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Abstract

Perturbation theory is developed to analyze the impact of noise on data and has been an essential part of

numerical analysis. Recently, it has played an important role in designing and analyzing matrix algorithms.

One of the most useful tools in this subject, the Davis-Kahan sine theorem, provides an `2 error bound on the

perturbation of the leading singular vectors (and spaces).

We focus on the case when the signal matrix has low rank and the perturbation is random, which occurs

often in practice. In an earlier paper, O’Rourke, Wang, and the second author showed that in this case,

the Davis-Kahan bound can be improved significantly. In particular, the noise-to-gap ratio condition in the

original setting can be weakened considerably.

In the current paper, we develop an infinity norm version of the O’Rourke-Vu-Wang result. The key ideas

in the proof are a new bootstrapping argument and the so-called iterative leave-one-out method, which may

be of independent interest.

Applying the new bounds, we develop new and very simple algorithms for several well-known problems,

such as finding hidden partitions and matrix completion. The core of these new algorithms is the fact that

one is now able to quickly approximate certain key objects in the infinity norm, which has critical advantages

over approximations in the `2 norm, Frobenius norm, or spectral norm.

1 Introduction

1.1 The classical Davis-Kahan theorem. Perturbation theory is developed to analyze the impact of noise
on data and has been an essential part of numerical analysis. The general setting is that we have a (signal or
data) matrix A, a noise matrix E, and a matrix functional f . Our goal is a compare f(A) with f(A + E). A
typical perturbation bound provides a upper bound for the di↵erence f(A+ E)� f(A) in some norm.

For the sake of presentation, in most of the paper, we assume that both A and E are symmetric and of
dimension n. All results in this paper can be extended to the asymetric case by a simple symmetrization trick.
We assume that n is su�ciently large, whenever needed, and asymptotic notations are used under the assumption
that n tends to infinity.

Assume that A has rank r and let �i be the non-trivial singular values of A in decreasing order, for 1  i  r.
Let ui be the corresponding singular vector of �i with entries uil. For the sake of presentation, we assume that
�i are di↵erent so ui are well defined, up to sign. Let Ã = A+ E, and use notation �̃i, ũi, and ũil. Notice that
because ui and ũi are unique up to sign, we may always choose the signs so that the the angle between them is
at most ⇡/2. Let �i = �i � �i+1, and let �i = min{�i�1,�i} be the distance from �i to the nearest singular
value. We take �0 = 1 for the sake of consistency.

One of the most useful tools in perturbation theory is the Davis-Kahan bound, which provides a perturbation
bound for singular vectors.

Theorem 1.1. (Davis-Kahan) There is a constant C > 0 such that, provided �i � 2 kEk ,

(1.1) kui � ũik2  C
kEk
�i

.

The first version of this theorem, by Davis and Kahan [29] was stated for eigenvectors (and eigenspaces).
Later, Wedin [62] extended the results to singular vectors. In this paper, we use singular vectors, which are
simpler to handle. The more general version of the Davis-Kahan theorem gives a perturbation bound for the
spaces spanned by a set of singular vectors. In this paper, we focus on individual singular vectors, but the results
can be extended into that direction with simple modifications.
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It is important to notice that for the RHS of (1.1) be small, one needs

(1.2) �kEk  �i,

for some large � > 0. In other words, the noise to gap ratio kEk
�i

has to be small. We will refer to this as the
noise-to-gap ratio assumption.

Notation. We use the conventional asymptotic notations, such as o,O,⌦,⇥. We will also use the notation
f(n) = Õ(g(n)) if there exists some absolute c such that f(n) = O(g(n) logc n); ⇥̃ and ⌦̃ are defined similarly.

1.2 Low rank data with random noise and an improved version of Davis-Kahan theorem. In modern
studies, the following two assumptions come up frequently. First the data matrix A has low rank, and second,
the noise matrix E is random.

The low rank (or approximately low rank) phenomenon is automatic in a number of theoretical settings, such
as the clustering problem discussed in Section 4. It also occurs in so many real life problems that researchers have
even tried to give a theoretical explanation for this; see [57].

Under the assumption that A has low rank r and E is random, the second author discovered that one can
improve the Davis-Kahan bound [60]. In particular, one can replace the noise-to-gap ratio assumption (1.2) by
much weaker ones; for related results, see [1, 3, 9, 11, 23, 36, 46, 49, 51, 52, 60, 64].

Assumption 1.1. In what follows, we assume that A is a symmetric, deterministic matrix with rank r. E will be
a random symmetric matrix with independent (but not necessarily iid) upper triangular entries ⇠ij. The ⇠ij will
be K-bounded random variables with mean 0. A random variable ⇠ is K-bounded if |⇠|  K with probability 1.

Following [60], about 10 years ago, O’Rourke, Wang, and the second author [51] obtained the following theorem.

Theorem 1.2. For any constants ⌧, r > 0, there exists a constant C0 such that with probability at least 1� ⌧ ,

(1.3) kũ1 � u1k2  C0

hKr1/2

�1
+

kEk
�1

+
kEk2

�1�1

i
.

The theorem holds for other singular vectors as well, with simple modifications. A more quantitative form of this
theorem [51] allows one to take ⌧ ! 0 with n.

The key point in Theorem 1.2 is that for the RHS to be small, we only need to assume kEk2

�i�1
and 1

�1
are small,

which is much weaker than (1.2), where we need to require that kEk
�1

is small. (In standard settings, kEk is of

order
p
n).

In many applications (see [51]), the gap �1 is smaller than kEk, so the ”noise-to-gap ratio is small” assumption
(1.2) is violated. On the other hand, even if �1  kEk, it is still often the case that the product �1�1 is larger
than kEk2, as �1 can be way larger than both �1 and kEk, and our bound applies. Let us illustrate this with an
example.

Example. Let A be a matrix whose entries are of order ⇥(1) with constant rank r, and E be a matrix whose
entries are iid standard Gaussian. Since

P
r

i=1 �
2
i
= kAk2

F
= ⇥(n2), we expect that the non-trivial singular values

of A are of order ⇥(n). On the other hand, it is well known that (with high probability), kEk = (2 + o(1))
p
n.

Furthermore, by a simple truncation trick, we can set K = 20
p
log n, as this holds with overwhelming probability.

Thus, in Theorem 1.2, we only need to require the gap �i to be ⌦(
p
log n) to have a meaningful conclusion

(making the RHS of (1.3) going to zero). On the other hand, an application of Davis-Kahan theorem would
require �i = ⌦(

p
n), a significantly stronger assumption, to achieve the same conclusion.

For more recent progress in this direction, see [52].

2 The infinity norm version

Theorem 1.1 provides an an `2 estimate. It is natural and important to obtain similar results in the infinity norm.
Going from `2 to `1 is always a non-trivial task and progress has only been made in the last 10 years or so.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited881

D
ow

nl
oa

de
d 

09
/2

9/
25

 to
 1

92
.3

1.
23

6.
3 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



There are many papers in this topic considering either the infinity norm or the `2!1 norm [4, 5, 17, 22, 36, 37].
However, in all of these papers, one needs to use the original noise to gap ratio assumption (1.2). Our study in
this paper will go well beyond this setting, as our goal is to obtain an infinity norm version of Theorem 1.2, which
holds under weaker assumptions.

While finishing this paper, we became aware of a result in [27]. In this paper, the authors studied a hybrid
model where a symmetric low rank matrix is perturbed with asymmetric random noise. This paper also studied
the infinity norm and does not need to assume 1.2. On the other hand, the analysis relies strongly on the hybrid
model and is totally di↵erent from the methods in this paper; see [27] for details. The hybrid model does not
seem to occur very often in applications, as it is natural to assume that A and E have the same type of symmetry.

3 New results

3.1 An optimal guess. Our goal is to find an infinity norm analogue of Theorem 1.2, the improved version
of Davis-Kahan theorem, with a significantly weakened noise to gap assumption. Consider a singular vector ui,
its perturbed counterpart ũi, and the infinity norm di↵erence kũi � uik1. To start, let us raise a question.

Question 3.1. What is the best possible bound we can hope to achieve for kũi � uik1?

Consider the `2 norm di↵erence kũi � uik2. It is apparent that

kũi � uik1 � 1p
n
kũi � uik2.

Thus, the best bound one would hope for (up to a poly-logarithmic factor, which is usually unavoidable in a
random setting) is

(3.4) kũi � uik1 = Õ(
1p
n
kũi � uik2).

However, (3.4) may be too optimistic. In practice, it is natural to expect that coordinate-wise errors are
proportional to the magnitude of the coordinates. Simply speaking, the error at a higher magnitude coordinate
is likely to be larger. Thus, a more realistic version of (3.4) is

(3.5) kũi � uik1 = Õ(kuik1kũi � uik2).

We are going to prove that under certain conditions, a slightly weaker version of (3.5) holds. The precise form of
the result is a bit technical, but in essence it shows (see Remark 3.3 for discussion)

(3.6) kũi � uik1 = Õ(kUk1kũi � uik2).

The parameter kUk1 is not an adhoc one. It has played an important role in many applications of spectral
methods in statistics, through the notion of incoherence [20, 21, 25, 54]. Our main theorem roughly asserts that
under a modest condition on the singular values and the gaps, (3.6) holds. Let us illustrate with a corollary of
our main results.

Theorem 3.1. (Leading singular vector perturbation) Let E be a symmetric, K-bounded random ma-
trix with independent upper triangular entries. Then with probability 1� o(1),

(3.7) kũ1 � u1k1  c kUk1
hkEk
�1

+
K
p
log n

�1
+

kEk2

�1�1

i
+

cK
p
log n

�1
.

Notice that in the main term c kUk1
h
kEk
�1

+ K
p
logn

�1
+ kEk2

�1�1

i
, the term

h
kEk
�1

+ K
p
logn

�1
+ kEk2

�1�1

i
is essentially the

RHS of the bound (1.3) for kũ1 � u1k2. In the case K grows slowly with n, the second term cK
p
logn

�1
is often

negligible compared to the main term.

In the next three sections, we present our main theorems.
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3.2 Main theorems: The deterministic setting. Our first main theorem is a deterministic one (Theorem
3.2) where we can measure the di↵erence of the eigenvectors between two matrices A and A + H, where both
A and H are deterministic. This theorem asserts a relation between the eigenvectors of A and A + H through
information on the eigenvalues of A,A+H and those of the principal minors of A+H. This is somewhat close,
in spirit, to the eigenvector-eigenvalue identity, discovered several times in linear algebra, most recently through
the study of neutrino oscillations by Denton, Parke, Tao, and Zhang [32]; see [31] for a survey.

We keep the definition of all parameters such as ✏1(i), ✏2(i) (with H playing the role of E). We denote by
H{l} the matrix obtained by zeroing out the lth row and column of H.

Let A and H be symmetric matrices of size n, where A has rank r. For any 1  l  n, set A{l} = A+H{l}

and Ã = A+H. Notations such as �i, �̃i and �{l}
i

are self-explanatory.

Theorem 3.2. Consider A,H, Ã, A{l}, H{l} as above. Let U{l} denote the n ⇥ r matrix of r leading singular
vectors of A{l} and x = x(l) be the lth row of H, except with the lth entry of x reduced to Hll/2. Set
C0 := 272⇥ 4r3/2, and define al :=

��U{l}T
x
��
2
. Suppose that

• �i > C0 kHk

• �i > C0 max{al,i kHk kUk1}

• min{|�̃i � �{l}
i+1|, |�̃i � �{l}

i�1|} > �i/2.

Then,

(3.8) |ũil � uil|  C0 kUl,·k1
h
i kũi � uik2 + ✏1(i) + ali✏2(i)

i
+ 256r

|hu{l}
i

,xi|
�i

,

where ũi is the ith singular vector of A+H.

Remark 3.1. The first assumption �i > C0 kHk is a signal to noise assumption.
The second assumption �i > C0ir1/2 max{al, kHk kUk1} is a gap assumption (replacing the stronger

assumption (1.2) from the original Davis-Kahan theorem). In many applications (including all applications in
this paper), i = O(1) and kUk1 = n�1/2+o(1), thus ikHkkUk1 = kHkn�1/2+o(1), improving (1.2) by a factor
of n�1/2+o(1). The term al measures the correlation between H and A. This is small if x does not align with
any non-trivial eigenvector of A(l). If H is random then x is a random vector independent of A and this holds
trivially.

The last assumption is a stability assumption. Intuitively, we expect that �̃i is close to �i and �{l}
i+1 close to

�i+1, which would imply that �̃i � �{l}
i+1 is close to �i � �i+1 � �i. Our stability assumption guarantees a weaker

bound |�̃i � �{l}
i+1| � �i/2.

3.3 Main theorems: The random setting with small K. Now we consider the random model A + E,
where E is random matrix whose entries are K bounded random variable. The result in this section holds for any
K, but for large K, we have a better result (under a slightly stronger assumption) in the next section.

To ease the presentation, we introduce the following definition.

Definition 3.1. For a matrix A, we say that a singular value and its gap (�i, �i) is (c, ⌧, ⌫) stable under E if the
following are all true. Let T = inf{t > 0 : P(kEk > t)  ⌧}.

(a) �i > cT .

(b) �i > c(K log⌫/2 n+ ��1
i

T 2).

(c) �i > ciT kUk1; where i := �1/�i.

The conditions in this definition will guarantee that �i, �i are stable, in that they do not vary too much after
the perturbation by E. This gives us control on �̃i, �̃i, which is important in the analysis. Most importantly, it
guarantees that the stability assumption in Theorem 3.2 hold; see Remark 3.1.
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We will assume that our signal matrix A has a singular value and gap (�i, �i) that is (c, ⌧, ⌫) stable under E
for properly chosen c, ⌧, ⌫, where ⌧ is a parameter that goes to zero, ⌫ is a small constant (like 1 or 2), and c is a
large constant.

Let us comment on each condition. We can think of T as basically kEk, since T is a stand-in for a high
probability bound of kEk, which is often strongly concentrated; see [59].

Remark 3.2. (Interpretation of Stability) The conditions here run parallel with those in Theorem 3.2.

• The first condition is simply the assumption that the signal-to-noise ratio is large. This is absolutely
necessary because if the intensity of the noise is larger than that of the signal, the signal will most likely be
destroyed [53].

• The second condition essentially asks for the gap to be at least polylogrithmic and the product �i�i+1 to
dominate kEk2 (which is consistent with the improved `2 bound in Theorem 1.2).

• The third condition requires the gap to be at least ikUk1kEk. This is better than (1.2) by a factor ikUk1,
which can be as small as n�1/2, a large improvement. As a matter of fact, in all applications in this paper,
i = O(1) and kUk1 = n�1/2+o(1).

As the role of E is consistent through the paper, we will simply say (�i, �i) is (c, ⌧, ⌫) stable, instead of saying
that (�i, �i) is (c, ⌧, ⌫) stable under E.

Set ✏1(i) := kEk/�i, ✏2(i) := 1/�i, C(r) = 1000 ⇥ 92r, c1(r) = 2500r3/2. (Big constants like 1000 are for
definiteness and are rather adhoc; we make no attempt to optimize these in the current paper.) We are going to
use these parameters throughout the paper.

Theorem 3.3. Let c0, ⌧ > 0, where c0 is a constant and ⌧ may tend to zero with n. Set c = 211(c0 + 1)r3.
Assume that (�i, �i) is (c, ⌧, 1) stable. Then with probability at least 1� C(r)n�c0 � 2⌧ ,

(3.9) kũi � uik1  c kUk1 (i kũi � uik2 + ✏1(i) + i✏2(i)K
p
log n) +

cK
p
log n

�i

.

Theorem 3.1 follows easily from Theorem 3.3 and Theorem 1.2.

Remark 3.3. (Optimality) Consider the bound in Theorem 3.3 for the first singular vector. Let us compare it
to the desired bound (3.6), which is kũ1 � u1k1 = Õ(kUk1 kũ1 � u1k2). We notice that the bound (3.9) is o↵ by

2 terms: cK
p
logn

�i
and Õ(kUk1(✏1 + ✏2)).

In many applications, �1 is su�ciently large and K is su�ciently small that the first term cK
p
logn

�1
is

negligible. Furthermore, when applying (3.9), we typically do not know kũ1 � u1k2. In this case, the best we
can do is to use the bound from Theorem 1.2, which contains both ✏1 and ✏2. Moreover, a new study [52] reveals
that both ✏1 and ✏2 are necessary in (1.3). Thus, technically (3.9) has achieved what (3.6) promised. The case
when K is relatively large will be discussed in the next section.

Our proof also reveals that if we consider the local estimate |ũil � uil|, then we can replace kUk1 by kUl,·k1
where Ul,· is the lth row of U . So for a local estimate, we only need local information from U .

3.4 Main theorems: Random setting with large K. Let us discuss the last term K
p
log n/�i in (3.9). We

stated that in many cases, this term is negligible. It is indeed so when the entries of E have a fixed distribution,
which does not depend on n, as illustrated by the following two examples.

Example. If the entries of E are iid Rademacher (±1), then K = 1.

Example. If the entries of E are iid N(0, 1), then we can use the following simple truncation argument. Notice
that with probability 1 � o(n�100), a standard gaussian variable is bounded by 20

p
log n (with room to spare).

Thus, we can replace N(0, 1) by its truncation at 20
p
log n, and set K = 20

p
log n and pay an extra term n�100

in the probability bound. One can apply this trick to any distribution with a light tail.
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However, for some important applications, the entries of E can be reasonably large. A typical example here
is the matrix completion problem, a fundamental problem in data science (see Section 4 for more details). In this
case, E is not really noise in the traditional sense, but a random matrix created artificially from the setting of
the problem. In this setting, the magnitude of K will make the error term in question become too big.

Example: Matrix completion. Let A be matrix with rank r and non-zero entries of order O(1). Let B be a matrix
obtained by keeping each entry of A with probability p, independently. We call these entries observed. For a
non-observed entry, write 0. The task is to recreate A from B.

If we consider Ã = 1
p
B, then Ã is a random matrix with expectation equalling A, thanks to the normalization.

Thus, we can write Ã = A+ E, where E is a random matrix with independent entries with mean 0. The entries
⇠ij of E have di↵erent distributions. For the ij entry, ⇠ij = aij with probability 1 � p, and (1 � 1/p)aij with
probability p. Thus K is roughly maxij |aij |/p which is of order 1/p. In the matrix completion problem, one often
wants to make p as small as possible, typically n�1+✏ or even log n/n. Thus, K can be close to n and the error
in question becomes too big.

In this section, we develop new bounds to overcome this deficiency. We will need the notion of strong stability,
which is a refinement of the notion of stability introduced earlier.

Definition 3.2. We say that (�i, �i) is (c, ⌧, ⌫) strongly stable under E if in addition to being (c, ⌧, ⌫) stable, �i

satisfies �i > c
p
Kn log⌫+0.01 n.

Assumption 3.1. We assume for the rest of this section that E[⇠2
ij
]  K  n.

This assumption is satisfied by random variables which take a large value K with a small probability of order
1/K. This is exactly the situation with the matrix completion problem discussed above.

Remark 3.4. For a random matrix of size n, whose entries have zero mean and variance K, the spectral norm
is typically ⌦(

p
Kn). Thus, in this case, the last (new) condition in Definition 3.2 is only marginally stronger

than the signal to noise assumption �i � kEk.

Theorem 3.4. Let c0, ⌧ > 0, with c0 constant and ⌧ potentially tending to 0 with n. Set c = 217(c0 + 1)r3.
Assume that (�i, �i) is (c, ⌧, 2) strongly stable. Then with probability at least 1� C(r)n�c0 � ⌧ log n,

(3.10) kũi � uik1  c kUk1 (i kũi � uik2 + ✏1(i) + i✏2(i)K
p

log n) +
c
p
Kni kUk1 log n

�i

.

Remark 3.5. Results in random matrix theory show that kEk often concentrates around ⇠
p
Kn [59]. In this

case, the last term on the RHS of (3.10) is basically i kUk1 ✏1(i). Thus, the bound essentially becomes

(3.11) kũi � uik1 = Õ
⇣
i kUk1 (kũi � uik2 + ✏1(i) +K✏2(i))

⌘
.

