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ARTICLE INFO ABSTRACT
Keywords: Introduction: Intracerebral hemorrhage represents 15 % of all strokes and it is associated with a high risk of post-
MaChif{e learning stroke epilepsy. However, there are no reliable methods to accurately predict those at higher risk for developing
Late seizures seizures despite their importance in planning treatments, allocating resources, and advancing post-stroke seizure
?;eg;ct;on research. Existing risk models have limitations and have not taken advantage of readily available real-world data

and artificial intelligence. This study aims to evaluate the performance of Machine-learning-based models to
predict post-stroke seizures at 1 year and 5 years after an intracerebral hemorrhage in unselected patients across
multiple healthcare organizations.

Design/methods: We identified patients with intracerebral hemorrhage (ICH) without a prior diagnosis of seizures
from 2015 until inception (11/01/22) in the TriNetX Diamond Network, using the International Classification of
Diseases, Tenth Revision (ICD-10) I61 (161.0, 161.1, 161.2, 161.3, 161.4, 161.5, 161.6, 161.8, and 161.9). The
outcome of interest was any ICD-10 diagnosis of seizures (G40/G41) at 1 year and 5 years following the first
occurrence of the diagnosis of intracerebral hemorrhage. We applied a conventional logistic regression and a
Light Gradient Boosted Machine (LGBM) algorithm, and the performance of the model was assessed using the
area under the receiver operating characteristics (AUROC), the area under the precision-recall curve (AUPRC),
the F1 statistic, model accuracy, balanced-accuracy, precision, and recall, with and without seizure medication
use in the models.

Results: A total of 85,679 patients had an ICD-10 code of intracerebral hemorrhage and no prior diagnosis of
seizures, constituting our study cohort. Seizures were present in 4.57 % and 6.27 % of patients within 1 and 5
years after ICH, respectively. At 1-year, the AUROC, AUPRG, F1 statistic, accuracy, balanced-accuracy, precision,
and recall were respectively 0.7051 (standard error: 0.0132), 0.1143 (0.0068), 0.1479 (0.0055), 0.6708
(0.0076), 0.6491 (0.0114), 0.0839 (0.0032), and 0.6253 (0.0216). Corresponding metrics at 5 years were 0.694
(0.009), 0.1431 (0.0039), 0.1859 (0.0064), 0.6603 (0.0059), 0.6408 (0.0119), 0.1094 (0.0037) and 0.6186
(0.0264). These numerical values indicate that the statistical models fit the data very well.

Conclusion: Machine learning models applied to electronic health records can improve the prediction of post-
hemorrhagic stroke epilepsy, presenting a real opportunity to incorporate risk assessments into clinical
decision-making in post-stroke care clinical care and improve patients’ selection for post-stroke epilepsy
research.

Intracerebral hemorrhage
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1. Introduction

