which determines how tokens are selected during generation. For instance, temperature-based sampling in
natural language processing introduces randomness by adjusting sampling diversity: a higher temperature
increases variability but also raises the likelihood of hallucinations. Consequently, inference-time strategies
for hallucination reduction aim to refine decoding processes to enhance factual accuracy without requiring

model retraining or external contexts.
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Fig. 1: Reducing hallucinations of LLMs for SP education.
with provided information,
such as SP, where technical explanations must be both accurate and logically sound.

A key challenge in hallucination reduction is context misalignment, where models fail to attribute
information correctly. Context-aware decoding addresses this by modifying the output distribution to
reinforce contextual grounding. This is done by contrastively adjusting token probabilities to prioritize a
given context while minimizing reliance on prior knowledge [27].

Beyond in-place adjustments, post-editing strategies can further enhance context consistency. In a
research-then-revise framework, the model generates initial responses, retrieves supporting evidence, and
refines outputs to resolve inconsistencies [28]. An entity-level hallucination detection system that identifies
hallucinations at both the sentence and entity levels before applying corrections, was developed in [29].
To address softmax limitations in maintaining both diversity and faithfulness, a mixture-of-softmax uses
multiple hidden states to refine probability distributions [30].
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Logical inconsistencies present yet another major source of hallucinations, particularly in multi-step
reasoning tasks. In general, using traditional chain-of-thought (CoT) reasoning enhances intermediate
reasoning coherence, but may still produce misleading rationales. This was addressed with self-consistent
CoT, which uses contrastive decoding and a counterfactual reasoning objective [31] to eliminate reason-
ing shortcuts. Counterfactual and causal preference optimization aligns models toward valid reasoning
chains while avoiding misleading counterfactuals [32]. A structured approach with symbolic chain-of-
thought (SymbCoT) was developed in [33], which translates natural language reasoning into symbolic

representations, and thus enforces step-by-step logical consistency.

D. Summary

In this section, we have introduced the notion of LLM hallucinations, and provided a brief review
of state-of-the-art methods to detect and reduce hallucination in three categories: fine-tuning, retrieval-
augmented generation, and encoding-based approach. These methods can be adapted to improve their
suitability for SP education; see e.g., Fig. 1, where a student in a SP class can get the correct answer of

their question through hallucination-reduced LLMs.

IV. QUERY-EFFICIENT DESIGN OF Al FOR SP EDUCATION

While Al tools offer great potential to revolutionize SP education, judicious design is needed to deliver
the desired goals. For example, Al-enabled prediction of students’ performance, design of intelligent
tutoring system, and detection of plagiarism in tests all hinge on the hyperparameters of the methods
employed. In education content delivery, an instructor seeks to determine the optimal length for video
lessons so as to maximize student engagement measured by watch time and quiz scores. As another
example, to design SP course materials using LL.Ms, judicious selection of the prompt is needed to craft
instructions for LLMs to follow. All these applications can be abstracted as the optimization problem
0. = argmaxg_g 7(0), where O is the feasible set for d-dimensional optimization variables 6, and
r is the objective function that assesses the evaluation results of a specific education strategy. Unlike
other engineering tasks, r here is a “black-box” without analytic expression, which prevents one to adopt
the conventional gradient-based solvers. Further, each evaluation of the design can be extremely time-
and resource-costly. In the prompt optimization task, the process of learning a good prompt requires
interactions with the LLM and evaluating its responses, which incurs high cost, thus rendering naive
grid search infeasible. To address this bandit optimization task in a sample-efficient manner, we will
advocate SP education focused on the Bayesian optimization (BO) framework [34] that actively selects

the strategy to find the optimal design with as few queries as possible. To this end, we will first outline
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the fundamentals of BO, following which we will delineate the prompt optimization task as a case study
of the BO-based design approach. Lastly, we will outline emerging topics to enhance the potential of BO

of various design tasks for SP education.