By the discussion in Remark 3.3, the ✏1(i) and ✏2(i) terms are necessary to bound kũi � uik2. The bound is thus

(3.12) kũi � uik1 = Õ
⇣
i kUk1 kũi � uik2

⌘
,

which is only o↵ from (3.6) by a factor of i. Thus, we basically achieve (3.6) even if K is large.

In a setting where kUk1 = n�1/2+o(1) and the condition number i = O(1), this new result essentially
reduces K to

p
K. The bound on kUk1 (incoherence bound) is typical and necessary in the analysis of the

matrix completion problem; see for instance [18, 20, 44, 54].
The key step in our analysis, the so-called delocalization lemma below, is new and could be of independent

interest.

Lemma 3.1. (Delocalization Lemma) Let c0, ⌧ > 0, with c0 constant. Set c = 211(c0 + 1)r3. If (�i, �i) is
(c, ⌧, 2) strongly stable, then

(3.13) kũik1  c1i kUk1 ,

with probability at least 1� C(r)n�c0 � ⌧ log n.
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3.5 The rectangular case. The results are easy to generalize to the rectangular case, where A 2 Rm⇥n, by

a standard symmetrization trick. Let N = m + n. Define the N ⇥ N matrix S(A) :=

✓
0 A
AT 0

◆
. Notice that

S(A) is symmetric, and it is easy to show that if AT
u = �v and Av = �u, then S(A)(u,�v

T ) = �(u,�v
T ).

Thus, we can apply the main result to S(A) to obtain `1 perturbation bounds for ui and vi, the ith left and
right singular vectors of A. For this theorem, we will assume A has singular value decomposition A = U⌃V . We
have the following rectangular analogue of Theorem 3.3.

Theorem 3.5. Let m2(i) = max{kũi � uik2 , kṽi � vik2}, and let W = [U, V ], the concatenation of U and V .
Let c0, ⌧ > 0, with c0 constant and ⌧ potentially tending to 0 with n. Set c = 212(c0 + 1)r3. If (�i, �i) is (c, ⌧, 1)
stable (with kWk1 instead of kUk1), we have with probability at least 1� C(r)N�c0 � 2⌧ ,

(3.14) kũi � uik1  c kUk1 [im2(i) + ✏1(i) + i✏2(i)K
p
logN ] +

cK
p
logN

�i

The same holds for ṽi � vi, with kUk1 replaced with kV k1.

Here is the analogue for Theorem 3.4.

Theorem 3.6. Let c0, ⌧ > 0, with c0 constant and ⌧ potentially tending to 0 with n. Set c = 218(c0 + 1)r3. If
(�i, �i) is (c, ⌧, 2) strongly stable (replacing n in the definition of stable pair with N , and kUk1 with kWk1), then
with probability at least 1� C(r)N�c0 � ⌧ logN ,

(3.15) kũi � uik1  c kUk1 [im2(i) + ✏1(i) + i✏2(i)K
p

logN ] +
c
p
KNi kWk1 logN

�i

.

The same holds for ṽi � vi, with kUk1 replaced with kV k1.

3.6 Sketch of the proofs and main new ideas. One can derive Theorem 3.3 from Theorem 3.2 by verifying
that the assumptions of Theorem 3.2 hold with high probability in the setting of Theorem 3.3. This part requires
a technical, but rather routine, computation.

In order to prove Theorem 3.2, we apply the leave-one-out strategy, which is a popular method to control the
coordinates of an eigenvector. The starting observation here is the following. Let H{l} be the matrix obtained
from H by zeroing out its lth row and column, then the lth row and column of A + H{l} and A are the same.
On the other hand, the lth row of the matrix, thanks to the eigenvector equation Av = �v, has a direct influence
on the lth coordinate of any eigenvector v. From here, it is not hard to deduce a strong bound for the di↵erence
between the lth coordinates of an eigenvector of A and its counterpart of A+H{l}.

By the triangle inequality, it remains to bound for the di↵erence between the lth coordinates of the eigenvector
of A + H{l} and its counterpart of A + H. It is often enough to just replace it by the `2 distance between the
vectors. In many previous treatments, authors used the original Davis-Kahan to obtain a bootstrapping inequality
[4, 25]. Our new idea here is to exploit the special structure of the di↵erence matrix H �H{l}, which has exactly
one non-trivial row and column. Using a series of linear algebra manipulations, we obtain a more e↵ective bound,
laying the ground for a stronger bootstrap argument which results in the conclusion of Theorem 3.2.

To prove Theorem 3.4, we introduce the so-called iterative leave-one-out argument, which is a refinement of
the original leave-one-out argument and could be of independent interest. The basic idea is as follows. Starting
with the deterministic Theorem 3.2, we observe that quality of the bound provided by this theorem depends
on the `1 norm of the eigenvectors of the (leave-one-out) matrix A + H{l}. To control this later quantity, we
apply Theorem 3.2 again, but now on A +H{l}. It will lead to a leave-two-out matrix, obtained by zeroing out
two rows and columns of H. We keep continuing this process (leave-three-out and so on) and obtain a series of
improvements, which converges to the desired bound. The key point here is that the more rows and columns we
leave out, the weaker the requirements on the `1 bound become, until a point that it is automatically satisfied.

Using this new argument, we first prove the Delocalization Lemma 3.1. It is then relatively simple to derive
Theorem 3.4 from this lemma.
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4 Applications

In this section, we apply our new results to a number of well known algorithmic problems, leading to fast and
very simple algorithms.

4.1 Finding hidden partition. Finding hidden partition is a popular problem in statisitics and theoretical
computer science (also goes under the name of statistical block model). Here is the setting: a vertex set V of
size n is partitioned into r subsets V1, . . . Vr, and between each pair Vi, Vj we draw edges independently with
probability pij (we allow i = j). The task is to find a particular subset Vj or all the subsets V1, . . . , Vr given one
instance of the random graph. See [7, 13, 28, 34, 38, 39, 40, 41, 43, 50, 61] and the references therein. We think
of r as a constant and n tends to infinity.

The most popular approach to this problem is the spectral method (see [43] for a survey), which typically
consists of two steps. In the first step, one considers the coordinates of an eigenvector of the adjacency matrix of
the graph (or more generally the projection of the row vectors of the adjacency matrix onto a low dimensional
eigenspace), and runs a standard clustering algorithm on these low dimensional n points. The output of this step
is an approximation of the truth. In the second step, one applies adhoc combinatorial techniques to clean the
output to recover the mis-classified vertices.

The input of the problem is the adjacency matrix of the (random) graph. Let us call this matrix Ã. Now let
A be the matrix of expectation (thus the entries will be pij). Since there are r vertex sets in the partition, this
matrix has r identical blocks and thus has rank at most r. The di↵erence E = Ã � A is a random matrix with
independent upper diagonal entries. Since pij is the expectation of the ij entry of Ã, E has zero mean.

It has been speculated that in many cases, the cleaning step is not necessary. Our result makes a contribution
towards solving this problem. The critical point here is that the existence of mis-classified vertices, in many
settings, is just an artifact of the analysis in the first step, which typically relies on `2 norm estimates. It is clear
that any `2 norm estimate, even sharp, could only imply that a majority of the vertices are well classified, which
leads to the necessity of the second step. On the other hand, if we have a strong `1 norm estimate, then we can
classify all the vertices at once. Our new infinity norm estimates will enable us to do exactly this in a number of
settings, resulting in simple and fast new algorithms. In Section 14, we apply this idea to many problems in this
area, including the hidden clique problem, the planted coloring problem, the hidden bipartition problem, and the
general hidden partition problem.

All of these problems have been studied heavily, with numerous treatments using di↵erent tools. On the
other hand, our treatment is very simple and universal for all settings considered. Moreover, in certain ranges,
the algorithm works under the weakest assumption known to date.

Let us close this section with an illustrative example.

The hidden clique problem. The (simplest form) of the hidden clique problem is the following: Hide a clique X of
size k in the random graph G(n, 1/2). Can we find X in polynomial time?

Notice that the largest clique in G(n, 1/2), with overwhelming probability, has size approximately 2 log n [8].
Thus, for any k bigger than (2 + ✏) log n, with any constant ✏ > 0, X would be abnormally large and therefore
detectable, by brute-force at least. For instance, one can check all vertex sets of size k to see if any of them form a
clique. However, finding X in polynomial time is a di↵erent matter, and the best current bound for k is k � c

p
n,

for any constant c > 0. This was first achieved by Alon, Krivelevich, and Sudakov [7]; see also [40][30] for later
developments concerning faster algorithms for certain values of c.

The Alon-Krivelevich-Sudakov algorithm runs as follows. It first finds X when c is su�ciently large, then
uses a simple sampling trick to reduce the case of small c to this case.

To find the clique for a large c, they first compute the second eigenvector of the adjacency matrix of the graph
and locate the first largest k coordinates in absolute value. Call this set Y . This is an approximation of the clique
X, but not yet totally accurate. In the second, cleaning, step, they define X as the vertices in the graph with at
least 3/4k neighbors in Y . The authors then proved that with high probability, X is indeed the hidden clique.

With our new results, we can find X immediately by a slightly modified version of the first step, omitting the
cleaning step, as promised. Before starting the main step of the algorithm, we change all zeros in the adjacency
matrix to �1.

Algorithm 4.1. (First singular vector clustering-FSC) Compute the first singular vector. Let x be the
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largest value of the coordinates and let X be the set of all coordinates with value at least x/2.

This is perhaps the simplest algorithm for this problem. Implementation is trivial as computing the first
singular vector of a large matrix is a routine operation that appears in all standard numerical linear algebra
packages.

Theorem 4.1. There is a constant c0 such that for all k � c0
p
n, FSC outputs the hidden clique correctly with

probability at least .99.

4.2 Matrix Completion. A major problem in data science is the matrix completion problem, which asks to
recover a large matrix from a sparse, random, set of observed entries. Formally speaking, let A be a large m⇥ n
matrix where each entry is revealed with probability p, independently (thus roughly pmn entries are observed).
The goal is to recover A from the set of observed entries.

One of the key motivations for this problem is to build rating/recommendation systems. Assume that a
company wants to know customers’ opinions about the entire catalog of their products. They can achieve this
by constructing the rating matrix of their products, where the rows of represent customers and the columns
are indexed by products, and each entry represents a rating. Clearly, entries of high ratings suggest a natural
recommendation strategy.

The problem here is that only part of the matrix is known, as most customers have used and rated only few
products. Thus, one needs to complete the matrix based on these few observed entries. A famous example here
is the Netflix problem where the entries are the ratings of movies (from 1 to 5). In fact, matrix completion has
become a public event thanks to the Netflix competition; see [47].

It is clear that the task is feasible only if there is some condition on the matrix, and the most popular condition
is that A has low rank. There is a vast literature on the problem with this assumption; see [20, 20, 24, 54] and
the references therein.

A natural try for matrix completion is to find the matrix of minimal rank agreeing with the observed entries.
However, this problem is NP-hard. The idea here is to use the following relaxation

(4.16) minimize kXk⇤ subject to. Xij = [P (A)]ij , for all observed (i, j)

where kXk⇤ is the sum of the singular values of X. In words, the task is: among all matrices whose entries agree
with the observed matrix entries, find the one with the smallest nuclear norm. A series of papers [18, 19, 20, 54],
by Candès and many coauthors show that (under various assumptions) the solution to the convex program (4.16)
recovers A exactly, with high probability.

Another idea is to use the spectral method. Consider a matrix Ã, where Ãij = p�1Aij if the entry Aij

is observed, and 0 otherwise. Thus, Ãij is a random variable with mean Aij , as each entry is observed with
probability p. So we can write Ã = A + E, where E is a random matrix with independent entries having zero
mean. One can see Ã as an unbiased estimator of A. A well known work in this direction is [44]. In this
paper, Keshavan, Montanari, and Oh first use a low rank approximation of Ã to obtain an approximation of A in
Frobenius norm. Next, they solve an optimization problem to clean the output, and achieve exact recovery with
high probability. See Table 1 for a summary of existing results.

In both approaches above, one needs to solve a non-trivial optimization problem. it seems that the nuclear
norm optimization algorithm, while polynomial time in theory, does not run e�ciently in practice; see [48].

As an application of our new results, we design a simple spectral algorithm, whose cleaning step is simply
rounding the output of the spectral step. Assume for a moment that the entries, as in the Netflix problem,
are non-zero integers. We are going to show that a properly chosen low rank approximation B of Ã satisfies
kA�Bk1 < 1/2. Thus, one can recover A from B by simply rounding the entries to the nearest integer. This is
thanks to the fact that we now can prove that a properly defined low rank approximation of Ã approximates A
in the infinity norm, compared to approximation in Frobenius norm or spectral norm in previous works.

We now describe the algorithm. First compute the leading singular values and singular vectors of Ã,
(�̃1, ũ1, ṽ1), (�̃2, ũ2, ṽ2), . . . , (�̃s̃, ũs̃, ṽs̃) where s̃ := maxi{i : �̃i � 1

8rkWk�2
1 }. Let s := maxi{i : �i � 1

16rkWk�2
1 }.

Observe that s̃ is random because it is computed from the observed Ã, while s is deterministic. B will be the low
rank approximation given by
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Result Algorithm Lowest possible density
Candés, Recht ’09 [19] convex optimization p = ⌦(N�0.8 logN)
Candés, Tao ’10 [20] convex optimization p = ⌦(N�1 log2 N)

Recht ’11 [54] convex optimization p = ⌦(N�1 log2 n)
Keshavan, Montanari, Oh ’10 [44] spectral + cleaning p = ⌦(N�1 logN)

Table 1: A survey of results for exact recovery in the matrix completion problem for a m ⇥ n matrix, and
N = m + n. All results are stated under the assumptions that r = O(1) and kUk1 = O(n�1/2) in order to
minimize the sampling density p.

B :=
s̃X

j=1

�̃j ũj ṽ
T

j
.

The formal code is as follows.

Algorithm 4.2. (Approximate-and-Round)

1. Take SVD of Ã =
Pmin{m,n}

i=1 �̃iũiṽTi .

2. Approximate: let B =
P

is̃
�̃iũiṽTi

3. Round: round the entries of B to the nearest integer.

Theorem 4.2. Let A be a m⇥n matrix of rank r whose entries are non-zero integers, where both r, kAk1 = O(1).
Let N = m+ n and � = infis �i. Then, there exists c = c(r, kAk1) such that if

• (signal to noise) �s > c(
p
Np�1) log2.01 N

• (gap) � > cp�1 logN .

• (incoherence) kWk1  cN�1/2

• (density) p > N�1 log4.03 N ,

then Algorithm 4.2 recovers all of the entries of A exactly with probability at least 1�N�1.

The optimal value for the density is p = O(logN/N), which has been essentially achieved in [44] (under
various assumptions). In this paper, we focus on the simplicity of both the algorithm and the proof, so do not
try do optimize p. A more sophisticated analysis will bring us close to the optimal bound, while keeping the
algorithm essentially the same. This will be the topic of a future paper.

Finally, let us comment on our new assumptions. The assumption that the entries are integers is common for
recommendation systems, as we have alluded to. Furthermore, in real life most data matrices become integral by
multiplying by a relatively small constant. For instance, if all entries have at most 2 decimal places, then 100A
is integral, and our algorithm works with an obvious re-scaling.

The assumption that the entries are non-zero is for convenience, and can be achieved by simply shifting the
matrix. If we know that all entries are in the interval [�L,L], for some integer L > 0, then A+ (L+ 1)J (where
J is the all-one matrix) have non-zero entries in the interval [1, 2L+ 1]. Furthermore, the rank would change by
at most 1. Thus, the shifted matrix basically has the same parameters as the original one.
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4.3 Matrix completion with noise In a more realistic setting, many authors considered a model when the
data matrix A is already corrupted by (random) noise, and we only observe a few entries from the corrupted
matrix [4, 18, 26, 45].

This problem looks more technical than the original (noiseless) one. On the other hand, with respect to our
approach, it is still exactly the same problem. Assume that each entry aij from A is corrupted by noise xij with
mean zero. Thus, the corrupted matrix is A0 = A+X. As argued before, the observed matrix is

(4.17) Ã = A0 + E0,

where E0 is a random matrix with independent entries ⇠0
ij

which are equal ( 1
p
� 1)(aij + xij) with probability p,

and �(aij +xij) with probability 1� p. Since xij are independent bounded random variables with mean zero, ⇠0
ij

are independent, zero mean and O(1/p) bounded. This is still under the assumption of Theorem 4.2. Thus, we
can easily deduce the following ”noisy” version.

Theorem 4.3. Let A be a m⇥n matrix of rank r whose entries are non-zero integers, where both r, kAk1 = O(1).
For 1  i  m, 1  j  n, let xij be B-bounded independent random variables with zero mean, and X be the
matrix consisting of these entries. Suppose B = O(1).

Let N = m+ n and � = infis �i. Then, there exists c = c(r, kAk1 , B) such that if

• (signal to noise) �s > c
p
Np�1 log2.01 N

• (gap) � > cp�1 logN .

• (incoherence) kWk1  cN�1/2

• (density) p > N�1 log4.03 N ,

then Algorithm 4.2 (given A0+E0 as input) recovers all of the entries of A exactly with probability at least 1�N�1.

See Figure 1 for a numerical example.

The outline of the rest of the paper. We first collect preparatory tools from linear algebra and probability
in Section 5. Then, we prove the deterministic Theorem 3.2 in Sections 6, 7, and 8. The proof of Theorem 3.3
from Theorem 3.2 is given in Section 9. Afterward, we present the proof of the delocalization lemma, Lemma 3.1,
in Sections 10, 11, and 12. Next, we demonstrate in Section 13 that Theorem 3.4 follows fairly easily from the
proof of Lemma 3.1. To conclude, we discuss in detail (with proofs) our applications in Sections 14 and 15.

5 Preparation

Throughout the paper, we will make repeated use of a few facts from linear algebra and probability. To make the
exposition easier, we will collect these facts and some of their consequences here.

5.1 Linear Algebra.

Fact 5.1. (Weyl inequality) Let A be a symmetric matrix with eigenvalues �1 � �2 � ... � �n and singular
values �1 � �2 � ... � �n. Define Ã = A+H for any symmetric matrix H. Assume that Ã has eigenvalues and
singular values �̃i and �̃i, again ordered decreasingly. For all 1  i  n,

�i � kHk  �̃i  �i + kHk , and

�i � kHk  �̃i  �i + kHk .
(5.18)

As an immediate consequence, we have the following two results.

1. If �i � 2 kHk, then �̃i � �i
2 .

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited890

D
ow

nl
oa

de
d 

09
/2

9/
25

 to
 1

92
.3

1.
23

6.
3 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



(a) Original (b) Corrupted

(c) Samples (of corrupted) (d) Recovered

Figure 1: Approximate-and-Round run on Ã = A0 +E0 as defined in (4.17), where A is a N ⇥N block matrix of
2’s and 4’s and X is a ±0.3, mean zero, random matrix. Here, N = 20, 000 and the sampling density is p = 0.30.
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2. If |�i| > kHk, then �̃i has the same sign as �i.

For any symmetric matrix H and index set ↵, let H↵ be equal be the matrix obtained from H by zeroing
out the rows and columns indexed by ↵ (replacing all entries in these rows and columns by zeros). The following
fact is well known and easy to prove.

Fact 5.2. For any index set ↵, kH↵k  kHk.

5.2 Probability.

Lemma 5.1. (Hoeffding’s Inequality, Theorem 2.2.6 in [58]) Let X1, X2, ...Xn be independent zero-mean
random variables such that ai < Xi < bi with probability 1. Then,

(5.19) P
n
|

nX

i=1

Xi| > t
o
 2 exp

⇣ �2t2P
n

i=1(bi � ai)2

⌘
.

Corollary 5.1. Let x be a random vector whose entries are independent, zero-mean, K-bounded random
variables. Then for any fixed unit vector u and any C > 0,

P{|xT
u| � CK

p
log n}  2 exp(�C2

2
log n) = 2n�C

2
/2.

