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Abstract
Sepsis is a life-threatening condition that requires early and ac-
curate detection to improve patient outcomes. While deep learn-
ing models have shown promise in predicting sepsis from high-
resolution ICU time-series data, they often fail to generalize across
hospitals due to domain shifts. To address this challenge, we propose
GTN-SimMTM, a novel self-supervised domain adaptation frame-
work for robust multivariate time-series modeling in early sepsis
prediction. Our approach integrates a Gated Transformer Network
(GTN), which effectively captures both temporal and channel-wise
dependencies, with masked time-series modeling (SimMTM), a
self-supervised contrastive learning strategy that enhances feature
consistency across domains. Furthermore, we incorporate multi-
ple domain adaptation techniques, including Deep Coral, DANN,
SASA, and DSAN, to mitigate distributional discrepancies between
hospital datasets. Extensive experiments on the PhysioNet dataset
demonstrate that GTN-SimMTM consistently outperforms previous
methods in utility score, AUROC, and AUPRC in multiple hospital
settings. Notably, our framework achieves strong results on a large-
scale test set of 16,000 highly imbalanced samples while eliminating
the need for extensive feature engineering. These results highlight
the power of self-supervised pre-training, contrastive learning, and
domain adaptation to advance early sepsis detection for real-world
clinical deployment.
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Figure 1: Overview of the proposed methodology, highlight-
ing the integration of data statistics preservation, missing
data handling, pre-training, fine-tuning, and evaluation pro-
cesses within the SimMTM and GTN frameworks.

1 Introduction
Sepsis remains one of the leading causes of mortality in inten-
sive care units (ICU), and early detection is critical for timely in-
tervention and improved patient outcomes [10, 11]. Despite the
widespread use of clinical scoring systems such as SOFA [16] and
APACHE-II [5], these methods are inherently limited by their re-
liance on static thresholds and a narrow set of features [10, 11]. In
contrast, high-resolution, multivariate time-series data exemplified
by the PhysioNet/Computing in Cardiology Challenge 2019 dataset
[12] — offers a promising alternative by enabling frame-by-frame
classification of a patient’s physiological state.

A key innovation of the PhysioNet challenge is its unique utility
score, which rewards correct predictions made within a specific
time window (from 12 hours before to 3 hours after sepsis onset)
and penalizes both excessively early or delayed predictions [11].
This evaluation criterion not only emphasizes prediction accuracy
but also underscores the clinical value of early detection. However,
as data are collected from different hospital systems, domain shift
becomes a significant challenge. Recent studies have begun explor-
ing uncertainty quantification and domain adaptation methods to
address this issue (e.g., Deep Coral [13], SASA [7], and CDAN [9].

347

2025 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)



CHASE ’25, June 24–26, 2025, New York, NY, USA NPerla et al.

Domain adaptation methods are known for addressing the prob-
lems caused by domain shift. Domain shift refers to the variations
in data distributions that occur when models trained on data from
one setting are applied to data from a different setting. In this Phy-
sioNet challenge, data is sourced from multiple hospital systems.
These differences can lead to a domain shift, where the statistical
properties of the data differ between hospitals. To mitigate the ef-
fects of domain shift, domain adaptation methods are employed.
These methods aim to adjust the model to perform effectively across
varying data distributions and enhance the model’s generalizability
and robustness, ensuring more accurate and reliable predictions
in diverse clinical environments. Moreover, modern deep learning
techniques — especially those incorporating self-supervised and
contrastive learning strategies (e.g., Time-Frequency Consistency
(TFC) [18]) — have further pushed the boundaries of representation
learning for time-series data.

In our work, we propose a novel hybrid framework that adopts
a “pre-training-then-fine-tuning” pipeline based on a Gated Trans-
former Network (GTN) integrated with a masked time-series mod-
eling paradigm (SimMTM [2]). GTN, as introduced in [8], employs
a two-tower encoder architecture that explicitly separates tem-
poral and channel-wise feature extraction, effectively capturing
both temporal and inter-channel correlations, thus leading to im-
proved predictive accuracy on the large-scale ICU dataset. Our
approach leverages self-supervised learning—including contrastive
techniques such as TFC—to learn robust temporal and spatial repre-
sentations while incorporating multiple domain adaptation strate-
gies (e.g., Deep Coral [13], SASA [7], and CDAN [9]) to address
the significant domain shift observed between hospital systems, as
verified by improved performance across domains.