Intracerebral hemorrhage is the most devastating and least treatable
form of stroke, affecting one in six stroke patients [1,2]. It results in
severe disability or death in nearly 60 % of patients [2]. Long-term ef-
fects of stroke are frequent. Late seizures, i.e., post-stroke epilepsy, are
frequent complications of intracerebral hemorrhage affecting up to 11 %
of patients after a mean follow-up of 9 months. Studies suggest an in-
dependent association between late seizures and increased mortality
and poor functional outcome [3,4]. Late seizures are also associated
with worse cognitive outcomes and dementia [5]. Adequately managing
seizures after intracerebral hemorrhage could potentially avoid com-
plications and improve the quality of life of survivors of intracerebral
hemorrhage. Identifying patients at risk of late seizures is an essential
step to improve outcomes after intracerebral hemorrhage by targeting
seizures. Independent predictors of late seizures include the involve-
ment of the cortical regions, hematoma volume, intraventricular
extension, stroke severity, younger age, and early seizures. Age, stroke
severity [1], and atrial fibrillation [2] have also been identified as risk
factors for seizures after stroke. Combining these individual risk factors
into predictive models is more likely to predict the individual risk of
developing late seizures after intracerebral hemorrhage than consid-
ering each factor individually. Risk scores to predict late seizures after
intracerebral hemorrhage have been developed, including the CAVE
score [3], the CAVS score [4], and the LANE score [5]. They had an
average to good performance with an area under the receiver operating
curve/c-statistics ranging from 0.69 to 0.83. However, the scores used
clinical and imaging variables from selected patients in specialized
units. Real-world data are increasingly available with hundreds of
thousands of patients’ data collected across healthcare organizations.
These readily available data could be used for model development. As
the data are readily available, models could be incorporated into elec-
tronic health records and provide real-time individual risk for pre-
defined outcomes. Large electronic health records have been seldom
used to predict seizures after intracerebral hemorrhage. Using powerful
computational methods is more likely to handle large volume records
than traditional logistic regression models alone. In this study, we
applied machine learning to predict late seizures taking advantage of
TriNetX Diamond Network, a large network of 71 healthcare organiza-
tions collecting data of nearly 106 million patients. We hypothesized
applying machine learning to this large network, we could develop
models to predict late seizures with good performance in an unselected
heterogeneous population of patients with intracerebral hemorrhage.

2. Methods
2.1. Study design and data source

This was a retrospective cohort analysis using data obtained from
TriNetX Research Network, a network of 71 Healthcare organization
electronic health records comprising data of 106 million patients
(September 2022).

2.2. Study population

Our study population included adult patients (age >18 years) with
intracerebral hemorrhage, identified using the International Classification
of Diseases, tenth Revision (ICD-10) 161, from January 1, 2015, through
August 9, 2022. We excluded all participants with a diagnosis of seizures
before the stroke, identified using any of the ICD-10 codes G40 and G41.
A total of 85,679 had an ICD-10 code of intracerebral hemorrhage and
no prior diagnosis of seizures, constituting our study cohort.

Assessment of outcome: The time at risk was 1-year and 5-year after
the index stroke event. Seizures were identified using any of the ICD-10
codes G40 and G41. These codes are specific for epilepsy (late seizures)
unlike the code R56, which is a nonspecific ICD-10 code for unspecified
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convulsions [6].

Covariates: Demographic variables included age (continuous vari-
able), sex assigned at birth (male vs. female), and race/ethnicity. Race
and ethnicity were grouped into four categories: Non-Hispanic White
(NHW), Non-Hispanic Black (NHB), Hispanic, and others. Clinical var-
iables included the following: diagnosis or history of hypertension,
diagnosis or history of diabetes mellitus, diagnosis or history of atrial
fibrillation, history of smoking, history of alcohol use, and stroke
severity (assessed using a combination of factors and variables described
in the appendix). Anti-seizure drugs use was identified using RxNorm, a
unified medical language system developed by the National Library of
Medicine that provided normalized names for clinical drugs [7]. Patients
with traumatic brain injury, benign brain neoplasms, malignant brain
neoplasms, unspecified brain neoplasms, severe intracranial infection,
bacterial meningitis, encephalitis, and those who had decompressive
craniotomy were excluded. We used ICD-10 and CPT codes to identify
these variables (see supplemental materials).

