
User Disengagement-Oriented Target Enforcement for
Multi-Tenant Database Systems

Ning Li
Dept. of CSE, University of Texas

at Arlington

Arlington, Texas, USA

ning.li@uta.edu

Hong Jiang
Dept. of CSE, University of Texas

at Arlington

Arlington, Texas, USA

hong.jiang@uta.edu

Hao Che
Dept. of CSE, University of Texas

at Arlington

Arlington, Texas, USA

hche@cse.uta.edu

Zhijun Wang
Dept. of CSE, University of Texas

at Arlington

Arlington, Texas, USA

zhijun.wang@uta.edu

Minh Q. Nguyen
Faculty of IT, Ho Chi Minh City

University of Transport

Ho Chi Minh City, Vietnam

nqminh@live.com

Todd Rosenkrantz
Dept. of CSE, University of Texas

at Arlington

Arlington, Texas, USA

stoddard.rosenkrantz@mavs.uta.edu

ABSTRACT

Unexpected long query latency of a database system can

cause domino e�ects on all the upstream services and se-

verely degrade end users’ experience with unpredicted long

waits, resulting in an increasing number of users disengaged

with the services and thus leading to a high user disengage-

ment ratio (UDR). A high UDR usually translates to reduced

revenue for service providers. This paper proposes UTSLO,

a UDR-oriented SLO guaranteed system, which enables a

database system to support multi-tenant UDR targets in a

cost-e�ective fashion through UDR-oriented capacity plan-

ning and dynamic UDR target enforcement. The former aims

to estimate the feasibility of UDR targets while the latter

dynamically tracks and regulates per-connection query la-

tency distribution needed for accurate UDR target guarantee.

In UTSLO, the database service capacity can be fully ex-

ploited to e�ciently accommodate tenants while minimizing

resources required for UDR target guarantee.

CCS CONCEPTS

• Information systems→Autonomous database admin-

istration.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for pro�t or commercial advantage and that

copies bear this notice and the full citation on the �rst page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c

permission and/or a fee. Request permissions from permissions@acm.org.

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0387-4/23/11. . . $15.00

https://doi.org/10.1145/3620678.3624668

KEYWORDS

database system, multi-tenant, user disengagement ratio

ACM Reference Format:

Ning Li, Hong Jiang, Hao Che, Zhijun Wang, Minh Q. Nguyen,

and Todd Rosenkrantz. 2023. User Disengagement-Oriented Target

Enforcement for Multi-Tenant Database Systems. In ACM Sym-

posium on Cloud Computing (SoCC ’23), October 30–November 1,

2023, Santa Cruz, CA, USA. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3620678.3624668

1 INTRODUCTION

It has become prevalent that various enterprise-class cloud

service or e-commerce service providers move their busi-

nesses to the cloud with multi-tenancy, where multiple ser-

vice providers or tenants share the underlying database

processing capacity with pre-speci�ed service level objec-

tives (SLO) [54]. Each tenant may desire a high degree

of user engagement due to its high correlation with their

sales/revenues. According to a recent Akamai study, an extra

service delay of 100-ms can reduce conversion rate, a user

engagement metric 1, by 7%, which means a noticeable drop

of 6% in sales [15] and $3.8 Billion loss of annual revenue

for Amazon [5]. Since database systems play a key role in

and have been identi�ed as one of the major bottlenecks

for multi-tenant data services [23], it becomes imperative

to enable databases to support per-tenant quality of service

(QoS) guaranteed services.

According to the industry practice, user engage-

ment/disengagement performance metrics are the ultimate

measures of QoS for tenants, including churn rate [7], con-

version rate [9], bounce rate [6], the reduction rate in query

re�nement and satisfaction [57]. Although these metrics

1Conversion rate, as a user engagement metric, is de�ned as the percentage

of users who engage in desired actions, e.g., purchases [9].