The same bound holds if u is a random unit vector from which x is independent.

.

Lemma 5.2. (Bernstein’s Inequality, Theorem 2.8.4 in [58]) Let X1, . . . Xn be independent, K bounded,
mean zero, random variables. Then

(5.20) P
n
|

nX

i=1

aiXi| � t
o
 2 exp

⇣
� t2/2P

n

i=1 E[X2
i
] +Kt/3

⌘
.

The following is a corollary of a result from [51]; see Appendix A for the proof.

Theorem 5.1. Suppose that E is a symmetric random matrix with K-bounded, mean zero, independent entries
above the diagonal. Suppose that A has rank r, and let 1  k  r be an integer. Then, for any t � 0, the following
hold.

P{�̃k < �k � t}  4⇥ 9k exp
⇣
� t2

128K2

⌘
, and

P
(
�̃k > �k + t

p
r + 2

p
k
kEk2

�̃k

+ k
kEk3

�̃2
k

)
 4⇥ 92r exp

⇣
� r

t2

128K2

⌘
.

(5.21)

In particular,

P
n
|�̃k � �k| > 2r

⇣
t+

kEk2

�̃k

+
kEk3

�̃2
k

⌘o
 8⇥ 92r exp

⇣
� t2

128K2

⌘
.

6 Proof of Theorem 3.2

In this proof, both A and H are deterministic. We will examine the e↵ect of the full perturbation H on entry
uil by first considering the auxiliary perturbation H{l} (which is obtained from H by leaving out the lth row and
column). This is an example of the so-called leave-one-out strategy, which has been used by many researchers in
recent studies [4, 25, 33, 63, 64]. Next, we need to add the lth row and column back and consider the impact of
these. This is the more technical part of the proof, which requires a careful analysis.
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Let H{l} = H �H{l}. By definition, the entries outside the lth row and column of H{l} are all zero. We set

A{l} := A+H{l} and call the singular values and singular vectors of this matrix �{l}
i

and u
{l}
i

, respectively. The

lth entry of u{l}
i

is u{l}
il

.
First, we show that the e↵ect of H{l} on uil is extremely small. This is the content of Lemma 6.1. Once this

is established, we view Ã as a perturbation of A{l}, Ã = A{l}+H{l}. The structure of H{l} (now viewed as noise)

will allow us to deduce a strong `2 bound for the leading singular vectors of Ã. The key here is that this bound
will be so strong that even when we use it to upper bound the entry-wise perturbation, the result still leads to
the claim of our theorem. This bound is the content of Lemma 6.2, which is the most technical part of the proof
and requires some novel ideas, going far beyond applying the standard Davis-Kahan bound.

Lemma 6.1. Under the conditions of Theorem 3.2, for any 1  l  n,

|u{l}
il

� uil|  2r kUl,·k1
h
i kũi � uik2 + i

���ũi � u
{l}
i

���
2
+ ✏1(i)

i
.

Lemma 6.2. Under the conditions of Theorem 3.2, for any 1  l  n,

���ũi � u
{l}
i

���
2
 68r1/2

h
[✏1(i) + al✏2(i)]|ũil|+ ial kUl,·k1 ✏2(i)

i
+ 32

|hu{l}
i

,xi|
�i

.

Proof of Theorem 3.2 given the lemmas. By the triangle inequality and the fact that `2 norm dominates the `1
norm, we have

|ũil � uil|  |u{l}
il

� uil|+
���ũi � u

{l}
i

���
2
.

By Lemma 6.1, we have

|ũil � uil|  |u{l}
il

� uil|+
���ũi � u

{l}
i

���
2

 2r kUl,·k1 (i kũi � uik2 + i

���ũi � u
{l}
i

���
2
+ ✏1(i)) +

���ũi � u
{l}
i

���
2

 2r kUl,·k1 (i kũi � uik2 + ✏1(i)) + 4r
���ũi � u

{l}
i

���
2
.

Now using Lemma 6.2 to bound
���ũi � u

{l}
i

���
2
, we obtain, with C0 = 4 ⇤ 272r3/2,

|ũil � uil| 
C0

4

h
i kUl,·k1 kũi � uik2 + [✏1(i) + ali✏2(i)] kUl,·k1 + [✏1(i) + al✏2(i)]|ũil|

i
+ 128r

|hu{l}
i

,xi|
�i

.

By the triangle inequality, we can bound |ũil|  |uil|+ |ũil � uil|. This gives, letting b = ✏1(i) + al✏2(i),

|ũil � uil| 
C0

4

h
i kUl,·k1 kũi � uik2 + b kUl,·k1 + b(|uil|+ |ũil � uil|)

i
+ 128r

|hu{l}
i

,xi|
�i

.

Then, the coe�cient in front of |ũil � uil| on the RHS is C0b

4 . Recall that ✏1(i) =
kEk
�i

and ✏2(i) =
1
�i
. Therefore,

because �i � C0 kEk and �i � C0al, it must be the case that b < 2
C0

. Then we can move all the terms with
|ũil � uil| to the left with coe�cient at most 1/2. This gives

(6.22)
1

2
|uij � ũij | 

C0

4

h
i kUl,·k1 kũi � uik2 + b kUl,·k1 + b|uil|

i
+ 128r

|hu{l}
i

,xi|
�i

.

Bounding the term |uil| on the RHS by kUl,·k1, we obtain

1

2
|ũil � uil| 

C0 kUl,·k1
4

h
i kũi � uik2 + 2b

i
+ 128r

|hu{l}
i

,xi|
�i

.

Multiplying both sides by 2, we obtain the desired inequality (with room to spare).

In the next two sections, we establish Lemmas 6.1 and 6.2, respectively.
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7 Proof of Lemma 6.1

Recall that for a matrix M , Ml,· denotes the lth row of M , viewed as a vector. The key point of the leave-one-out

analysis is that by definition, A{l}
l,· = Al,·. Furthermore, as u

{l}
i

is a singular vector of A{l}, A{l}
u
{l}
i

is either

�{l}
i

u
{l}
i

or ��{l}
i

u
{l}
i

and we will use the shorthand A{l}
u
{l}
i

= ±�{l}
i

u
{l}
i

. In all estimates where this shorthand

appears, the sign does not matter. Since A{l}
u
{l}
i

= ±�{l}
i

u
{l}
i

,

u{l}
il

=
hA{l}

l,· ,u
{l}
i

i

±�{l}
i

=
hAl,·,u

{l}
i

i
±�{l}

i

.

By the spectral decomposition of A, the RHS can be written as

hAl,·,u
{l}
i

i
±�{l}

i

=
1

±�{l}
i

h
± �1u1lu

T

1 ± �2u2lu
T

2 + · · · ± �rurlu
T

r

i
u
{l}
i

,

which implies, via the triangle inequality, that

|u{l}
il

� uil| 

�����
�i

�{l}
i

uilu
T

i
u
{l}
i

� uil

�����+

�����
1

�{l}
i

rX

j 6=i

±�jujlu
T

j
u
{l}
i

�����.

In the first term on the RHS, we have eliminated the signs in front of �i and �{l}
i

. This is because their signs
correspond to the signs of the corresponding eigenvalues of A and A{l} respectively. It must be the case that these

eigenvalues have the same sign by Fact 5.1. Studying the second term on the RHS, write u
{l}
i

= ui + (u{l}
i

�ui).
By the orthogonality of ui with uj for j 6= i, it follows that

(7.23) |u{l}
il

� uil|  | �i

�{l}
i

uilu
T

i
u
{l}
i

� uil|+
2

�i

rX

j 6=i

�j |ujl|
���u{l}

i
� ui

���
2
.

To bound first term on the right hand side of (7.23), write

�i

�{l}
i

uilu
T

i
u
{l}
i

� uil = uil

 
�i � �{l}

i

�{l}
i

!
u
T

i
u
{l}
i

+ uilu
T

i
(u{l}

i
� ui).(7.24)

Since �{l}
i

> �i/2 by Facts 5.1 and 5.2, the triangle inequality gives

| �i

�{l}
i

uilu
T

i
u
{l}
i

� uil|  |uil|
|�i � �{l}

i
|

�{l}
i

kuik2
���u{l}

i

���
2
+ |uil| kuik2

���u{l}
i

� ui

���
2

 2|uil|
kHk
�i

+ |uil|
���u{l}

i
� ui

���
2

 2✏1(i) kUl,·k1 +
���u{l}

i
� ui

���
2
kUl,·k1 .

(7.25)

The second line uses Fact 5.1 to bound |�i � �{l}
i

| 
��H{l}

��, and Fact 5.2 to get
��H{l}

��  kHk. To bound the
second term on the RHS of (7.23), bound |uil|  kUl,·k1 to obtain

2

�i

rX

j 6=i

�j |ujl|
���u{l}

i
� ui

���
2
 2 kUl,·k1

���u{l}
i

� ui

���
2
�1(r � 1)

�i

.

We can bound this last term by 2i kUl,·k1
���u{l}

i
� ui

���
2
(r � 1) to conclude that
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|u{l}
il

� uil|  2✏1(i) kUl,·k1 +
���u{l}

i
� ui

���
2
kUl,·k1 + 2i kUl,·k1

���u{l}
i

� ui

���
2
(r � 1)

 2ri kUl,·k1
���u{l}

i
� ui

���
2
+ 2✏1(i) kUl,·k1

 2r
h
i kUl,·k1 kũi � uik2 + i kUl,·k1

���ũi � u
{l}
i

���
2
+ ✏1(i) kUl,·k1

i
.

(7.26)

where the last step uses the triangle inequality. This concludes the proof of Lemma 6.1.

8 Proof of Lemma 6.2

In this section, we will view Ã as a perturbation of A{l} with the perturbing matrix H{l}. The main idea is that
H{l} is only supported on one row and one column. By leveraging this and kUl,·k1, we can obtain a strong bound

for
���ũi � u

{l}
i

���
2
. We begin with the following decomposition which will prove useful throughout:

(8.27) H{l} = xe
T

l
+ elx

T .

Recall that x is the lth row of H, but with the lth entry set to Hll/2, as H{l} is H � H{l}. Define

p = min{j : �j+1 < �i/4}. Let P {l} be the orthogonal projection to the orthogonal complement of the columns

of U{l}
p , and let V {l}

p be the n⇥ (p� 1) matrix whose columns are u
{l}
1 , . . . ,u{l}

i�1,u
{l}
i+1, . . . ,u

{l}
p . Expanding ũi in

the coordinates of the orthonormal basis {u{l}
k

}1kn,

ũi =
pX

k=1

↵ku
{l}
k

+ P {l}
ũi.

It follows that

���ũi � u
{l}
i

���
2

2
= hũi, ũii+ hu{l}

i
,u{l}

i
i � 2hũi,u

{l}
i

i

= 2(1� ↵2
i
)

= 2
nX

k 6=i

↵2
k

= 2
pX

k 6=i

↵2
k
+ 2

���P {l}
ũi

���
2

2

= 2
���V {l}T

p
ũi

���
2

2
+ 2

���P {l}
ũi

���
2

2
.

(8.28)

Therefore,

(8.29)
���ũi � u

{l}
i

���
2


p
2
h ���V {l}T

p
ũi

���
2
+
���P {l}

ũi

���
2

i
.

Proving Lemma 6.2 reduces to bounding the two terms on the RHS. It is possible that the first term in the fourth

line of (8.28) is a sum over an empty set (say i = 1, p = 1). In this case,
���ũi � u

{l}
i

���
2


p
2
��P {l}

ũi

��
2
.

Lemma 8.1. (
��P {l}

ũi

��
2
Bound)

(8.30)
���P {l}

ũi

���
2
 24✏1(i)(|ũil|+

���ũi � u
{l}
i

���
2
) + 8

|hx,u{l}
i

i|
�i

.
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As we previously observed, there is no contribution from
���V {l}T

p ũi

���
2
when the aforementioned sum is empty.

So we assume without loss of generality that it is not. We first establish that it is su�cient to bound the quantity���U{l}T
p H{l}ũi

���
2
by using the perturbation technique of [51]. This is the content of the following proposition,

which is where we use the gap stability condition.

Proposition 8.1.

(8.31)
���V {l}T

p
ũi

���
2
 2✏2(i)

���U{l}T
p

H{l}ũi

���
2
.

Having established this, when we go to bound
���U{l}T

p H{l}ũi

���
2
, the structure of H{l} will bring the lth row of

U{l}
p into play. It is important that this row not be too large in norm.

Proposition 8.2. (The lth row of U{l}
p is small) Let r

{l} denote the lth row of U{l}
p viewed as a column

vector. Then

���r{l}
���
2
 8r1/2i kUl,·k1 .(8.32)

The two propositions can be shown to give us a bound for
���V {l}T

p ũi

���
2
.

Lemma 8.2.

(8.33)
���V {l}T

p
ũi

���
2
 16r1/2✏2(i)

h
al(|ũil|+ i kUl,·k1) + i kHk kUl,·k1

���ũi � u
{l}
i

���
2

i
.

We are now ready to prove Lemma 6.2.

Proof of Lemma 6.2 given Lemmas 8.1 and 8.2. Lemmas 8.1 and 8.2 can be used to bound the RHS of (8.29).

In particular, temporarily setting � :=
���ũi � u

{l}
i

���
2
for brevity,

� 
p
2
h ���V {l}T

p
ũi

���
2
+
���P {l}

ũi

���
2

i

 34r1/2
h
✏1(i)|ũil|+ al✏2(i)(|ũil|+ i kUl,·k1) + [✏1(i) + i kHk kUl,·k1 ✏2(i)]�

i
+ 16

|hx,u{l}
i

i|
�i

.
(8.34)

The main observation is that � appears on both the LHS and RHS of the inequality. The coe�cient of � in the RHS
is 34r1/2[✏1(i) + i kHk kUl,·k1 ✏2(i)]. By the definition of ✏1(i) and ✏2(i) (see the discussion preceding Theorem

3.2), this equals 34r1/2(kHk
�i

+ i kHk kUl,·k). By the definition of C0, and the assumption that �i > C0 kEk and
�i > C0i kHk kUk1, we have the following estimate.

�  34r1/2
h
✏1(i)|ũil|+ al✏2(i)(|ũil|+ i kUl,·k1)

i
+

1

2
� + 16

|hx,u{l}
i

i|
�i

.(8.35)

Therefore, moving the terms involving � to the left and multiplying both sides by 2 gives

���ũi � u
{l}
i

���
2
 68r1/2

h
[✏1(i) + al✏2(i)]|ũil|+ ial kUl,·k1 ✏2(i)

i
+ 32

|hx,u{l}
i

i|
�i

.
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Proof of Lemma 8.1. Since Ã�A{l} = H{l}, it follows that

(8.36) (P {l}
ũi)

T Ãũi � (P {l}
ũi)

TA{l}
ũi = (P {l}

ũi)
TH{l}ũi.

By the definition of P {l}, we have

(8.37) |(P {l}
ũi)

TA{l}
ũi| = |hP {l}

ũi, A
{l}

ũii| = |hũi, P
{l}A{l}

ũii|  �{l}
p+1

���P {l}
ui

���
2

2
.

By Fact 5.1, �{l}
p+1  �p+1 + kH{l}k. Furthermore, by Fact 5.2, kH{l}k  kHk, so we have �{l}

p+1  �p+1 + kHk.
Because ũi is a singular vector of Ã, we have

(P {l}
ũi)

T Ãũi = ±�̃i

���P {l}
ũi

���
2

2
.

It thus follows that

(8.38) �̃i

���P {l}
ũi

���
2

2
� (�p+1 + kHk)

���P {l}
ũi

���
2

2
 |(P {l}

ũi)
TH{l}ũi|.

Applying Cauchy-Schwarz on the RHS, we obtain

(8.39) �̃i

���P {l}
ũi

���
2

2
� (�p+1 + kHk)

���P {l}
ũi

���
2

2

���P {l}

ũi

���
2

��H{l}ũi

��
2
.

By Fact 5.1, �̃i(A) > �i
2 . By definition of p, �i

2 � �p+1 > 1
4�i. So dividing by

��P {l}
ũi

��
2
gives

(8.40)

���P {l}
ũi

���
2


��H{l}ũi

��
2

0.25�i � kHk 

���H{l}u
{l}
i

���
2
+
��H{l}

��
���ũi � u

{l}
i

���
2

0.25�i � kHk  8

���H{l}u
{l}
i

���
2
+ 2 kHk

���ũi � u
{l}
i

���
2

�i

.

We used the triangle inequality in the numerator. It is apparent that x has `2 norm at most that of the lth row
of H. This gave

��H{l}
�� =

��xeT
l
+ elx

T
��  2 kxk  2 kHk. We also lower bounded 0.25�i � kHk � �i/8 because

�i > C0 kHk. To estimate the term
���H{l}u

{l}
i

���
2
, write using (8.27),

(8.41) H{l}u
{l}
i

= hx,u{l}
i

iel + u{l}
il

x.

Here el is the lth standard basis vector. We obtain

���H{l}u
{l}
i

���
2
 |hx,u{l}

i
i|+ kxk2 |u

{l}
il

|

 |hx,u{l}
i

i|+ kHk (|ũil|+ |ũil � u{l}
il

|).
(8.42)

So we conclude that

(8.43)
���P {l}

ũi

���
2


8|hx,u{l}
i

i|+ 24 kHk (|ũil|+
���u{l}

i
� ũi

���
2
)

�i

,

proving the lemma.
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Proof of Proposition 8.1. By the relation Ã�A{l} = H{l}, we have

(8.44) V {l}T
p

Ãũi � V {l}T
p

A{l}
ũi = V {l}T

p
H{l}ũi.

First, we observe that because ũi is a singular vector of Ã, the first term on the LHS of (8.44) is ±�̃iV
{l}T
p ũi.

Since the columns of V {l}
p are singular vectors of A{l}, the second term on the left hand side of (8.44) is

D{l}V {l}T
p ũi. D{l} is the (p� 1)⇥ (p� 1) diagonal matrix with entries ±�{l}

1 , ..± �{l}
i�1,±�{l}

i+1...± �{l}
p . Then, we

have

(8.45)
���U{l}T

p
H{l}ũi

���
2
�
���V {l}T

p
H{l}ũi

���
2
=
���(±�̃iI �D{l})V {l}T

p
ũi

���
2
� �i

2

���V {l}T
p

ũi

���
2
.

The first inequality uses that V {l}T
p H{l}ũi is a sub-vector of U{l}T

p H{l}ũi. The equality uses (8.44), and the

last inequality uses that the smallest singular value of the diagonal matrix ±�̃iI � D{l} is at least �i/2 by the
assumption of Theorem 3.2.

Proof of Proposition 8.2. Since the columns of U{l}
p are singular vectors, if ⌃{l}

p is a diagonal matrix with entries

±�{l}
1 , ...± �{l}

p , we have by definition of r{l},
���r{l}

���
2
=
���eTl U{l}

p

���
2
=
���eTl A{l}U{l}

p
⌃{l}�1

p

���
2
.(8.46)

Because A{l} and A have the same lth row,

(8.47)
���r{l}

���
2
=
���eTl AU{l}

p
⌃{l}�1

p

���
2
.

By the spectral decomposition of A, if ⌃ is the diagonal matrix whose entries are the eigenvalues of A, then the

the RHS is
���eTl U⌃UTU{l}

p ⌃{l}�1
p

���
2
=
���Ul,·⌃UTU{l}

p ⌃{l}�1
p

���
2
. By the triangle inequality,

(8.48)
���r{l}

���
2
 kUl,·k2 k⌃k

���UTU{l}
p

���
���⌃{l}�1

p

���
2
.

Because �1 > C0 kEk and the definition of p, ⌃{l}�1
p has norm at most �{l}

p  �p/2 by Facts 5.1 and 5.2. It is

clear that k⌃k = �1 and
���UTU{l}

p

���  1. Therefore, since kUl,·k2 
p
r kUl,·k1,

(8.49)
���r{l}

���
2
 2r1/2

⇣�1

�p

⌘
kUl,·k1  8ir

1/2 kUl,·k1 ,

where the last inequality uses the definition of p.

