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ABSTRACT

Unexpected long query latency of a database system can
cause domino effects on all the upstream services and se-
verely degrade end users’ experience with unpredicted long
waits, resulting in an increasing number of users disengaged
with the services and thus leading to a high user disengage-
ment ratio (UDR). A high UDR usually translates to reduced
revenue for service providers. This paper proposes UTSLO,
a UDR-oriented SLO guaranteed system, which enables a
database system to support multi-tenant UDR targets in a
cost-effective fashion through UDR-oriented capacity plan-
ning and dynamic UDR target enforcement. The former aims
to estimate the feasibility of UDR targets while the latter
dynamically tracks and regulates per-connection query la-
tency distribution needed for accurate UDR target guarantee.
In UTSLO, the database service capacity can be fully ex-
ploited to efficiently accommodate tenants while minimizing
resources required for UDR target guarantee.

CCS CONCEPTS

+ Information systems — Autonomous database admin-
istration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC °23, October 30-November 1, 2023, Santa Cruz, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0387-4/23/11...$15.00
https://doi.org/10.1145/3620678.3624668

Ho Chi Minh City, Vietnam
ngminh@live.com

394

Arlington, Texas, USA
stoddard.rosenkrantz@mavs.uta.edu

KEYWORDS
database system, multi-tenant, user disengagement ratio

ACM Reference Format:

Ning Li, Hong Jiang, Hao Che, Zhijun Wang, Minh Q. Nguyen,
and Todd Rosenkrantz. 2023. User Disengagement-Oriented Target
Enforcement for Multi-Tenant Database Systems. In ACM Sym-
posium on Cloud Computing (SoCC ’23), October 30-November 1,
2023, Santa Cruz, CA, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3620678.3624668

1 INTRODUCTION

It has become prevalent that various enterprise-class cloud
service or e-commerce service providers move their busi-
nesses to the cloud with multi-tenancy, where multiple ser-
vice providers or tenants share the underlying database
processing capacity with pre-specified service level objec-
tives (SLO) [54]. Each tenant may desire a high degree
of user engagement due to its high correlation with their
sales/revenues. According to a recent Akamai study, an extra
service delay of 100-ms can reduce conversion rate, a user
engagement metric 1 by 7%, which means a noticeable drop
of 6% in sales [15] and $3.8 Billion loss of annual revenue
for Amazon [5]. Since database systems play a key role in
and have been identified as one of the major bottlenecks
for multi-tenant data services [23], it becomes imperative
to enable databases to support per-tenant quality of service
(QoS) guaranteed services.

According to the industry practice, user engage-
ment/disengagement performance metrics are the ultimate
measures of QoS for tenants, including churn rate [7], con-
version rate [9], bounce rate [6], the reduction rate in query
refinement and satisfaction [57]. Although these metrics

IConversion rate, as a user engagement metric, is defined as the percentage
of users who engage in desired actions, e.g., purchases [9].
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Figure 1: The comparisons in normalized UDR (the one closer to
but lower than 1.0 is better), normalized mean latency (the mean
latency for the ideal one is 1.0), and CDF curves of service latency for

the proposed solution UTSLO and tail-latency-SLO based solutions.

are determined by many factors, such as competitiveness of
product prices and qualities, shipping speed and cost, and
product returning policies, from the viewpoint of develop-
ing e-commerce service platforms or systems, the service
response time is probably the most important factor that
will impact the user engagement/disengagement rates, as
supported by e-commerce service providers [1, 15, 57]. With
respect to the database aspect of the system design, it is the
database query latency, x, that matters the most. In other
words, one can generally define a user disengagement ratio
at any given x (UDRx) for the tenant connection T; (mea-
surable in practice), as u;(x), representing churn rate, non-
conversion rate, bounce rate, or reduction rate, etc., at x for
T;. Then the overall user disengagement ratio (UDR), U;, for
T;, the performance metric that the tenant cares the most, can
be generally expressed as, U; = f(:x’ fx; (%) #u;(x) dx, where
fx, (x) is the probability density function (PDF) of database
query latency, x, for queries of the service provided by T;.
It becomes clear that to provide UDR-oriented QoS, one
must be able to control fx, (x) or equivalently, the cumulative
distribution function (CDF) Fx, (x) for individual tenants in
order to achieve the desired user engagement/disengagement
performance for all tenants sharing the same database. Unfor-
tunately, the state-of-the-art QoS solutions [24, 43, 44, 46, 66]
are simply not up to the task, as they all exclusively focus on
providing a specific percentile tail latency guarantee (i.e., the
p'-percentile of tail-latency x = x,) for applications. More
specifically, they all attempt to ensure, p/100 < Fx,(x;),
i.e., only need to control Fy,(x) at a single point x = x,,
rather than the entire Fy, (x). This makes these tail-latency-
SLO based solutions incapable of offering UDR-oriented QoS.
Moreover, due to high variability and dynamism of the work-
load that is inevitable in a consolidated multi-tenant database
environment, Fx, (x) may change over time. As a result, a
viable solution must involve online control mechanisms that
can keep track of and adapt to such changes. This makes the
design of a UDR QoS guaranteed solution challenging.
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Moreover, multi-tenant database services (e.g., the ones
built on developer data platforms or self-managed data-
base service systems such as MongoDB Atlas [19]) provide
database connections for their tenants’ applications (e.g.,
enterprise-class cloud services or e-commerce services) to
share the database query processing capacity. Thus, connec-
tions become the basic units of resource allocation within
a database system and cannot be directly managed by OS
resource management tools (e.g., Cgroups [17]), which can
only offer process/thread-level resource management, let
alone deploying them in virtual machines or containers. This
makes it difficult for most existing multi-tenant QoS solu-
tions [30, 34, 49, 58, 66], which often rely on OS resource
scheduling mechanisms, to directly handle connection-level
resource allocation for a single database system.

To illustrate the necessity of regulating service latency
distribution and the potential issues that existing approaches
need to face for the UDR target enforcement, we give a case
study for two different scenarios, i.e., enterprise-class cloud
services and e-commerce services, under a state-of-the-art
any-percentile tail latency SLO guarantee solution PSLO [46]
and our solution (i.e., UTSLO) that supports fine-grained
database query latency distribution regulation according to
UDR targets. The enterprise-class cloud service workload is
simulated by Yahoo Cloud Serving Benchmark (YCSB) [25],
which establishes 512 connections with a MongoDB [11] key-
value store and 10 of them have UDR targets. In contrast,
e-commerce services mainly involve Online Transaction Pro-
cessing (OLTP) workloads generated by Py-TPCC [40], which
creates 256 connections with a MongoDB transactional data-
base server and 9 of them belong to UDR-sensitive tenants.
To make PSLO workable for UDR targets, we adopt two lev-
els of estimates, i.e., OPT and MOD (elaborated in Section
5), for the unguaranteed percentile range (e.g., (95%, 100%]
if a 95" percentile tail latency SLO is ensured) when trans-
lating a UDR target into a corresponding tail latency SLO.
As shown in Fig. 1, either of the PSLO schemes (based on
OPT and MOD) cannot effectively enforce UDR targets and
cause severe UDR target violations (e.g., 3.5 times higher
and thus worse than the target for enterprise-class cloud
services) or over-zealously enforce UDR targets (e.g., only
64% of the UDR target and thus 25% lower mean latency
is required for e-commerce services) with serious resource
over-provisioning. This is because the UDR measure is de-
termined by the entire latency distribution and hard to be
set equivalently at a tail latency target, a single point on
the latency CDF curve. In contrast, the proposed solution
UTSLO can generate an ideal latency distribution according
to the UDR target under highly variable query latency, and
dynamically track and regulate latency distribution to ap-
proach the ideal one to accurately enforce the UDR target.
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As aresult, UTSLO can accurately enforce UDR targets for
all the US-sensitive connections under both scenarios.