A. BO basics

In a nutshell, BO relies on a Bayesian surrogate s1. Update p(r(0]Ds), D i= Dy_1U{(0, 2)}

s2. Optimize 6,,+1 = argmax a,,+1(0|D;,)
6co

model for the sought black-box objective 7(8) to

actively select the query points sequentially [34]. Blackbox Evaluation

2n = 1(00) + en

Let Dy, := {6,, 2} _, be the set of evaluated (@)
y

input-output pairs up to slot n, where z, is the _&,
PHOUIDHL pHy P " oy e, e JEREER
noisy version of 7(6,). The selection of 6,1 - F

(b)
is implemented iteratively in two steps: (i) Find
p(r(@)ﬂ)n) using a chosen Surrogate model; and’ Flg 2: BO for design of Al-based SP education with

(i) select 0,41 = arg maxg, a(9|Dn), where (a) Schematic diagram of BO, and (b) objective function

. . evaluation in prompt optimization, which can be used to
the acquisition function (AF) «, usually chosen to PrOmpE op

have closed form, is designed based on p(r(8)[D,.) design intelligent SP textbooks using LLMs (cf. Sec. V).
to balance exploration with exploitation; see also Fig. 2 (a) for an overview of BO iterations.

1) Surrogate models: The surrogate model plays a performance-critical role in BO. A ‘good’ surrogate
model should be able to reason the uncertainty of the learning objective using a limited number of labeled
samples. The Gaussian process (GP) is the most widely used surrogate model in BO, because of its
uncertainty quantification and sample efficiency. The GP model further yields closed-form expression for
the posterior probability density function (pdf). In this context, the unknown learning function is postulated
with a GP prior as r ~ GP(0, x(0, 8")), where k(-, ) is a kernel (covariance) function measuring pairwise
similarity of any two inputs @ and @’. This GP prior induces a joint Gaussian pdf for any n function
evaluations r,, := [r(01),...,7(0,)]" p(r,|0,) = N (r,; 0,, Ky,), where [K,]; j = cov(r(6;),7(0;)) =
%(0;,0;). Value r(6,) is linked with the noisy z, via the Gaussian per-datum conditional likelihood

7(0n)) = N(2;7(0,,),02) (02 is the noise variance), which is conditionally independent across

p(zn

samples. Then Bayes’ rule yields the function posterior pdf as p(r(0)|D,) = N (r(0); 1, (0),02(0
p y y p p D Y »On,

2

where the mean ,(0) and variance o,

(), depending on the kernel function and D,,, have closed-form
expressions. In addition to GPs, the surrogate model can alternatively be represented by Bayesian neural
networks (NNs), random forests, as well as tree-structured Parzen estimators [34].

2) AF design and optimization: Having available the function posterior pdf that offers the uncertainty

values, the next query point 8,1 can be readily selected using off-the-shelf AFs that strike a balance
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between exploration and exploitation. The workhorse AF for BO is based on the so-termed expected
improvement (EI), that chooses the next query point by maximizing the EI over the current best objective
value 75 that is, 0y1 = argmaxg_g E[(r(8) — 7})"|Dy]. Besides EI, other widely used AFs include
the upper confidence bound, Thompson sampling, and entropy search [34]. Given its explicit expression,

the AF can be optimized via the available gradient-based or evolutionary search approaches.

B. Case study on prompt optimization

Here, we will outline the application of BO to the prompt optimization task, which has gained popularity
thanks to its ability to improve the performance of LLMs without parameter fine-tuning, as discussed in
Sect. V. For example, to design an intelligent SP textbook using LLMs as elaborated in the next section,
proper prompts have to be designed to deliver the desired performance. While a few early attempts have
been made towards prompt engineering in white-box/open-source LLMs, the focus here is on the more
powerful black-box LLMs (e.g., ChatGPT), which can only be queried via the aplication programming
interface (API) with no access to the parameters. Specifically, for a black-box LLM f(-) that maps any
input x; along with a prompt 0 to a distribution over the language space, a score function s(-,-) will
be adopted to evaluate the agreement between f(6,x;) and the ground truth y; in the validation set

D)‘é,y- Then, the prompt optimization objective is 7(0) := E(y, ,,,)~py , s(f(6,%¢),y:), where E denotes

XYt
expectation. This is a black-box optimization task with high evaluation cost, rendering it proper for BO.

