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Abstract. In the event of the COVID-19 outbreak, prompt and accurate diagnosis
became critical for both public health interventions and efficient patient care.
COVID-19 is a disease that affects the upper and lower respiratory tract and
can have fatal consequences. Early diagnosis is crucial for effective treatment
and containment. Studies have shown that COVID-19 manifests in the chest of
infected patients, prompting the computer vision community to explore the use
of CT scans and deep learning-based solutions for diagnosis. However, efforts to
implement explainable artificial intelligence (AI) for interpreting deep learning
models in COVID-19 recognition are still scarce. In this paper, we apply SHAP
(Shapley Additive Explanations) and LIME (Local Interpretable Model- agnostic
Explanations) techniques to enhance the interpretability of our developed CNN
that used to detect COVID-19 from CT scan images. The dataset is consist of
4649 images, of which 2476 are from patients with COVID-19 and 2173 are from
patients without COVID-19 was used in our implementation. We applied SHAP
and LIME techniques to identify important features of COVID-19 images, which

even improved the performance of our original model. The comparison results with
other baseline models show the robustness of our proposed model and identified
important features. We also find that the explainable ability of the SHAP and
LIME techniques also depends on its model prediction accuracy.
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1 Introduction

The COVID-19 pandemic has underscored the critical importance of accurate and timely
medical diagnostics. Advanced machine learning techniques, particularly deep learning
models, have shown immense potential in aiding the diagnosis of COVID-19 from med-
ical imaging, such as chest X-rays and CT scans [1, 2]. However, the complexity of these
models often renders them as “black boxes,” where the decision-making process is not
transparent to medical practitioners. This lack of interpretability can hinder clinical trust
and adoption, as understanding the rationale behind a model’s predictions is crucial in
the medical domain [3].

To address this challenge, explainable artificial intelligence (XAI) techniques have
been developed to provide insights into the decision-making processes of complex mod-
els. Among these techniques, SHAP (SHapley Additive exPlanations) and LIME (Local
Interpretable Model-agnostic Explanations) have gained prominence [3, 4]. SHAP lever-
ages cooperative game theory to attribute the contribution of each feature towards the
model’s prediction, ensuring consistency and local accuracy. LIME, on the other hand,
approximates the original model locally with an interpretable model, thereby providing
insights into individual predictions.

The application of SHAP and LIME to COVID-19 imaging aims to eluci- date
how deep learning models derive their conclusions, highlighting the critical features in
medical images that drive diagnostic decisions. By doing so, these techniques not only
enhance model transparency but also provide a valuable tool for medical professionals
to validate and trust machine learning outputs.

The contributions and novelty of this paper are as follows. First, we built and fine-
tuned our own developed COVID-CNN model to accurately detect COVID- 19 from CT
scan images. Second, we applied XAl techniques, such as SHAP and LIME to identify
important features that contributed to the model prediction. Third, we rerun our COVID-
CNN model on identified COVID-19 images from XAI techniques and achieve higher
prediction accuracy than the original CNN model. Fourth, we compared our CNN model
performance with other baseline models, such as VGG-16, VGG-19, Deep-COVID,
Deep-COVID DeteCT models. Fifth, we found out although SHAP and LIME identify
important features from the input data for the model prediction, the explainable ability
of those techniques also depend on model prediction accuracy. If model performance
is lower on given dataset, even if we use XAl techniques to identify important features
from the input data, that might not be useful and accurate for our prediction task.

The organization of our paper is as follows. In Sect. 2, we review previous related
works using model-agnostic techniques to identify relevant features for COVID-19 pre-
dictions. Section 3 covers the dataset and provides details on our developed CNN model.
In Sect. 4, we apply SHAP and LIME techniques to interpret the model. Section 5 presents
the results and Sect. 6 concludes the paper.
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2 Related Work

Recent advancements in machine learning (ML) and deep learning (DL) have signifi-
cantly enhanced computer-aided medical diagnosis, particularly in the analysis of Chest-
XR images and CT scans for detecting diseases like COVID-19, pneumonia, and tuber-
culosis (TB). This overview delves into the latest research findings, focusing on the
utilization of medical image analysis, particularly Chest- XR images, to diagnose these
critical illnesses.