To address the above challenges, we propose a UDR Target
oriented SLO guarantee system (UTSLO) to enforce UDR tar-
gets for multiple tenants of the underlying database system
(e.g., MongoDB [11]). Specifically, UTSLO adopts a hybrid
modeling-and-measurement-based approach to capture the
query latency distribution with low cost. It only involves
controlling and adapting the relative values of the mean and
variance of query latency to maintain the latency distribution
exactly meeting the UDR target for each UDR-sensitive (US)
tenant’s database connection. More specifically, by dynami-
cally regulating the mean latency, or throughput allocation
across tenants’ connections in response to highly dynamic
query latency variation (measured by the coefficient of vari-
ation (CV) [8]), UTSLO manages to accurately bound the
UDRs for all the US tenants by their respective UDR targets,
while maximizing the throughput performance for the best-
effort (BE) tenants, whose aim is to share as much through-
put as possible. To keep a low-level latency variation, hence,
reducing the resources required to meet the UDR targets, UT-
SLO adopts a UDR-target-aware two-dimensional admission
control? to simultaneously manipulate multi-tenant query
concurrency and per-connection query burst. Thus, in each
scheduling round, only the top-C tenants’ connections, se-
lected by strategic scheduling policies, are allowed to send a
specific number of queries (i.e., quota) to the database sys-
tem to strike an optimized trade-off between query latency
variation and throughput under the UDR constraints.

We implemented UTSLO based on a popular NoSQL data-
base system, i.e., MongoDB [11], to enforce UDR targets by
regulating the network-I/O system calls issued by the data-
base for query fetching/processing. In this way, UTSLO can
separate its operations from the underlying database pro-
cessing and thus work with different versions of MongoDB
without the need to modify the database system, making it
highly flexible and portable. Our extensive evaluation shows
that UTSLO can accurately enforce UDR targets for multiple
tenants in a cost-effective manner.

2 BACKGROUND AND MOTIVATION

2.1 Background and Case Studies

Multi-tenant database systems allow effective and transpar-
ent data storage resource sharing among multiple tenants via
their individual database connections. Each of the tenants
can provide service to its individual users by its application
that typically relies on databases’ query processing 24 x7[23].
Due to the common dependency between a typical user’s

2 Admission control strategically imposes limits on multi-tenant concurrent
queries and enqueues any additional queries until earlier ones finish without
query cancellation, compromising throughput, or causing contention.
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commercial behaviors [36] (e.g., searching and comparing
before purchasing), the database asynchrony makes it hard
to parallelize queries with causal precedence relationships
inside a database connection’s context and thus the per-
connection synchronous query mode is assumed as the best
practice to ensure the correct results of users’ queries.

(D Database/connection-level multi-tenancy: One of
the great challenges for multi-tenant database systems is how
to collocate multiple tenants with adequate performance iso-
lation required by tenants’ performance targets. This is even
more so for the UDR measure that is determined by the
entire service latency distribution, making it harder to guar-
antee than tail latency SLO. For traditional relational data-
base systems (e.g., MySQL [12], Oracle [13] and PostgreSQL
[21], etc.), it is typical to assign each tenant a dedicated
database and apply database-level performance QoS solu-
tions (e.g., Delphi [28] for tail latency optimization) to the
multi-tenant database management system (DBMS). How-
ever, NoSQL database systems such as MongoDB [11] can
offer a higher level of availability, scalability, and flexibil-
ity by accommodating data from a large number of tenants
with a higher query processing capacity than relational multi-
tenant DBMSs. Further, it is feasible for MongoDB to support
a single database with shared collections for all tenants. In
this way, a growing number of tenants can be accommodated
with consistent structure of data and query requirements
[16]. However, database-level performance QoS solutions
cannot be applied to this case. This is because it demands
a finer-grained multi-tenant performance QoS solution at
the connection level with differentiated target performance
levels across tenants’ database connections. In this paper, we
mainly focus on providing a fine-grained (i.e., connection-
level) multi-tenant UDR target guarantee solution without
the need to modify database systems. However, our solution
can be easily modified for the database-level multi-tenant
environment under which each tenant owns its database.

(2) Multi-type tenants: Multi-tenant database systems
based on UTSLO can simultaneously serve UDR-sensitive
(US) tenants and best-effort (BE) tenants. The former mainly
focus on user-facing services and demand their UDR to be
below a target in a cost-effective fashion while the latter
want as much throughput as possible to drive their business
processing. A tenant can own multiple database connec-
tions to parallelize query processing for certain QoS levels or
throughput enhancement. For instance, an e-commerce ten-
ant can establish three connections for the users visiting its
web pages via three different types of end-user devices (i.e.,
desktop, mobile, and tablet), each of which is characterized
by its unique UDR-latency function (or UDRx, as shown in
Fig. 2) respectively and required to be treated separately to
fulfill their UDR targets. Our solution also covers other types
of QoS as its special cases, such as latency or throughput
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Figure 2: An example that illustrates how to generate UDR-latency functions (UDRx).

SLO, and the cases where US/BE tenants are divided into
groups.

(3 UDR-latency function (UDRx): To evaluate the im-
pact of query latency on UDR based on tenants’ individual
demands, each US tenant needs to provide its own UDRx
(by measurement). Since the measurement must be done in
finite latency intervals (e.g., every 100ms) to be tractable,
UDRx exhibits a staircase-like curve. To realistically reflect
the real-world UDR-latency relationship, this paper focuses
on two classic scenarios, i.e., enterprise-class cloud services
and e-commerce services, based on the statistics made by
enterprises or the report for e-commerce sales by default. For
example, according to the survey made by Akamai [2], we
can obtain the relationship between conversion rate (a user
engagement measure) and load time® for e-commerce users
via three types of devices (i.e., desktop, mobile, and tablet)*,
as shown in Fig. 2(a). We further translate these conversion
rate curves into the relationship between percentage non-
conversion rate (a UDR measure) and load time (Fig. 2(b)).
Since this paper focuses on the impact of database processing
latency on the UDR measure, we assume that other service
latency contributing to load time has been optimal, based
on which we can get UDR-latency curves by linear fitting
(Fig. 2(c)). Note that, based on the studies by Microsoft and
Google [57], an extra service latency below a threshold (e.g.,
25ms) injected into the overall service delay has unnotice-
able impact on UDR measures. We also set a zero-UDR range
for database query latency (set at (0, 25ms] by default) and
finally get UDRx (Fig. 2(d)).

2.2 Related Work

The existing solutions most relevant to ours would be any-
percentile tail latency target guarantee solutions [24, 43, 44,
46, 66]. They can guarantee tail latency SLOs under any pre-
defined percentile, beyond which is an unguaranteed and
unpredictable high-percentile latency range. Thus, these ap-
proaches are unable to regulate the entire latency distribu-
tion, which is required by the UDR target enforcement, since
the queries with their latencies falling in the unguaranteed
high-percentile range can significantly increase UDR beyond
the target and lead to a UDR violation.

3The time it takes to fully load a web page.
4The faster end of the curves in Fig 2(a) (b) correlate with a lower conversion
rate due to non-latency factors (e.g., unavailable web pages/resources).
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Another type of tail latency target guarantee solutions
focus on the tail latency target enforcement at a specific per-
centile. For example, Avatar [65] can enforce the 95 percentile
tail latency target while Cake [62] enables the 99 percentile’s,
and the schemes of [31, 38, 67] adopting strict worst-case
guarantees essentially focus on the 100 percentile latency
objectives. Under the fixed percentile for the latency target,
these solutions can only meet the UDR target by roughly
estimating the tail latency target, very likely resulting in
serious resource under-provisioning/over-provisioning.