However, directly optimizing over 6 is formidably challenging because € here is high-dimensional,
and the task is combinatorially complex with complicated structural constraints: in order to be taken by
black-box LLMs, the instruction is a combination of discrete tokens that have to comprise human-readable
and task-relevant sentence(s). To cope with these challenges, the key idea is to optimize a soft prompt
& instead, which is fed to a pre-trained white-box LLM g(-) to yield human-readable and task-relevant
instruction via in-context learning with S exemplars collected in & := {(xs,¥s)}5_, drawn from the
target task. With 0 := ¢(&, &), this combinatorial optimization task is converted to a continuous one.
Nevertheless, the resulting problem is still high-dimensional (e.g., the dimension of £ is thousands for
Vicuna) which is challenging to solve. To address this, the solution is to optimize a lower-dimensional
vector ¢ € R with d’ < d, which will be mapped to a d-dimensional space using a random projection
matrix R € R¥?" as ¢ := R¢. Here, each entry in R is sampled from a normal or uniform distribution.
As argued in [35], this random projection is distance-preserving in the sense that BO in the original
space and dimension-reduced space are consistent. Further, the powerful in-context learning capability of
the white-box LLM can generate expressive and task-relevant instructions given the low-dimensional soft

prompt together with the exemplars £. Hence, the prompt optimization task is recast to a low-dimensional

August 12, 2025 DRAFT



continuous one as: ¢* = arg MAX o r(¢), where () := Ex, 4, )~y , s(f(9(R, ), x¢), y1); see also
Fig. 2(b) for each evaluation of the soft prompt ¢.

To solve this black-box prompt optimization problem in a query-efficient manner, a GP-based BO
approach, termed “InstructZero”, was developed in [36]. The key idea is to design an interpretable kernel
function that can capture the correlation of two output scores through the similarity of the continuous
variables in the low-dimensional space. To proceed, the pairwise correlation of two output scores is
calculated as K; ; = Ey, .py sim(f(0;,%¢), f(05,%¢)), where sim(-, -) refers to the similarity between
the zero-shot predictions on the target task, e.g., exact match, F1, or BLEU score. Let [ : R x R —» R
denote the commonly used GP kernel function (¢, ¢) (e.g., Matern or squared exponential) over the low-
dimensional continuous soft prompts. Given n evaluated pairs Dy, := {(¢,,,™n/)}1_,, the generalized
Nystrom extension is leveraged to obtain the kernel function x(¢, @) := 1} (¢)L;'K,1,(¢") [36].
This kernel preserves the instruction similarity in the soft prompt space: evaluating (-,-) on the soft
prompts [¢q,...,¢,] yields the kernel matrix K. For a new soft prompt ¢, this instruction-coupled
kernel facilitates smooth extrapolation. Thus, by combining the kernels of the two spaces the proposed
kernel aligns BO in the latent space soft prompts with the instruction optimization in the combinatorial
and structured space.

Rather than using GPs to model the mapping from ¢ to r, one can alternatively adopt a NN as the
surrogate model given its expressiveness in modeling non-stationary functions. As with InstructZero, a
pretrained LLM ¢(-) is adopted to transform the low-dimensional soft prompt ¢ to the instruction 8. Then,
a multi-layer perceptron is employed to model the mapping from 6 to r. The key in this NN mapping
is to obtain the uncertainty value 0,,(6) (6 := g(R¢,E)) from the NN training. The UCB-based AF is

leveraged to select the next ¢, that promotes the exploration-exploitation trade-off.

C. Challenges and emerging topics for designing Al-based SP education

While the BO framework bears great potential of automating the design of Al tools for SP education,
several emerging topics remain to be addressed before adapting it to different scenarios.
o Multi-objective (MO) generalization with adaptivity and robustness. The design of Al-based SP edu-
cation is guided by multiple performance metrics (e.g., efficacy, cost, or fairness). The goal here is to
generalize the aforementioned single-objective BO to coordinate such multiple and possibly conflicting
objectives collected in the B x 1 vector r(0) := [r1(0),...,75(0)] . Instead of seeking a unique global
solution, the goal of such MOBO is to acquire a set of Pareto-optimal solutions (Pareto frontier) in as
small number of evaluations as possible. A point is called Pareto optimal if it cannot be improved in any

of the objectives without compromising some other objective. The first attempt towards finding the Pareto
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frontier will be to convert these multiple objectives into a single one using judiciously chosen weights
{wnpte as z, = Zle Wy, p2n,p- For the sake of adaptivity and robustness, one can model the map from
X to ¢, using the recent development of ensemble surrogate models [37], and accordingly design the AF
based on existing rules [34]. To further incorporate user-specific preference constraints over candidate
objectives, novel acquisition rules will be developed building on existing constrained BO setups [34].