According to [5], Chest X-ray (CXR) images are considered useful in diagnos-
ing pulmonary disorders such as COVID-19, Pneumonia, and Tuberculosis (TB). A
deep learning (DL) model was proposed to enhance disease recognition accuracy while
maintaining effective feature extraction. Based on publicly available dataset comprising
7132 CXR images, their model achieved high average test accuracy of 94.31% with
a margin of error of about 1.01% whiles a validation accuracy of 94.54% also with a
margin of error of about 1.33% through 10-fold cross- validation. Interpretation of their
results was facilitated by Gradient-weighted Class Activation Mapping (Grad-CAM),
Local Interpretable Model-agnostic Explanation (LIME) and SHapley Additive exPlana-
tion (SHAP). These techniques provided insights into the DL model’s decision-making
process. Inaddition, they as well made use of eXplainable Artificial Intelligence (XAI)
techniques to consolidate and validate model-generated explanations, offering clinicians
and medical professionals coherent insights into disease detection and categorization of
COVID-19, Pneumonia and Tuberculosis. Authors in [6] also proposed and compared
the LIME and SHAP techniques to enhance the interpretation of COVID diagnosis
through X-ray scans. In their findings, they first applied SqueezeNet to recognise pneu-
monia, COVID-19 and normal lung image. Through SqueezeNet, an 84.34% recognition
rate success in testing accuracy was obtained. Shapley Additive Explanation (SHAP)
and Local Interpretable Model-Agnostic Explanations (LIME) were used to explain and
interpret how Squeezenet achieved classification in order to gain a better understanding
of what the network observes in relation to a particular task, namely image classification.
Their results indicated LIME and SHAP area able to indicate the area of interest and as
well help to improve the transparency and the interpretability of the Squeezenet model.

Ashan et al. [7] conducted to detect COVID 19 patients from CXR and CT images
and implemented six deep CNN learning models, including VGG16, MobileNetV2,
InceptionResNetV2, ResNet50, ResNet101 and VGG19 using 400 CXR and 400 CT
images. Achieving an average accuracy of 82.94% on a dataset with CT images and
93.94% on a dataset with CXR images, MobileNetV2 outweigh NasNetMobile. The
overall prediction was explained by applying the heatmap of class activation and ana-
lyzing the feature extraction implementing LIME. Manjurul et al. [8] achieved high
performance on VGG16 model (98.5 &+ 1.19%) among six different Deep CNN mod-
els: VGG16, MobileNetV2, InceptionResNetV2, ResNet50, ResNet101 and VGG19
with mixed dataset of CT and X-ray images to classify COVID-19 patients. Results
were further explained with LIME. Regarding Sarp et al. [9], they proposed (XAI)
technique to detect and interpret COVID-19 positive CXR images. Six deep learn-
ing models i.e. VGG16, VGG19, ResNet, InceptionV3, COVID-Net and CORODET
were implemented using public dataset collected on GitHub. Their models achieved
an accuracy of 96%, 96%, 98%, 91%, 99% and 98% respectively. LIME and SHAP
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were applied of these models to give a better understanding of the prediction accuracies.
To ga,car et al. [10] approach involved three key steps. Firstly, a preprocessing tech-
nique to include Fourier Transform and Gradient-weighted Class Activation Mapping
to the input images. Secondly, type-based activation sets were generated using three
ResNet models before employing the Softmax method. Lastly, the most effective type-
based activations are selected using the local interpretable model-agnostic explanations
method and re-classified using Softmax. The proposed approach achieved an overall
accuracy success of 99.15% across a dataset containing three types of image sets, and
a remarkable 99.62% accuracy success specifically for COVID-19 findings. Authors in
[11] proposed a comprehensive method for enhancing the interpretability of predictions
generated by Convolutional Neural Networks (CNNs) in medical imaging, leveraging
Explainable Artificial Intelligence (XAI) techniques. Their approach integrates various
techniques, including LIME (Local Interpretable Model Agnostic Explanations), inte-
grated gradients, Anchors and SHAP (Shapley Additive Explanations). Shapley values
was used to explain the decisions of their model. Their proposed CNN model achieved
a testing accuracy of 90%. XAl techniques was proposed on Deep Learning model for
predicting brain tumour status using MRI images data [12]. Their findings presented
an interpretable deep learning model for predicting brain tumor types (meningioma,
glioma, pituitary) from MRI images. Using a dual-input CNN with Gaussian noise, their
model achieved a 94.64% training accuracy and an overall testing accuracy of 85.37%.
LIME and SHAP were employed for local and global interpretability to have a clear
understanding of their model’s prediction. The authors in [13] proposed an explainable
framework for detecting spam images using Convolutional Neural Network (CNN) algo-
rithms and Explainable Artificial Intelligence (XAI) algorithms. In their findings their
proposed CNN model was used to classify image spam respectively whereas the post-hoc
XAl techniques including Local Interpretable Model Agnostic Explanation (LIME) and
Shapley Additive Explanations (SHAP) were deployed to provide explanations for the
decisions that the black-box CNN models made about spam image detection. Their pro-
posed CNN model achieved a training accuracy of 91% on 6636 image dataset including
spam images and normal images collected publicly.