There are more solutions that focus on tail latency opti-
mization by means of replica selection and request reissu-
ing [27, 37, 48, 59, 61, 63, 64], congestion control [52, 60]
or scheduling techniques[22, 29, 56] for cloud/data-center
applications, as well as distribution/correlation-aware opti-
mization techniques [51] or optimal data-passing methods
[50] for DAG-based serverless applications. Although these
approaches can reduce latency distribution tail by reducing
the latencies in a specific percentile range, they cannot guar-
antee that the resulted latency distribution can indeed meet
the requirements of multi-tenant UDR targets.

Existing DBMS QoS solutions/facilities, e.g., Db2 work-
load manager [10], Oracle Database Resource Manager [18],
and the resource governor for Microsoft SQL server [20],
etc.,, can provide different levels of capabilities in plan-
ning/prioritizing resource allocation at different levels of
the system stack (e.g., session-level and database-level) to
apply throughput controls or optimize latency performance.
Although these approaches can potentially improve user ex-
perience to different extents, they are incapable of offering
UDR target guarantees under multi-tenant environments.

In contrast, this paper proposes a UDR guaranteed system
UTSLO to precisely enforce per-connection UDR targets for
multi-tenant database systems (e.g., MongoDB [11]) with
minimized resource over-provisioning. To this end, inspired
by the insights obtained from the study cases in Section 1, the
design and implementation of UTSLO are to be governed by
the principles of (I) Estimate the feasibility for the UDR tar-
gets by generating and analyzing theoretically optimal query
latency CDF curves according to UDR targets for US tenants
at the connection level; (2) Dynamically track and regulate
highly variable query latency distributions as required by
UDR targets in a cost-effective fashion.
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Figure 3: The effectiveness of query latency distribution approximation under different levels of query concurrency.

3 UTSLO DESIGN

In this paper, we propose UTSLO to regulate database
connection-level query latency distributions to meet each
UDR-sensitive (US) tenant’s target in an accurate manner. In
UTSLO, the resources required for the UDR target enforcement
will be minimized and thus more tenants (e.g., best-effort (BE)
tenants) can be served by the underlying database system.

Symbols Description
T; The it" tenant’s database connection.
U; The actual UDR for T;.
U; The UDR target for T;.
i The UDR normalized by % for T;.
[£,0] The allowed range for ;. '
M; The mean latency for T;.
M; The mean latency budget for T;.
Ai The query throughput for T;.
Ai The query throughput budget for T;.
CV; The coeflicient of variation for T; query latency.
cv The upper bound for CV;.
ui(.) The UDR-latency function (UDRx) for T;.
LR;(.) The relationship between A; and CV;.
C The upper bound for query concurrency.
D The upper bound for query quota.
gmn The min normalized UDR over all US connections.
U™ | The max normalized UDR over all US connections.
a The probability of choosing the US tenants.
Y The coefficient for reducing a.
B The coefficient for increasing .
A%ﬁ The total throughput budget for the US tenants.
/’lf;OEt The total throughput budget for the BE tenants.
p The throughput ratio for the US tenants.
Qi The queuing time budget for T;.

Table 1: Some symbols used in this paper.

3.1 Multi-Tenant UDR Target Guarantee

UTSLO is dedicated to a specific database system (e.g., Mon-
goDB [11]) that supports multiple concurrent query-intensive
tenants’ database connections.

The objective function: For each US tenant’s connection
T;, 1 < i < n, UTSLO aims to minimize the resources required
to enforce the given UDR targets (i.e., U;) by maximizing
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its mean latency (i.e., M;) so that the total query processing
capacity provided by the database system (i.e., ¥) can be fully
utilized to serve more tenants, which can be represented as:

Maximize M;
subject to
U= [~ o) su(x)dx < Up Vi1 <i<n

(1)

where u;(x) is given for T; while U; has a positive corre-
lation with M; when the latency variation stays unchanged,
i.e., a more stringent (lower) Uj; typically requires a lower
M; (thus more resources) under a specific level of latency
variation represented by CV;. Moreover, a lower CV; typically
indicates a more stable query latency and thus a shorter tail
to make UDR target easier to meet. All these suggests that
M; is maximized, when the UDR targets are exactly met, un-
der the lowest level of latency variation. Hence, UTSLO is
designed to dynamically adjust fx,(x) in response to work-
load changes to keep all U; as close to their respective U; as
possible, while minimizing the query latency variances with
negligible throughput loss.

Query latency distribution: Next, we need to esti-
mate the query latency distribution f, (x) for each US ten-
ant’s connection. To this end, we adopt the following hy-
brid modeling-and-measurement approach. We describe the
multi-tenant query processing with a single database system
by a G/G/1 queuing model under heavy load. According
to the central limit theorem [53] for heavy traffic queuing
systems [41, 42], the distribution of query waiting time can
be approximated by an exponential distribution, which can
also apply to query latency since the latency distribution
will approximate the wait time distribution under a high I/O
traffic load [55]. Inspired by this result, T;’s query latency dis-
tribution fx, (x) for any arrival process can be approximated
by a generalized exponential distribution function [35]:

fx, (x) = ﬁu — e ¥/ONbiT1e=X/0i (x 5 0, ¢ > 0, 0; > 0).
Wi
)

where ¢; and w; are shape and scale parameters, respectively.
Its CDF function [35] can be represented as:

Fx,(x) = (1—e*/)% (x > 0,¢; > 0,0; > 0).  (3)
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The corresponding mean and variance are given by [35]:
E(Xi) = wi[¢(¢i +1) = §(1)]. (4)
VX)) = of [y (1) =y (di+1)]. (5)

where /(.) and /(.)" are the digamma function and its de-
rivative, respectively. Since the distribution given in Eq. 2 or
Eq. 3 is determined by the shape and scale parameters (i.e.,
¢; and w;), which can be solved by Eq. 4 and Eq. 5 under the
given mean and variance of the query latency, the mean and
variance of the query latency completely determine f, (x)
or Fx, (x). To verify the effectiveness of the approximation,
we use the mean and variance of the query latency obtained
under different levels of query concurrency (controlled by
the total number of database connections) for two type of
workloads (i.e., enterprise-class cloud services simulated by
YCSB benchmark [25] and e-commerce services simulated
by TPC-C workloads [14]) as the input parameters to derive
the theoretical latency CDF curves. As shown in Fig. 3, for
enterprise-class cloud services, the theoretical latency CDF
curves can fit the corresponding actual ones almost perfectly.
Although the approximation errors for e-commerce services
are higher than those for cloud services, their CDF curves are
still very closely approximated especially for higher latencies,
which contribute more to UDR.

Intuitively, to keep U; close to its target U;, an increased
variance must be compensated by a decreased mean and vice
versa. This lends us a convenient way to maintain a UDR,
U; that closely tracks the UDR target for T;, by regulating
the mean query latency or query throughput in response to
query latency variability (or variance) changes.

3.2 Mean Latency Budget Exploration

Based on the discussion in Section 3.1, for any US tenant’s
connection T, it is viable to exhaust all the possible com-
binations of mean query latency and latency variance to
find the highest mean latency budget or MLB (M;) under
each specific variance that can determine the latency distri-
bution to exactly meet T;’s UDR target. This will minimize
the throughput budget (TB) () which refers to the query
throughput required for the UDR target enforcement when
the utilization of the database connection is 100%.