o Human-machine collaborative design. While BO-based approaches can automate the design of Al
methods without humans in the loop, there might be scenarios that human feedback or designs are
available. How to judiciously incorporate such information to accelerate this design process entails to be
investigated. In the scenario where the human preference feedback from a pair of designs is available,
one can formulate a preferential BO problem, where, instead of one evaluation point in the plain BO,
a pair of query points {en,o;} will be selected by modeling a latent preference function, given by
h(6,,8,) = r(6,) — r(0,). The problem of prompt optimization for black-box LLMs with human
preference feedback has been investigated in [38], where 7(0) is modeled by a NN. In addition to the
preferential BO framework, we can incorporate prior belief or domain expertise about the property of
the objective function at hand, including the prior distribution of the function optimum or optimizer.
This belief can be regarded as a form of likelihood which, together with observations, allows one to
obtain these samples from the posterior, based on which one can readily form AFs using different rules
to acquire the next point. Further, human feedback/interaction can be inserted during the BO learning
process. Here, the human feedback can be transformed into constraint sets, which can be further leveraged
to guide the hyperparameter selection of the GP model or acquisition design.

o Distributed Al design for SP education. In many cases, multiple universities or organizations want to
collaboratively design Al methods for SP education without sharing potentially sensitive information.
For example, University of Minnesota, University of California and University of Georgia may want
to jointly design LLM-based intelligent SP textbooks. In this context, there are () local agents, each
of which actively collects D}, so as to optimize a global objective function 7(¢). Toward this goal, all
local data must be sent to a central server to learn the nonparametric GP model, which unfortunately
incurs severe privacy concerns and high communication overhead. To address this issue, each agent can
advocate a parametric estimate of the GP model inspired by the random feature approximation, based on
which the local dataset Dj will be acquired. Instead of exchanging raw data, local agents send statistics
of the parametric model to the server for model aggregation, thus preserving raw data privacy. Relying
on different data generation assumptions across agents would provide alternative means of aggregating
the sought statistics. Besides optimizing the aggregate model, communication-efficient exchanges in the

agent-server upload and download operation could be explored. Rather than exchanging posteriors per
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round, for instance, designing a mechanism at local agents to decide whether information exchange
should be initiated, may be a viable strategy. Notably, each agent could use the information reduction
of its parameter vector since its last round as a metric. If the measure of information reduction exceeds
a threshold, communication would be initiated; otherwise, local agents would continue data collection

until the metric exceeds a predetermined threshold.

V. AN EXAMPLE “INTELLIGENT” SP TEXTBOOK

As students increasingly demand more interactive, immersive, and self-paced learning environments,
and as the capabilities of the underlying Al tools continue to improve, it is natural to anticipate a gradual
shift toward advanced Al-enabled adaptive learning systems. In this section, we discuss a proof-of-concept
intelligent textbook for SP created with the help of Generative Al using currently-available resources.
The narrative here provides a more broad, high-level overview of the creation process, and we refer the
reader to the associated website ( [39], dmccreary.github.io/signal-processing) for detailed explanations

of the individual content creation steps.