3 Dataset and Our CNN Model

In this study, we fine-tune our own developed convolutional neural network (CNN) model
for COVID-19 prediction from CT scan images [14]. Then we utilize SHAP (SHapley
Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations)
for our CNN’s model interpretability. SHAP values are computed for each pixel to
determine their contribution to the model’s output, offering a comprehensive global
explanation to the model’s predictions. On the other hand, LIME is being leveraged to
generate local explanations by perturbing individual images and fitting an interpretable
model to approximate the CNN’s behavior around each prediction. This results in the
identification of superpixels that significantly influence the model’s decision.
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3.1 The Dataset

The training dataset utilized in this paper was sourced from radiology centers at teaching
hospitals in S7ao Paulo, Brazil [15], and Tehran, Iran [16]. These datasets were combined
to form a balanced dataset, designated as “Dataset Mod Dev” for model development. An
additional dataset, “Dataset Mod Gen,” was compiled from various countries including
Russia, China, Italy, Turkey, and Iran [17] to evaluate the model’s generalization ability.
Dataset Mod Dev contains 4,649 images, with 2,476 from COVID-19 patients and 2,173
from non- COVID-19 patients. Dataset Mod Gen, a more diverse dataset previously
used in [17], includes 14,486 images, comprising 7,593 COVID-19 cases and 6,893
non-COVID-19 cases (Fig. 1).

Fig. 1. Example CT-scan of patients with positive COVID-19 in the top row and negative COVID-
19 cases in the bottom row.

3.2 The Proposed CNN Model

The COVID-CNN model as shown in Fig. 2 from [14] was used for the application
of explainable Al for COVID-19 detection from CT scan images. The COVID-CNN
model was specifically designed for grayscale images with dimensions of 300 x 300 x
1. The model’s processing begins with 116 feature maps (filters) in the first convolutional
layer, which has a kernel size of 8 x 8 and a stride of 22. The output from this initial
convolution has dimensions of 97 x 97 x 116. Following the convolutional layer, a
pooling layer with a stride of 2 x 2 was applied to downsample the feature maps, reducing
the spatial dimensions while preserving key information from the previous layer. These
steps were essential for capturing localized and hierarchical patterns in the images. Batch
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normalization was also applied to the first convolutional layer to stabilize the training
process. The second convolutional layer, which also includes batch normalization and
max-pooling, mirrors the parameters of the first layer, using 116 filters, an 8 x 8 kernel,
and a 2 x 2 stride. This results in an output with dimensions of 10 x 10 x 116. This
serves as the input to the fully connected layer. The fully connected layer consists of four
layers with 362, 184, 78, and 12 neurons, respectively. The ReLU activation function
was used in these layers, and dropout regularization applied to prevent overfitting. For
the final layer of the COVID- CNN model, the output layer with a softmax activation
function and a size of 2 was used for classifying the input image. The model’s optimal
hyperparameters included a learning rate of 0.001, the ADAM optimizer, and categorical
cross-entropy as the loss function.