Proof of Lemma 8.2. By Proposition 8.1, it su�ces to upper bound
���U{l}T

p H{l}ũi

���
2
. Using the decomposition

for H{l} (8.27), we can write

U{l}T
p

H{l}ũi = (H{l}U
{l}
p

)T ũi = (X + Y )ũi.

Thus, we must bound kXũik2 + kY ũik2, where X = U{l}T
p xe

T

l
and Y = U{l}T

p elx
T . Therefore,

(8.50) kXũik2  |ũil|
���U{l}T

p
x

���
2
= |ũil|al.

On the other hand, for kY ũik2, the triangle inequality gives

(8.51) kY ũik2 
���Y u

{l}
i

���
2
+ kY k

���ũi � u
{l}
i

���
2
.
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By definition of Y , we can write Y u
{l}
i

= hu{l}
i

,xiU{l}T
p el = hu{l}

i
,xir{l}. As before, el is the lth standard basis

vector. Invoking Proposition 8.2, it follows immediately that

(8.52)
���Y u

{l}
i

���
2
 |hu{l}

i
,xi|

���r{l}
���
2
 8r1/2ial kUl,·k1 .

Now, we need to deal with the term kY k
���ũi � u

{l}
i

���
2
in (8.51). We will bound kY k. It is easy to see that Y

can be written as Y = r
{l}

x
T . In particular, Y is rank 1 so we can calculate the spectral norm of Y directly as

kY k = kxk2
��r{l}

��
2
. We have previously observed that kxk2  kHk and we can bound

��r{l}
��
2
as we did before

using Proposition 8.2. Therefore,

(8.53) kY k  8r1/2i kHk kUl,·k1 .

Combining estimates (8.50), (8.51), (8.52), and (8.53) gives
���U{l}T

p
H{l}ũi

���
2
 kXũik2 + kY ũik2

 |ũil|al + 8r1/2ial kUl,·k1 + 8r1/2i kHk kUl,·k1
���ũi � u

{l}
i

���
2
.

9 Proof of Theorem 3.3 via Theorem 3.2

In this section, we deduce Theorem 3.3 from the deterministic Theorem 3.2. The task is basically checking that
the conditions of Theorem 3.2 hold with high probability. The hardest part is the stability condition, and for this,
we will need to appeal to singular value perturbation bounds from [51]. We will show that on the complement of
a bad event B, the conditions for Theorem 3.2 hold for H = E. Next, the bad event holds with small probability.

Define the event B := B1 [ B2 [ BE where

B1 := [1ln{min{|�̃i � �{l}
i+1|, |�̃i � �{l}

i�1|} < �i/2},

B2 := [1ln

n���U{l}T
x(l)

���
2
�
p

2r(c0 + 1) log n
o
, and

BE := {kEk > T}.

(9.54)

Lemma 9.1.

(9.55) P(B)  C(r)n�c0 + 2⌧.

Proof of Theorem 3.3 given Theorem 3.2 and Lemma 9.1. By the construction of B, we can check that on B
(complement of B), the conditions for Theorem 3.2 with H = E and H{l} = E{l} are satisfied for all l.

Verification of the conditions for Theorem 3.2. Let 1  l  n. We first have to check that on B,

min{|�̃i � �{l}
i+1|, |�̃i � �{l}

i�1|} � �i/2.

The definition of B1 makes this condition trivial. Then, we have to check that

�i > C0 kEk .

On B, the event BE guarantees that kEk  T . Therefore, by (c, ⌧, 1) stability,

�i > cT � c kEk > C0 kEk .

See condition (a) of Definition 3.1. Finally, we verify that

(9.56) �i > C0 max
n���U{l}T

x(l)
���
2
,i kEk kUk1

o
.
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On B, the event B2 guarantees that
���U{l}T

x(l)
���
2
 K

p
2r(c0 + 1) log n.

Because of the (c, ⌧, 1) stability assumption,

�i > cmax{K
p

log n, Ti kUk1}.

Since kEk  T , this ensures that (9.56) holds. See conditions (b) and (c) of Definition 3.1.

Conclusion of the proof. By Lemma 9.1, B has probability at most C(r)n�c0 +2⌧ (recall that C(r) = 1000⇥92r).
Furthermore, we have checked that, if B occurs, then for all 1  l  n, the conditions for Theorem 3.2 hold. For
each l, Theorem 3.2 gives that

(9.57) |ũil � uil|  C0 kUl,·k1
h
i kũi � uik2 + ✏1(i) + ali✏2(i)

i
+ 256r

|hu{l}
i

,xi|
�i

,

where we recall al =
��U{l}T

x
��
2
. Taking the maximum over l on both sides gives us that on B,

(9.58) kũi � uik1  C0 kUk1
h
i kũi � uik2 + ✏1(i) + (max

l

al)i✏2(i)
i
+ 256r

maxl|hu{l}
i

,xi|
�i

.

Notice that maxl|hu{l}
i

,xi|  maxl al. Then we can use the bound for maxl al 
p
2r(c0 + 1) log n on B2 to

conclude that

(9.59) kũi � uik1  c kUk1
h
i kũi � uik2 + ✏1(i) + (K

p
log n)i✏2(i)

i
+ c

K
p
log n

�i

,

which is precisely (3.9).

Thus, what remains is to prove Lemma 9.1.

9.1 Proof of Lemma 9.1. We will bound P(BE),P(B2), and P(B1) separately, and use the union bound.

Probability of BE. Recall that
BE = {kEk > T}.

By the definition of T , it must be the case that

(9.60) P(BE)  ⌧.

Probability of B2. Recall that

B2 = [1ln

n���U{l}T
x

���
2
�
p

2r(c0 + 1) log n
o
.

Let 1  l  n. Observe that
��U{l}T

x
��
2
is the length of the projection of a random vector onto a subspace from

which it is independent. Consider the vector U{l}T
x, which has r entries. We use Corollary 5.1 to bound each

entry [U{l}T
x]j of this vector. We can bound for any 1  j  r,

(9.61) P{|[U{l}T
x]j | � K

p
2(c0 + 1) log n}  2n�c0�1.

By taking the union bound over the r entries,
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(9.62) P
n���U{l}T

x

���
2
� K

p
2r(c0 + 1) log n

o
 2rn�c0�1.

Thus B2 holds with probability at most 2rn�c0 by taking a union bound over 1  l  n.

(9.63) P(B2)  2rn�c0 .

Probability of B1. What remains is to bound the probability of B1. This is the hardest step, so we treat it
separately.

Lemma 9.2.

(9.64) P(B1)  64⇥ 92rn�c0 + ⌧.

By using the union bound, (9.60), (9.63), and (9.64) imply Lemma 9.1. We dedicate the remainder of the
section to proving Lemma 9.2, which completes the proof of Lemma 9.1.

9.2 Proof of Lemma 9.2. Define

Gi�1 :=
\

1ln

(
max

k=i�1,i
max{|�{l}

k
� �k|, |�̃k � �k|}  24r

h
K
p
r(c0 + 1) log n+

kEk2

�̃k

+
kEk3

�̃2
k

i)
,

Gi+1 :=
\

1ln

(
max

k=i,i+1
max{|�{l}

k
� �k|, |�̃k � �k|}  24r

h
K
p

r(c0 + 1) log n+
kEk2

�̃k

+
kEk3

�̃2
k

i)
.

(9.65)

These good events essentially guarantee that the relevant perturbed singular values are close to the original ones.

Proposition 9.1.

(9.66) P(B1)  P(Gi�1) + P(Gi+1) + P(BE).

Proof of Lemma 9.2 given the proposition. We apply the results of [51] on the perturbation of singular values to
determine the probability of Gi+1 and Gi�1. This is because for all l, both E and E{l} satisfy the conditions of
Theorem 5.1. The bound obtained from Theorem 5.1 for both E and E{l} will be the same because

��E{l}
��  kEk

by Fact 5.2.
We will bound P(Gi+1), and the exact same bound will hold for P(Gi�1). Let 1  l  n. We apply Theorem

5.1 to k 2 {i, i+ 1} with t = K
p
128(c0 + 1) log n. For each such k,

P
(
max{|�{l}

k
� �k|, |�̃k � �k|} � K

p
128r(c0 + 1) + 2

p
r
kEk2

�̃k

+ r
kEk3

�̃2
k

)
 16⇥ 92r exp[�(c0 + 1) log n].

(9.67)

This implies that

(9.68) P
(

max
k=i,i+1

max{|�{l}
k

� �k|, |�̃k � �k|}  24r
h
K
p
r(c0 + 1) log n+

kEk2

�̃k

+
kEk3

�̃2
k

i)
 32⇥ 92rn�c0�1.

Since Gi+1 is an intersection over l, we have to take a union bound over 1  l  n to bound the complement.
Then, Gi+1 holds with probability at most 32⇥ 92rn�c0 . The same bound holds for Gi�1.

Recall that in (9.60), we already bounded P(BE). Putting the bounds for Gi�1, Gi+1, and P(BE) together,
Proposition 9.1 implies

(9.69) P(B1)  64⇥ 92rn�c0 + ⌧.
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Proof of Proposition 9.1. Recall that

B1 = [1ln min{|�̃i � �{l}
i+1|, |�̃i � �{l}

i�1|}  �i/2}, and

BE = {kEk � T}.

Let
B1,i�1 = [1ln{|�̃i � �{l}

i�1|  �i/2}, and

B1,i+1 = [1ln{|�̃i � �{l}
i+1|  �i/2}.

Observe that B1 ⇢ B1,i�1 [ B1,i+1. We will show that

(9.70) Bi,i�1 ⇢ Gi�1 [ BE , and

(9.71) Bi,i+1 ⇢ Gi+1 [ BE .

Then, the union bound will imply the proposition. Recall that �i = �i � �i+1, and �i = min(�i�1,�i). Since
the proof of (9.70) is virtually identical, we will only give the proof of (9.71). We break the analysis up into cases
depending on if �i > 4T or not.

Case 1. �i > 4T .
Suppose BE holds. Let 1  l  n. By Fact 5.2,

��E{l}
��  kEk, and on BE , kEk  T . Therefore, by applying

Weyl’s inequality to �{l}
i+1 and �̃i, we find that

|�̃i � �{l}
i+1| � �i � �i+1 � 2T > �i/2 � �i/2.

Therefore, BE ⇢ B1,i+1, so this implies that B1,i+1 ⇢ BE ⇢ BE [ Gi+1 in this case.
Case 2. �i  4T .

We will show that Gi+1 [ BE = Gi+1 \ BE ⇢ Bi,i+1, implying (9.71). Suppose Gi+1 \ BE holds. Let 1  l  n.
Since �i > 100T by (c, ⌧, 1) stability (and choice of c) and �i  4T ,

�i+1 = �i ��i �
9

10
�i.

We can use Weyl’s inequality to obtain

�̃i+1 � �i+1 � kEk � 9

10
�i � T � 8

10
�i.

With this lower bound for �̃i+1, we can upper bound the right hand side of the inequality defining Gi+1 for both
k = i and k = i+ 1. On Gi+1 \ BE , we have that

(9.72) 8k 2 {i+ 1, i} : max{|�{l}
k

� �k|, |�̃k � �k|}  32r
h
K
p
r(c0 + 1) log n+

T 2

�i

+
T 3

�2
i

i
.

Since �i > 100T , the third term on the right hand side of the above inequality is at most 1/100 of the second
term. This implies that on Gi+1 \ BE ,

(9.73) 8k 2 {i+ 1, i} : max{|�{l}
k

� �k|, |�̃k � �k|}  33r
h
K
p
r(c0 + 1) log n+

T 2

�i

i
.

By the definition of c, it must be the case that�i is much larger than the RHS, because�i > c(K log1/2 n+��1
i

T 2)
by assumption (b) of (c, ⌧, 1) stability.

(9.74) 8k 2 {i+ 1, i} : max{|�{l}
k

� �k|, |�̃k � �k|}  �i

4
.
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Thus, on Gi+1 \ BE ,both �̃i and �{l}
i+1 are at most �i

4 away from their original values (which are �i and �i+1), so

the gap between them is at least �i/2 � �i/2. Since this is true for all l, this implies that Bi,i+1 holds. Thus, in
either case, B1,i+1 ⇢ Gi+1 [ BE .

As we have stated, a virtually identical argument using a case analysis for �i�1 gives that B1,i�1 ⇢ Gi�1[BE .
Therefore,

B1 ⇢ Gi�1 [ Gi+1 [ BE ,

which implies that

(9.75) P(B1)  P(Gi�1) + P(Gi+1) + P(BE).

10 Proof of the Delocalization Lemma 3.1

We now prove Lemma 3.1, using the iterative leave-one-out argument, discussed briefly in Section 3.6.
Recall the bound from Theorem 3.2 with A, H = E, on coordinate l:

(10.76) |ũil � uil|  C0 kUl,·k1
h
i kũi � uik2 + ✏1(i) + ali✏2(i)

i
+ 256r

|hu{l}
i

,xi|
�i

,

where we recall that C0 is the value from Theorem 3.2, C0 = 272⇥ 4r3/2. The term in the brackets will be shown
to be less than 5

2i. Further, kUl,·k1  kUk1 . We can thus write

|ũil � uil| 
5

2
C0i kUk1 + 256r

|hu{l}
i

,xi|
�i

, so

|ũil|  3C0i kUk1 + 256r
|hu{l}

i
,xi|

�i

.

(10.77)

The last term on the RHS is the inner product of the singular vector of a leave-one-out matrix with a random
vector from which it is independent. Appyling the Hoe↵ding inequality here is somewhat wasteful, as we can apply

the stronger Bernstein inequality, given that we have control on the infinity norm of u{l}
i

. Thus, the problem
reduces to bounding the infinity norm of eigenvectors of a minor. On the surface, this makes the problem harder,
as there are n minors. But we observe that the bound for the minor is slightly weaker than what we need for
the whole matrix. This gain is critical and we are able to exploit it in a full iterative argument. The details now
follow.

Notation. Let ↵ be an index set. Set E↵ to be the random matrix equal to E, but with the rows and columns
indexed by ↵ set to zero. This is a generalization of the leave-one-out construction from Theorem 3.2. If |↵| = j,
we have a leave-j-out matrix. Let A↵ = A + E↵. U↵ will be the matrix of r leading singular vectors of A↵.
Similar notations, such as u↵

i
and �↵

i
, are self-explanatory.

Roughly speaking, the iterative leave-one-out argument uses a weaker bound on max|↵|=j ku↵

i
k1 to obtain a

stronger bound for max|↵|=j�1 ku↵

i
k1 . We will define a deterministic, increasing sequence {fj}0jj⇤ , where j⇤

is a number smaller than log n. The sequence will be defined so that that f⇤
j
= 1, and f1 and f0 will be of size

at most 4C0i kUk1. We will show that under the (c, ⌧, 2) strong stability assumption, the leave-j-out singular
vectors satisfy the following for 0  j  j⇤.

(10.78) For all |↵| = j, ku↵

i
k1  fj .

Bounding the probability of failure of this statement is tricky. It involves conditioning on what happens at step
j (leaving-j-out) to control what happens at step j � 1 (leaving-(j � 1)-out). This iterative bound is proven in
Lemma 10.1. The low probability of failure of (10.78) for j = 0 will conclude the proof of Lemma 3.1.
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We now formally define our parameters. For 0  j  j⇤ := d 50 logn

log(logn) + 3e, define fj in the following fashion.
Start with fj⇤ = 1. For 0  j  j⇤ � 1,

(10.79) fj := 3C0i kUk1 +
fj+1

log0.01 n
.

By the choice of j⇤ and the fact that C0 � 1, it is easy to check that f0 and f1 are both less than 4C0i kUk1.

Lemma 10.1. (Iterative Lemma) For 0  j  j⇤, define

�j := P{ max
↵,|↵|=j

ku↵

i
k1 > fj}.

Then �j⇤ = 0. Further, for 1  j  j⇤,
�j�1  �j + 2⌧ + ✏j ,

with ✏j = 66⇥ 92rnj exp(�c2 log
2 n), and c2 = c0 + 1.

The first conclusion that �j⇤ = 0 is trivial, as a coordinate of a unit vector is at most 1, and we defined
fj⇤ = 1. The important content of this lemma is thus the iterative bound for the �j .

Proof of Lemma 3.1 given Lemma 10.1. We have the relation

j
⇤�1X

j=1

✏j  n✏j⇤�1 = ✏j⇤ .

Lemma 10.1 implies that

�0  2j⇤⌧ + ✏j⇤ +
j
⇤�1X

j=1

✏j  2j⇤⌧ + 2✏j⇤ .(10.80)

Restating this with the definition of �0 and ✏j⇤ ,

P{kũik1 > f0}  2j⇤⌧ + 132⇥ 92r ⇥ nj
⇤
exp(�c2 log

2 n)

= 2j⇤⌧ + 132⇥ 92r ⇥ exp((j⇤ � c2 log n) log n)

 ⌧ log n+ 132⇥ 92r exp(�!(log n))

= ⌧ log n+ 132⇥ 92rn�!(1)

 ⌧ log n+ 132⇥ 92rn�c0

(10.81)

for any constant c0 > 0, thanks to the fact that j⇤ = O(log n/ log log n) = o(log n). We have previously observed
that f0  4C0i kUk1; therefore (10.81) implies Lemma 3.1.

We now prove Lemma 10.1.

Preliminaries. Recall that for an index l, we defined x(l) as the lth row of E with the lth entry divided by 2.
We now let x(↵, l) be the lth row of E↵ with its lth entry divided by 2. By definition, any entry of x(↵, l) is either
zero, an entry of E, or an entry of E divided by 2. In particular, the entries of x(↵, l) are mean zero, K-bounded,
independent random variables. We consider this vector because in the deterministic Theorem 3.2, the lth row of
H plays an important role when we bound the perturbation of the lth coordinate of ui. We will apply Theorem
3.2 with H = E↵.

The proof of Lemma 10.1 requires bounding the probability of various failure events, which we now define.

The event B↵,l.

Let ↵ be an index set. Let 1  l  n, and set � = ↵ [ {l}. Let
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B↵,l := B↵,l,1 [ B↵,l,2 [ B↵,E , where

B↵,l,1 := {min{|�↵

i
� ��

i+1|, |�
↵

i
� ��

i�1|} < �i/2},

B↵,l,2 :=
n��U�T

x(↵, l)
��
2
� K

q
2c2r log

2 n
o
,

B↵,E := {kE↵k > T}.

(10.82)

For 0  j  j⇤, let

Bj :=
[

|↵|=j

l 62↵

(B↵,l,1 [ B↵,l,2) [
[

|↵|=j

B↵,E .

Lemma 10.2. (Probability of Bj) Let 0  j  j⇤. Under the conditions of Lemma 3.1,

P(Bj)  65⇥ 92rnj+1 exp(�c2 log
2 n) + 2⌧.

The event F↵,l.

For an index set ↵ with |↵| = j, and a coordinate 1  l  n, define

F↵,l := {|u↵

il
| > fj}.

We wish to show that the entries of u↵

i
are small. When F↵,l holds, it means that a coordinate of u↵

i
is too big,

and represents a failure at level j.
We will need the following lemma about the F↵,l for those ↵, l where l 2 ↵.

Lemma 10.3.

(10.83)
[

|↵|=j

l2↵

F↵,l ⇢
[

|↵|=j

B↵,E .

Having discussed how to control F↵,l when l 2 ↵, we move to the case where l 62 ↵. The remaining events are for
controlling the probability of F↵,l for such ↵, l.

The event K↵,l.

For an index set ↵ with |↵| = j, and a coordinate 1  l  n, set � = ↵ [ {l}. Define

(10.84) K↵,l :=
n
|u↵

il
| > 3C0ikUk1 + 256r

|hu�

i
,x(↵, l)i|
�i

o
.

If the success event K↵,l occurs, we can show that |u↵

il
| is small provided the inner product hu�

i
,x(↵, l)i is small.

The following lemma shows that K↵,l is unlikely.