394

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Ning Li, Hong Jiang, Hao Che, Zhijun Wang, Minh Q. Nguyen, and Todd Rosenkrantz

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

0

1

2

3

4

5

E-commerce serviceE-commerce service

Cloud service

 UDR Service delay

N
o
rm

a
liz

e
d
 U

D
R

Cloud service

0.0

0.5

1.0

1.5

 N
o
rm

a
liz

e
d
 m

e
a
n
 l
a
te

n
c
y

 UTSLO

 PSLO+OPT

 PSLO+MOD

 Ideal

 UTSLO

 PSLO+OPT

 PSLO+MOD

 Ideal

C
D

F
 (

%
)

0.6

0.8

1.0

1.2

 UDR Service delay

IdealPSLO+MODPSLO+OPT

N
o
rm

a
liz

e
d
 U

D
R

UTSLO

0.6

0.8

1.0

1.2

 N
o
rm

a
liz

e
d
 m

e
a
n
 l
a
te

n
c
y

C
D

F
 (

%
)

Service latency (ms)

Figure 1: The comparisons in normalized UDR (the one closer to

but lower than 1.0 is better), normalized mean latency (the mean

latency for the ideal one is 1.0), and CDF curves of service latency for

the proposed solution UTSLO and tail-latency-SLO based solutions.

are determined by many factors, such as competitiveness of

product prices and qualities, shipping speed and cost, and

product returning policies, from the viewpoint of develop-

ing e-commerce service platforms or systems, the service

response time is probably the most important factor that

will impact the user engagement/disengagement rates, as

supported by e-commerce service providers [1, 15, 57]. With

respect to the database aspect of the system design, it is the

database query latency, Į , that matters the most. In other

words, one can generally de�ne a user disengagement ratio

at any given Į (UDRx) for the tenant connection Đğ (mea-

surable in practice), as īğ (Į), representing churn rate, non-

conversion rate, bounce rate, or reduction rate, etc., at Į for

Đğ . Then the overall user disengagement ratio (UDR),đğ , for

Đğ , the performance metric that the tenant cares the most, can

be generally expressed as,đğ =

+ +∞
0+

ĜĔğ
(Į) ∗īğ (Į) dĮ , where

ĜĔğ
(Į) is the probability density function (PDF) of database

query latency, Į , for queries of the service provided by Đğ .

It becomes clear that to provide UDR-oriented QoS, one

must be able to control ĜĔğ
(Į) or equivalently, the cumulative

distribution function (CDF) ĂĔğ
(Į) for individual tenants in

order to achieve the desired user engagement/disengagement

performance for all tenants sharing the same database. Unfor-

tunately, the state-of-the-art QoS solutions [24, 43, 44, 46, 66]

are simply not up to the task, as they all exclusively focus on

providing a speci�c percentile tail latency guarantee (i.e., the

ĦĪℎ-percentile of tail-latency Į = ĮĦ) for applications. More

speci�cally, they all attempt to ensure, Ħ/100 f ĂĔğ
(ĮĦ),

i.e., only need to control ĂĔğ
(Į) at a single point Į = ĮĦ ,

rather than the entire ĂĔğ
(Į). This makes these tail-latency-

SLO based solutions incapable of o�ering UDR-oriented QoS.

Moreover, due to high variability and dynamism of the work-

load that is inevitable in a consolidated multi-tenant database

environment, ĂĔğ
(Į) may change over time. As a result, a

viable solution must involve online control mechanisms that

can keep track of and adapt to such changes. This makes the

design of a UDR QoS guaranteed solution challenging.

Moreover, multi-tenant database services (e.g., the ones

built on developer data platforms or self-managed data-

base service systems such as MongoDB Atlas [19]) provide

database connections for their tenants’ applications (e.g.,

enterprise-class cloud services or e-commerce services) to

share the database query processing capacity. Thus, connec-

tions become the basic units of resource allocation within

a database system and cannot be directly managed by OS

resource management tools (e.g., Cgroups [17]), which can

only o�er process/thread-level resource management, let

alone deploying them in virtual machines or containers. This

makes it di�cult for most existing multi-tenant QoS solu-

tions [30, 34, 49, 58, 66], which often rely on OS resource

scheduling mechanisms, to directly handle connection-level

resource allocation for a single database system.