_Augmented
Tl (Giopud) g,

Kernel size: 8x8
Stride: 2x2

Image (input) "

Fully Connected Layer

Filers: 116
{ernel size: 8x8

2t Flattened
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Fig. 2. COVID-CNN model architecture for COVID-19 detection [14].

4 Methodology

Interpretability of Convolutional Neural Network (CNN) on image data has grown to
be a critical problem, particularly in high-stakes industries like healthcare, banking, and
autonomous systems where decision-making transparency is essential. Notwithstand-
ing their superior performance and accuracy, CNNs are frequently referred to as “black
boxes”. The term “black box” is mainly because of CNN’s opaque and complicated
internal workings that makes it challenging to determine which inputs causes which out-
puts. This lack of interpretability raises challenges in validating, trusting, and deploying
CNN models in scenarios where understanding the rationale behind a prediction is as
important as the prediction itself. Advanced model interpretability techniques like SHAP
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(SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Expla-
nations) are used to improve the transparency of CNNs. SHAP leverages game-theoretic
principles to assign importance scores to individual regions of an image, offering a
global perspective on how each region contributes to the model’s overall prediction.
This method quantifies the impact of each pixel or superpixel, thereby elucidating the
model’s decision-making process in a comprehensive manner. Conversely, LIME pro-
vides local interpretability by approximating the CNN’s behavior with an interpretable
surrogate model, specifically tailored to each input image. This approach highlights the
critical regions that most significantly influenced the CNN’s output, allowing for a more
granular understanding of the model’s reasoning on a per-instance basis.

4.1 SHAP

SHAP (SHapley Additive exPlanations) is a technique in machine learning for explain-
ing the output of a model by attributing the contribution of each feature to the final
prediction. SHAP values are based on cooperative game theory [4]. The primary objec-
tive of SHAP values is to provide interpretable and consistent explanations for complex
models, thereby enhancing model transparency and trustworthiness. To be able to have
much better understanding to which features are positively affecting our models’ pre-
diction, we apply the SHAP library to our image data. In this paper, SHAP is used to
identify and visualize the contribution of individual pixels or region of our images to the
model’s prediction. Regions with higher SHAP values are considered important regions.
From [4], SHAP can be mathematically expressed as:

ISIIANT = IS = D! .
¢ = Z V! FES UL} —1(S) (D
SCN\{i}

where: ¢; is the SHAP value for feature i, N is the set of all features, S is a subset of
features excluding i, f (S) is the model’s prediction based on the subset S, IS is the size
of subset S, and IV is the total number of features that are not included in set S

valy(S) = / dPygs — RIFCO)] (4] @)
f e Xp)

4.2 LIME

For image classification tasks, LIME generates local explanations by systematically
perturbing the input image and analyzing the model’s response to these perturbations
to identify which regions of the image are most influential in the model’s prediction.
LIME for images functions differently compared to its application in tabular or text data.
In images, instead of perturbing individual pixels which would have little effect since
predictions are typically influenced by larger regions, LIME segments the image into
superpixels. A superpixel is a group of connected pixels that share similar properties,
such as color or texture. Perturbations are then introduced by randomly masking or
turning off these superpixels, often replacing them with a neutral value.
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Once the perturbed images are created, the original model is queried to generate pre-
dictions for each modified instance. By correlating how the presence or absence of certain
superpixels affects the model’s output, LIME constructs a linear surrogate model to esti-
mate the contribution of each superpixel to the final prediction. This locally interpretable
model assigns importance scores to superpixels, allowing for a clear visualization of the
most critical regions that influenced the model’s decision. The use of superpixels ensures
that explanations are meaningful, as they capture the collective contribution of spatially
coherent regions rather than individual pixels, which might not independently influence
the outcome. The entire process of LIME on images can be expressed as:

arg min Y7, ) () — 2 + 2(6) )
i=1

where:

— f (x)): Prediction of the black-box model for the perturbed image x.

- g(z](; w): Prediction of the surrogate model (linear model) for the binary vector
representation zjf of the perturbed image with weights w.

— m(x)): Kernel function (Proximity score) that gives higher weights to perturbed
images close to the original image x.