Lemma 10.4. (K↵,l ⇢ B↵,l when l 62 ↵.) Let 0  j  j⇤. Let ↵ be an index set such that |↵| = j, and let l 62 ↵.
Then,

(10.85) K↵,l ⇢ B↵,l.

If l 62 ↵, |�| = j + 1. Showing that the inner product hu�

i
,x(↵, l)i is small (thus showing that |u↵

il
| is small)

requires information about the infinity norm of u�

i
. This information will be provided by the following events.

The events L↵,l and I↵,l.
For an index set ↵ with |↵| = j, and a 1  l  n, let � = ↵ [ {l}. Define

L↵,l := {ku�

i
k1 > fj+1},

I↵,l := {|hu�

i
,x(↵, l)i| � c2

p
2Knfj+1 log

2 n}, and

Ij :=
[

|↵|=j

l 62↵

(I↵,l \ L↵,l).
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Lemma 10.5. (Probability of Ij) Let 0  j  j⇤. Under the conditions of Lemma 3.1,

(10.86) P(Ij)  2nj+1 exp(�c2 log
2 n).

Proof of Lemma 10.1 given the lemmas. We have previously observed that the statement is trivially true for
j = j⇤ because �⇤

j
= 0. Having handled this, we move to the proof of the iterative bound. Let 1  j  j⇤.

Consider a set ↵ with j � 1 elements, which defines matrices E↵, A↵ = A+ E↵. Let l be a coordinate such that
l 62 ↵, and let � = ↵ [ {l}. We aim to apply Theorem 3.2 for the pair A,E↵ on coordinate l with E↵ playing the
role of H. The theorem obtains a bound on |u↵

il
� uil|. This bound implies that

(10.87) |u↵

il
|  3C0ikUk1 + 256r

|hu�

i
,x(↵, l)i|
�i

.

Looking at the second term on the RHS, if

(10.88) |hu�

i
,x(↵, l)i|  c2

p
2Knfj log

2 n,

then the RHS of (10.87) is at most fj�1. This is because by the (c, ⌧, 2) strong stability assumption,
�i > c

p
Kn log2.01 n. Since c > 256rc2

p
2, (10.87) and (10.88) imply that

|u↵

il
|  3C0ikUk1 + 256r

|hu�

i
,x(↵, l)i|
�i

 3C0ikUk1 + fj
256rc2

p
2Kn log2 n

�i

 3C0ikUk1 +
fj

log0.01 n

= fj�1,

(10.89)

and we thus have

(10.90) |u↵

il
|  fj�1.

The occurrence of (10.90) is the event we are interested in. Recall that F↵,l is the event where (10.90) fails. What
we have shown is that for those ↵, l such that l /2 ↵, the failure probability of (10.90) and thus the bound for F↵,l

consists of two components. The first component is that the inequality (10.87) does not hold, which we recall
is the failure event K↵,l. By Lemma 10.4, K↵,l ⇢ B↵,l. The second component is that the inner product bound

(10.88) fails. We called this failure event I↵,l. To analyze I↵,l, we will condition on the event that ku�

i
k1  fj

fails. We called this failure event L↵,l. The union of the failure events gives for ↵, l satisfying l 62 ↵,

F↵,l ⇢ (K↵,l) [ (I↵,l)
⇢ (B↵,l) [ (I↵,l \ L↵,l) [ (I↵,l \ L↵,l).

(10.91)

Obviously, the intersection of two sets is contained in both sets, so I↵,l \ L↵,l ⇢ L↵,l. By taking the union of
both sides over |↵| = j � 1, l 62 ↵,

[

|↵|=j�1
l 62↵

F↵,l ⇢
[

|↵|=j�1
l 62↵

(B↵,l) [
[

|↵|=j�1
l 62↵

(L↵,l) [
[

|↵|=j�1
l 62↵

(I↵,l \ L↵,l).

For a given ↵, we have only considered the coordinates l such that l 62 ↵. In order to bound �j�1, we must also
consider the other coordinates (the ones included in ↵). This case is easy to handle, as by Lemma 10.3,
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(10.92)
[

|↵|=j�1
l2↵

F↵,l ⇢
[

|↵|=j�1

B↵,E .

By definition of the events Bj ,

Bj�1 =
[

|↵|=j�1
l 62↵

(B↵,l) [
[

|↵|=j�1

B↵,E .

Therefore,

[

|↵|=j�1
1ln

F↵,l ⇢ Bj�1 [
[

|↵|=j�1
l 62↵

(L↵,l) [
[

|↵|=j�1
l 62↵

(I↵,l \ L↵,l).

By the definition of Ij ,

(10.93)
[

|↵|=j�1
1ln

F↵,l ⇢ Bj�1 [ Ij�1 [
[

|↵|=j�1
l 62↵

L↵,l.

We make two observations about (10.93). First, the event on the LHS of the inclusion is the event

[

|↵|=j�1
1ln

F↵,l =
[

|↵|=j�1
1ln

{|u↵

il
| > fj�1} = { max

↵,|↵|=j�1
ku↵

i
k1 > fj�1}.

Second, because we are considering l /2 ↵, the union of the L↵,l on the RHS is precisely

[

|↵|=j�1
l 62↵

L↵,l =
[

|↵|=j�1
l 62↵

n���u↵[{l}
i

���
1

> fj
o
= { max

↵,|↵|=j

ku↵

i
k1 > fj}.

Therefore, by the definition of the �j ,

(10.94) P
⇣ [

|↵|=j�1
1ln

F↵,l

⌘
= �j�1, and P

⇣ [

|↵|=j�1
l 62↵

L↵,l

⌘
= �j .

By the union bound, (10.93) implies

(10.95) �j�1  P(Bj�1) + P(Ij�1) + �j .

By Lemma 10.2,

(10.96) P(Bj�1)  65⇥ 92rnj exp(�c2 log
2 n) + 2⌧.

By Lemma 10.5,

(10.97) P(Ij�1)  2nj exp(�c2 log
2 n).

The inequalities (10.95), (10.96), and (10.97) imply the lemma, since

P(Ij�1) + P(Bj�1)  66⇥ 92rnj exp(�c2 log
2 n) + 2⌧.

In the next two sections, we prove Lemmas 10.2, 10.3, 10.4, and 10.5.
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11 Proof of Lemmas 10.3 and 10.4

To prove Lemma 10.3, we begin with a proposition, stated for deterministic H.

Proposition 11.1. Suppose H↵ is a matrix equal to H, but whose rows and columns indexed by the index set ↵
are set to zero. Suppose l 2 ↵, and that �i > 2 kH↵k. Let u↵

i
be the ith singular vector of A↵ = A+H↵. Then

(11.98) |u↵

il
|  2

p
ri kUk1 .

Proof of Lemma 10.3 given the proposition. Recall that we wish to show that

(11.99)
[

|↵|=j

l2↵

F↵,l ⇢
[

|↵|=j

B↵,E .

Consider an index set ↵ such that |↵| = j, and an index l such that l 2 ↵. We will show that B↵,E ⇢ F↵,l.
Suppose B↵,E holds, which means kE↵k  T . We need to show that this implies |u↵

il
|  fj , which means that

F↵,l holds. By the (c, ⌧, 2) strong stability assumption (see (a) in Definition 3.1), �i > cT , and c is much larger
than 2. Therefore,

�i � cT � c kE↵k > 2 kE↵k .

Since l 2 ↵, the conditions of Proposition 11.1 are satisfied with the index set ↵ and H = E. Proposition 11.1
implies that

(11.100) |u↵

il
|  2

p
ri kUk1  C0i kUk1  fj ,

since C0 > 2
p
r.

Proof of Proposition 11.1. Recall that u↵

il
is the lth entry of a singular vector u

↵

i
of A↵, corresponding to a

singular value �↵

i
. By definition, we have

|u↵

il
| = |eT

l
u
↵

i
| = 1

�↵

i

|eT
l
A↵

u
↵

i
|.

Since the lth row of H↵ is zero, A↵ and A have the same lth row, which implies that we can replace A↵ by A to
obtain

|u↵

il
| = 1

�↵

i

|eT
l
Au

↵

i
|.

By Fact 5.1, Fact 5.2, and the assumption of the proposition, it is easy to deduce that �↵

i
> �i/2. Writing,

A = U⌃UT using the spectral decomposition, we obtain

|u↵

il
|  2��1

i
|eT

l
U⌃UT

u
↵

i
|.

Notice that

|eT
l
U⌃UT

u
↵

i
|  keT

l
Uk2k⌃kkUT

u
↵

i
k2  �1kUl,.k2,

This is because k⌃k = �1, eTl U = Ul,., the lth row of U , and kUu
↵

i
k2  1. This and the previous bound imply

|u↵

il
|  2

�1

�i

kUl,.k2 = 2ikUl,.k2  2i

p
r kUk1 .

where the last line uses that kUl,·k2 
p
r kUk1 by the Cauchy-Schwarz inequality.

We move to the proof of Lemma 10.4. The following lemma is used to prove Lemma 10.4 by showing that
the conditions for Theorem 3.2 hold on the complement of B↵,l. We use Theorem 3.2 to show that K↵,l ⇢ B↵,l.
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Lemma 11.1. (Theorem 3.2 can be applied on B↵,l) Let 0  j  j⇤. Let ↵ be an index set satisfying |↵| = j
and let l be an index such that l 62 ↵. Under the conditions of Lemma 3.1, if B↵,l occurs, the conditions for Theorem
3.2 hold with A, H = E↵, and coordinate l.

Proof of Lemma 10.4 given Lemma 11.1. Let ↵ be an index set such that |↵| = j, and let l 62 ↵. Recall that we
wish to show that K↵,l ⇢ B↵,l. Set � = ↵ [ {l}. Suppose B↵,l holds. We wish to show that K↵,l holds, which is
equivalent to showing that

(11.101) |u↵

il
|  3C0ikUk1 + 256r

|hu�

i
,x(↵, l)i|
�i

.

By Lemma 11.1, we can apply Theorem 3.2 on B↵,l with A and H = E↵ for coordinate l. This gives

(11.102) |u↵

il
� uil|  C0 kUl,·k1

h
i ku↵

i
� uik2 + ✏↵1 (i) + a↵

l
i✏2(i)

i
+ 256r

|hu�

i
,x(↵, l)i|
�i

,

where a↵
l
=
��U�T

x(↵, l)
��
2
and ✏↵1 (i) =

kE↵k
�i

. We will bound the term in the large brackets on the RHS and show

that it is smaller than 5
2i. We will show that on B↵,l,

(11.103) ✏↵1 (i) + a↵
l
i✏2(i) 

i

2
.

Assume for now that this holds. By using the trivial bound

(11.104) ku↵

i
� uik2  2,

(11.102) and (11.103) imply that

(11.105) |u↵

il
� uil| 

5

2
C0i kUk1 + 256r

|hu�

i
,x(↵, l)i|
�i

.

Moving |uil|, which is smaller than kUk1, to the right, we obtain

(11.106) |u↵

il
|  (

5

2
C0 + 1)i kUk1 + 256r

|hu�

i
,x(↵, l)i|
�i

.

Since C0 > 2, we obtain (11.101), proving the lemma.
Therefore, what remains is to verify (11.103) on B↵,l. Assume that B↵,l holds. Then, by definition of B↵,E ,

we have kE↵k  T , which implies that

(11.107) ✏↵1 (i) =
kE↵k
�i

 T

�i

<
1

4
.

The last inequality uses the (c, ⌧, 2) stability assumption, which gives �i > cT > 4T . For a↵
l
i✏2(i), recall that

✏2(i) =
1
�i
. Furthermore, on B↵,l, the definition of B↵,l,2 guarantees that a↵

l
 K

p
2rc2 log

2 n. Therefore,

(11.108) a↵
l
✏2(i) 

K
p
2rc2 log

2 n

�i
<

1

4
.

The last inequality uses (c, ⌧, 2) stability, which guarantees �i > cK
p
log2 n, and the fact that c > 4

p
2rc2. We

conclude that

(11.109) ✏↵1 (i) + a↵
l
i✏2(i) 

i

2
.

This verifies (11.103) and thus completes the proof.
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Proof of Lemma 11.1. Let ↵ be an index set ↵ with |↵| = j, and let l be an index such that l 62 ↵. Set � = ↵[{l}.
Suppose that B↵,l holds. Recall that we want to show that this implies that the conditions for Theorem 3.2 are
satisfied with H = E↵ and coordinate l.
Assume B↵,l occurs. We first have to check that this implies that

(11.110) min{|�↵

i
� ��

i+1|, |�
↵

i
� ��

i�1|} � �i/2.

It is clear that this is true by definition of B↵,l,1. Then, we have to check that B↵,l implies

(11.111) �i > C0 kE↵k .

On B↵,l, kE↵k  T (see B↵,E). By (c, ⌧, 2) stability, �i > cT . Therefore,

�i > cT > C0 kE↵k ,

as desired. Finally, we verify that

(11.112) �i > C0 max
n��U�T

x(↵, l)
��
2
,i kE↵k kUk1

o
.

On B↵,l (see B↵,l,2),
��U�T

x(↵, l)
��
2
 K

q
2rc2 log

2 n.

Because of the (c, ⌧, 2) stability assumption,

�i > cmax{K
q
log2 n, Ti kUk1},

which ensures that (11.112) holds, because c > C0
p
2rc2.

12 Proof of Lemmas 10.2 and 10.5

Proof of Lemma 10.2. Let 0  j  j⇤. Recall that

Bj :=
[

|↵|=j

l 62↵

(B↵,l,1 [ B↵,l,2) [
[

|↵|=j

B↵,E .

We will continue to use � = �(↵, l) = ↵ [ {l}. In particular, � depends on both ↵ and l. We observe that
Bj ⇢ Bj1 [ Bj2 [ BjE , where

Bj1 := [|↵|=j [l 62↵ {min{|�↵

i
� ��

i+1|, |�
↵

i
� ��

i�1|} < �i/2},

Bj2 := [|↵|=j [l 62↵

n��U�T
x(↵, l)

��
2
� K

q
2c2r log

2 n
o
, and

BjE := [|↵|=j{kE↵k > T}.

(12.113)

We will bound the probabilities of these three events and use the union bound to conclude.

Probability of BjE. By Fact 5.2, for all |↵| = j, we have the deterministic bound kE↵k  kEk. Therefore,
defining

BE := {kEk � T}, we have

(12.114) P(BjE)  P(BE)  ⌧,

by definition of T .

Probability of Bj2. Recall that

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited910

D
ow

nl
oa

de
d 

09
/2

9/
25

 to
 1

92
.3

1.
23

6.
3 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



Bj2 = [|↵|=j [l 62↵

n��U�T
x(↵, l)

��
2
� K

q
2c2r log

2 n
o
.

Let ↵ be an index set such that |↵| = j and let l 62 ↵. Set � = ↵ [ {l}.
We use Hoe↵ding’s inequality. Observe that x(↵, l) and A� are independent. Therefore, each entry of the

length r vector U�T
x(↵, l) is the inner product of a K bounded random vector with independent entries (the

vector x(↵, l)) with a unit vector from which it is independent. By applying Corollary 5.1 to each entry, for
1  k  r,

(12.115) P{|[U�T
x(↵, l)]k| � K

q
2c2 log

2 n}  2 exp(�c2 log
2 n).

Therefore, by taking the union bound over 1  k  r,

(12.116) P
n��U�T

x(↵, l)
��
2
� K

q
2rc2 log

2 n
o
 2r exp(�c2 log

2 n).

By taking the union bound of (12.116) over |↵| = j, and l 62 ↵,

(12.117) P[Bj2]  2rnj+1 exp(�c2 log
2 n).

Probability of Bj1. Recall that

Bj1 = [|↵|=j [l 62↵ {min{|�↵

i
� ��

i+1|, |�
↵

i
� ��

i�1|} < �i/2}.

For an index set ↵ such that |↵| = j and a coordinate l 62 ↵, set � = ↵ [ {l}. Similar to the proof of Theorem

3.3, (with �↵

i
playing the role of �̃i and ��

i
playing the role of �{l}

i
), define the events Gj,i+1 and Gj,i�1

Gj,i+1 :=
\

|↵|=j

(
max

k=i,i+1
max
l 62↵

{|��

k
� �k|, |�↵

k
� �k|}  24r

h
K
q

rc2 log
2 n+

kEk2

�̃k

+
kEk3

�̃2
k

i)
,

Gj,i�1 :=
\

|↵|=j

(
max

k=i,i�1
max
l 62↵

{|��

k
� �k|, |�↵

k
� �k|}  24r

h
K
q

rc2 log
2 n+

kEk2

�̃k

+
kEk3

�̃2
k

i)
.

(12.118)

These events keep the relevant singular values of the perturbations A↵ and A� for all ↵, l close to the original
singular values to ensure the gap remains large. Recall that we applied Theorem 3.2 for H = E↵ and H{l} = E� .
The singular values of both A↵ and A� are controlled by Gj,i�1 and Gj,i+1.

Using the same argument we employed in the proof of Proposition 9.1, it is straightforward to show using
case analysis and (c, ⌧, 2) stability that

(12.119) P(Bj1)  P(Gj,i�1) + P(Gj,i+1) + P(BE),

where we recall BE = {kEk � T}. BE is an event which has probability at most ⌧ by definition of T . Bounding
the probabilities of Gj,i�1 and Gj,i+1 proceeds virtually identically to the proof of Lemma 9.2, so we omit the
details of the calculation. The probabilities of Gj,i�1 and Gj,i+1 will be bounded using the result of [51], which we
recall in Theorem 5.1, applied to the random perturbations E↵ and E� . Both have norm at most kEk by Fact

5.2. By Theorem 5.1 applied with t = K
p
128rc2 log

2 n to E↵ and E� , and the union bound over |↵| = j, l 62 ↵,

(12.120) P(Gj,i�1) + P(Gj,i+1)  64⇥ 92rnj+1 exp(�c2 log
2 n).

Together with (12.119), this implies

(12.121) P(Bj1)  64⇥ 92rnj+1 exp(�c2 log
2 n) + ⌧.
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We have now bounded Bj1,Bj2, and BjE . To conclude the proof, use the union bound and (12.114), (12.117),
and (12.121). This gives

P(Bj)  (64⇥ 92r + 2r)nj+1 exp(�c2 log
2 n) + ⌧  65⇥ 92rnj+1 exp(�c2 log

2 n) + ⌧.

What remains is to prove Lemma 10.5, which bounds the probability of Ij . To begin, we reproduce the
definitions of the relevant events. Let ↵ be an index set with |↵| = j and let 1  l  n. Recall that � = ↵ [ l,
and we defined the events

L↵,l =
n���u�

i

���
1

> fj+1

o
,

I↵,l = {hu�

i
,x(↵, l)i � c2

p
2Knfj+1 log

2 n}, and

Ij =
[

|↵|=j

l 62↵

(I↵,l \ L↵,l).

We will need the following lemma. We first introduce some notation. The notation Y 2 L↵,l means that Y
is a possible realization of E� such that L↵,l holds.

Lemma 12.1. Let ↵ be an index set with |↵| = j, and let l be a coordinate such that l 62 ↵. Set � = ↵ [ {l}. Let
Y 2 L↵,l. Then,

P(I↵,l|E� = Y )  2 exp(�c2 log
2 n).(12.122)

Proof of Lemma 10.5 given Lemma 12.1. The goal is to bound the the probability of

Ij =
[

|↵|=j�1
l 62↵

(I↵,l \ L↵,l).

By conditioning on L↵,l,

P(I↵,l \ L↵,l) = P(I↵,l|L↵,l)P(L↵,l)  P(I↵,l|L↵,l),(12.123)

where we use the trivial bound P(L↵,l)  1. We now bound the RHS to obtain

(12.124) P(I↵,l \ L↵,l)  P(I↵,l|L↵,l)  sup
Y 2L↵,l

P(I↵,l|E� = Y ).

Lemma 12.1 thus implies that

P(I↵,l \ L↵,l)  2 exp(�c2 log
2 n).