To illustrate the necessity of regulating service latency

distribution and the potential issues that existing approaches

need to face for the UDR target enforcement, we give a case

study for two di�erent scenarios, i.e., enterprise-class cloud

services and e-commerce services, under a state-of-the-art

any-percentile tail latency SLO guarantee solution PSLO [46]

and our solution (i.e., UTSLO) that supports �ne-grained

database query latency distribution regulation according to

UDR targets. The enterprise-class cloud service workload is

simulated by Yahoo Cloud Serving Benchmark (YCSB) [25],

which establishes 512 connections with a MongoDB [11] key-

value store and 10 of them have UDR targets. In contrast,

e-commerce services mainly involve Online Transaction Pro-

cessing (OLTP)workloads generated by Py-TPCC [40], which

creates 256 connections with a MongoDB transactional data-

base server and 9 of them belong to UDR-sensitive tenants.

To make PSLO workable for UDR targets, we adopt two lev-

els of estimates, i.e., OPT and MOD (elaborated in Section

5), for the unguaranteed percentile range (e.g., (95%, 100%]

if a 95Īℎ percentile tail latency SLO is ensured) when trans-

lating a UDR target into a corresponding tail latency SLO.

As shown in Fig. 1, either of the PSLO schemes (based on

OPT and MOD) cannot e�ectively enforce UDR targets and

cause severe UDR target violations (e.g., 3.5 times higher

and thus worse than the target for enterprise-class cloud

services) or over-zealously enforce UDR targets (e.g., only

64% of the UDR target and thus 25% lower mean latency

is required for e-commerce services) with serious resource

over-provisioning. This is because the UDR measure is de-

termined by the entire latency distribution and hard to be

set equivalently at a tail latency target, a single point on

the latency CDF curve. In contrast, the proposed solution

UTSLO can generate an ideal latency distribution according

to the UDR target under highly variable query latency, and

dynamically track and regulate latency distribution to ap-

proach the ideal one to accurately enforce the UDR target.

395

User Disengagement-Oriented Target Enforcement for Multi-Tenant Database Systems SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

As a result, UTSLO can accurately enforce UDR targets for

all the US-sensitive connections under both scenarios.

To address the above challenges, we propose aUDR Target

oriented SLO guarantee system (UTSLO) to enforce UDR tar-

gets for multiple tenants of the underlying database system

(e.g., MongoDB [11]). Speci�cally, UTSLO adopts a hybrid

modeling-and-measurement-based approach to capture the

query latency distribution with low cost. It only involves

controlling and adapting the relative values of the mean and

variance of query latency tomaintain the latency distribution

exactly meeting the UDR target for each UDR-sensitive (US)

tenant’s database connection. More speci�cally, by dynami-

cally regulating the mean latency, or throughput allocation

across tenants’ connections in response to highly dynamic

query latency variation (measured by the coe�cient of vari-

ation (CV) [8]), UTSLO manages to accurately bound the

UDRs for all the US tenants by their respective UDR targets,

while maximizing the throughput performance for the best-

e�ort (BE) tenants, whose aim is to share as much through-

put as possible. To keep a low-level latency variation, hence,

reducing the resources required to meet the UDR targets, UT-

SLO adopts a UDR-target-aware two-dimensional admission

control2 to simultaneously manipulate multi-tenant query

concurrency and per-connection query burst. Thus, in each

scheduling round, only the top-ÿ tenants’ connections, se-

lected by strategic scheduling policies, are allowed to send a

speci�c number of queries (i.e., quota) to the database sys-

tem to strike an optimized trade-o� between query latency

variation and throughput under the UDR constraints.