Based on Algorithm 1, we can obtain a suboptimal MLB M;
for each tenant’s connection T; under the current measure of
latency variation CV; based on the UDRx u;(x) and the UDR
target U; of T; by binary searching. Specifically, we set the
search scope of query latency for T; as (Mpmin, Mmax|, where
Min can be set at 0 while M,,4, can be determined by the
Little’s law [47] with the minimum guaranteed throughput
per tenant (e.g., 50 ops/s). Before we search an optimal MLB,
we first figure out the generalized exponential distribution
function (i.e., Fx, (x)) based on Eq. 3 by determining its shape
and scale parameters (i.e., ¢; and ;). To this end, we can
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ALGORITHM 1: MLB Exploration Algorithm

Input: The current measure of query latency variation for T;
(i.e., CV;), the UDRx for T; (i.e., u;(x)), the UDR target
for T; (i.e., Uj).

Output: The suboptimal mean latency budget (M;).

MLBmax < Mmax; MLBmin < Mmin;

repeat

M; = (MLBrmin + MLBpmax) /2; )

/*Obtain the UDR U; under the current M;*/

U; «0;

Obtain Fy; (x) according to M; and CV; based on Eq. 4 and

Eq. 5;

/*Accumulate the UDR contributed by different query

latencies’/

for j « 1 tom; do

| Ui « Ui+ (Fx, (xj) = Fx, (xj-1)) * u;(x5);

end

/*Resource over-provisioning could happen for T;*/

if U;/U; < { then

| MLBpin — M;;

end

/*Resource under-provisioning could happen for T;*/

else if Ui/Ui > 6 then

‘ MLBmax < MB
end
/*The preferred MLB/
else
| break;
end
until (MLBp,qx — MLBmin < UNMLB);
return Mi;

jointly solve Eq. 4 and Eq. 5 to pin down these two parameters
by substituting M; and the latency variance (obtained by
(CV; % M;)?) into these two equations, respectively. And then,
we can accumulate the UDR contributed by all the latencies
indicated in the u;(x) to obtain the UDR for T; under the
current measurement of query latency variation (CV;) and
the current estimated MLB, which can help to assess the
effectiveness and accuracy of the suboptimal MLB.

The criterion of the MLB evaluation is the accuracy of UDR
target enforcement, which is quantified by a small range of
the normalized UDR (i.e., 1; %) between { and 6. Only if
n; falls in the allowed range, will the resource provisioning
for the UDR target enforcement be considered at the mini-
mum level. As shown in Algorithm 1, if #; is smaller than {
(0.95 by default), then resource over-provisioning is expected
to happen under the current M; while the resource under-
provisioning will be forecasted if n; goes beyond 6 (0.98 by
default). These two bounds will help the binary search to lo-
cate the right M; only if the difference between MLB,,,, and
MLB,,;p, is larger than UNyp (set at (Mnax — Mimin) /4096
by default), which indicates the acceptable precision of the
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Figure 4: The illustration of UTSLO architecture and workflow.

MLB exploration. The time complexity of Algorithm 1 is
O(log( M)), indicating that only a few iterations (12
at the most by default) are required for a MLB exploration.
Discussion: UTSLO captures the entire query latency CDF
per tenant’s connection for the UDR computation during
its MLB exploration. Although the lower latency region has
less impact on UDR, it is costly to split the latency CDF per
tenant into a low-latency region to be discarded and a high-
latency region to focus on, because even if all tenants have
the same UDR target, which is not likely, their latency CDF
can be highly variable, making the cutoff a moving target
and introducing extra computational costs and inaccuracy.

3.3 UTSLO Components

UTSLO aims to implement the goal of the objective function
(i.e., Eq. 1), i.e., maximizing the mean latency for each US
tenant’s connection constrained by its UDR target and free-
ing up more service capacity of the database system to serve
other tenants. This is done through capacity planning and
dynamic UDR target enforcement that are jointly realized by
three UTSLO components, i.e., the resource estimator, the
budget enforcer, and the resource allocator, as shown in Fig.
4.

Capacity planning: It aims to figure out the highest
throughput (i.e., when all the US tenants’ connections are
query intensive.) required for the US tenants according to

their UDR targets (i.e., Agﬁ) under the optimized low-level
latency variation. Thus, the throughput for the BE tenants is
determined under the total throughput that can be provided
by the underlying database system minus /1%‘?

Dynamic UDR target enforcement: It targets at en-
forcing the given UDR targets under highly dynamic query
latency variation and resource provisioning, and adapting
resource allocation to dynamically changed UDR targets
within a predictable convergence time.

As the brain of UTSLO, the resource estimator and the
budget enforcer work together to do the capacity planning
for the given UDR targets. In addition, the budget enforcer
lays the foundation for the UDR target enforcement by op-
timizing scheduling parameters for the resource allocator.
In doing so, the resource allocator can strategically enforce
admission control and scheduling policies for concurrent
tenants’ queries to dynamically ensure US tenants’ targets
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in a cost-effective fashion, while providing the maximum
available resources for more tenants (e.g., the BE tenants).
As illustrated in Fig. 4, the UTSLO workflow comprises 6
steps. The first three are set for the capacity planning (3.3.1)
while the rest form a feedback-loop control for the dynamic
UDR target enforcement (3.3.2).

3.3.1 The Capacity Planning. UTSLO’s capacity planning
involves three steps. As shown in Fig. 4, we first set up UT-
SLO (in Step(D) by establishing the relationship between the
throughput budget and the CV of latency for each US tenant’s
connection, and then tune the two-dimensional admission
control knobs to limit the multi-tenant query concurrency
and per-connection query bursts for optimizing the trade-off
between high throughput and low-level latency variation (in
Step(@). The capacity planning can be carried out based on
the throughput budget estimation for tenants (in Step(3)).

Step(D): The inputs to UTSLO, including the UDR target ﬁi
of each US tenant’s connection T;, 1 < i < n, and its individ-
ual UDRx u;(x), are first passed to the resource estimator. It
can precisely estimate the mean latency/throughput budgets
(M; and 1;) required for ensuring the UDR target under differ-
ent levels of latency variation (CV;) by approximating the la-
tency distribution of T;’s queries as a generalized exponential
distribution [35] fitting the UDR target (U;) (details in Section
3.1 and 3.2). To estimate the mean latency/throughput budget
under highly dynamic query latency variation, it is required
to repeat the estimation (i.e., MLB exploration algorithm in
Section 3.2) under different levels of latency variation, gen-
erating a curve between the throughput budget values (A)
and the measurements of query latency variation (CV;) (i.e.,
A= LR;(CV};)), as shown in Fig. 4.

Step(2): To estimate the throughput budget for each given
UDR target under the database system for a typical num-
ber of concurrent tenants (e.g., hundreds), we need to first
bound query latency variation (i.e., CV; < ¢v) with negligible
throughput loss. To this end, UTSLO first adopts the AppleS
algorithm[45] to obtain an optimized upper bound of query
concurrency C. Further, UTSLO optimizes the upper limit
(D) for per-connection query bursts by finding an optimal
throughput peak with the minimum D under the concur-
rency bounded by C. In this way, the side effects caused
by unregulated multi-tenant query patterns that aggravate
query latency variation can be effectively alleviated almost
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Figure 5: The impact of multi-tenant query concurrency and per-

connection query burst on query latency variation and throughput.

without sacrificing throughput. To verify its effectiveness, we
first exponentially scale tenants’ connections for enterprise-
class cloud services and adopt the AppleS algorithm to hide
excessive query parallelism beyond the processing capacity
of the database system. This helps obtain the peak through-
put with the CV of query latency at around 1.22 (as shown in
the left subfigure of Fig. 5). And then, based on query concur-
rency optimization, we further adjust the number of requests
allowed for each database connection to issue in a scheduling
round, or quota, to control per-connection query burst and
observe its impact on latency variation and throughput. As
a result, combining the optimization efforts of multi-tenant
query concurrency and per-connection query burst further
reduces the CV of latency to around 0.82 (decrease by 32.8%)
at a similar peak throughput, as shown in the right subfigure
of Fig. 5, which is a better trade-off between latency variation
and throughput.