Machine learning model methods: We applied a 5-fold nested cross-
validation (CV) with non-overlapping training set (for training the
model) and validation set (for hyperparameter tuning) and test set (for
model evaluation). This approach was important for developing a
generalizable model. First, we stratified the dataset into 5 disjoint sub-
sets, or folds. Second, we iterated each fold over, serving once as the test
set (red) while the remaining folds comprised the training set (blue).
Third, within this training set, we conducted an inner cross-validation
by dividing it into 5 further folds. In this crucial step for hyper-
parameter optimization, each parameter combination was trained on 4
folds (gray) and validated on the remaining fold (green), cycling through
all 5 folds to determine the best-performing hyperparameters. Fourth,
we used these optimal parameters to train a new model on the full
training set of the outer loop. Fifth, we assessed the model’s predictive
performance on the outer test set, ensuring each data point was used for
testing just once. Finally, after completing all 5 iterations, the perfor-
mance metrics across all 5 outer test sets were aggregated to produce a
comprehensive evaluation of the model’s generalization capability
(Fig. 1). Classification models we explored included the following: lo-
gistic regression, decision tree, random forest, LightGBM, AdaBoost,
support vector machine, k-nearest neighbors, discriminant analysis, and
Gaussian naive Bayes [8-14]. We used Scikit-learn to train and evaluate
all models [15], except LightGBM, where Microsoft’s LightGBM library
was employed[16] . We obtained the best generalized performance re-
sults using the LightGBM model. In LightGBM, the hyperparameter
optimization consisted of a grid search (within the nested cross-
validation) over the tree depth, learning rate, and ensemble size. We
used a cost-sensitive learning approach to account for the class balance
between patients who developed seizures and those who did not. In the
cost-sensitive approach, the objective/cost function was modified to
yield a stronger penalty for incorrectly predicting the minority class, i.e.,
those who developed seizures (by an amount proportional to the
imbalance) using LightGBM’s ’class weight="balanced’ option. We used
LightGBM and a set of feature importance scores derived from trained
LightGBM models, and Shapley values to determine the features most
important in predicting seizures [17]. We used Shapley values and
partial dependence plots (PDP) to investigate the relationship between
predictors and seizures. PDPs show only the average effect of the input
variable, hence neglecting the impact of feature interactions, which can
be present with tree-based models such as LightGBM.

Model performance was evaluated using the following metrics: area
under the receiver operating characteristics (AUROC), the area under
the precision-recall curve (AUPRC), the F1 statistic, model accuracy,
balanced accuracy, precision, and recall. Model performance was
assessed separately, including then excluding patients on anti-seizure
drugs.

Standard protocol approvals, registrations, and patient consent:
This study protocol was submitted to the Pennsylvania State College of
Medicine institutional review board and was not considered human
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Fig. 1. 5- fold Nested Cross Validation. A visual representation of the nested
5-fold cross validation procedure. The outer loop partitions the data into 5
folds, where each fold serves as a unique and non-overlapping test set (red)
once, while the remaining data forms the training set (blue). Within each outer
training set, an inner 5-fold cross-validation is conducted, further dividing the
data into 5 new folds. In this inner loop, one-fold is used as the validation set
(green) for hyperparameter tuning each iteration, and the other folds act as the
training set (gray).

Inner Loop
(optimize hyperparameters)

subject research. All records contained within the database were fully
de-identified. Thus, informed consent was waived.

Data availability: We used data from The TriNetX Research
Network: health care organizations (de-identified claims data), 106
million patients, which are available to researchers from participating
centers.

3. Results

A total of 85,679 patients had an ICD-10 codes of intracerebral
hemorrhage and no prior diagnosis of seizures, constituting our study
cohort. Seizures were present in 4.57 % (3915 patients) and 6.27 %
(5372 patients) of patients within 1 and 5 years after ICH, respectively
(Table 1). Patients who developed seizures were younger than those
who did not at 1 year (52.4 + 23.2 years vs. 57.4 & 22.3 years, p-value <
0.001) and 5 years (51.2 + 23.6 years vs. 57.4 + 22.3, p-value < 0.001).
Sex distribution was similar in those who developed seizure and those
who did not develop seizures at 1 year; however more male than female
participants developed seizures at 5 years. Black individuals, smokers,
and those who have a history of alcohol use were more likely to develop
seizures than their counterparts at 1 and 5 years after ICH, while atrial
fibrillation was more frequent among those who developed seizures than
those who did not at 5-year post ICH (p < 0.001) only. Levetiracetam
was the most frequently prescribed antiseizure medication both 1- and
5-years post-ICH. Patients who develop seizures were also more likely to
be on electroencephalogram for both post-ICH time frames of seizure
development.