Our key contributions include:

• We propose a GTN-SimMTM framework for self-supervised
pre-training on multivariate ICU time-series data, effectively
capturing both temporal and channel correlations and lead-
ing to enhanced predictive accuracy.

• We integrate several contrastive learning strategies (includ-
ing TFC) and systematically evaluate multiple domain adap-
tation methods (DSAN, Deep Coral, SASA, CDAN) to mit-
igate domain shift, as verified by improved performance
across hospital systems.

• We perform extensive experiments on a large-scale test set
(16,000 samples) using the official evaluation script, demon-
strating the scalability and robustness of our approach.

The remainder of the paper is organized as follows. Section 2 re-
views related work. Section 3 describes our methodology, including
data preparation, pre-training, fine-tuning, and evaluation proce-
dures. Section 4 presents our experimental results and analysis, and
Section 5 concludes with discussions on clinical impact and future
directions.

2 Related Work
A substantial body of research has focused on early sepsis pre-
diction using ICU data. [11] developed an XGBoost-based model
utilizing 107 clinical features from ICU records to predict sepsis

onset six hours in advance. [14] later proposed a Transformer-
based model that exploited temporal context from multiple pre-
diagnosis windows, achieving a performance gain of approximately
20% over traditional RNNs. In parallel, [1] employed Temporal Con-
volutional Networks (TCNs) on ECG signals for sepsis detection,
demonstrating that deep architectures can capture subtle physio-
logical changes.

From a biomedical perspective, [15] investigated the prognostic
utility of point-of-care serum proenkephalin (PENK) in septic shock
patients, while [10] compared multiple biomarkers for mortality
prediction in sepsis. [4] further refined the feature space for sepsis
mortality prediction from the MIMIC-IV database, achieving an
AUROC of 0.94 using a Random Forest model. [17] advanced the
field by proposing SepsisLab — a system that integrates uncertainty
quantification and active sensing to enhance early sepsis prediction.
Additionally, fusion-based architectures, such as the Parallel LSTM-
DNN model [3], have been explored to leverage complementary
strengths of different deep learning paradigms.

While these works have significantly advanced the state of the
art, they typically assume consistent data distributions. In real-
world applications, however, ICU data often exhibit high missing
rates, varying scales, and inconsistent sampling frequencies across
different hospitals, rendering domain shift a more complex chal-
lenge than in typical computer vision tasks. Recent domain adap-
tation approaches, such as Deep CORAL [13], Sparse Associative
Structure Alignment [7], and Conditional Domain Adversarial Net-
works (CDAN) [9], have been proposed to address these discrepan-
cies; however, relatively few studies have applied these techniques
to heterogeneous ICU time-series data.

In terms of self-supervised learning, masked time-series model-
ing has shown promise for learning robust representations from
incomplete data. [18] introduced a self-supervised contrastive pre-
training approach based on Time-Frequency Consistency (TFC),
which enforces similarity between the time-based and frequency-
based representations of an instance. This strategy is particularly
beneficial for noisy physiological signals and motivates our inte-
gration of contrastive learning within our framework.

Furthermore, the choice of network architecture is crucial when
dealing with multivariate time-series data. Unlike standard Trans-
formers, the Gated Transformer Network (GTN) [8] utilizes a two-
tower encoder structure that separately captures temporal and
channel-wise correlations, leading to superior performance on mul-
tivariate time-series classification tasks. This architectural advan-
tage makes GTN especially suitable for modeling the complex,
high-dimensional ICU data encountered in sepsis prediction.

In summary, although previous studies [1, 3, 4, 6, 10, 11, 14, 15,
17] have demonstrated the feasibility of early sepsis prediction
using advanced machine learning and deep learning techniques,
the challenges posed by domain shift in heterogeneous ICU data and
the effective use of self-supervised learning remain underexplored.
Our work addresses these gaps by proposing a GTN-SimMTM
framework that leverages self-supervised pre-training (including
TFC) and multiple domain adaptation strategies to enhance early
sepsis detection on a large-scale, multi-domain dataset.
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3 Methodology
In this section, we introduce the dataset and explain how it is pre-
pared for training, followed by details on the model’s pre-training,
fine-tuning strategies, and evaluation procedures. Specifically, we
begin by describing how the data is processed to facilitate model
training. Next, we explore methods for pre-training the base model
and adapting it to the target domain using self-supervised learn-
ing. Additionally, we discuss techniques for aligning source and
target datasets using domain adaptation methods to predict sepsis
onset six hours in advance. Finally, the evaluation segment ex-
plains the metrics and procedures employed to assess the model’s
performance. Figure 2 illustrates the overall architecture of the
proposed approach, and the subsequent sections elaborate on each
step depicted in the figure.