Step®): Based on Step (D and Step (2), the configurations
(ie., /f,- = LR;(CV;) and CV; = cv) will be used to estimate
the throughput budget for each US tenant’s connection and
obtain the total throughput budget for the US tenants (/Imt
Moreover, we can also know the total throughput provided by
the database system (¥) from Step (. Thus, if the throughput

required for the US tenants A3 is smaller than its upper limit,
UTSLO will consider the UDR targets feasible.

Note that step(@) is only needed to run once before serving
tenants while step(D) and () are only required for newly
added tenants, which can run offline or at a slow time scale.

3.3.2  Dynamic UDR Target Enforcement. The capacity plan-
ning only offers the static configurations for UTSLO under
the given query latency variation and throughput provision-
ing. Our goal is to dynamically track and regulate multi-
tenant latency distributions to accurately meet their indi-
vidual UDR targets (by Step@®® in Fig. 4). These three
steps form a feedback-loop control to enforce each US ten-
ant connection’s target under highly dynamic query latency
variation and throughput. Specifically, step @ aims to collect
different measurements from the database system, including
the UDR Uj, the query service time S;, mean latency, latency
variation CV;, and etc., which are statistics over the slid-
ing window (containing 1K completed queries by default).
Based on the relationship between the throughput budget
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for the database connection T; and its query latency vari-
ation (i.e., A = LR; (CV};)), the throughput budget (/1 ) can
be dynamically adjusted under the current measurement of
query latency variation (CV;) and thus the corresponding
mean latency budget (M;) can be obtained by — according

to Little’s law [47]. And then, in step (3, the queulng time
budget (O;) can be derived by 0; = M; — S;, which indicates
the maximum time a T;’s query can stay in the queue. The
earliest-deadline-first (EDF) scheduler sorts the US tenants’
connections in the ascending order of Qi. In addition, step
() aims to dynamically coordinate the resource allocation
across connections to fully exploit the instantaneous surplus
throughput by the two-dimensional admission control (AC)
(details in Section 4.2) driven by UDR targets.

In the event of UDR target change or temporary
resource under-provisioning, the corresponding mean-
latency/throughput budgets are required to be dynamically
adjusted to address the observed UDR target violations,
which needs a period of convergence time to transition. It
is necessary to figure out the length of convergence time
according to the maximum allowed throughput for the US
tenants to offer a predictable convergence time.

UDR needs to collect the disengagement ratio contributed
by all the queries that are completed in the reference pe-
riod S (i.e., S ranging from t; to t; with the length of
w’ = t, — ;). Hence, for any US tenant’s connection
T;, we can calculate its UDR during S based on UDRx of
u;(x) that is defined on m; (m; > 1) latency intervals,

i.e., (lo, ll], (l],slz], veny (lkgl, lk], vees (lmifl, lmi], and l() = 0, as
m; NP (Xi<lg)-N> (X;<lj_
S - Zk:ll 1( <k)Nl:gl( <l 1) *ul(lk), Where le(s lk)

denotes the number of queries with smaller latency than I
while Nl.s represents the number of queries completed in S.

Thus, if the current UDR exceeds the target U;, the length

U Ul)*Ql

of convergence time can be obtained by (UU—

5o 70 where

“ and Q; denote the UDR and the accumulated number
of completed queries respectively when UDR target viola-
tions happen, while Ul.s ° and /If" represent the UDR and
the throughput obtained over the convergence time respec-
tively. To shorten the convergence time, UTSLO will mini-
mize the throughput for the BE tenants and offer the max-
imum throughput it can allocate for the US tenants. Note
that UI.S", Q;, and /11.5" are measurable or predictable by the
throughput-budget based estimation (see Section 3.1 and
3.2), and UTSLO can reserve adequate processing capacity
to respond to UDR target violations to reduce the UDR dur-
ing the convergence time (Uisﬂ) to a small value (close to 0).
Thus, UTSLO can estimate the convergence time for each US
tenant’s connection that experiences UDR target violations,
for which the effectiveness has been demonstrated in Fig. 10.
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4 UTSLO IMPLEMENTATION

Accurate UDR target enforcement under multi-tenant
databases highly relies on an easy-to-deploy, effective,
and efficient implementation of the UTSLO resource al-
locator. To this end, it adopts a non-intrusive low-cost
query control/scheduling mechanism (Section 4.1). Further,
a concurrency-based sharing (CS) is adopted for an efficient
fine-grained resource allocation with a low-level query la-
tency variation (Section 4.2). In addition, more efforts are
made on exploiting instantaneous surplus database process-
ing capacity by dynamic UDR-target-driven admission con-
trol (Section 4.3).

4.1 Non-Intrusive Query Control

Database systems (e.g., MongoDB [11]) receive tenants’
queries and send results back to tenants after business-logic-
induced query processing, by establishing TCP connections.
Thus, by strategically intercepting and suspending network-
I/O system calls, the UTSLO resource allocator can effec-
tively realize admission control/scheduling for multi-tenants’
connection-level query streams. It is implemented as a user-
space module based on a syscall_intercept library [3], to
intercept and schedule network-1/O system calls issued by
the database system. Thus, UTSLO supports agile deploy-
ment and fast upgrade without the need to instrument the
database system or OS kernels. The difference among differ-
ent database systems only lies in the adoption of different
types of network system calls to handle queries, where the
IP address and port for each connection is resolved. The
overhead of the system-call interception is found to be neg-
ligibly small, i.e., on the order of 100 nanoseconds, which
is sufficient in support of high-performance databases or
soft-realtime applications [26].

4.2 Admission Control & Scheduling

The UTSLO resource allocator is designed to realize the ef-
ficient multi-tenant connection-level query processing re-
source allocation to precisely enforce the given UDR tar-
gets, which relies on the collaboration between the two-
dimensional admission control/scheduling mechanisms. In
the view of the resource allocator, the running time of con-
current tenants’ connections consists of multiple schedul-
ing rounds, to each of which the admission control and
scheduling policies are applied to realize the following con-
trol/scheduling goals: 1) Low-level query concurrency and
burst. 2) Maintaining high total throughput. 3) Dynamic fine-
grained throughput allocation over tenants’ connections.
As shown in Fig. 5, a low UDR prefers low-level query
concurrency and burst, which are controlled by tuning the
two knobs, (1) the multi-tenant concurrency limit P and (2)
per-connection query quota (Lys[;;, 1 < i < n, for n US
tenants’ connections and Lgg[ ], 1 < j < m, for BE tenants)
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Figure 6: UTSLO admission control/scheduling mechanisms.

respectively, while maintaining as high a total throughput as
possible without crossing their individual thresholds (i.e., C
and D are the upper bounds for P and per-connection query
quota respectively). These thresholds can help to form the
boundaries of a feasible two-dimensional region for query
admission control (AC), within which these control knobs
can be dynamically optimized for the fine-grained resource
allocation among tenants’ connections to accurately meet
the UDR targets with a minimized throughput allocation
while providing as high a throughput allocation as possible
for the BE tenants.

Since the queuing time budget can set the priority for
query throughput allocation across the US tenants’ con-
nections (see Section 3.3.2), how to share the total query
throughput between the US tenants and the BE tenants in
a fine-grained fashion with a low-level query concurrency
and burst is challenging. To address the issue, we start by
exploring the alternative solutions, i.e., per-connection query
Quota based throughput Sharing (QS) or Concurrency based
throughput Sharing (CS). QS can roughly enforce the pro-
portion of throughput between the US tenants and the BE
tenants by keeping the approximate ratio of query quotas
assigned to the US tenants’ connections and the BE ten-
ants’ connections based on weighted fair queuing, which is
widely adopted by storage I/O resource management systems
[32, 33, 39, 58]. However, it can lead to serious query bursts
that can increase UDR, especially for stringent UDR targets
that require high query quotas for the US tenants’ connec-
tions and thus likely exacerbate their latency variation (as
shown in Fig. 5).