Table 1
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Demographic and Clinical Characteristics.

Characteristics Total Seizure Incidence Seizure Incidence
(%) following following
85,679 intracerebral intracerebral
hemorrhage after 1 hemorrhage after 5
year. years.
3,915 (4.57 %) 5,372 (6.27 %)
Age
Mean + (SD), * 57.2 + 52.4 +23.2 51.2 + 23.6
22.3
Median 66.2 57.9 57.9
Sex
Male 48,751 2,268 (57.9) 3,133 (58.2)
(56.9)
Female 36,928 1,647 (42.1) 2,239 (41.7)
(47.5)
Race®
White 52,462 2,327 (59.4) 3,179 (59.2)
(61.2)
Black/African 13,644 737 (18.8) 1,038 (19.3)
American (15.9)
Others or Unknown 19,573 851 (21.7) 1,155 (21.5)
(22.8)
Stroke Risk
Smoking * 21,150 1,079 (27.6) 1,458 (27.1)
(24.7)
Hypertension * 46,674 2,178 (55.6) 2,901 (54.0)
(54.5)
Diabetes 17,308 802 (20.5) 1,037 (19.3)
(27.9)
Alcohol Use * 7,954 462 (11.8) 645 (12.0)
4.7)
Atrial fibrillation * 12,105 530 (13.5) 670 (12.5)
(14.1)
Hyperlipidemia 24,297 1,152 (29.4) 1,493 (27.8)
(28.3)
ICH Location®
Hemisphere, 10,929 500 (12.8) 688 (12.8)
subcortical (12.8)
Hemisphere, cortical 10,207 844 (21.6) 1,066 (1.8)
(11.9)
Hemisphere, 2,161 147 (3.8) 190 (10.0)
unspecified (2.5)
Brainstem 2,614 54 (1.4) 74 (1.4)
3.1
Cerebellum 4,392 108 (2.8) 156 (2.9)
(5.1)
Intraventricular 14,102 660 (16.9) 931 (17.3)
(16.5)
Multiple, localized 874 51 (1.3) 68 (1.3)
(1.0)
Unspecified 34,195 1,193 (30.5) 1,733 (32.3)
(39.9)
Antiplatelet Therapy
Aspirin 19,169 863 (22.0) 1,168 (21.7)
(22.4)
Clopidogrel * 5,038 205 (5.2) 277 (5.2)
(13.6)
Ticagrelor 620 24 (0.6) 30(0.6)
0.7)
Prasugrel 152 3(0.1) 6 (0.2)
0.2)
Electroencephalograms *
Continuous EEG 378 40 (1.0) 40 (0.7)
2-12 0.4)
Continuous EEG 662 72 (1.8) 79 (1.5)
2-26 0.2)

(continued on next page)
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Table 1 (continued)
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Table 1 (continued)