3.1 Dataset Setup
Weutilized data from the PhysioNet/Computing in Cardiology Chal-
lenge 2019 [12], which focuses on the early prediction of sepsis, to
forecast sepsis onset six hours in advance. The challenge provides
ICU records from two distinct hospital systems: one hospital con-
sists of 20,336, while the other has 20,000 patient samples. To mimic
the domain shift challenge, we use the first hospital data as the
source and the second one as the target. Each patient sample spans
an ICU stay, during which clinical variables are recorded hourly,
resulting in rows of data that capture up to 40 features, including
eight vital signs, 26 laboratory test results, and six demographic
attributes.

3.2 Dataset Preparation
We experimented with various imputation techniques and found
that relying solely on mean or median imputation does not ensure
optimal results. Consequently, we identified which features would
benefit most frommean or median imputation by checking whether
the mean and median values for each feature fall within the ob-
served minimum and maximum range of that feature. If the mean
lies within these bounds, we use mean imputation for that feature;
similarly, if the median is more appropriate, we apply median im-
putation. We then store the computed imputation values for each
feature to apply consistently when preparing the fine-tuning and
test sets. After calculating and storing these statistics, we rescale
the FiO2 feature to its original range because some rows contained
improperly scaled values.

Next, we addressed missing values in the Unit1 and Unit2 fea-
tures, which serve as administrative identifiers for ICU units. Since
a patient cannot be in two ICU units simultaneously, we rely on
the current time step to determine whether Unit1 or Unit2 is active:
if a patient is admitted to Unit1, then Unit2 is set to zero, and vice
versa. We apply the same procedure to the fine-tuning and test sets,
ensuring we check the status of Unit 1 and Unit 2 at each time step.

For any remaining missing entries, we use forward fill, backward
fill, and finally, assign zeros if the values are still unavailable. Finally,
once the dataset is finalized with all missing values imputed, we
pad extra rows to ensure that all samples have the same sequence
length. Surprisingly, GTN can handle raw multivariate time-series
data without requiring normalization or scaling. Therefore, we
adhere to the same experimental setup. To avoid data leakage into

the fine-tuning and test sets, we only use the mean and median
statistics calculated from the pre-training dataset. These values
remain fixed to ensure a fair evaluation.

3.3 GTN-SimMTM Hybrid Architecture
In this paper, we integrated the Gated Transformer Network (GTN)
[8] as a backbone of a Simple pre-training framework for Masked
Time-series Modeling (SimMTM) [2] for pre-training the model.
GTN is a two-tower encoder architecture that is used to capture
temporal and spatial information for a given multivariate time
series. The temporal encoder uses self-attention with masks on
each point across all the channels by calculating the pair-wise
attention weights among all the time steps, whereas the spatial
encoder calculates the attention weights among different channels
across all the time steps. Then, a simple gating mechanism is used
to learn the weight of each tower.

SimMTM, on the other hand, is a masked time-series modeling
(MTM) paradigm in which random time points are masked, and the
model is trained to reconstruct them using contextual information.
However, rather than relying only on the unmasked segments of a
single sequence, SimMTM leverages multiple masked instances of
the same time series. This aggregation strategy enables the model
to preserve essential temporal patterns more effectively during
pre-training.

3.4 Pre-Training
During the pre-training phase, we use the proposed GTN-SimMTM
for representation learning. Our GTN-SimMTM architecture is
trained to reconstruct the original time series frommultiple masked
variations, thereby learning robust temporal and spatial represen-
tations. SimMTM’s [2] contrastive approach and masked modeling
help the model distinguish meaningful patterns from irrelevant
noise, making it highly effective for downstream tasks such as
classification.

During pre-training, we optimize three objectives — contrastive
loss, reconstruction loss, and automatic weighted loss (AWL). The
contrastive loss encourages time-series instances with similar struc-
tures to remain close in the learned feature space, while the recon-
struction loss preserves step-wise and channel-wise dependencies.
The AWL component balances the contrastive and reconstruction
losses, preventing overfitting to either objective and ensuring high-
quality feature extraction.