In contrast, CS enforces the resource sharing by assigning
the slots of query concurrency to the top-C tenants’ con-
nections, which are chosen by two schedulers, i.e., the EDF
and round-robin (RR) schedulers for the US tenants and the
BE tenants respectively, on a specific probability of chance
for the US tenants (i.e., @). Specifically, the top-C tenants’
connections (i.e., u US tenants’ connections and b BE tenants’
connections, C = u + b) will be selected from the tenant list
sorted by different scheduling policies and a = &. The EDF
scheduler sorts the US tenants’ connections according to the
urgency of their latest queuing time budget Q; while the RR
scheduler is used for the BE tenants to fairly share query
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throughput. In this way, the ratio of query throughput for
the US tenants (i.e., p) can be coordinated by adjusting « in
a continuous fashion without aggravating latency variation.

4.3 UDR Targets VS. High Throughput

To exploit instantaneous resource over-provisioning, the
percentage of throughput allocated to the US tenants (p) and
the per-connection quotas need to dynamically adapt to UDR
measurements.

Specifically, we adopt a feedback control similar to the
low-cost additive-increase/multiplicative-decrease (AIMD)
control [4] to adjust « for the p adaption and work with per-
connection quota coordination under the constraints of U™%*
and U™ If U™ is less than 0 (set at 0.98 by default) and
U™ js less than ¢ (set at 0.95 by default), surplus resources
are considered available for the US tenants while UDR target
violations are deemed imminent if U™ is larger than 0.
For the former case,  will be updated by o = o — % to
increase the throughput share for the BE tenants, where
y is set at 0.05 by default and co denotes the average CV
of query latency across US tenants’ connections, which is
used to offset the side effects of unexpected spikes of latency
variation on UDR as p decreases. Moreover, the BE tenants’
connections are allowed to increase their quotas (limited
by D) to further share the surplus throughput while the US
tenants’ connections will decrease their quotas to reduce the
unnecessary risk of query bursts. For the latter case, o will
be updated by @ = (1 + ) *  to prevent the imminent UDR
target violations by increasing p (f is set at 0.25 by default).
Meanwhile, the BE tenants will back off by minimizing their
quotas while each US tenant connection with the UDR (U;)
larger than 0 will increase its quota by 1 until it reaches D.

Note that the p adjustment coordinates the throughput
share between the BE and US groups. In the mean while, per-
connection quota coordination further enables throughput
reallocation across tenants’ connections within each group,
aiming to maximize the throughput share for the BE group
without violating the UDR targets under highly variable
resource provisioning,.

5 PERFORMANCE EVALUATION

Test Environment: All the evaluation experiments are con-
ducted on a dedicated rack of PowerEdge R630 servers. The
storage server is equipped with a RAID-0 SSD array with
five 800GB SATA MLC Solid State Drives, consolidating all
the logical volumes for databases. The computing server is
configured with 2 Intel Xeon E5-2650 processors, 64GB of
RAM, a Broadcom NetXtreme II BCM57810 10Gb NIC and 4
X 1TB SATA HDDs. All the servers are connected by a Dell
N4032F switch with peak bandwidth of 10Gb.

Workloads and Databases: We deploy a key-value store,
MongoDB 3.6.0 [11], as a representative NoSQL database to
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verify the effectiveness of UTSLO on enforcing UDR targets
in a multi-tenant environment for enterprise-class cloud ser-
vices. Specifically, we run Yahoo Cloud Serving Benchmark
(YCSB) [25] on MongoDB with multi-tenant connections,
each generating a Zipf distributed key-value query work-
load. Multi-tenant query workloads include different com-
binations of GET and SET, and are write-heavy (50% GET,
50% SET) unless otherwise noted, accessing the underlying
MongoDB that stores a 150G B dataset to simulate intensive
key-value query processing generated during cloud services.
In addition, to effectively assess the capability of the UDR tar-
get enforcement for multi-tenant e-commerce services built
on a database system, we adopt Py-TPCC [40] to construct a
transactional database consisting of 1,000 warehouses (for
a total dataset size of 78GB) on MongoDB 4.4.3 to simulate
intensive users’ online e-commerce transaction processing
through multi-tenants’ database connections.

5.1 Baselines and Methodology

UTSLO aims to enforce UDR targets for multi-tenant data-
base systems under different online service scenarios (e.g.,
enterprise-class cloud services or e-commerce services) in a
cost-effective manner. A US tenant can own multiple data-
base connections each of which can have its own UDR target.

We adopt a state-of-the-art any-percentile tail latency SLO
guarantee solution, i.e., PSLO [46], as a baseline to verify
the effectiveness of UTSLO on UDR target enforcement in
terms of its accuracy®, cost (i.e., the throughput for the US
tenants), and the throughput for the BE tenants (a higher
value is better)®. Since tail latency SLO guarantee solutions
can not directly support UDR target enforcement, we use
three empirical rules (i.e., OPT, PES, and MOD) to trans-
late each UDR target into its corresponding tail latency SLO.
OPT assumes that the UDR contributed by the query laten-
cies falling into the unguaranteed percentile range are only
higher than the guaranteed percentile range by the smallest
margins (e.g., the next step above the guaranteed UDR step
in the UDR-latency staircase function of Fig. 2(d)), which
is an optimistic estimation and requires the least extra ef-
fort/resources. In contrast, PES, as a pessimistic estimation
and requiring the most extra effort/resources, means that
the UDR contributed by the query latencies falling into the
unguaranteed percentile range assume the highest UDR (i.e.,
100%). The moderate estimation, i.e., MOD, aims to estimate

STt is evaluated by the percentage error between the actual UDR and the
target (a positive value means a UDR target violation and a smaller absolute
value indicates a higher enforcement accuracy), or the normalized UDR
that is defined by the actual UDR divided by the target (a value larger than
1 means a UDR target violation and a value closer to 1 indicates a higher
enforcement accuracy.)

®The throughput for the US (or BE) tenants is defined by the number of
completed queries for the US (or BE) tenants during the reference period of
time divided by its length.
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enterprise-class cloud services.

between the above two extreme cases by averaging their
percentiles.

Enterprise-class cloud services built on key-value query
processing typically generate much higher query throughput
than that under e-commerce services that have to offer ACID
guarantees for the correctness of online concurrent transac-
tion processing and compromise throughput performance.
Thus, enterprise-class cloud services are more sensitive to
query concurrency and burst control and throughput under-
provisioning. In contrast, e-commerce services’ workloads
are characterized by a higher level of query latency vari-
ability than enterprise-class cloud services and thus bring a
bigger challenge for UTSLO in dynamically tracking and reg-
ulating multi-tenant query latency distributions to accurately
guarantee UDR targets at the connection-level. Therefore,
besides comparing against tail latency SLO guarantee so-
lutions, we’ll focus on evaluating the cost-effectiveness of
UTSLO in enforcing UDR targets for enterprise-class cloud
services under highly variable resource provisioning and
dynamic UDR target enforcement. In addition, we’ll assess
the ability of UTSLO to differentiate different levels of UDR
targets accurately for e-commerce services.

Specifically, for the first three subsections, we conduct the
experiments for enterprise-class cloud services with up to
512 database connections, where each US tenant has one
connection with the UDR-latency function (UDRx) that re-
flects the rule of thumb reported by Amazon (i.e., each 100ms
increase in service latency means a 6% drop in sales [15]).