— $£2(g): Regularization term to enforce sparsity in the surrogate model for interpretabil-

1ty.
4.3 Intersection Between LIME and SHAP

Both LIME and SHAP techniques aim is to provide insights into the model’s decision-
making process, but they do so from different perspectives and through different mech-
anisms. In image analysis, the intersection of LIME and SHAP entails integrating their
advantages to produce a more reliable interpretation to a model’s unique prediction.
Consistent patterns of feature importance can be found by comparing the explanations
offered by LIME and SHAP. This increases confidence in the interpretation of the model.
For example, when the same superpixels or regions in an image are frequently highlighted
by both LIME and SHAP as being crucial for a prediction, it strengthens the confidence
in the significance of those regions.

5 Results and Discussion

As shown in Fig. 3, the application of the SHAP library to the COVID-19 CT scan data
reveals the specific regions and features that exert the greatest influence on the model’s
prediction. SHAP quantifies the contribution of each region of our image data to the
model’s prediction by assigning Shapley values. These values indicate how much each
region adds to or detracts from the classification decision. In essence, SHAP breaks down
the CNN’s prediction into parts, showing which regions have the most significant positive
or negative impact on the final output. This detailed breakdown allows for a “region-
level” understanding of the model’s inner workings. By highlighting the most influential
areas, SHAP helps us see exactly what the CNN is focusing on. The highlighted regions in



Author Proof

Explainable Convolutional Neural Network for COVID-19 Detection 9

S8 ol ok

I | | L
-8 -6 -4 -2 0 2 4 6 8
SHAP value le-11

Fig. 3. CT scan images with SHAP explanations for COVID-19 classification, highlighting blue
regions as less important and red regions as important for increasing the likelihood of a positive
prediction.

red represent the areas that have the most significant influence on the CNN’s predictions,
indicating that these regions are critical for the model’s decision-making process. In
contrast, the blue-highlighted areas correspond to regions that have little to no impact
on the model’s prediction, suggesting that they are not relevant for the classification
outcome.

Figure 5 demonstrates the application of LIME (Local Interpretable Modelagnostic
Explanations) on our COVID-19 CT scan images. The yellow contours overlaid on the
CT images highlight the regions that are of critical importance to the model’s prediction.
Specifically, LIME enables identify localized areas within the images that contributed
the most to the model’s decision.

Fig. 4. CT scan slices after applying SHAP, highlighting the regions most critical to the model’s
prediction.

After thoroughly identifying the most important features using SHAP along with
LIME, we carefully modified the original CT scan images by masking out the remarkably
non important regions. The areas carefully masked in black, per Fig. 4, clearly show the
important regions SHAP identified. Afterward, the CNN model was retrained with the
generated images that only had the most important features. As presented in Table 1, we
applied SHAP and LIME, to the entire dataset of both positive and negative COVID-19
images. The generated images were then divided into training and testing datasets. After
training our model on these processed images, the SHAP identified important regions
yielded an accuracy of 96.13%, while the LIME identified regions achieved an accuracy
of 95.47%. The intersection of both SHAP and LIME-identified regions recorded an
accuracy of 89.78%. These results underscore the model’s reliance on the key regions
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Fig. 5. CT scan images displaying LIME-generated explanations for COVID-19 classification,
where yellow contours highlight key regions identified as significant contributors to the model’s
prediction.

for decision-making, as removing non-influential features did not significantly impact
its performance. This further validates the effectiveness of XAl-based feature selection
in enhancing model interpretability without compromising predictive accuracy.

5.1 Comparison Results

‘We compared our results with other models for the detection of COVID-19 from CT scan
images such as Deep COVID DeteCT [18], VGG16 [19], VGG19 [19] and and Deep-
COVID [16]. These Deep COVID DeteCT [18] and Deep-COVID [16] models utilized
famous InceptionV3 [18] and NASNetLarge [16] pre-trained weights techniques and
demonstrated substantial testing accuracy when trained on the dataset, mod dev dataset.
However, applying these interpretability techniques, SHAP and LIME showed a decline
in their accuracies. From Table 1, we can see that our COVID-CNN model [14] used for
the prediction of COVID-19 CT scans performed better compared with other existing
models when SHAP, LIME, and the intersection between both techniques were applied.
This demonstrates the effectiveness of interpretability in highlighting important features,
thereby optimizing model accuracy and reliability.