A. Intelligent Textbook Features
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simplest incarnations, for in-
stance, would be capable of Fig. 3: A Directed Learning Graph for SP Concepts. Different colors categorize

offering basic features such different concepts; for example, yellow circles represent general concepts and

as keyword search, while light purple circles indicate more advanced or specialized concepts.
more advanced versions would comprise adaptive learning pathways, interactive lessons, and even real-
time student guidance. A general-purpose intelligent on-line textbook that can readily adapt to these
varying levels could generally incorporate a number of intriguing structural features including, for

instance, a peer-reviewed list of the core SP concepts with tools for customization, a structured learning

graph illustrating concept dependencies with connections between learning concepts and relevant content
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(that is, learning paths), a search function for efficient content access, and even interactive simulations
(MicroSims) that can be customized using generative Al. Stylistically, these resources should nominally
also include engaging content that may include, for example, historical timelines and storytelling elements,
and could even include up-to-date insights into industry skills required for (SP) professionals. In what
follows we describe several of these more innovative Al-based components in more detail.

1) Learning Graphs: Fig. 3 depicts an excerpt from an example learning graph designed for the SP
course described in [39]. Here, each node represents a concept, while the edges depict dependencies
among the concepts. In such representations generally, foundational concepts are positioned on the left,
with final course objectives and projects on the right. Paths from concepts to outcomes can thus encode
focused learning pathways. Just as learning objectives can vary, so can entire courses — some may focus on
theoretical foundations, for example, while others prioritize hands-on experience with equipment such as
oscilloscopes and signal generators. Customized sets of concepts and learning objectives can collectively
describe a curated learning experience objective. Next we comment on how these personalized learning
objectives are populated with (credible and trusted) content.

2) Learning Paths: Generating high-quality, consistent educational content requires providing Al
models with appropriate context. OpenAl and Anthropic have introduced “Project” features that allow
users to provide a detailed personalized project graph that can be used by the generative Al tools. In other
words, once the key concepts in a SP course have been defined, the educator can upload these concepts
into the project area, and they will be used as ground truth to anchor the LLLM responses, reducing the
need for extensive prompt engineering and improving text quality. Further, BO-based prompt optimization
approaches, outlined in Sec. IV can be leveraged to generate desired course materials in a query-efficient
fashion.

A learning path is an ordered list of concepts required to achieve a learning objective. Educators
often do not expose the underlying concept layer to the students, and students typically engage with
content rather than the underlying concepts. But, by separating “concepts” from “content,” concept lists
can be generated using concepts and their dependencies. Figure 4a outlines this idea, where concepts
are provided as the abstract/hidden (top, green) layer of vertices that depend on other concepts for
their learning order. The lower level depicts the content related to these concepts. By mapping concept
dependencies, Al can dynamically generate personalized and coherent content recommendations. Al and
embedding techniques can readily automate the connections between concepts and content, creating an

adaptive learning experience.
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Finally, intelligent textbooks have the ability to consis-

Concepts
- - = = -
tently monitor student progress by logging their activities — _ g — ]
with consistent standardized application programming inter- - - - AN

faces such as the experience API xAPI (xAPI.com). Learning
events can also be stored in standardized log files such as

the Learning Data Store (LDS) standard. Instructors can then

o
t

use data science tools to analyze these logs to create better Conten
recommendations. Similar to e-commerce recommendation (a)
Frequency Response

systems, Al can suggest content based on student inter-

actions, e.g. if students rate content or an activity highly,

this can be used to influence the content recommendations

for next steps in learning. The system dynamically updates
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recommendations, ensuring students receive content suited to
T8 e— 26 cmm—
Bass Treble

(b)

their learning progress, avoiding recommendation of content
or concepts that a student has already mastered.

3) Micro-Simulations (MicroSims): Generative Al facil- Fig. 4: Panel (a): Visualization of map-

. . . ) ) . . ing concepts to content. Panel (b): Exam-
itates the rapid creation of interactive SP simulations. To- ping P )

ple JavaScript Frequency Response MicroSim

day, with simple text-based prompts, functional JavaScript
Widget.

programs with hundreds of lines of code can be generated

directly, often with minimal refinements. With a library of reference templates and careful prompt
engineering, even complex simulations can generated. Fig. 4b depicts an example of a “widget” that
allows the student to view the changes to a frequency response diagram as (reconfigurable) base and
treble controls are modified. As alluded above, one of the striking aspects of these kinds of interactive
examples is that they can be created by users who have little to no coding experience, and who may not
yet even be fully understand the underlying physical principles being demonstrated. In this way, such

resources truly do enable fully new educational pathways.