3.5 Fine-Tuning and DA Extension
After pre-training, the learned representations from GTN-SimMTM
are fine-tuned for specific tasks. During fine-tuning, we did not
freeze any layers. We attached a classification head (a 2-layer MLP)
after passing the gating output through an MLP. We train the clas-
sification head utilizing the learned feature embeddings for super-
vised learning by optimizing a simple cross-entropy loss function.

Since GTN, along with SimMTM, provides a solid base frame-
work for domain adaptation (DA) tasks, GTN can easily be extended
to well-established DA models, including DeepCoral [13], CDAN
[9], SASA [7], and DSAN [19] with an additional MLP layer. In
particular, DA loss and constraint functions can be added to be
jointly optimized with the GTN backbone in training the target
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Figure 2: The proposed GTN-SimMTM framework follows a two-stage learning approach. In the pre-training stage, data
from Hospital A (𝐷𝐴) is encoded through Time Channels and Time Steps representations, followed by Channel and Step
Encodings. A Gating Mechanism and MLP process these encodings, optimizing with Automatic Weighted Loss and MSE Loss to
learn meaningful representations. In the fine-tuning stage, learned representations are transferred to a downstream task. A
Target Classifier is attached to the pre-trained network, and the entire network is fine-tuned using data from Hospital B (𝐷𝐵),
leveraging the pre-trained model for improved classification performance. GTN can be readily extended to DA models with an
additional MLP layer.

classifier. Note that we use an MLP after the gating operation in
GTN [8] to reduce the number of features produced when the out-
puts of the towers are concatenated. This is primarily due to the
high-dimensional output from the gating operation, and the pro-
posed MLP layer would reduce the number of features and lower
computational costs.

4 Experiments
In this section, we evaluate the proposed method on the Phys-
ioNet/Computing in Cardiology Challenge 2019 dataset [12] to
predict sepsis six hours before its clinical onset. The following sub-
sections will detail the experimental setup, experimental results,
and ablation study.

4.1 Setup
To mimic the domain adaptation setup, we use one hospital’s data
as the source dataset (𝐷𝐴), while another one is the target dataset.
The target dataset is stratified into 𝐷𝐵 and 𝐷𝐶 to preserve class
imbalance. Our experiments involve three datasets:

• Source dataset of 20,336 samples (𝐷𝐴) for pre-training
• Target dataset of 4,000 samples (𝐷𝐵 ) for fine-tuning
• Target dataset of 16,000 samples (𝐷𝐶 ) for test

The size of each dataset provides an ideal testbed for domain adap-
tation tasks. We also used the original evaluation script provided by
the PhysioNet/ Challenge 2019 due to its practical value in early pre-
diction compared to standard procedures. To our knowledge, this is
the first study that allows the evaluation of sepsis early prediction
under domain shift.

4.2 Model Configuration
To train GTN-SimMTM, we used a hidden dimension of 512 and
an intermediate feedforward dimension of 1024, with 8 attention
heads, 8 query/value dimensions, and 8 Transformer layers. We
employed positional encoding andmasking for improved sequential
modeling and applied a dropout rate of 0.2 to mitigate overfitting.
The input feature dimensionality was set to 336 with 40 channels,
and the output space was constrained to two classes. We adopted
the Adam optimizer 𝛽1=0.9 and 𝛽2=0.99 with a learning rate of
3 × 10−8 for both pre-training and fine-tuning.

The model was pre-trained for 20 epochs and fine-tuned for
9–10 epochs using a batch size of 32. Likewise, all domain adapta-
tion methods were pre-trained for 40 epochs and fine-tuned for 20
epochs with the same batch size, while the self-supervised learning
method was pre-trained for 20 epochs and fine-tuned for 15 epochs.
All experiments shared the same data partitioning strategy: 100%
source dataset 𝐷𝐴 for pre-training, 20% of the target dataset 𝐷𝐵 for
fine-tuning, and the remaining 80% of the target dataset for testing.

4.3 Evaluation
We follow the challenge guidelines for evaluating the proposed
framework, which uses a utility function that rewards early sepsis
predictions and penalizes late or false ones. Specifically:

• For True Sepsis Patients: 1) The model earns a reward for
predicting sepsis between 12 hours before and up to 3 hours
after the onset time. 2) The maximum possible reward is 1.0.
3) Missing sepsis entirely or predicting it more than 12 hours
too early incurs penalties. 4) Very early predictions carry a
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Table 1: Comparison of various DA methods and our proposed GTN-SimMTMmethod. Bold fonts highlight the performance
gain compared to the original DA methods without using GTN backbone.