Table 1. Comparison results with existing models

Models SHAP LIME Intersection All Regions

Accuracy | F1-Score | Accuracy | F1-Score | Accuracy | F1-Score | Accuracy | F1-Score
% % % %

COVID-CNN | 96.13 96.13 95.47 95.47 89.18 88.72 97.85 97.85
(Ours)

VGGI19 [19] |90.37 90.31 93.83 93.82 84.24 84.21 88.55 87.42
VGG16 [19] |92.26 91.80 89.94 89.40 76.43 76.10 87.12 86.43

Deep COVID | 86.23 69.99 69.42 71.49 70.39 70.21 70.89 70.08
DeteCT [18]

Deep-COVID | 74.62 7440 | 7825 7760 | 7231 7100 | 95.59 84.67
[16]
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5.2 Evaluation Metrics

To evaluate the effectiveness of our model, Accuracy, Recall, Precision and the F1-score
are used [20]. Accuracy represents the proportion of correct predictions out of the total
predictions made. The F1-score, calculated as the harmonic mean of precision and recall,
ensures a balance between precision which is the correctness of positive predictions and
recall applies to the model’s ability to identify all positive instances. These metrics offer
a comprehensive evaluation of the model’s performance, as illustrated in Eq. 4 [21].

TP + TN
Accuracy =
TP + TN + FP + FN
. TP
Precision = ——
TP + FP
TP
Recall = ——
TP + FN
2 x Precision x Recall
F1 - score = “4)

Precision + Recall

500
400
400 =0

8
300
300 -250
d

-200

-200
-150

3.8e+02 - 31
L5 100
-50

Covid Non-Covid Covid Non-Covid
Actual_Labels Actual_Labels

Covid
Covid

Predicted_Labels
Predicted_Labels

Non-Covid
Non-Covid

(a) Confusion Matrix for SHAP Generated (b) Confusion Matrix for LIME Generated
4649 Images 4649 Images

400
350
19
- 300
250
-200
-150
- 8
-100
-50

Covid Non-Covid
Actual_Labels

Covid

Predicted_Labels

Non-Covid

(¢) Confusion Matrix for Intersection be-
tween SHAP and LIME on 4649 Generated
Images

Fig. 6. Confusion Matrix for SHAP, LIME, and Intersection Using our CNN Model
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6 Conclusion

In this paper, we applied explainable Al techniques SHAP and LIME to our developed
COVID-CNN model [14] specifically developed to predict COVID-19 from CT scan
images. After applying SHAP and LIME to our adopted model, the results provide
valuable insights into the model’s decision-making process. SHAP captured feature
importance, demonstrating how the model focused heavily on specific regions where
COVID-19 abnormalities typically occur. LIME, on the other hand, offered local inter-
pretability by highlighting features critical to the predictions. The intersection features
between SHAP and LIME confirmed consistent feature attributions, demonstrating fea-
tures that are consistent to both interpretability techniques. Using all images of important
regions identified by both SHAP and LIME, we retrained our adopted model using only
the important regions masking out the non-important regions. Retraining on SHAP iden-
tified regions resulted in a 96.13% accuracy, while LIME based regions yielded 95.47%
accuracy. This demonstrated how focusing only on relevant features reduces overfitting
and model complexity. Intersection between both SHAP and LIME achieved an accuracy
of 89.18%. The model retrained on SHAP identified regions achieved a prediction accu-
racy of 49.14% when tested on the original images, while the model retrained on LIME
based regions attained an accuracy of 50.54%. This depends on setting a threshold € to
determine which SHAP values are considered significant. We set € equal to or greater
than le-5 for both SHAP and LIME to filter out insignificant feature contributions.

Although SHAP and LIME identify important features from the input data for
the model prediction, the explainable ability of those techniques also depend on
model prediction accuracy. If model performance is lower on given dataset, even
if we use XAI techniques to identify important features from the input data, that
might not be useful and accurate. All implementations developed in this paper
can be found at: https://github.com/kobinasam/Explainable-Convolutional-Neural-Net
work-for-COVID-19-Images (Fig. 6).