B. Prompt Engineering for SP Content Generation

Much of our work in generating the SP proof of concept is creating a workflow of tasks that move from
a high-level course description to generating detailed content, such as the aforementioned MicroSims.
We use a workflow similar to that in Figure 5. It is critical to understand that LLMs are only a model
of language, not an easy-to-query knowledge graph of your course. Intelligent textbook authors create

precise, detailed, high-quality, curated, and peer-reviewed learning graphs that can be used to help students
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efficiently achieve their SP learning objectives. Below we summarize prompt engineering techniques we
have found helpful.
1) Decomposition: The primary skill needed

Intelligent Textbook Generation Workflow

Concept
' Taxonomy .
Concept Concept Learning
Enumeration

Dependencies Graph

to write effective prompts for lengthy textbooks

is learning how to write problem decomposition

Course
Description

2001 Bloom
Taxonomy

prompts. For example, LLMs cannot generate an

entire chapter and all the diagrams in one pass.

Glossary of
Terms

Chapters &
Sections

Word Cloud ‘ FAQ ‘ Summaries

However, an LLM can create the outline of a

chapter and suggest where useful figures and fng‘u',—‘ss,
Diagrams,
Charts

Interactive MicroSims Graphic Novel

Infographics Stories Assessments

charts can be placed in a chapter. When gener-
ating MicroSims, asking an LLM to decompose a Fig. 5: Intelligent Textbook Generating Workflow.
MicroSim into a dozen small JavaScript functions

is often helpful. For example, you might ask it to develop a JavaScript function to display a waveform’s
frequency distribution in a chart and then place that chart in a simulation that executes an FFT in real
time.

2) Providing The Appropriate Context: SP encompasses a vast range of mathematical concepts, from
basic time-domain analysis to advanced machine learning techniques. When crafting prompts for SP appli-
cations, providing sufficient context about the specific subdomain in which one is working is essential. For
example, one would distinguish between digital SP, analog SP, biomedical SP, or communications SP, as
each has unique terminology, assumptions, and methodologies. Similarly, one needs to start their prompts
by clearly defining the signal type that is being used, e.g., continuous-time or discrete-time signals,
deterministic or stochastic, etc. These fundamental characteristics dramatically influence the appropriate
processing techniques and mathematical frameworks.

3) Mathematical Precision and Notation: SP is inherently mathematical, so the prompts should be
precise about the mathematical notation and conventions that needs to be displayed in the text. In our
case study, we use the LaTeX standards to represent equations, but we find many variations even within
the LaTeX standards. So, our prompts also include rules for generating LaTeX and samples of other
equations we prefer. For example, after each equation, we use a “where” block of text describing each
variable in the equation and its definition consistent with the definitions in our glossary of terms.

4) Contextualizing Application Domains: Different application domains in SP have evolved unique
vocabularies and standard practices. Audio SP emphasizes perceptual quality metrics, while biomedical
SP focuses on physiological relevance and clinical validation. Communications SP prioritizes channel

modeling and error rates, while image processing emphasizes spatial relationships and visual quality.
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Thus, it is important to frame prompts within the appropriate application context, instead of asking
generically about “filtering techniques,” specify “low-latency audio filtering for real-time guitar effects
processing” or “adaptive filtering for ECG artifact removal in noisy clinical environments.” This contextual
framing helps the LLM provide more relevant and practical responses.

5) Prompts for Generating Sample Code: Python has become the de facto language of data science,
deep learning, and many SP applications. The vast number of open-source Python libraries allows
generative Al to quickly create high-quality code that solves complex problems in just a few lines.
We have found Python programs to be of higher quality than proprietary languages because LLMs have
more sample programs available on the public web with which to be trained. Python also has the added
advantage that many LLM tools now include the ability to not only generate Python code, but these
tools also execute the code in a virtual machine and return the results of data analysis in graphic images
directly in the LLM tool.

6) Generating JavaScript MicroSims: Our SP proof-of-concept textbook uses JavaScript and pS5.js
(p5js.org) to create complex interactive charts and execute complex simulations directly within the
browser. Using JavaScript makes it easy for students with a web browser on their computer or cell phone
to execute our examples. The pS.js library is ideal for generating interactive SP simulations because of
its vast code base and consistent support by a wide community of developers.