Characteristics Total Seizure Incidence Seizure Incidence Characteristics Total Seizure Incidence Seizure Incidence
(%) following following (%) following following
85,679 intracerebral intracerebral 85,679 intracerebral intracerebral
hemorrhage after 1 hemorrhage after 5 hemorrhage after 1 hemorrhage after 5
year. years. Yyear. years.
3,915 (4.57 %) 5,372 (6.27 %) 3,915 (4.57 %) 5,372 (6.27 %)
Large artery 6,338 316 (8.1) 427 (7.9) Levetiracetam 20,816 1674 (42.8) 2127 (39.6)
Atherosclerotic (12.5) (24.3)
Disease Oxcarbazepine 176 21 (0.5) 24 (0.4)
Intravenous Tissue 1,862 73 (1.9) 100 (1.9) 0.2)
plasminogen (2.2) Perampanel 8(0.0) 1 (0.0) 1(0.0)
activator Phenobarbital 747 112 (2.9) 146 (2.7)
0.9)
5 Phenytoin 882 72 (1.8) 101 (1.9)
Stroke severity 1.0)
Aphasia dysphagia (192,22)47 860 (22.0) 1,121 (20.9) Pregabalin 1135 48 (1.2) 70 (1.3)
P . (1.3)
Unspev?lﬁc §1de 1,926 141 (3.6) 172 (3.2) Primidone 169 6(0.2) 10 (0.2)
hemiplegia (1.2) 0.2)
Non-d(.)mm'fmt side 6,383 393 (10.0) 512 (9.5) Topiramate 712 45(1.1) 68 (1.3)
hemiplegia (7.4) (0.8)
Aphasia 8,874 668 (17.1) 846 (15.7) Valproate 882 86 (2.2) 107 (2.0)
(10.4) 1.0)
Aphas‘;“ 1 1,236 95 (2.4) 12523 Vigabatrin 20000  1(0.0) 1(0.0)
Cerebrovascular a.4 Zonisamide 73(0.1) 10 (0.3) 15 (0.3)
Dysarthria 7,152 402 (10.3) 519 (9.7)
(8.3) Foot Note:
Speech Disturbance 5,062 301 (7.7) 386 (7.2) SS_CE1(Stroke Severity Clinical Encounter 1): Describes a detailed interval
. (5.9 history; A detailed examination; Medical decision making of high complexity.
Facial weakness ?1(()]051) 501 (12.8) 654 (12.2) SS_CE2 (Stroke Severity Clinical Encounter 2): Critical care, evaluation and
Cerebral Intracranial 1,604 127 (7.7) 166 (3.1) managerr.lent of the cr1t1c~a11y ill or. critically injured patient; first 30-74 min.
edema 1.9) SS_aphasia: Stroke Severity Aphasia.
Dominant left side 5,779 377 (9.6) 483 (9.0) ICH: Denotes patient with subsequent intracerebral hemorrhage ICD-10 codes.
hemiplegia 6.7) AS: Antiseizure drugs.
Altered mental status 15,139 1017 (26.0) 1,288 (24.0) # These characteristics are significantly associated with seizure at both one-
17.7) year and five years after a stroke. (p-value < 0.05).
Neurological neglect 2,625 168 (4.3) 210 (3.9)
syndrome (3.1) . .
Respiratory failure 14,672 962 (24.6) 1,193 (22.2) Seven metrics were deployed to assess the model performances using
@7.1) LGBM algorithm to predict the risk of seizures at 1 year and 5 years,
DNR 8,608 187 (4.8) 221 (4.1) including the area under the receiver operating characteristics
o (10.0) (AUROC), the area under the precision-recall curve (AUPRC), the F1
Palliative care 7,240 201 (5.1) 224 (4.2) .. .. .
consult 8.5) statistic, model accuracy, balanced-accuracy, precision, and recall, with
Mechanical 975 34 (0.9) 51 (0.9) and without seizure medication use in the models to allow an inde-
thrombectomy a.n pendent interpretation by the reader. These metrics were used simul-
CE1 ?’452) 557 (14.7) 757 (14.1) taneously to account for the importance of classifying seizures and non-
11.0 . . o
CE 2 20,442 1,120 (28.6) 1,457 (27.1) seizure patients, and th<.e }.1eaV1ly imbalance sample. At 1—year., -the
(23.9) AUROC, AUPRC, F1 statistic, accuracy, balanced-accuracy, precision,
CE 3 3675 207 (5.3) 278 (5.2) and recall were respectively 0.7051 (standard error: 0.0132), 0.1143
(4.3) (0.0068), 0.1479 (0.0055), 0.6708 (0.0076), 0.6491 (0.0114), 0.0839
ReSplr:‘ltOtr,y (111§8;)8 659 (16.8) 842 (15.7) (0.0032), and 0.6253 (0.0216). Corresponding metrics at 5 years were
entilation .
;mcedure 0.694 (0.009), 0.1431 (0.0039), 0.1859 (0.0064), 0.6603 (0.0059),
Insertion of 6,136 359 (9.2) 459 (8.5) 0.6408 (0.01 19), 0.1094 (0.0037) and 0.6186 (0.0264), respectively
endotracheal tube  (7.2) (Table 2 and Figure 2). Out of 15 important features identified for LGBM
Inzertion of feeding 1,052 97 (2.5) 135 (2.5) model, age was identified as the most important feature in seizure risk
evice 1.2) . L. . . .
Intravenous 1,862 73 0.1) 100 (1L.9) prediction, while DNR, altered {nental status,.and aphasia followed in
thrombosis 2.2 terms of subsequent features of importance (Figs. 3 and 4).
Hemicraniectomy 38 (0.0) 0.5(0.1) 5(0.1)
4. Discussion
Antiseizure drug *
Carbamazepine 204 18 (0.5) 24 (0.4) In this retrospective analysis of nearly 90,000 patients with intra-
0.2) cerebral hemorrhage from 71 healthcare organizations, the performance
Clobazam 1700 50D 50D of machine learning models to predict seizures at 1 year and 5 years was
Clonazepam 1415 82 (2.1) 115 (2.1)
a7 good.
Gabapentin 7303 367 (9.4) 499 (9.3) Several models have been developed to predict seizures after intra-
(8.5) cerebral hemorrhage. Arguably, the most widely used is the CAVE score,
Lacosamide ?oli) 68 (1.7) 79 (1.5) which combined four variables (age, hematoma volume, cortical
Lamotrigine Py 23 (0.6) 37 (0.7) involvement, and ear.ly seizures) to pre<.ilct seizures at 1 year and 5
(0.5) years. The model, which was developed in Finland had a good perfor-