The union bound over |↵| = j and l 62 ↵ gives

(12.125) P(Ij)  2nj+1 exp(�c2 log
2 n).
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Proof of Lemma 12.1. Recall that we are considering index set ↵ satisfying |↵| = j and a coordinate l 62 ↵. Set
� = ↵ [ {l}. We are looking for a bound of

P(I↵,l|E� = Y ) = P
n
|hu�

i
,x(↵, l)i| � c2

p
2Knfj+1 log

2 n
���E� = Y

o
,

where Y 2 L↵,l. In other words, Y is a possible realization of E� satisfying
���u�

i

���
1

 fj+1. Recall that x(↵, l) is

the lth row of E↵ (with lth entry divided by 2). Conditional on E� equalling such a Y , u�

i
is a deterministic unit

vector whose entries have absolute value at most fj+1. The only randomness in each event thus comes from the

vector x(↵, l). Let us name the entries of x(↵, l) as xk. It follows that the inner product hu�

i
,x(↵, l)i, conditional

on E� = Y , is the sum of independent, Kfj+1 bounded, mean zero random variables xku
�

ik
. Thus, this quantity

can be bounded with Bernstein’s inequality (Lemma 5.2).
We are applying Bernstein’s inequality conditionally, so we also need to find a bound for the sum of the

conditional second moments of the xku
�

ik
. Since u

�

i
is deterministic when we condition on E� , and x(↵, l) is

independent of E� , we have

(12.126)
nX

k=1

E
h
x2
k
u�2
ik

���E� = Y
i
=

nX

k=1

u�2
ik
E[x2

k
]  K

nX

k=1

u�2
ik

= K.

For the inequality, we use that the second moments of the entries of E are at most K by Assumption 3.1. The
last equality uses the fact that u�

i
is a unit vector. Applying Bernstein’s inequality then gives that

P
n
|hu�

i
,x(↵, l)i| > t

���E� = Y
o
 2 exp

 
�t2/2

P
n

k=1 E
h
x2
k
u�2
ik

���E� = Y
i
+Kfj+1t/3

!

 2 exp
⇣ �t2/2

K +Kfj+1t/3

⌘
.

(12.127)

Setting t = c2
p
2Knfj+1 log

2 n,

P
n
|hu�

i
,x(↵, l)i| > c2

p
2Knfj+1 log

2 n
���E� = Y

o
 2 exp

 
�c22Knf2

j+1 log
4 n

K +
p
2c2
3 Kf2

j+1

p
Kn log2 n

!
.(12.128)

We now upper bound the terms in the denominator. For the first term, since n�1/2  kUk1  fj+1, we obtain
that K  Knf2

j+1. For the second term, we use that K  n by Assumption 3.1, so
p
Kn  n. This gives

P
n
|hu�

i
,x(↵, l)i| > c2

p
2Knfj+1 log

2 n
���E� = Y

o
 2 exp

 
�c22Knf2

j+1 log
4 n

Knf2
j+1 +

p
2c2
3 Kf2

j+1n log2 n

!
.(12.129)

Since c2 = c0 + 1 > 1, we can upper bound the first term in the denominator on the RHS with
Knf2

j+1  c2
3 Knf2

j+1 log
2 n. This gives

P
n
|hu�

i
,x(↵, l)i| > c2

p
2Knfj+1 log

2 n
���E� = Y

o
 2 exp

 
�c22Knf2

j+1 log
4 n

( 1+
p
2

3 )c2Knf2
j+1 log

2 n

!

 2 exp(�c2 log
2 n).

(12.130)
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13 The proof of Theorem 3.4

The proof follows fairly easily from the proof of Lemma 3.1. We only need to augment the events to reduce the

wasteful log2 n terms in the bounds for inner products. Recall the quantities U{l}, u{l}
i

, and x(l) from the proof
of Theorem 3.3. Define the events

I 0
l
:= {|hu{l}

i
,x(l)i| � c2K

p
2Knf1 log n}.

Let

I 0 :=
[

1ln

I 0
l
.

Recall that in the proof of Lemma 3.1 we defined the events Bj . We will be considering B0. Lastly, define

B0 := [1ln

n���U{l}T
x(l)

���
2
� K

p
2rc2 log n

o
.

We slightly abuse notation, as B0 was defined and bounded in the proof of Theorem 3.3 (under the name B2).
Define the failure event

F = I 0 [ B0 [ B0.

Lemma 13.1.

(13.131) P(F)  ⌧ log n+ 150⇥ 92rn�c0 .

Proof of Theorem 3.4 given Lemma 13.1. Let 1  l  n. By Lemma 13.1, F has probability at most
⌧ log n + 150 ⇥ n�c0 . By Lemma 11.1, the conditions for Theorem 3.2 hold on F ⇢ B0 with A, H = E, for
coordinate l. The theorem gives the bound

(13.132) |ũil � uil|  C0 kUl,·k1
h
i kũi � uik2 + ✏1(i) + ali✏2(i)

i
+ 256r

|hu{l}
i

,x(l)i|
�i

,

where we recall that al =
��U{l}T

x(l)
��
2
. On F , we have al  K

p
2rc2 log n because of B0. Further, we have, by

definition of I 0,

|hu{l}
i

,x(l)i|  c2K
p
2Knf1 log n  4C0c2

p
2Kni kUk1 log n,(13.133)

where we use our previous observation that f1  4C0i kUk1 . By definition of c, we therefore have

|hu{l}
i

,x(l)i| < c

256r
i kUk1

p
Kn log n.

It follows that

(13.134) |ũil � uil|  c kUl,·k1
h
i kũi � uik2 + ✏1(i) + i✏2(i)K

p
log n

i
+

ci kUk1
p
Kn log n

�i

.

Since l was arbitary, we have

(13.135) kũi � uik1  c kUk1
h
i kũi � uik2 + ✏1(i) + i✏2(i)K

p
log n

i
+

ci kUk1
p
Kn log n

�i

.
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13.1 Proof of Lemma 13.1. We will make use of the fact that c2 = (1 + c0), so exp(�c2 log n) = n�c0�1, for
example. We first bound P(B0) and P(B0). By Lemma 10.2,

P(Bj)  65⇥ 92rnj+1 exp(�c2 log
2 n) + 2⌧,

so we have

P(B0)  65⇥ 92rn exp(�c2 log
2 n) + 2⌧

 65⇥ 92rn�c2 logn + 2⌧

 65⇥ 92rn� lognn�c0 + 2⌧

 92rn�c0 + 2⌧.

(13.136)

As we mentioned, in the poof of Theorem 3.3, we bounded (see (9.63))

(13.137) P(B0)  2rn�c0 .

We will bound P(I 0) in the proceeding lemma. Recall that j⇤ = d 50 logn

log(logn)e+ 3.

Lemma 13.2.

(13.138) P(I 0)  2j⇤⌧ + 133⇥ 92rn�c0 .

The union bound, Lemma 13.2, (13.136), and (13.137) show that

P(F) = P(I 0 [ B0 [ B0)  (134⇥ 92r + 2r)n�c0 + (2j⇤ + 2)⌧.

Since j⇤ = o(log n), we have
P(F)  150⇥ 92rn�c0 + ⌧ log n,

as desired (with room to spare). To complete the proof of Lemma 13.1, we must prove Lemma 13.2.
Before proceeding with the proof, we recall some notation. For an index set ↵ of size j and a coordinate

1  l  n, we defined the event L↵,l = {ku↵[{l}
i

k1 > fj+1} in the proof of Lemma 10.1. We will consider these
events with ↵ = {} in the following proposition.

Proposition 13.1. Let
J =

[

1ln

(I 0
l
\ L{},l).

Then,

P(J )  2n exp(�c2 log n).(13.139)

The proof of Proposition 13.1 is a repetition of the computations in Lemma 10.5, using Bernstein’s inequality
conditionally. We place the details in Appendix C.

Proof of Lemma 13.2. We complete the task of bounding P(I 0). By conditioning on L{},l, we have

(13.140) I 0
l
⇢ L{},l [ (I 0

l
\ L{},l).

Therefore,

(13.141) I 0 ⇢
[

1ln

L{},l [ J .

The probability of J is bounded using the Proposition 13.1.

(13.142) P(J )  2n exp(�c2 log n) = 2n�c0 .
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Next, we recognize the other event on the RHS of (13.141).

P
⇣ [

1ln

L{},l

⌘
= P{max

l

���u{l}
���
1

> f1} = �1.(13.143)

The last equality is the definition of �1. We bounded the �j iteratively in Lemma 10.1. A routine calculation
virtually identical to the one done in (10.81) gives the following bound for �1.

(13.144) P
⇣ [

1ln

L{},l

⌘
= �1  2j⇤⌧ + 132⇥ 92rn�c0 .

The bounds (13.142) and (13.144) show that

P(I 0)  (132⇥ 92r + 2)n�c0 + 2j⇤⌧  133⇥ 92rn�c0 + 2j⇤⌧,

as desired.

14 Application: A simple algorithm for clustering problems

A number of clustering problems have the following common form. A vertex set V is partitioned into r subsets
V1, . . . Vr, and between each pair Vi, Vj we draw edges independently with probability pij (we allow i = j).
The task is to find a particular set Vj or all the parts V1, . . . , Vr given one instance of the random graph
[7, 13, 28, 34, 38, 39, 40, 41, 50].

The most popular approach to this problem is spectral, which typically consists of two steps. In the first step,
one considers the coordinates of a singular vector of the adjacency matrix of the graph (or more generally the
projection of the row vectors of the adjacency matrix onto a low dimensional singular space), and run a standard
clustering algorithm. The output of this step is an approximation of the truth. In the second step, one applies
adhoc combinatorial techniques to clean up the output, in order to recover the mis-classified vertices.

It has been conjectured that in many cases, the cleaning step is not necessary. Our result makes an important
contribution towards solving this problem. The critical point here is that the existence of misclassified vertices,
in many settings, is just an artifact of the analysis in the first step, which typically relies on `2 norm estimates.
Notice that any `2 norm estimate, even sharp, could only imply that a majority of the vertices are well classified,
and this leads to the necessity of the second step. Once we have a strong `1 norm estimate, then we would be
able to classify all the vertices at once.

As we stated in Section 4, our new infinity norm estimates enable us to overcome the shortcomings in clustering
algorithms that rely on `2 analysis in a number of settings. This results in fast and simple new algorithms for a
wide variety of problems. All matrices in this section are positive semi-definite, so there is no di↵erence between
singular vectors and eigenvectors.

14.1 The hidden clique problem. The (simplest form) of the hidden clique problem is the following: Hide
a clique X of size k in the random graph G(n, 1/2). Can we find X in polynomial time?

Notice that the largest clique in G(n, 1/2), with overwhelming probability, has size approximately 2 log n [8].
Thus, for any k bigger than (2 + ✏) log n, with any constant ✏ > 0, X would be abnormally large and therefore
detectable, by brute-force at least. For instance, one can check all vertex sets of size k to see if any of them form a
clique. However, finding X in polynomial time is a di↵erent matter, and the best current bound for k is k � c

p
n,

for any constant c > 0. This was first achieved by Alon, Krivelevich, and Sudakov [7]; see also [40][30] for later
developments concerning faster algorithms for certain values of c.

The Alon-Krivelevich-Sudakov algorithm runs as follows. It first finds X when c is su�ciently large, then
uses a simple sampling trick to reduce the case of small c to this case.

To find the clique for a large c, they first compute the second eigenvector of the adjacency matrix of the
graph and locate the first largest k coordinates in absolute value. Call this set Y . This is an approximation of
the clique X, but not yet totally accurate. The second, combinatorial, step is to define the set X as the vertices
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in the graph with at least 3/4k neighbors in Y . The authors then proved that with high probability, X is indeed
the hidden clique.

With our new results, we can find X immediately by a slightly modified version of the first step, omitting the
second combinatorial step. Before starting the main step of the algorithm, we change all zeros in the adjacency
matrix to �1.

Algorithm 14.1. (First singular vector clustering-FSC) Compute the first singular vector. Let x be
the largest value of the coordinates and let X be the set of all coordinates with value at least x/2.

This is perhaps the simplest algorithm for this problem, as computing the first singular vector of a large
matrix is a routine operation that appears in all standard numerical linear algebra packages.

Theorem 14.1. There is a constant c0 such that for all k � c0
p
n, FSC outputs the hidden clique correctly with

probability at least .99.

Proof of Theorem 14.1. After the switching of zeroes to minus ones, the adjacency matrix Ã has an all one block
of size k (corresponding the hidden cliques), and the rest are ±1 bits. For convenience, we assume that the all-one
block is at the left-top corner. Thus, we can write Ã = A + E, where A has an all-one block on its leading
principal sub-matrix of size k and the rest of the entries are zero. E is a random matrix with ±1 entries with a
zero block of size k.

Notice that the matrix A has rank 1, with �1 = k, and first singular vector

(1/
p
k, . . . , 1/

p
k, 0, 0, . . . , 0).

So the large (non-zero) entries of this singular vector reveals the position of the vertices of the clique. The
algorithm computes the leading singular vector of Ã, and we are going to show that the large entries of this
vector, with high probability, still correspond to the vertices of the clique.

From Theorem 1.2, it is easy to see that with probability at least .99, the `2 error kũ1 � u1k2 is bounded by
O(

p
n/k). Results from random matrix theory show that kEk is at most 3

p
n [59], with probability 1�o(1). Thus,

our Theorem 3.3 implies that with probability at least .99, the infinity norm bound between the first singular
vector of A and that of Ã is

O(k�1/2pn/k)  k�1/2/4,

given that k/
p
n is su�ciently large (beating the hidden constant in the big O). Thus, in the leading singular

vector, the entries from the clique are at least 3
4k

�1/2, and the rest are at most 1
4k

�1/2 in absolute value. This
guarantees that the clustering described in the algorithm reveals all the vertices of X.

While we have made no e↵ort to optimize the value of c0 (indeed, our theoretical constant is quite large), it
is an interesting question to determine the values of c0 for which FSC can recover the hidden clique exactly. The
optimal c0 is quite small; it is likely close to 1. See Figure 2.

Remark 14.1. The density 1/2 is not critical, and can be replaced by any parameter p > n�1+✏ (or even
p > n�1 logc n, for some properly chosen c). In the case of p, one needs to replace a zero entry by �p/(1 � p).
The random matrix E now has zero mean and spectral norm at most 3

p
np; see again [59]. Thus, by following

our argument, we can see that it is su�cient to assume k � C
p
np for a su�ciently large constant C.

14.2 Clique partition. Let us consider the situation where one hides many cliques X1, . . . , Xr of size
k1 � k2 � · · · � kr, which form a partition of the vertex set. The vertices of di↵erent cliques are connected
with probability 1/2, independently. The first task is to find the ith largest clique Xi, for any given 1  i  r,
given one instance of the random graph.

One can do this by finding all Xi and then sorting them out. However, we can do the task directly by just
computing the ith singular vector and clustering on its coordinates (the same way as in the last section). Before
starting the main step of the algorithm , we change all zeros in the adjacency matrix to �1.
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Figure 2: Numerical results for FSC on the Hidden Clique problem. For each c, 40 trials of the hidden clique
problem are run with n = 1000. The step of switching 0 to �1 is omitted. The random graph in which the clique
is embedded is G(n, 1/2). Reported are the fraction of trials for which the clique was recovered exactly with no
mis-classifications of any vertex.

Algorithm 14.2. (ith clique) Compute the ith singular vector. Let x be the largest value of a coordinate
and let Xi be the set of all coordinates with value at least x/2.

One issue is that if ki = ki�1, then there is no way to di↵erentiate Xi from Xi�1. Thus, the hard instances for
the problem are when |ki�kj | are small in general. In what follows, we concentrate on that case, and assume that
all ki are of order n. Our theorems enable us to find Xi correctly under the assumption that |ki � ki±1| = Õ(1).

Theorem 14.2. For any constant c > 0 there is a constant C such that the following holds. Assume that kr � cn
and ki � ki+1 � C log n for all 1  i  r. Then with probability at least .99, Algorithm 14.2 recovers Xi correctly,
for any 1  i  r.

In what follows, we illustrate the ideas through the case i = 1. The analysis for a general i is similar. Consider
the leading eigenvector of Ã = A+E, where A now consists of r disjoint diagonal all-one blocks of sizes k1, . . . , kr.

A =

2

66664

1k11
T

k1
0 . . . 0

0 1k21
T

k2
0

...
... 0

. . . 0
0 . . . 0 1kr1

T

kr

3

77775

The leading eigenvalue of A is k1 and the leading eigenvector is

(1/
p
k1, . . . , 1/

p
k1, 0, . . . , 0).

The next eigenvalue is k2 and the gap �1 = k1 � k2. Since the cliques partition the vertex set, k1 � n/r. The
di↵erence (compared to the previous section) is that, with probability .99, the `2 error (from Theorem 1.2) is now

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited918

D
ow

nl
oa

de
d 

09
/2

9/
25

 to
 1

92
.3

1.
23

6.
3 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



bounded by

O
h 1
�1

+
kEk
�

+
kEk2

�1�

i
= O

h 1

k1 � k2
+

p
n

k1
+

n

k1(k1 � k2)

i
= O

h 1

k1 � k2

i
.

Since we assume that all ki = ⇥(n), the infinity norm of U is O( 1p
n
). So, our Theorem 3.3 implies that with

probability at least .99, the infinity norm bound for the first eigenvector is

O
h r

p
log n

(k1 � k2)
p
n
+

log n

n

i
 1

4k1/21

,

given that (k1 � k2)/
p
log n is bounded from below by a su�ciently large constant, proving the claim.

We found a simple, but e↵ective, trick to reduce the general case (when the separation condition could be
violated, such as when ki are all the same) to the situation in Theorem 14.2. We call this trick random truncation
and it works as follows.

Random truncation. Select each vertex with probability ⇢ := n�1+✏, independently, where ✏ is a small positive
constant. Let S be the set of selected vertices and V 0 = V \S,X 0

i
= Xi\S, k0i = |X 0

i
|. If ki = ⇥(n) then |Xi \ S|

is a binomial random variable � with mean ki⇢ = ⇥(n⇢) and standard deviation ⇥(
p
n⇢) = ⇥(n✏/2). Since

log n = o(n✏/2), the following fact is obvious.

Fact 14.1. (Separation Lemma) Consider the random variable � above and let �0 be its independent copy.
Then for any given interval I of length O(log n), with probability at least 1� o(1), �� �0 62 I.

By the union bound over all pairs (i, j), it follows that with probability at least 1� o(1), mini 6=j |k0i � k0
j
| =

!(log n). Thus, our separation condition holds on the subgraph spanned by V 0. We can now run our algorithm
on the adjacency matrix of this graph to identify X 0

i
. To finish, define Xi as the union of X 0

i
with the vertices in

S which are connected to all the vertices in X 0
i
.

Another natural task is to find all Xi, and we can complete this task by consecutive applications of the
algorithm FSC from the last section. First, find X1 (or more precisely X 0

1), then remove it from the graph. Then,
find X2 and continue in this way. Here is the formal description of the algorithm.

Algorithm 14.3. (Clique partition)

1. Define a set S by choosing each vertex in S with probability ⇢ := n�1+✏. Let V 0 = V \S and consider the
graph spanned by V 0.

2. For i = 1, . . . , r � 1, run FSC to get X 0
i
. Let X 0

r
= V 0\ [r�1

i=1 Vi.

3. Define Xi be the union of X 0
i
and the vertices of S which are adjacent to all of Xi.

Theorem 14.3. Assume that ki = ⇥(n) for all 1  i  r. With probability at least .9, the Algorithm Clique
Partition recovers X1, . . . , Xn correctly.

14.3 Planted colorings. Finding a r coloring of a graph is a notoriously hard problem, even when we know
that the graph is r-colorable. A number of researchers have considered the random instance of this problem. One
natural setting is as follows. Partition the vertex set V into r independent sets X1, . . . , Xr of sizes k1 � k2 · · · � kr
and then connect the vertices between di↵erent Xi with probability 1/2. The task is to recover the proper coloring
from one instance of this random graph; see for instance [6], [13].