In Section 5.2, we aim to verify the effectiveness and ac-
curacy of UTSLO in UDR target enforcement and assess the
ability of UTSLO to track and regulate dynamic multi-tenant
query latency distribution under highly dynamic latency
variation and throughput. In Section 5.3, we examine the ef-
ficiency of different implementations of the UTSLO resource
allocator under distinct schemes, i.e., quota-based sharing
(QS) and the concurrency-based sharing (CS). In Section
5.4, we verify the effectiveness and robustness of dynamic
UDR target enforcement when some US tenants dynamically
change their UDR targets. We also verify how closely the UT-
SLO implementation can approximate its theoretical goals,
by obtaining theoretical metrics (e.g., the throughput for the
US tenants) based on the model (described in Section 3.1)

Throughput for US tenants
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as another baseline under an ideal case where all US ten-
ants achieve their UDR targets without error, and the query
throughput and latency variation are constant. The experi-
ments for e-commerce services in Section 5.5 are conducted
with a total of 256 connections. A US e-commerce tenant
establishes three connections for the users via three types of
devices (i.e., desktop, mobile, and tablet), each of which has
its unique UDRx, as shown in Fig. 2(d).

For both online service scenarios, the BE tenants share the
rest of database connections and make full use of the residual
database query processing capacity. To verify the effective-
ness of UTSLO on the UDR target enforcement under high
load where online services often suffer from compromised
QoS, all the following experiments are conducted under a
very high I/O utilization (typically over 95%).

5.2 The Effectiveness and Accuracy of UDR
Target Enforcement

In this subsection, we adopt PSLO [46] as the baseline system
to enforce the tail latency SLOs obtained under three levels
of empirical estimation (i.e., OPT, PES, and MOD), denoted
by PSLO+OPT, PSLO+PES, and PSLO+MOD, respectively.
To effectively simulate the scenario where the US tenants
suffer from a strong I/O interference from many BE tenants,
we let 512 tenants, of which only 10 are US tenants, access
the underlying database. Thus, the ratio of BE and US tenants
is over 50 : 1. For the US tenants, we set their UDR target at
0.1%, 0.2%, and 0.3%, respectively.

As shown in Fig. 7, the high-percentile unguaranteed
range left by tail latency SLO enforcement solutions can sig-
nificantly impact UDR and likely violate the target, especially
for OPT. Under PSLO + OPT, the tail latency SLOs for the
three UDR targets (i.e., 0.1%, 0.2%, and 0.3%) are < P90 :
25ms >7, < P80 : 25ms >, and < P70 : 25ms >, respectively.
In fact, PSLO can precisely enforce these tail latency SLOs of
25ms for the US tenants in the ranges of (23.84ms, 24.98ms),
(23.97ms, 24.97ms), and (23.72ms, 24.98ms) at the P90, P30,
and P70, respectively. However, the actual UDR values are
3.75%, 4.11%, and 4.21X their individual UDR targets of
0.1%, 0.2%, and 0.3%, resulting in unacceptable UDR tar-
get violations. In contrast, PSLO + PES goes to the other

7<Px:y> denotes the tail latency SLO of y at the x*/* percentile.
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Figure 8: The verification of the capability of UTSLO to enforce UDR targets under highly variable throughput provisioning and query

latency variation for enterprise-class cloud services.

extreme, i.e., an over-conservative estimation for the unguar-
anteed percentile range, resulting in a serious resource over-
provisioning. For PSLO + PES, the tail latency SLOs for the
three UDR targets are < P99.9 : 25ms >, < P99.8 : 25ms >,
and < P99.7 : 25ms >, respectively. PSLO can also accurately
guarantee these tail latency SLOs of 25ms for the US tenants
in the ranges of (22.48ms, 23.60ms), (22.37ms, 24.05ms), and
(23.18ms, 24.20ms) at the P99.9, P99.8, and P99.7, respec-
tively. Nevertheless, all the UDR values under PSLO + PES
are close to 0. Although the UDR targets are guaranteed, the
throughput for the US tenants required for the UDR targets
of 0.1%, 0.2%, and 0.3% are 9.25X, 10.87X, and 11.19X higher
than those obtained under UTSLO. As for PSLO + MOD, all
the UDR targets are violated although the resource over-
provisioning for the US tenants is alleviated compared with
PSLO + PES. Note that the throughput for the US tenants
under PSLO + MOD for all the three UDR targets is higher
than those obtained under UTSLO, especially for the targets
0f 0.1% and 0.2%. This means that UTSLO requires less query
throughput than PSLO to enforce the UDR target largely
because the design/implementation of UTSLO strengthens
its ability on cutting down the level of query latency varia-
tion and thus reduce the cost of UDR target enforcement. As
shown in Fig. 7, the CV of latency variation for the US tenants
under UTSLO for the three UDR targets are 2.56X, 2.47X,
and 2.24x lower than those obtained under PSLO + OPT. A
similar advantage of UTSLO on reducing the level of query la-
tency variation can also be observed when comparing against
PSLO + PES and PSLO + MOD. All in all, UTSLO provides
the highest throughput for the BE tenants among all the
schemes with accurate UDR target enforcement (the average
percentage error is —5.88%).

Now we further assess the sensitivity of the UDR target
enforcement under UTSLO to highly variable query latency
variation and throughput when all the UDR targets are 0.1%.
We draw two observations from results shown in Fig. 8. First,
temporary throughput under-provisioning does not affect the
UDR target enforcement. Fig. 8(b) shows a U-shaped through-
put curve during the time between 39s and 85s, indicating
a period of throughput under-provisioning during which
the BE tenants (with the tenant ID ranging from 11 to 512)
yield query throughput to the US tenants (the top 10 ten-
ants) and result in a higher query latency for BE tenants
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(the yellow part), as illustrated by Fig. 8(a). In contrast, all
US tenants’ UDR values closely approach their individual
targets (ranging from 0.92 to 1.00 based on the measurement
every 100ms) but without violating any target, as shown in
Fig. 8(c). This means that the throughput diverted from the
BE tenants to the US tenants is necessary for the latter’s
UDR target enforcement. Second, the throughput for the US
tenants can effectively adapt to the fluctuation of query la-
tency variation, as reflected by the comparison between their
variation trends in Fig. 8(b) and (d), respectively. Since the
throughput required for the UDR target enforcement is pos-
itively associated with query latency variation, UTSLO is
designed to adapt the throughput budget for each US tenant
to its current level of latency variation to minimize through-
put over-provisioning. The resource allocator can precisely
allocate the throughput to the US tenants according to their
throughput budgets (in Fig. 8(d)), which contributes to accu-
rate UDR target enforcement (in Fig. 8(c)).

5.3 Efficiency of the Resource Allocator

In this subsection, we let 512 tenants, with different ratios of
US and BE tenants, access the MongoDB database. Specifi-
cally, we exponentially increase the number of the US tenants
from 25 to 200 and divide the US tenants into 5 groups with
each having a different UDR target, i.e., 0.1%, 0.15%, 0.2%,
0.25%, 0.3%, respectively. In this way, we can assess the ef-
fectiveness and efficiency of the UTSLO resource allocator
under different implementations (i.e., QS and CS) in terms
of the throughput for the US tenants, the throughput for the
BE tenants, query latency variation, and normalized UDR,
where the minimum, the maximum, and the average are re-
ported for the former three metrics over three runs while
the minimum, the maximum, and the average normalized
UDR across the US tenants are used to assess the sensitivity
of UDR target enforcement to different UDR targets.