Model GTN as Feature Extractor (Ours) Original Feature Extractor
Utility Score AUROC AUPRC Accuracy Utility Score AUROC AUPRC Accuracy

DSAN 0.22 0.67 0.05 0.96 0.09 0.65 0.03 0.97
DeepCoral 0.21 0.58 0.03 0.93 0.16 0.59 0.03 0.95
CDAN 0.15 0.66 0.05 0.84 0.18 0.68 0.04 0.86
SASA 0.14 0.66 0.04 0.84 -0.04 0.64 0.04 0.73
GTN-SimMTM 0.26 0.72 0.01 0.92 - - - -

penalty of up to 0.05, while late predictions can be penalized
up to -2.0.

• For Non-Sepsis Patients: The model is penalized if it pre-
dicts sepsis at any point. The maximum false-alarm penalty
is 0.05, and no penalty or reward is applied if the model
correctly avoids predicting sepsis.

We use the official competition evaluation script, which reports
the utility score, AUROC, AUPRC, and accuracy.

4.4 Experimental Results of GTN-SimMTM
Table 1 demonstrates the effectiveness of the proposedGTN-SimMTM
approach compared to the state-of-the-art DA methods. For a fair
comparison, GTN is also applied for representation learning pur-
poses.

Among DA methods, DSAN achieves the highest utility score
(0.22) and accuracy (0.96), outperforming other domain adaptation
techniques. Additionally, AUROC increases to 0.67, indicating im-
proved model robustness when handling distributional shifts across
datasets. These findings suggest that DSAN successfully mitigates
domain discrepancies and enhances model performance for early
sepsis detection. In contrast, CDAN and SASA exhibit comparable
AUROC values (0.66) but lower utility scores (0.15 and 0.14, respec-
tively). While these methods demonstrate strong class separation,
their lower utility scores suggest potential limitations in early sep-
sis prediction. DeepCoral achieves a moderate balance between
a utility score (0.21) and AUROC (0.58), with an accuracy of 0.93.
SimMTM with MLP achieves a high accuracy (0.94) and AUROC
(0.64) and a lower utility score (0.20).

Table 1 also highlights the role of GTN in feature extraction. The
GTN-based feature extractor outperforms the original extractor
in utility score, which is a critical metric for early sepsis predic-
tion. For instance, DSAN achieved a utility score of 0.22 with GTN,
compared to only 0.09 with the original extractor. Similarly, Deep-
Coral’s performance improved from 0.16 to 0.21. Notably, SASA
performed poorly with the original extractor (-0.04 utility score)
but achieved 0.14 with GTN, which shows its reliance on effective
feature representations. Accuracy trends indicate that the original
feature extractor slightly outperforms GTN in some cases, but this
does not translate into improved utility scores. DSAN, for exam-
ple, achieved 97% accuracy with the original extractor versus 96%
with GTN, but its utility score was much lower (0.09 vs. 0.22). This
suggests that while the original extractor may yield higher classifi-
cation accuracy, it is less effective in making clinically meaningful
predictions, which the utility score captures.

4.5 Ablation Study

Table 2: Performance comparison under different train-
ing/testing setups.

Model Utility Score AUROC AUPRC Accuracy
GTN (𝐷𝐴 → 𝐷𝐶 ) -0.02 0.58 0.04 0.73
GTN (𝐷𝐵 → 𝐷𝐶 ) -0.02 0.59 0.04 0.72
GTN (𝐷𝐴 + 𝐷𝐵 → 𝐷𝐶 ) 0.06 0.64 0.01 0.77
Challenge 2019 (Best) -0.5 0.81 0.07 0.76

4.5.1 GTN with domain shift. First, we demonstrate the efficacy of
GTN fine-tuning under domain shift. We applied no pre-training
strategy at all, representing the raw performance of the GTN model.
The following scenarios are included in the Table 2:

• 𝐷𝐴 → 𝐷𝐶 : GTN pre-trained on 𝐷𝐴 but not fine-tuned on
𝐷𝐵 and tested directly on 𝐷𝐶 .