Notice that if we look at the complement graph, then this is exactly the problem considered in the previous
section, as independent sets become cliques. Thus, we obtain

Theorem 14.4. Assume that ki = ⇥(n) for all 1  i  r. Then with probability at least .9, the algorithm in the
last section recovers the planted coloring.

Remark 14.2. In this and the previous problems, the constant 1/2 again is not important, and can be replaced
by a general density p. The condition that ki = ⇥(n) for all i can also be weakened.
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14.4 Hidden partition. We now consider a generalization of the problem in Section 14.2, where each clique
Xi is replaced by a random graph with edge density pi > 1/2. Similar to Section 14.2, the task is to locate a
particular Xi or all Xi from one random instance of the graph.

Switch all 0 in the adjacency matrix to �1. The resulting matrix Ã can be decomposed into A+E, where A
now has the following form

A =

2

66664

(2p1 � 1)1k11
T

k1
0 . . . 0

0 (2p2 � 1)1k21
T

k2
0

...
... 0

. . . 0
0 . . . 0 (2pr � 1)1kr1

T

kr

3

77775

The random matrix E has the following form. The entry eij , 1  i  j  n, is Rademacher (±1) if i and
j belong to di↵erent Xk. If they belong to the same Xk, then let eij = (2 � 2pk) with probability pk and �2pk
with probability 1 � pk. It is easy to check that Ã = A + E and that all entries of E have zero-mean and are
2-bounded.

Set ⇢i := 2pi � 1. The singular values of A are k1⇢1, . . . , kr⇢r. We replace the assumption k1 � k2 � · · · � kr
by its weighted version k1⇢1 � k2⇢2 � · · · � kr⇢r. The leading singular value of A is now k1⇢1, the second is k2⇢2
and the gap is �1 = k1⇢1 � k2⇢2; the singular vector remains the same. If we follow the proof of Theorem 14.2,
then the condition becomes

1

k1/2
i

r

�i
+

p
log n

ki⇢1
 C�1 1

k1/2
i

for some su�ciently large constant C. This is equivalent to assuming that both �i and
p
ki⇢i/

p
log n are lower

bounded by some su�ciently large constant C. The second one is equivalent to ⇢i � C
p

log n/n for some
su�ciently large constant C.

Theorem 14.5. For any constant c1, there is a constant C such that the following holds. Assume that k1⇢1/kr⇢r
is bounded from above by c1. If �i � C log n and ⇢i � C

p
log n/n then the ith clique algorithm recovers Xi

correctly with probability .9.

We can again apply the random truncation trick at the beginning to guarantee the separation condition.
However, the application of this trick on this more general setting is slightly more technical than in the case of
cliques, since it is less obvious how to assign the vertices from S to X 0

i
. To decide which X 0

i
a vertex v 2 S belongs

to, we first choose a subset Yi ⇢ X 0
i
so that all Yi has the same size cn for some constant c > 0. (This is doable

because we assume that all Xi have size ⇥(n).) Let i be the index where v has the most edges connected to Yi

and then add v to X 0
i
.

Notice that if v 62 Xi, then the number of edges between v and Yi has distribution �0 = Binom(.5, cn). If
v 2 Xi then it has distribution �i = Binom(pi, cn). If pi� .5 := ⇢i/2 > C0

p
n log n for a su�ciently large constant

C0 (which may depend on c and r, then with probability at least .99, �i � �0 for all v 2 S and 1  i  r. This
leads us to the following algorithm and theorem.

Algorithm 14.4. (Hidden partition)

1. Define a set S by choosing each vertex in S with probability ⇢ := n�1+✏. Let V 0 = V \S and consider the
graph spanned by V 0.

2. For i = 1, . . . , r � 1, run FSC to get X 0
i
. Let X 0

r
= V 0\ [r�1

i=1 Vi.

3. Select subsets Yi ⇢ X 0
i
such that |Yi| = cn, for some properly chosen small constant c > 0.

4. Define Xi be the union of X 0
i
and those vertices v of S where di(v) = maxj dj(v), where di(v) is the number

of neighbors of v in Yi (break ties arbitrarily).

Theorem 14.6. For any constant c there are constants c0, C such that the following holds. If ki � cn and
⇢i � C

p
log n/n for all 1  i  r, then Algorithm Hidden Partition recovers all Xi correctly with probability .9.
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Remark 14.3. The density 1/2 again is not important, and can be replaced by a general density q.

Another well-known instance of this problem is the hidden bipartition problem. In this problem, r = 2 and
the vertex set is partitioned into two sets of equal size n/2. Draw edges with probability p inside Xi and q < p
between X1 and X2. The task is to recover the partition from one instance of the random graph. This particular
case has been studied heavily by many researchers through 4 decades; see Table 2.

Bui, Chaudhuri, Leighton, Sipser ’84 [16] min-cut method p = ⌦(1/n), q = o(n�1�4/((p+q)n))
Dyer, Frieze ’89 [35] min-cut via degrees p� q = ⌦(1)

Boppana ’87 [15] spectral method (p� q)/
p
p+ q = ⌦(

p
log(n)/n)

Snijders, Nowicki ’97 [56] EM algorithm p� q = ⌦(1)
Jerrum, Sorkin ’98 [42] Metropolis algorithm p� q = ⌦(n�1/6+✏)
Condon, Karp ’99 [28] augmentation algorithm p� q = ⌦(n�1/2+✏)

Carson, Impagliazzo ’01 [14] hill-climbing algorithm p� q = ⌦(n�1/2 log4 n)

Mcsherry ’01 [50] spectral method (p� q)/
p
p � ⌦(

p
log(n)/n)

Bickel, Chen ’09 [12] N-G modularity (p� q)/
p
p+ q = ⌦(log(n)/

p
n)

Rohe, Chatterjee, Yu ’11 [55] spectral method p� q = ⌦(1)

Abbe, Bandeira, Hull ’14 [2] maximum likelihood p� q = ⌦(
p
log(n)/n)

Vu ’18 [61] spectral method (p� q)/p1/2 = ⌦(
p

log(n)/n)

Abbe, Fan, Wang, Zhong ’19 [4] spectral method p� q = ⌦(
p
log(n)/n)

Table 2: A recreation of the table in [2] surveying the hidden bipartition problem, with some recent additions.

In this case, our method (with some obvious modifications to replace 1/2 by q) gives

Theorem 14.7. If p, q = ⇥(1), p� q � C
p
log n/n for all 1  i  r, then Algorithm Hidden Partition recovers

all Xi correctly with probability .9.

The lower bound
p
log n/n is the current best on this problem; see [2]. From our analysis, it is clear that the

same conclusion holds for equal partitions with any number of parts (more than 2). The condition p, q = ⇥(1)
can also be improved, and with p tending to zero, it becomes (p� q)/

p
p � C

p
log n/n.

15 Application: Exact Matrix Completion from Few Entries

In this section, we prove Theorem 4.2. Let us recall that A is an integer matrix with rank r = O(1), with entries
bounded by an absolute constant (so kAk1 = O(1)). Let S be the sampled version of A where each entry is
sampled (independently) with probability p, and the un-sampled entries are zeroed out. Then Ã := p�1S is an
unbiased estimate of A. We analyze the simple spectral algorithm in Section 15 to recover A exactly from Ã. Set
W = [U, V ], the concatenated matrix of U and V , where U and V are the left and right singular vectors of A
respectively. Recall that we set s := maxi{i : �i � 1

16rkWk�2
1 }, � = infis �i, and s̃ = maxi{i : �̃i � 1

8r kWk�2
1 }.

Let a = max{
p
kAk1, 2}. For concreteness, set c to be the constant (a+ 1)⇥ 218 ⇥ 7r3.

By the rounding step, in order to have exact recovery, we need to show that

kA�Bk1 <
1

2
.

Let us consider the entry A12. By the singular value decompositions of A and B,

A12 =
rX

i=1

�iui1vi2, B12 =
s̃X

i=1

�̃iũi1ṽi2.
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Let As̃ be the best rank s̃ approximation of A. Thus, A = As̃ +
P

r

i=s̃+1 �iuiuT

i
. Write As̃ij for the ij entry of

As̃. By the triangle inequality, we have

|B12 �A12|  |B12 �As̃12|+ |
rX

i=s̃+1

�iui1vi2|

=
���

s̃X

i=1

�̃iũi1ṽi2 �
s̃X

i=1

�iui1vi2
���+ |

rX

i=s̃+1

�iui1vi2|.
(15.145)

Bounding the second term on the RHS is fairly straightforward, and is handled in Lemma 15.2. The choice of
the threshold s̃ plays an important role. Before stating the lemma, we will need the following tail bound on the
norm of E. Its proof relies on a result from [10] and is given in Appendix D. This lemma will be used throughout
this section.

Lemma 15.1. There exists an absolute constant C such that

(15.146) P{kEk � C
p
Np�1}  N�3.

For convenience, we define

E := {kEk  C
p
Np�1},

where C is the constant above.

Lemma 15.2. With probability at least 1�N�3,

|
rX

i=s̃+1

�iui1vi2| 
1

4
.

In the next lemma, we bound the first term on the RHS of (15.145). This is where we use our refined bounds
for the large K case. As we have mentioned, unlike the clustering problem, K can be quite large in the matrix
completion setting.

Lemma 15.3. Under the conditions of Theorem 4.2, with probability at least 1� 3N�2,

|B12 �As̃12| <
1

4
.

Lemmas 15.2 and 15.3 applied to the RHS of (15.145) are enough to conclude the result of Theorem 4.2, because
then the error will be strictly less than 1

4 +
1
4 = 1

2 , and will thus be rounded away. The choice of considering entry
(1, 2) is arbitary; with probability 1�N�1, the bound holds for all of the entries. The remainder of the section
is dedicated to proving Lemmas 15.2 and 15.3.

Proof of Lemma 15.2. Suppose that E , which has probability 1 � N�3 by Lemma 15.1, occurs. Recall that

s̃ = maxi{i : �̃i � kWk�2
1

8r }. Therefore, for all i � s̃+ 1, it must be the case that �̃i  1
8r kWk�2

1 . By Fact 5.1 and
Lemma 15.1, for i � s̃+ 1,

�i  �̃i + kEk 
kWk21
8r

+ C
p
Np�1.

By the density assumption, p > N�1 log4.03 N . By the incoherence assumption, kWk1  cN�1/2. Therefore,p
Np�1 = o

⇣
kWk�2

1

⌘
. It follows that for i � s̃+ 1,

�i 
kWk21
4r

.

We have
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|
rX

i=s̃+1

�iui1vi2| 
rX

i=s̃+1

�i|ui1||vi2|


kWk�2

1
4r

rX

i=s̃+1

|ui1||vi2|.
(15.147)

Because both |ui1|  kWk1 and |vil|  kWk1, it follows that

|
rX

i=s̃+1

�iui1vi2| 
1

4r

rX

i=s̃+1

1  1

4
.(15.148)

In order to establish Lemma 15.3, we need the following proposition and lemma.

Proposition 15.1. Suppose that E occurs. Then, s̃  s.

Proof. Suppose E occurs. Assume towards contradiction that s̃ > s. By definition of s̃, this means that there are

at least s+ 1 singular values of Ã larger than
kWk�2

1
8r , so

(15.149) �̃s+1 �
kWk�2

1
8r

.

By definition of s, �s+1  kWk�2
1

16r . Therefore, by Fact 5.1,

�̃s+1  �s+1 + kEk 
kWk�2

1
16r

+ C
p

Np�1 =
kWk�2

1
16r

+ o(kWk�2
1 ) <

kWk�2
1

8r
.

where we use our previous observation that
p

Np�1 = o(kWk�2
1 ). This is a contradiction with (15.149).

Lemma 15.4. Set m1(i) = max{kũi � uik1 , kṽi � vik1} and m2(i) = max{kũi � uik2 , kṽi � vik2}. Under
the conditions of Theorem 4.2, there exists a constant c0 such that with probability at least 1� 2N�2,

(15.150) sup
is

m1(i) 
c0 kWk1
logN

.

Proof of Lemma 15.3 given Lemma 15.4. Recall that

|B12 �As̃12| =
���

s̃X

i=1

�̃iũi1ṽi2 �
s̃X

i=1

�iui1vi2
���.

Letting ũi1 = ui1 +�ui1 and ṽi2 = vi2 +�vi2, we have

(15.151) B12 =
s̃X

i=1

�̃i[ui1vi2 + ui1�vi2 + vi2�ui1 +�ui1�vi2].

Let c0 be the constant from Lemma 15.4. Suppose E and {sup
is

m1(i)  c0
logN

} both occur. By the lemma and

the union bound, this happens with probability at least 1� 3N�2. Since E occurs, s̃  s by Proposition 15.1. It
follows that

(15.152) |B12 �As̃12| 
sX

i=1

|�̃i � �i||ui1vi2|+ d,
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where

d :=
sX

i=1

�̃i[|ui1||�vi2|+ |vi2||�ui1|+ |�ui1||�vi2|].

Observe that both |�ui1| and |�vi2| are bounded by m1(i). We consider the two terms on the RHS of (15.152)
separately. For the first term, using Fact 5.1, |�̃i � �i|  kEk. Since |ui1||vi2|  kWk21, we have

(15.153)
sX

i=1

|�̃i � �i||ui1vi2|  r kEk kWk21

By the incoherence assumption, kWk1 = O(N�1/2) so kWk2 = O(N�1). Since E occurs,

kEk  C
p

Np�1 = o(N),

where the last equality uses the assumed lower bound for p, p > log4.03
N

N
. It follows that kEk kWk21 = o(1).

(15.154)
sX

i=1

|�̃i � �i||ui1vi2| = o(1).

Moving to the term d on the RHS of (15.152), we bound for i  s, �̃i  �i + kEk by Fact 5.1. By the
signal-to-noise condition and the fact that E occurs, �s > kEk. Thus, �i + kEk  2�i. Therefore,

d =
sX

i=1

�̃i[|ui1||�vi2|+ |vi2||�ui1|+ |�ui1||�vi2|]

 2
sX

i=1

�i[|ui1||�vi2|+ |vi2||�ui1|+ |�ui1||�vi2|].
(15.155)

Then, using the bounds |�ui1|, |�vi1|  m1(i) and |ui1|, |vi1|  kWk1, we have

d  2
sX

i=1

�i[2 kWk1 m1(i) +m2
1(i)].(15.156)

Because A has rank r = O(1) and has O(1) bounded entries, �1 = O(N). Since kWk1 = O(N�1/2) by the
incoherence assumption and sup

is
m1(i) = o(kWk1),

d = O(�1 kWk1 sup
is

m1(i)) = o(N kWk21) = o(1).(15.157)

(15.154) and (15.157) give that

(15.158) |B12 �As̃12| = o(1) <
1

4
,

for a large enough N .

In order to prove Lemma 15.4, first establish that we can apply our refined (large K case) results for the `1
perturbation of singular vectors because the strong stability condition holds.

Lemma 15.5. Recall that a is the absolute constant a = max{
p

kAk1, 2}. Under the conditions of Theorem 4.2,
for all i  s, the singular values and gaps (�i, �i) are all ( c

a+1 , N
�3, 2) strongly stable under E.
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Proof of Lemma 15.4 given Lemma 15.5. Since the entries of A are O(1), K = O(p�1). By Lemma 15.5 and the
choice of c, the conditions for Theorem 3.6 to bound m1(i) hold with c

a+1 , ⌧ = N�3, ⌫ = 2, and K = O(p�1).

Applying this for all i  s, using the fact that �̄ is the minimum �i among the first s singular values,

(15.159) sup
is

m1(i) = O

 
s kWk1

h
sup
is

m2(i) +
kEk
�s

+

p
logN

p�

i
+

s

p
p�1N kWk1 logN

2�s

!
,

with probability at least 1�N�2. Suppose in addition E holds, which happens with probability at least 1�N�3.
Recall that we wish to show that the LHS is less than c kWk1 log�1 N . Let us start by bounding s. We have

shown that �1 = O(N). By definition of s, �s � kWk�2
1

16r = ⌦(N), where we also use the incoherence assumption.

It follows that s = O(1). To handle the last term in the RHS of (15.159), we use that
p

Np�1

�s
= O(log�2.01 N)

by the signal-to-noise assumption, so

(15.160)
s

p
p�1N kWk1 logN

2�s

= o(kWk1 log�1 N).

For the remaining term, we first bound sup
is

m2(i). We appeal to the `2 perturbation bounds of [51]. We adapt
their results to our situation in Corollary B.1 in Appendix B, which we can apply because �̄ > cp�1 logN . This
result gives that with probability at least 1�N�3,

(15.161) sup
is

m2(i) = O
hplogN

p�̄
+

kEk
�s

+
kEk2

�s�̄

i
.

Using this bound and (15.160), (15.159) becomes

(15.162) sup
is

m1(i) = O

 
s kWk1

hplogN

p�
+

kEk
�s

+
kEk2

�s�̄

i!
+ o(kWk1 log�1 N).

Since s = O(1), the proof of the lemma will be complete once we establish that there is a constant c1 such
that the sum of the three terms in the brackets is at most O(c1 log

�1 N). Let us start with the third term in the

square brackets, kEk2

�s�̄
. Since E holds,

kEk2 = O(Np�1).

By the gap assumption, �̄�1p�1 = O( 1
logN

). Thus, since �s = ⌦(N),

kEk2 �̄�1��1
s

= O(N��1
s

�̄�1p�1) = O(�̄�1p�1) = O(log�1 N).

Moving to the first term in the square brackets in (15.162), we have just established that �̄�1p�1 = O(log�1 N).
Lastly, for the second term in the square brackets in (15.162), kEk��1

s
= o(log�1 N). This is by the signal-to-

noise assumption and because E occurs. Since all three terms are either O(log�1 N) or o(log�1 N), the existence
of c1 can be quickly inferred.

A quick inspection of the proof gives that the total probability of occurrence of the events considered is at
least 1� 2N�2.

Proof of Lemma 15.5. Recall that T = inf{t > 0 : P(kEk > t)  N�1/3}. By Lemma 15.1, T  C
p

Np�1, where
C is the absolute constant from the lemma. Recall that �̄ is the smallest gap in the first s singular values of A.
We will use �s and �̄ to show that that the singular values and gaps (�i, �i) for i  s satisfy the ( c

a+1 , N
�3, 2)

strong stability condition. Let 1  i  s.
We first verify the three conditions for ( c

a+1 , N
�3, 2) stability, and conclude with verifying strong stability.

First, the signal-to-noise condition gives

(15.163) �i � �s > c
p
Np�1 log2.01 N,
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which ensures that
�i � �s > c

p
Np�1 log2.01 N >

c

2
T � c

a+ 1
T.

This shows that condition (a) in Definition 3.1 holds for (�i, �i) with
c

a+1 and ⌧ = N�3.
Next, recall the gap condition

(15.164) �̄ > cp�1 logN.

In order to verify (c) of Definition 3.1, we will show that

(15.165) �̄ >
c

2
Ti kWk1 ,

which will imply �i >
c

a+1Ti kWk1, as desired. Because s = O(1), the bound on T implies

Ti kWk1 = O(
p
p�1

p
N kWk1) = O(

p
p�1)

by the incoherence assumption. Thus, (15.165) holds by (15.164).
We examine (b) in Definition 3.1, the final condition to verify ( c

a+1 , N
�3, 2) stability. Recall that K is the

bound for the absolute value of the entries of E. Observe that K  kAk1 p�1. Since ⌫ = 2, we must show that

(15.166) �i >
c

a+ 1

⇣
K logN +

T 2

�s

⌘
.

Since T  C
p
Np�1, it is su�cient to show that

(15.167) �̄ >
c

a+ 1

⇣
K logN + C2Np�1

�s

⌘
.

Equation (15.164) implies that

�̄ > cp�1 logN =
c

kAk1
kAk1 p�1 logN � c

kAk1
K logN � c

a
K logN.