mance in the development and validation cohort with c-statistic ranging
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Table 2
Model performances for all patients.

LGBM Update
All features at 5 years

Metric (standard error) LGBM Update

All features at 1 year

AUROC 0.7051 (0.0132)
AUPRC 0.1143 (0.0068)
F1 0.1479 (0.0055)

0.694 (0.009)
0.1431 (0.0039)
0.1859 (0.0064)

Accuracy 0.6708 (0.0076) 0.6603 (0.0059)
Balance-Acc 0.6491 (0.0114) 0.6408 (0.0119)
Precision 0.0839 (0.0032) 0.1094 (0.0037)
Recall 0.6253 (0.0216) 0.6186 (0.0264)

from 0.69 to 0.81. Various models have been developed to predict late
seizures after intracerebral hemorrhage in different populations. For
instance, the CAVS model was developed using granular clinical data
from a diverse US population, and the LANE model was developed
specifically for Chinese patients. Both models have shown good per-
formance similar the CAVE model. These findings demonstrate that risk
models can predict late seizures using clinical data from selected pop-
ulation of patients with intracerebral hemorrhage.

Our study contributes to the prediction of late seizures after intra-
cerebral hemorrhage. Our model’s performance is comparable to pre-
viously developed models. Our study has four originalities. First, we did
not use granular clinical data but relied on demographic variables and
administrative codes to identify features that could predict late seizures
after intracerebral hemorrhage. We confirmed that young age, cortical
location, and surrogate of stroke severity such as the present of aphasia
and altered mental status were important independent features
contributing to late seizure prediction after intracerebral hemorrhage.
Our study therefore provide evidence for the first time that data
collected during routine clinical activity and available in electronic
health record could be leveraged to predict late seizures after intrace-
rebral hemorrhage. Second, unlike previous models based on relatively
small cohorts of patients from specialized stroke units, we took advan-
tage of a large network of shared data across several organizations in the
United States, hence representing a heterogeneous population of stroke
patients. The implication of including a heterogeneous population of
patients with intracerebral hemorrhage from unselected healthcare or-
ganization and clinical settings across the United States is the enhanced
generalizability of our model. Besides, the dataset was very large
allowing for the identification of important predictors that could have
been overlooked with smaller and selected patient populations. We were
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able to identify several important features contributing to the model,
including some not previously reported. For example, 17.5 % of the risk
of late seizures was explained by the presence of a do-not-resuscitate
order; patients who had a do-not-resuscitate order were less likely to
have seizures, suggesting that those patients could have died before
developing seizures or that resources utilized to identified seizures such
as electroencephalograms were sparely used when a do-not-resuscitate
order was present. Third, we used machine learning for the purpose of
predicting late seizures after intracerebral hemorrhage. Machine
learning has been used in neurology to predict various outcomes
[18-21]. With regards to seizure prediction, one study developed ma-
chine learning models to predict early seizures after intracerebral
hemorrhage. Early seizures have different underlying pathophysiologic
mechanisms and courses than late seizures. Early seizures are thought to
result from transient cellular biochemical dysfunctions and have a 10-
year risk of seizure recurrence of approximately 20 % whereas late
seizures result from gliotic scaring and persistent neuronal excitability
changes with a 10-year recurrence of 60 % [22,23], hence meeting the