Acknowledgment. This work is supported by the U.S. National Science Foundation under award
2434487 and U.S. National Institutes of Health U24 HG013013. We thank anonymous reviewers
for their insightful comments and inputs.

References

1. Ng, M.-Y,, et al.: Imaging profile of the covid-19 infection: radiologic findings and literature
review. Radiol. Cardiothorac. Imaging 2(1), €200034 (2020)

2. Wang,L.,Lin, Z.Q., Wong, A.: Covid-net: a tailored deep convolutional neural network design
for detection of covid-19 cases from chest x-ray images. Sci. Rep. 10(1), 19549 (2020)

3. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: explaining the predictions
of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM, pp. 1135-1144, 2016

4. Lundberg, S.M., Lee, S.-1.: A unified approach to interpreting model predictions. In: Advances
in Neural Information Processing Systems, NIPS, pp. 4765-4774, 2017

5. Bhandari, M., Shahi, T.B., Siku, B., Neupane, A.: Explanatory classification of cxr images
into covid-19, pneumonia and tuberculosis using deep learning and xai. Comput. Biol. Med.
150, 106156 (2022)


https://github.com/kobinasam/Explainable-Convolutional-Neural-Network-for-COVID-19-Images
https://github.com/kobinasam/Explainable-Convolutional-Neural-Network-for-COVID-19-Images

Author Proof

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Explainable Convolutional Neural Network for COVID-19 Detection 13

. Ong, J.H., Goh, K.M., Lim, L.L.: Comparative analysis of explainable artificial intelligence

for covid-19 diagnosis on cxr image. In: 2021 IEEE International Conference on Signal and
Image Processing Applications (ICSIPA), pp. 185-190, 2021

. Ahsan, M.M., Gupta, K.D., Islam, M.M., Sen, S., Rahman, M.L., Shakhawat Hossain, M.:

Covid-19 symptoms detection based on nasnetmobile with explainable ai using various
imaging modalities. Mach. Learn. Knowl. Extr. 2(4), 490-504 (2020)

. Ahsan, M.M., Nazim, R., Siddique, Z., Huebner, P.: Detection of covid-19 patients from ct

scan and chest x-ray data using modified mobilenetv2 and lime. Healthcare 9(9) (2021)

. Sarp, S., et al.: An xai approach for covid-19 detection using transfer learning with x-ray

images, Heliyon (2023)

Togacar, M., Muzoglu, N., Ergen, B., Yarman, B.S.B., Halefoglu, A.M.: Detection of covid-
19 findings by the local interpretable model-agnostic explanations method of types-based
activations extracted from cnns. Biomed. Signal Process. Control 71, 103128 (2022)
Abeyagunasekera, S.H.P,, Perera, Y., Chamara, K., Kaushalya, U., Sumathipala, P.,
Senaweera, O.: Lisa: enhance the explainability of medical images unifying current xai tech-
niques. In: 2022 IEEE 7th International conference for Convergence in Technology (I2CT),
pp. 1-9, 2022

Gaur, L., Bhandari, M., Razdan, T., Mallik, S., Zhao, Z.: Explanation-driven deep learning
model for prediction of brain tumour status using mri image data. Front. Genet. 13, 822666
(2022)

Zhang,Z., Damiani, E., Hamadi, H.A., Yeun, C.Y., Taher, F.: Explainable artificial intelligence
to detect image spam using convolutional neural network. In: 2022 International Conference
on Cyber Resilience (ICCR), pp. 1-5, 2022

Annan, R., Qin, H., Qingge, L.: Generalized deep learning models for COVID-19 detection
with transfer and continual learning. In: Proceedings of the 16th International Conference on,
vol. 101, pp. 58-72, 2024

Soares, E., Angelov, P., Biaso, S., Froes, M., Abe, D.: Sars-cov-2 ct-scan dataset: a large
dataset of real patients CT scans for sars-cov-2 identification, 2020