We implemented UTSLO based on a popular NoSQL data-

base system, i.e., MongoDB [11], to enforce UDR targets by

regulating the network-I/O system calls issued by the data-

base for query fetching/processing. In this way, UTSLO can

separate its operations from the underlying database pro-

cessing and thus work with di�erent versions of MongoDB

without the need to modify the database system, making it

highly �exible and portable. Our extensive evaluation shows

that UTSLO can accurately enforce UDR targets for multiple

tenants in a cost-e�ective manner.

2 BACKGROUND AND MOTIVATION

2.1 Background and Case Studies
Multi-tenant database systems allow e�ective and transpar-

ent data storage resource sharing among multiple tenants via

their individual database connections. Each of the tenants

can provide service to its individual users by its application

that typically relies on databases’ query processing 24×7[23].

Due to the common dependency between a typical user’s

2Admission control strategically imposes limits on multi-tenant concurrent

queries and enqueues any additional queries until earlier ones �nish without

query cancellation, compromising throughput, or causing contention.

commercial behaviors [36] (e.g., searching and comparing

before purchasing), the database asynchrony makes it hard

to parallelize queries with causal precedence relationships

inside a database connection’s context and thus the per-

connection synchronous query mode is assumed as the best

practice to ensure the correct results of users’ queries.
1© Database/connection-level multi-tenancy: One of

the great challenges for multi-tenant database systems is how

to collocate multiple tenants with adequate performance iso-

lation required by tenants’ performance targets. This is even

more so for the UDR measure that is determined by the

entire service latency distribution, making it harder to guar-

antee than tail latency SLO. For traditional relational data-

base systems (e.g., MySQL [12], Oracle [13] and PostgreSQL

[21], etc.), it is typical to assign each tenant a dedicated

database and apply database-level performance QoS solu-

tions (e.g., Delphi [28] for tail latency optimization) to the

multi-tenant database management system (DBMS). How-

ever, NoSQL database systems such as MongoDB [11] can

o�er a higher level of availability, scalability, and �exibil-

ity by accommodating data from a large number of tenants

with a higher query processing capacity than relational multi-

tenant DBMSs. Further, it is feasible for MongoDB to support

a single database with shared collections for all tenants. In

this way, a growing number of tenants can be accommodated

with consistent structure of data and query requirements

[16]. However, database-level performance QoS solutions

cannot be applied to this case. This is because it demands

a �ner-grained multi-tenant performance QoS solution at

the connection level with di�erentiated target performance

levels across tenants’ database connections. In this paper, we

mainly focus on providing a �ne-grained (i.e., connection-

level) multi-tenant UDR target guarantee solution without

the need to modify database systems. However, our solution

can be easily modi�ed for the database-level multi-tenant

environment under which each tenant owns its database.
2© Multi-type tenants: Multi-tenant database systems

based on UTSLO can simultaneously serve UDR-sensitive

(US) tenants and best-e�ort (BE) tenants. The former mainly

focus on user-facing services and demand their UDR to be

below a target in a cost-e�ective fashion while the latter

want as much throughput as possible to drive their business

processing. A tenant can own multiple database connec-

tions to parallelize query processing for certain QoS levels or

throughput enhancement. For instance, an e-commerce ten-

ant can establish three connections for the users visiting its

web pages via three di�erent types of end-user devices (i.e.,

desktop, mobile, and tablet), each of which is characterized

by its unique UDR-latency function (or UDRx, as shown in

Fig. 2) respectively and required to be treated separately to

ful�ll their UDR targets. Our solution also covers other types

of QoS as its special cases, such as latency or throughput

396

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Ning Li, Hong Jiang, Hao Che, Zhijun Wang, Minh Q. Nguyen, and Todd Rosenkrantz

0 1000 2000 3000 4000 5000

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000

0

20

40

60

80

100

0 400 800 1200 1600 2000

0

10

20

30

40

50

60

0 400 800 1200 1600 2000

0

10

20

30

40

50

60 UDR-latency functions (UDRx)UDR-latency curves/linear fit Non-conversion rate curves

C
o
n
v
e
rs

io
n
 r

a
te

 (
%

)

Load time (ms)

 Desktop Mobile Tablet
Conversion rate curves

U
D

R
 (

%
)

Load time (ms)

U
D

R
 (

%
)

Service latency (ms)

 Linear fit (Desktop)

 Linear fit (Mobile)

 Linear fit (Tablets)

U
D

R
 (

%
)

Service latency (ms)
(a) (b) (c) (d)

Figure 2: An example that illustrates how to generate UDR-latency functions (UDRx).