Feature importance
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Location_hemisphere_cortical ———582
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Fig. 3. Top 15 important features for LGBM model. Foot Note: SS_CE1
(Stroke Severity Clinical Encounter 1): Describes a detailed interval history; A
detailed examination; Medical decision making of high complexity. SS_CE2
(Stroke Severity Clinical Encounter 2): Critical care, evaluation and manage-
ment of the critically ill or critically injured patient; first 30-74 min. SS_a-
phasia: Stroke Severity Aphasia. ICH: Denotes patient with subsequent
intracerebral hemorrhage ICD-10 codes. AS: Antiseizure drugs.
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Fig. 2. Visual Model Performance.
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Fig. 4. Partial Dependent Plot for the five most important features.

new ILAE definition of epilepsy [24]. We are not aware of any previous
use of machine learning models to predict late seizures after intracere-
bral hemorrhage. Ultimately, because the variables used in our model
were readily available in electronic data across several institutions, the
model has the potential to be incorporated into electronic health records
and provide an instantaneous individual patient’s risk of developing late
seizures without interfering with patients’ care, which could facilitate
discussions between providers and patients/caregivers regarding their
risk of late seizures. It is also possible that the identification of patients
for potential inclusion in clinical trials based on their risk of late seizures
could be facilitated.

5. Limitations

We used administrative ICD-10 diagnoses and procedures; therefore,
we could not verify the accuracy of reporting these diagnoses in TriNetX.
Despite relying on administrative ICD-10 code diagnoses and proced-
ures, the performance of our model, i.e. AUC was similar to studies that
did not rely on these codes. Although stroke severity was not assessed
using standard severity scales such as the National Institute of Health
Stroke Scale or Glasgow Coma Scale, all proxies of stroke severity used

in the current analysis were associated with an increased risk of seizures,
suggesting the validity of our approach. We did not have access to
granular data such as brain imaging and electroencephalogram
recording, which could have yielded additional predictors and improved
the model’s performance. Finally, machine learning models to predict
late seizures in this study were not validated in external cohorts, i.e.,
non-US cohorts; however, we believe that such an external validation
would not be necessary for two reasons: first, patients were recruited
from 71 healthcare organizations across the US and included unselected
patients, suggesting generalizability of our results. Second, we mitigated
the need to externally validate the models by applying a 5-fold nested
cross-validation (CV) with non-overlapping training set (for training the
model) and validation set (for hyperparameter tuning) and test set (for
model evaluation), which is important in generalizing machine learning
models.

Despite these limitations, the use of large datasets from unselected
patients across multiple healthcare organizations and the 5-fold nested
cross-validation suggest that our model is generalizable to US patients
with intracerebral hemorrhage. Our model could be easily integrated
into electronic health records with little disruption of clinical flow in
very busy hospital settings.
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6. Conclusion

Electronic health records can be leveraged to predict late seizures
after intracerebral hemorrhage, using machine learning. This could
enhance clinical decision-making and prospective planning.
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