For all the cases shown in Fig. 9, the CS implementation
provides a smaller throughput for the US tenants than the
QS implementation while the throughput allocated to the BE
tenants by CS is higher than that by QS. This is because CS
can keep a lower level of query latency variation than QS.
QS relies on adjusting per-connection query quota to realize
resource allocation between the US and BE tenants, likely ag-
gravating query latency variation. More importantly, CS can
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Figure 10: The illustration of dynamic UDR target enforcement consisting of 4 UDR target changes (i.e., 0.3%—0.1%, 0.25%—0.1%, 0.2%—0.1%,

and 0.15%—0.1%), each of which involves 5 US tenants while the total number of tenants is 512 for enterprise-class cloud services.

accurately ensure different UDR targets when the number
of US tenants increases with the throughput allocated to the
US tenants approaching the theoretical values. This means
that UTSLO can effectively and accurately track and regu-
late highly variable multi-tenant query latency distribution
required by the given targets, which approximates the ideal
situation where the query throughput and latency variation
are constant. In contrast, QS shows the fastest increasing
rate for the throughput allocated to the US tenants largely
due to its quota-base resource allocation mechanism. For the
case of 200 US tenants, the CV of query latency under QS
is 1.68x higher than that under CS, respectively. Note that
CS provides much stabler allocation than QS, for which we
must use the best-case QS results from the multiple runs in
the figure. Despite this, only the US tenant group with the
loosest UDR target, i.e., 0.3%, can meet its target and the US
tenant group with the tightest target has a normalized UDR
of 1.8 or more, resulting in serious UDR target violations.

5.4 Dynamic UDR Target Enforcement

In this experiment, there are a total of 512 tenants of which
25 are US tenants that are divided into 5 groups of 5 each.
We initially assign 5 different UDR targets to the 5 groups,
ie., 0.1%, 0.15%, 0.2%, 0.25%, 0.3%, respectively. At the time
of 120 seconds, we first change the UDR target of the group
with the target of 0.3% to 0.1%. After that, we change the
groups with the targets of 0.25%, 0.2%, and 0.15% of their
targets all to 0.1%, one at a time every 60 seconds and in
that order. Throughout the process, the maximum allowed
throughput share for the US tenants is 25%. And then, we
can assess the effectiveness and predictability of dynamic
multi-tenant UDR target enforcement under UTSLO.
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As shown in Fig. 10, before any UDR target changes, UT-
SLO can effectively enforce the distinct UDR targets of the 5
US tenant groups accurately (Fig. 10(a)). Fig. 10(b) demon-
strates that, from the start of the observation period when
the first target is changed, the curve of the actual ratio of the
throughput allocated to the US tenants quickly converges to
the theoretical one after around 22.5 seconds, where around
8.5 seconds are used to accumulate adequate queries (1024 by
default) for each tenant’s UDR statistics. After that, we can
observe from Fig. 10(a) four similar triangle-shaped spikes
each corresponding a UDR target change. When the UDR
target of 0.3% is changed to 0.1%, the normalized UDR of
the corresponding 5 US tenants steeply increase to near 3.0,
before they use about 25.8 seconds to converge to their new
UDR target. During the convergence time, as shown in Fig.
10(c), we can find that the instantaneous throughput (ob-
tained every 100ms) for the US tenants experiencing UDR
target changes significantly increase as UTSLO forces the BE
tenants to yield the extra throughput beyond their minimum
quota. Accordingly, the actual ratio of the throughput allo-
cated to the US tenants increases from 9.3% to 13.5%. After
that, a stable and precise UDR target enforcement is observed
until the next round of UDR target changes. Although the
actual ratio of the throughput allocated to the US tenants
finally decreases to 12.3%, slightly higher than the theoretical
one of 10.1%, the actual measure shows an obvious trend
to converge to the theoretical curve. We can also observe
similar patterns for the subsequent three rounds of UDR tar-
get changes. Note that UTSLO can accurately estimate the
convergence time (the maximum absolute percentage error
(APE) is less than 5%), as shown in Fig. 10(d), which makes
dynamic UDR target enforcement predictable.
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Figure 11: Comparisons in normalized UDR, mean latency, and the throughput for the US tenants and BE tenants under different schemes

for e-commerce services.

5.5 E-commerce services

We evaluate the capability of UTSLO to differentiate the
UDR targets of three concurrent US tenants, which linearly
increases from (0.2%, 0.25%, 0.3%) to (2%, 2.5%, 3%) at incre-
ments of 0.2%, 0.25%, 0.3% respectively, and enforcing them
accurately for e-commerce services. We also conduct the
same experiments under the tail latency SLO solution PSLO
with three empirical rules (i.e., OPT, PES, and MOD). The
maximum ratio of query throughput for the US tenants is
60% beyond which the scheme is considered as infeasible.
As shown in Fig. 11(a), all the 30 different UDR targets
for the 9 US tenants’ connections (each US tenant assigns
the same UDR target for its three connections at a time) can
be accurately met under UTSLO. Specifically, the average
normalized UDR over all the cases is 0.969 while the highest
normalized UDR is 0.989 (1.0 is the normalized UDR target).
In contrast, the schemes of PSLO + MOD and PSLO + PES
conservatively enforce the UDR targets at a high cost. Specif-
ically, as shown in Fig. 11(b), UTSLO only needs 1.85x the
mean latency required by PSLO + MOD for the same UDR
target on average. At the same time, the average normalized
UDR obtained under PSLO + MOD is only 0.577 over all the
cases, which is far below the target. It is no wonder that
PSLO + MOD requires 79.53% more throughput for the US
tenants and 16.87% less throughput for the BE tenants than
UTSLO on average for all the UDR targets, as shown in Fig.
11(c)(d). PSLO + PES, as the most extreme conservative solu-
tion, requires the highest throughput for US tenants over all
the schemes and is only feasible for the two loosest targets
(i.e., (1.8%,2.25%,2.7%) and (2%, 2.5%,3%)). PSLO + OPT, as
a solution for UDR target enforcement with optimistic esti-
mation, essentially ignores the impact of high tails happened
in the unguaranteed percentile range on the UDR measure
and cause much more UDR target violations. As a result, the
maximum normalized UDR for PSLO + OPT is 28% higher
than the target while its average normalized UDR is 1.09 over
all the cases. In contrast, UTSLO can dynamically track and
regulate the entire query latency distribution for all the US
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tenants’ connections in an efficient fashion by fine-grained
resource allocation with a low-level query latency variation.
Therefore, PSLO+OPT still requires 17.82% more throughput
than UTSLO for the US tenants on average for all the UDR
target enforcement cases. Note that UTSLO can effectively
differentiate and enforce UDR targets highly accurately for
e-commerce services.

6 CONCLUSIONS AND FUTURE WORK

We propose UTSLO to cost-effectively bound the latency-
induced UDR for multi-tenant database systems. As the brain
of UTSLO, the resource estimator and budget enforcer per-
form capacity planning for precisely guaranteeing UDR tar-
gets with a minimized resource over-provisioning. To sup-
port the dynamic UDR target enforcement, the UTSLO re-
source allocator adopts the UDR-target-driven dynamic ad-
mission control and scheduling mechanisms to minimize the
throughput required for the UDR targets and provides as
much throughput as possible for the BE tenants. Our exten-
sive evaluation for both enterprise-class cloud services and
e-commerce services demonstrates that UTSLO can accu-
rately enforce per-connection UDR targets (the normalized
UDR ranging from 0.941 to 0.999 for all the experimental
cases) with minimized throughput provisioning.

For distributed databases based on replica sets or sharded
clusters, UTSLO can be applied by guaranteeing UDR targets
at the database-instance level that typically involves single
replica or data shard. A major challenge is for scatter-and-
gather queries that access some or even all the shards (e.g.,
range queries). In this case, we need to decompose the query
UDR target into shard-level ones, which we will consider as
our future work.
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