Ghaderzadeh, M., Asadi, F., Jafari, R., Bashash, D., Abolghasemi, H., Aria, M.: Deep convolu-
tional neural network—based computer-aided detection system for COVID-19 using multiple
lung scans: design and implementation study, vol. 23, p. €27468, 2021

Maftouni, M., Law, A.C.C., Shen, B., Kong, Z.J., Zhou, Y., Yazdi, N.A.: A robust ensemble-
deep learning model for covid-19 diagnosis based on an integrated ct scan images database.
In: IIE Annual Conference. Proceedings, Institute of Industrial and Systems Engineers (IISE),
pp. 632-637, 2021

Lee, E., et al.: Deep covid detect: an international experience on covid-19 lung detection and
prognosis using chest CT. NPJ Digit. Med. 4, 11 (2021)

Karim, M.R., Dohmen, T., Cochez, M., Beyan, O., Rebholz-Schuhmann, D., Decker, S.:
Deepcovidexplainer: explainable COVID-19 diagnosis from chest x-ray images. In: 2020
IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1034-1037,
2020

Yang, P., Sturtz, J., Qingge, L.: Progress in blind image quality assessment: a brief review.
Mathematics 11(12) (2023)

Miao, J., Zhu, W.: Precision-recall curve (PRC) classification trees. Evol. Intel. 15(3), 1545—
1569 (2022)



Author Proof

Author Queries

IChapter 17 I
Query Refs. | Details Required Author’s response
AQ1 Please check and confirm if the authors Given and Family names
have been correctly identified.
AQ2 Please check and confirm if the inserted citations of Figs. 1 and 6

are correct. If not, please suggest an alternate citations.




Alternative Texts for Your Images, Please Check and Correct them if Required

Page no

Fig/Photo

Thumbnail

Alt-text Description

Figl

A series of eight medical CT
scan images showing cross-
sectional views of the chest.
The scans display various lung
and thoracic structures, with
differences in tissue density
and contrast. Some images
highlight lung abnormalities,
while others show normal lung
tissue. The scans are arranged
in two rows, each containing
four images.

Fig2

Diagram of a convolutional
neural network architecture. It
starts with an augmented input
image, followed by two
convolutional layers, each with
116 filters, kernel size 8x8, and
stride 2x2. Maxpooling and
layer normalization are applied
after each convolutional layer.
The network progresses to a
flattened layer and a fully
connected layer, ending with a
softmax output.
Hyperparameters include
ADAM optimizer, learning rate
0.001, weight decay 0.001, and
specific settings for loss,
regularization strength, epochs,
and batch size.

Fig3

SHAP value

le-11

CT scan images of a human
chest are displayed in a
sequence, each showing
different cross-sectional views.
Below the images is a color
gradient bar representing SHAP
values, ranging from -8 to 8,
with blue indicating negative
values and pink indicating
positive values. The SHAP value
is labeled, with a notation of
le-11 on the right. The images
and bar illustrate the impact of
features on a model's output.
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Figd

A series of four grayscale
medical imaging scans, likely CT
or MRI, showing cross-sectional
views of a human torso. Each
image displays different
sections, highlighting variations
in tissue density. The scans are
arranged in a row, with subtle
differences in shading and
texture across the images,
indicating anatomical
structures.

10

Fig5

CT scan images of the chest
showing cross-sectional views
of the lungs and surrounding
structures. Each image
highlights areas with yellow
outlines, indicating specific
regions of interest. The scans
display variations in tissue
density and structure, useful
for medical analysis.

11

Figb

usion Matrix for SHAP Generated (b) Confusi
2649 Iy

es

Three-panel figure showing
confusion matrices for COVID-
19 image classification. Panel
(a) displays the confusion
matrix for SHAP-generated
images, with values indicating
true positives, false positives,
true negatives, and false
negatives. Panel (b) shows the
confusion matrix for LIME-
generated images, with similar
metrics. Panel (c) presents the
confusion matrix for the
intersection between SHAP and
LIME on the same dataset. Each
matrix includes axes labeled
"Actual Labels" and "Predicted
Labels," with categories "Covid"
and "Non-Covid." Color
intensity represents the
frequency of predictions.
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