Since �s = ⌦(N), C
2
Np

�1

�s
= o(K logN) because p > N�1 logN . Therefore,

�̄ >
c

a
K logN >

c

a+ 1

⇣
K logN + C2Np�1

�s

⌘

as desired.
Having established ( c

a+1 , N
�3, 2) stability, we conclude with the verification of strong stability. The signal to

noise condition, equation (15.163), implies that

(15.168) �i � �s >
cp

kAk1

q
N kAk1 p�1 log2.01 N � cp

kAk1

p
NK log2.01 N � c

a+ 1

p
NK log2.01 N.

Thus, the conditions for strong stability in Definition 3.2 are satisfied for (�i, �i) with
c

a+1 , ⌧ = N�3, and ⌫ = 2.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited926

D
ow

nl
oa

de
d 

09
/2

9/
25

 to
 1

92
.3

1.
23

6.
3 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



References

[1] E. Abbe, Community detection and stochastic block models: Recent developments, Journal of Machine
Learning Research, 18 (2018), pp. 1–86.

[2] E. Abbe, A. S. Bandeira, and G. Hall, Exact recovery in the stochastic block model, IEEE Transactions
on Information Theory, 62 (2016), pp. 471–487.

[3] E. Abbe, J. Fan, and K. Wang, An `p theory of pca and spectral clustering, The Annals of Statistics, 50
(2022).

[4] E. Abbe, J. Fan, K. Wang, and Y. Zhong, Entrywise eigenvector analysis of random matrices with low
expected rank, Annals of Statistics, 48 (2020), pp. 1452–1474.

[5] J. Agterberg, Z. Lubberts, and C. E. Priebe, Entrywise estimation of singular vectors of low-rank
matrices with heteroskedasticity and dependence, IEEE Transactions on Information Theory, 68 (2021),
pp. 4618–4650.

[6] N. Alon and N. Kahale, A spectral technique for coloring random 3-colorable graphs, in Proceedings of
the Twenty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’94, New York, NY, USA, 1994,
Association for Computing Machinery, p. 346–355.

[7] N. Alon, M. Krivelevich, and B. Sudakov, Finding a large hidden clique in a random graph, in
Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’98, USA, 1998,
Society for Industrial and Applied Mathematics, p. 594–598.

[8] N. Alon and J. H. Spencer, The Probabilistic Method, Wiley Publishing, 4th ed., 2016.

[9] M. Avella-Medina, H. S. Battey, J. Fan, and Q. Li, Robust estimation of high-dimensional covariance
and precision matrices, Biometrika, 105 (2018), pp. 271–284.

[10] A. S. Bandeira and R. van Handel, Sharp nonasymptotic bounds on the norm of random matrices with
independent entries, The Annals of Probability, 44 (2016), pp. 2479 – 2506.

[11] Z. Bao, X. Ding, and K. Wang, Singular vector and singular subspace distribution for the matrix denoising
model, The Annals of Statistics, 49 (2021).

[12] P. J. Bickel and A. Chen, A nonparametric view of network models and newman–girvan and other
modularities, Proceedings of the National Academy of Sciences, 106 (2009), pp. 21068 – 21073.

[13] A. Blum and J. Spencer, Coloring random and semi-random k-colorable graphs, J. Algorithms, 19 (1995),
p. 204–234.

[14] B. Bollobás and A. D. Scott, MAX-CUT for random graphs with a planted partition, Comb. Probab.
Comput., 13 (2004), p. 451–474.

[15] R. B. Boppana, Eigenvalues and graph bisection: An average-case analysis, in 28th Annual Symposium on
Foundations of Computer Science (sfcs 1987), 1987, pp. 280–285.

[16] T. Bui, S. Chaudhuri, F. Leighton, and M. Sipser, Graph bisection algorithms with good average case
behavior, Combinatorica, 7 (1987), pp. 171–191.

[17] C. Cai, G. Li, Y. Chi, H. V. Poor, and Y. Chen, Subspace estimation from unbalanced and incomplete
data matrices: `2,1 statistical guarantees, The Annals of Statistics, 49 (2021), pp. 944 – 967.

[18] E. J. Candès and Y. Plan, Matrix completion with noise, Proceedings of the IEEE, 98 (2009), pp. 925–936.

[19] E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Commun. ACM, 55 (2012),
p. 111–119.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited927

D
ow

nl
oa

de
d 

09
/2

9/
25

 to
 1

92
.3

1.
23

6.
3 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



[20] E. J. Candès and T. Tao, The power of convex relaxation: Near-optimal matrix completion, IEEE Trans.
Inf. Theor., 56 (2010), p. 2053–2080.

[21] E. J. Candès and M. B. Wakin, An introduction to compressive sampling, IEEE Signal Processing
Magazine, 25 (2008), pp. 21–30.

[22] J. Cape, M. Tang, and C. E. Priebe, The two-to-infinity norm and singular subspace geometry with
applications to high-dimensional statistics, The Annals of Statistics, (2017).

[23] J. Cape, M. Tang, and C. E. Priebe, Signal-plus-noise matrix models: Eigenvector deviations and
fluctuations, Biometrika, 106 (2019), p. 243–250.

[24] S. Chatterjee, Matrix estimation by universal singular value thresholding, The Annals of Statistics, 43
(2015).

[25] Y. Chen, Y. Chi, J. Fan, and C. Ma, Spectral methods for data science: A statistical perspective,
Foundations and Trends in Machine Learning, 14 (2021), pp. 566–806.

[26] Y. Chen, Y. Chi, J. Fan, C. Ma, and Y. Yan, Noisy matrix completion: Understanding statistical
guarantees for convex relaxation via nonconvex optimization, SIAM Journal on Optimization, 30 (2020),
pp. 3098–3121.

[27] C. Cheng, Y. Wei, and Y. Chen, Tackling small eigen-gaps: Fine-grained eigenvector estimation and
inference under heteroscedastic noise, IEEE Trans. Inf. Theor., 67 (2021), p. 7380–7419.

[28] A. Condon and R. M. Karp, Algorithms for graph partitioning on the planted partition model, in Random
Struct. Algorithms, 1999.

[29] C. Davis and W. M. Kahan, The rotation of eigenvectors by a perturbation. iii, SIAM Journal on Numerical
Analysis, 7 (1970), pp. 1–46.

[30] Y. Dekel, O. Gurel-Gurevich, and Y. Peres, Finding Hidden Cliques in Linear Time with High
Probability, pp. 67–75.

[31] P. B. Denton, S. J. Parke, T. Tao, and X. Zhang, Eigenvectors from eigenvalues: A survey of a basic
identity in linear algebra, Bulletin, new series, of the American Mathematical Society, 59 (2021).

[32] P. B. Denton, S. J. Parke, and X. Zhang, Neutrino oscillations in matter via eigenvalues, Phys. Rev.
D, 101 (2020), p. 093001.

[33] L. Ding and Y. Chen, The leave-one-out approach for matrix completion: Primal and dual analysis, IEEE
Transactions on Information Theory, PP (2018).

[34] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay, Clustering large graphs via the
singular value decomposition: Theoretical advances in data clustering (guest editors: Nina mishra and rajeev
motwani), Machine Learning, 56 (2004).

[35] M. E. Dyer and A. M. Frieze, The solution of some random NP-hard problems in polynomial expected
time, J. Algorithms, 10 (1989), p. 451–489.

[36] J. Eldridge, M. Belkin, and Y. Wang, Unperturbed: spectral analysis beyond davis-kahan, in Proceedings
of Algorithmic Learning Theory, F. Janoos, M. Mohri, and K. Sridharan, eds., vol. 83 of Proceedings of
Machine Learning Research, PMLR, 4 2018, pp. 321–358.

[37] J. Fan, W. Wang, and Y. Zhong, An `1 eigenvector perturbation bound and its application to robust
covariance estimation, Journal of Machine Learning Research, 18 (2016).

[38] U. Feige and R. Krauthgamer, Finding and certifying a large hidden clique in a semirandom graph,
Random Struct. Algorithms, 16 (2000), p. 195–208.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited928

D
ow

nl
oa

de
d 

09
/2

9/
25

 to
 1

92
.3

1.
23

6.
3 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



[39] U. Feige and E. O. Ofek, Spectral techniques applied to sparse random graphs, Random Structures &
Algorithms, 27 (2005).

[40] U. Feige and D. Ron, Finding hidden cliques in linear time, Discrete Mathematics & Theoretical Computer
Science, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and
Asymptotic Methods in the Analysis of Algorithms (AofA’10) (2010).

[41] W. Fernandez de la Vega, MAX-CUT has a randomized approximation scheme in dense graphs, Random
Structures & Algorithms, 8 (1996), pp. 187–198.

[42] M. Jerrum and G. B. Sorkin, The metropolis algorithm for graph bisection, Discret. Appl. Math., 82
(1998), pp. 155–175.

[43] R. Kannan and S. Vempala, Spectral algorithms, Foundations and Trends in Theoretical Computer
Science, 4 (2009), pp. 157–288.

[44] R. H. Keshavan, A. Montanari, and S. Oh, Matrix completion from a few entries, IEEE Transactions
on Information Theory, 56 (2010), pp. 2980–2998.

[45] R. H. Keshavan, A. Montanari, and S. Oh, Matrix completion from noisy entries, Journal of Machine
Learning Research, 11 (2010), pp. 2057–2078.

[46] V. Koltchinskii and D. Xia, Perturbation of linear forms of singular vectors under gaussian noise, High
Dimensional Probability VII, (2016), p. 397–423.

[47] Y. Koren, R. Bell, and C. Volinsky, Matrix factorization techniques for recommender systems,
Computer, 42 (2009), pp. 30–37.

[48] X. P. Li, L. Huang, H. C. So, and B. Zhao, A survey on matrix completion: Perspective of signal
processing, arXiv: Signal Processing, (2019).

[49] S. Ling, Near-optimal performance bounds for orthogonal and permutation group synchronization via spectral
methods, Applied and Computational Harmonic Analysis, 60 (2022), p. 20–52.

[50] F. McSherry, Spectral partitioning of random graphs, in Proceedings 42nd IEEE Symposium on Founda-
tions of Computer Science, 2001, pp. 529–537.

[51] S. O’Rourke, V. Vu, and K. Wang, Random perturbation of low rank matrices: Improving classical
bounds, Linear Algebra and its Applications, 540 (2017).

[52] S. O’Rourke, V. Vu, and K. Wang, Matrices with gaussian noise: optimal estimates for singular subspace
perturbation, 2023.
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A Perturbation of Singular values

We begin with the definition of the concentration property. The authors of [51] state that a square matrix E
satisfies the (C, c, �) concentration property if for all unit vectors u,v 2 Rn, and t > 0,

(A.1) P(|uTEv| > t)  C exp(�ct�).

By using Hoe↵ding’s inequality, they show that ifK � 1 and E is an n⇥n symmetric matrix with independent,
K bounded entries, then

(A.2) P(|uTEv| > t)  2 exp(� 1

8K2
t2)

In other words, E satisfies the (2, 1
8K2 , 2)-concentration property.

A key ingredient in the analysis is the singular values of the perturbed matrices A{l} and Ã. It is very easy
to verify that if E is a symmetric random matrix with independent, K- bounded entries, then for all l, E{l} has
the (2, 1

8K2 , 2) concentration property as well. Therefore, the results derived in [51] for the perturbation of the

singular values applies to A{l} for all l.
The main result for the perturbation of singular values in [51] is the following theorem.

Theorem A.1. Suppose that E is (C, c, �) concentrated. Suppose that A has rank r, and let 1  i  r be an
integer. Then, for any t � 0,

(A.3) �̃j � �j � t

with probability at least

(A.4) 1� 2C9i exp
⇣
� c

t�

4�

⌘

and

(A.5) �̃i  �i + tr1/� + 2
p
i
kEk2

�̃i

+ i
kEk3

�̃2
i

with probability at least

(A.6) 1� 2C92r exp
⇣
� cr

t�

4�

⌘
.

Theorem 5.1 follows from Theorem A.1 and the fact that a symmetric, K bounded random matrix with
independent (above the diagonal) entries satisfies the (2, 1

8K2 , 2) concentration property.

B `2 Perturbation of Eigenvectors

Theorem B.1. ([51]) Suppose that E is (C, c, �) concentrated for a trio of constants (C, c, �) and suppose that
A has rank r. Then, for any t > 0,

(B.7) kũ1 � u1k2  8
⇣ tr1/�

�
+

kEk
�1

+
kEk2

��1

⌘

with probability at least

(B.8) 1� 54C exp
⇣
� c

��

8�

⌘
� 2C92r exp

⇣
� cr

t�

4�

⌘
.
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Recall that a symmetric E with independent, mean zero, K bounded entries satisfies the (2, 1
8K2 , 2)-

concentration property. We will be considering only such matrices E in what follows. Applying Theorem B.1
gives the following theorem.

Theorem B.2. Let E be a random, K-bounded, symmetric matrix with independent entries above the diagonal.
For any t > 0,

(B.9) kũ1 � u1k2  8
⇣ tr1/2

�
+

kEk
�1

+
kEk2

��1

⌘

with probability at least

(B.10) 1� 108 exp
⇣
� �2

83K2

⌘
� 4⇥ 92r exp

⇣
� r

t2

128K2

⌘
.

As a consequence, if �

K

p
83

= ⌧ , then for all t � 0, with probability at least 1�108 exp(�⌧2)�4⇤92r exp
⇣
�t
⌘
,

(B.11) kũ1 � u1k2  8
⇣K

p
128t

�
+

kEk
�1

+
kEk2

��1

⌘

They also obtain the following recursive result for the perturbation of the remaining eigenvectors.

Theorem B.3. Assume that E is (C, c, �) concentrated. Suppose that A has rank r, and let 1  i  r be an
integer. Then for any t > 0,

(B.12) kui � ũik2  16

"
i�1X

j=1

kũj � ujk2 +
tr1/�

�j
+

kEk
�j

+
kEk2

�j�j

#

with probability at least

(B.13) 1� 6C9i exp
⇣
� c

��
j

8�

⌘
� 2C92r exp

⇣
� cr

t�

4�

⌘

Fix 1  s  r. s represents a cuto↵ point beyond which the eigenvectors are not of interest. Let

✏j(t) := 16
⇣

tr
1/�

�j
+ kEk

�j
+ kEk2

�j�j

⌘
. By taking the union bound over the first s singular vectors and iterating

this recursive bound, and letting � be the smallest gap in the first s singular values, we obtain

Theorem B.4. For all i  s, and t > 0,

(B.14) kũi � uik2 
iX

j=1

[
i�jX

k=0

16k]✏j(t)

with probability at least

(B.15) 1� 6sC9s exp
⇣
� c

�̄�

8�

⌘
� 2Cs92r exp

⇣
� cr

t�

4�

⌘
.

As a consequence, letting ⌧ = �

K

p
83

if E is symmetric and K-bounded with independent entries, there exists

C depending only on s such that with probability at least 1� C[exp(�⌧2)� 92r exp(�t)],
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(B.16) sup
is

kũi � uik2  C
⇣Kt

�
+

kEk
�s

+
kEk2

��s

⌘
,

for any t > 0. In the rectangular case, where A is an m⇥ n matrix, and when r = O(1), we derive the following
corollary using the standard symmetrization trick. We encounter this setting in the matrix completion problem.
Let N = m+ n.

Corollary B.1. If r = O(1) and � > 400K
p
logN , with probability at least 1�N�3, we have

(B.17) sup
is

max{kũi � uik2 , kṽi � vik2} = O
⇣Kt

�
+

kEk
�s

+
kEk2

��s

⌘
.

C Results for Section 13

Lemma C.1. Let Y 2 L{},l holds. Then,

P(I 0
l
|E{l} = Y )  2 exp(�c2 log n).(C.18)

Proof of Proposition 13.1 given the lemma. The proposition follows immediately from the lemma once we observe
that

P(I 0
l
\ L{},l)  sup

Y 2L{},l

P(I 0
l
|E{l} = Y )  2 exp(�c2 log n).

Proof of Lemma C.1. We are looking for a bound of

P(I 0
l
|E{l} = Y ) = P{|hu{l}

i
,x(l)i| � c2

p
2Knfj+1 log n

���E{l} = Y }.

The lemma only considers realizations Y of E{l} satisfying
���u{l}

i

���
1

 f1. Recall that x(l) is essentially the lth

row of E and l 2 �. Therefore, conditional on such E{l}, u{l}
i

is a deterministic unit vector whose entries have
absolute value at most f1. The only randomness in each event thus comes from x(l). It follows that the inner

product hu{l}
i

,x(l)i, conditional on E{l}, is the sum of independent, Kf1 bounded, mean zero random variables

xku
{l}
ik

. Thus, this quantity can be bounded with Bernstein’s inequality. We are applying Bernstein’s inequality

conditionally, so we also need to find a bound for the sum of the conditional second moments of the xku
{l}
ik

. Since

u
{l}
i

is deterministic when we condition on E{l}, and x(l) is independent of E{l}, we have

(C.19)
nX

k=1

E[x2
k
u{l}2
ik

|E{l} = Y ] =
nX

k=1

u{l}2
ik

E[x2
k
]  K

nX

k=1

u{l}2
ik

= K.

For the inequality, we use that the second moments of the entries of E are at most K by Assumption 3.1. Applying
Bernstein’s inequality (Lemma 5.2) then gives us that

P
n
|hu{l}

i
,x(l)i| > t|E{l} = Y

o
 2 exp

⇣ �t2/2
P

n

k=1 E[x2
k
u{l}2
ik

|E{l} = Y ] +Kf1t/3

⌘

 2 exp
⇣ �t2/2

K +Kf1t/3

⌘
.

(C.20)
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Set t = c2
p
2Knf1 log n. Since n�1/2  kUk1  f1, we obtain that K  Knf2

1 . Thus, using this bound for the
first term in the denominator of the RHS of (C.20),

P
n
|hu{l}

i
,x(l)i| > c2

p
2Knf1 log n

���E{l} = Y
o
 2 exp

⇣ �c22Knf2
1 log2 n

Knf2
1 +

p
2c2
3 Kf2

1

p
Kn log n

⌘

 2 exp
⇣ �c22Knf2

1 log2 n

Knf2
1 +

p
2c2
3 Kf2

1n log n

⌘

 2 exp(�c2 log n).

(C.21)

In the second line, we used that K  n by Assumption 3.1.

D Proof of Lemma 15.1

In this section, we bound the spectral norm of the matrix E from the matrix completion problem. We will use the
following result from [10], which is a tail bound for the norm of K bounded random matrices with independent
entries.

Theorem D.1. (Remark 3.13 in [10]) Let X be a symmetric, mean zero n ⇥ n random matrix whose entries
above the diagonal are independent. Suppose the entries of X, ⇠ij, are K bounded random variables. Let

v = max
i

X

j

E[⇠2
ij
].

Then there exists a universal constant c > 0 such that for any t � 0,

P{kEk � 4
p
v + t}  n exp

⇣
� t2

cK2

⌘
.

Proof of Lemma 15.1. Recall that E is an m ⇥ n random matrix with independent, K bounded entries, where
K = O(p�1). Form the symmetrization of E as

S = S(E) =


0 E
ET 0

�
.

S is a symmetric N ⇥ N random matrix satisfying the conditions of Theorem D.1. It is easy to check that
kEk  kSk. Let the entries of S be given by sij . We need to calculate v = maxi

P
j
E[s2

ij
] to apply the theorem.

Recall that in the matrix completion setting, the entries of E have second moment at most K. It follows that
E[s2

ij
]  K, so v  NK.
By Theorem D.1,

(D.22) P{kSk � 4
p
NK + t}  N exp

⇣�t2

cK2

⌘
.

Set t = K
p
4c logN . It follows that

(D.23) P{kSk � 4
p
NK +K

p
4c logN}  N exp

⇣
� 4 logN

⌘
.

Since kEk  kSk,

(D.24) P{kEk � 4
p
NK +

p
4cK logN}  N�3.

Recall that K = O(p�1). Under the assumptions of Theorem 4.2, p > logN

N
, so

p
K logN = o(

p
N).

It follows that there exists an absolute constant C such that

(D.25) P{kEk � C
p
NK}  N�3.
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