As of June 2025, Anthropic’s Claude web application now executes p5.js examples directly in the
development tool that runs in a browser. This direct execution allows one to enter prompts on the left
side of the browser and quickly view layout changes without copying and pasting the generated code
into the pj.js editing tool. This small change makes it even easier for non-technical staff to generate
MicroSims and add interactivity to static diagrams.

7) Using Educational Theory in Prompts: Educational theory provides detailed knowledge about
techniques for slowly building a progressive understanding of complex concepts. Great textbooks start
with fundamental concepts before moving to advanced topics. When generating lesson plans or requesting
code examples or simulations, it is important to specify the intended audience level and what concepts in
the learning graph they have recently mastered. Providing this context to an LLM is one of the best ways
to create effective learning. It is also helpful to request multiple explanation approaches for complex
concepts. Many students learn best when they are first given a metaphor or simulation that they have a
concrete understanding of. Prompts that ask for a mix of metaphors, stories, mathematical derivations,
and intuitive explanations are helpful. Visual analogies can be particularly powerful for SP concepts—the
relationship between time and frequency domains, the concept of convolution, or the meaning of phase

relationships.

August 12, 2025 DRAFT


p5js.org

22

C. Verification and Validation Strategies

Although generative AI’s task length capabilities dou-
£ FFT in Microcontrollers

ble approximately every seven months, there are still no ¥ e

guarantees that generated educational content will be more

effective than a well-written static paper textbook. There
are techniques one can use various LLMs to cross-check

the veracity of your generated content with various LLMs.

Cross-checking can be as simple as having one LLM cross-

check the content generated by another. A judicious approach
Fig. 6: Visualization: Reference Veracity of

might be to have a first draft of a chapter generated by a

AT Sources.
smaller LLM such as DeepSeek R1 running, e.g., on a local
consumer-grade GPU. One can then upload this content to a larger language model for verification. These
larger models have a higher cost per token analyzed. Using established software packages as reference
implementations (or to implement intermediate computations) can also help improve the viability of
the content produced. MATLAB’s SP Toolbox, Python’s SciPy, and GNU Radio provide well-tested

implementations of standard algorithms.

D. Ways to Increase the Quality of References and Citations

One additional challenge that LLMs have had in the past is that they “fabricated” plausible citations
that do not actually exist. In our proof-of-concept site, we provide examples of generative Al prompts
that find the most relevant papers to a specific SP topic and then generate a citation graph for these
papers to find the most influential papers. We also demonstrate a MicroSim that allows the use of graph

algorithms, such as PageRank, to find the most credible papers for a given topic; as in Fig. 6.

E. (Near-)Future Extensions

While MicroSims are one currently-realizable learning object type that can be dynamically ordered
in a knowledge graph for manipulation and updating to enhance learning and teaching, other generative
media types could also be used in learning and teaching SP. Interactive multi-modal learning objects
could include different types of content that may be similarly auto-generated, including:

1) Projections and Prototypes: 2.5 and 3D models using JavaScript libraries like three.js (threejs.org).

2) Sound Simulations: Al generated sounds to illustrate audio processing and filtering concepts.

3) Visual Storytelling: Al-generated visualizations and interactive plots enhance content engagement,

and in the future, will likely even automatically produce curated educational videos. Our proof of
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concept site demonstrates the use of Generative Al to create entertaining graphic novel-types stories

from the history of SP.

4) Hands On Projects: We have also extended the concept of intelligent textbooks to include sample

hands on projects such as building a spectrum analyzer with a display using a Raspberry Pi Pico 2.

We (again) encourage readers to visit the companion proof-of-concept website [39] for additional details.

VI. SUMMARY

In this paper, we considered the use of generative Al tools in designing and augmenting signal

processing education, examining several selected technical challenges and an example practical use case.

Perhaps the essential take-away message here should be that while generative Al tools are poised to have

a significant impact on signal processing education via various avenues, ongoing foundational work and

prudence in practical usages are necessary to address Al’s various shortcomings, and in order to ensure

its fair, responsible, and trustworthy utilization.
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