• 𝐷𝐵 → 𝐷𝐶 : GTN trained directly on 𝐷𝐵 and tested on 𝐷𝐶 .
• 𝐷𝐴 +𝐷𝐵 → 𝐷𝐶 : GTN pre-trained on 𝐷𝐴 and fine-tuned on
𝐷𝐵 , then tested on 𝐷𝐶 without SimMTM.

• Challenge 2019 (Best): A cross-dataset result (best) from
PhysioNet Challenge 2019.

We compare our experimental results with those of the top-
performing team in the competition, as shown in the last row of
Table 2. This demonstrates that fine-tuning is necessary under
domain shift, while this was never considered by the existing meth-
ods. The GTN model performs competitively, particularly when
pre-trained on 𝐷𝐴 and fine-tuned on 𝐷𝐵 and outperforms when
trained solely on 𝐷𝐴 or 𝐷𝐵 . Specifically, the utility score improves
from -0.5 to 0.06, and accuracy is increased from 0.76 to 0.77. We
observe a distinction between the utility score and the remaining
metrics. Unlike other metrics, the utility score considers the sequen-
tial nature of time-series data. Specifically, during evaluation, the
model is queried multiple times for each patient, corresponding
to the total number of recorded time steps. For instance, if a test
sample contains 40 hours of recordings, the model is queried 40
times. The process unfolds as follows:

• In the first iteration, the model is queried with only the first
time step.

• In the second iteration, it is queried with the first two time
steps.

• In the third iteration, it is queried with the first three time
steps, and so on.
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Therefore, we believe that the utility score is crucial for evaluat-
ing a sepsis prediction model designed to detect onset six hours in
advance, alongside other performance metrics.

Table 3: Performance comparison of GTN under different
pre-training strategies.

Model Utility Score AUROC AUPRC Accuracy
GTN-SimMTM (w/o MLP) 0.26 0.72 0.01 0.92
GTN-SimMTM (w/ MLP) 0.20 0.63 0.01 0.94
GTN-TFC -0.03 0.53 0.03 0.79

4.5.2 Pre-training strategies. In this set of experiments, we evalu-
ated the efficacy of the pre-training strategy used in GTN-SimMTM.
We explored the model performance without incorporating an MLP
layer after the gating operating in GTN. The results are summarized
in Table 3 by considering the following two scenarios:

• GTN-SimMTM (w/ andw/oMLP): Themodel was pre-trained
on 𝐷𝐴 for 9 epochs and fine-tuned on 𝐷𝐵 for 15 epochs.

• GTN-TFC: The model was pre-trained on 𝐷𝐴 for 20 epochs
and fine-tuned on 𝐷𝐵 for 19 epochs.

The results highlight the significant impact of SimMTM pre-
training on model performance. Compared to the baseline GTN
model, pre-training with SimMTM substantially improves the util-
ity score (from 0.06 to 0.26), and AUROC (from 0.64 to 0.72). This
suggests that the masked time-series modeling approach effectively
enhances the model’s ability to learn robust temporal representa-
tions, leading to better early sepsis detection. Additionally, accuracy
increases from 0.77 to 0.92, demonstrating the model’s improved
predictive reliability.

In contrast, the TFC pre-training strategy does not yield compet-
itive results, as reflected in its lower AUROC (0.53) and utility score
(-0.03). This indicates that while contrastive learning techniques
like TFC can capture useful temporal dependencies, they are not as
robust as SimMTM in handling masked and incomplete time-series
data for sepsis prediction.

5 Conclusions
In this study, we proposed a novel hybrid framework, GTN-SimMTM,
for early sepsis prediction using the PhysioNet/Computing in Car-
diology Challenge 2019 dataset to predict sepsis six hours before
its clinical onset. By leveraging the strengths of Gated Transformer
Networks (GTN) and masked time-series modeling (SimMTM), our
approach effectively captured both temporal and channel-wise cor-
relations, eliminating the need for extensive feature engineering
techniques and improving utility score along with the predictive
accuracy compared to top champion results in the challenge. We
further integrated multiple contrastive learning techniques and
domain adaptation methods, such as DSAN, DeepCoral, CDAN,
and SASA to address domain shift challenges inherent in hetero-
geneous hospital datasets. Our experimental results demonstrated
that GTN-SimMTM significantly enhances early sepsis detection
compared to baseline models, achieving notable improvements in
utility score, AUROC, and accuracy. The introduction of an MLP
layer post-gating further optimized performance by reducing com-
putational complexity while maintaining model robustness.
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