SLO, and the cases where US/BE tenants are divided into

groups.
3© UDR-latency function (UDRx): To evaluate the im-

pact of query latency on UDR based on tenants’ individual

demands, each US tenant needs to provide its own UDRx

(by measurement). Since the measurement must be done in

�nite latency intervals (e.g., every 100ģĩ) to be tractable,

UDRx exhibits a staircase-like curve. To realistically re�ect

the real-world UDR-latency relationship, this paper focuses

on two classic scenarios, i.e., enterprise-class cloud services

and e-commerce services, based on the statistics made by

enterprises or the report for e-commerce sales by default. For

example, according to the survey made by Akamai [2], we

can obtain the relationship between conversion rate (a user

engagement measure) and load time3 for e-commerce users

via three types of devices (i.e., desktop, mobile, and tablet)4,

as shown in Fig. 2(a). We further translate these conversion

rate curves into the relationship between percentage non-

conversion rate (a UDR measure) and load time (Fig. 2(b)).

Since this paper focuses on the impact of database processing

latency on the UDR measure, we assume that other service

latency contributing to load time has been optimal, based

on which we can get UDR-latency curves by linear �tting

(Fig. 2(c)). Note that, based on the studies by Microsoft and

Google [57], an extra service latency below a threshold (e.g.,

25ģĩ) injected into the overall service delay has unnotice-

able impact on UDR measures. We also set a zero-UDR range

for database query latency (set at (0, 25ģĩ] by default) and

�nally get UDRx (Fig. 2(d)).

2.2 Related Work
The existing solutions most relevant to ours would be any-

percentile tail latency target guarantee solutions [24, 43, 44,

46, 66]. They can guarantee tail latency SLOs under any pre-

de�ned percentile, beyond which is an unguaranteed and

unpredictable high-percentile latency range. Thus, these ap-

proaches are unable to regulate the entire latency distribu-

tion, which is required by the UDR target enforcement, since

the queries with their latencies falling in the unguaranteed

high-percentile range can signi�cantly increase UDR beyond

the target and lead to a UDR violation.

3The time it takes to fully load a web page.
4The faster end of the curves in Fig 2(a) (b) correlate with a lower conversion

rate due to non-latency factors (e.g., unavailable web pages/resources).

Another type of tail latency target guarantee solutions

focus on the tail latency target enforcement at a speci�c per-

centile. For example, Avatar [65] can enforce the 95 percentile

tail latency target while Cake [62] enables the 99 percentile’s,

and the schemes of [31, 38, 67] adopting strict worst-case

guarantees essentially focus on the 100 percentile latency

objectives. Under the �xed percentile for the latency target,

these solutions can only meet the UDR target by roughly

estimating the tail latency target, very likely resulting in

serious resource under-provisioning/over-provisioning.

There are more solutions that focus on tail latency opti-

mization by means of replica selection and request reissu-

ing [27, 37, 48, 59, 61, 63, 64], congestion control [52, 60]

or scheduling techniques[22, 29, 56] for cloud/data-center

applications, as well as distribution/correlation-aware opti-

mization techniques [51] or optimal data-passing methods

[50] for DAG-based serverless applications. Although these

approaches can reduce latency distribution tail by reducing

the latencies in a speci�c percentile range, they cannot guar-

antee that the resulted latency distribution can indeed meet

the requirements of multi-tenant UDR targets.

Existing DBMS QoS solutions/facilities, e.g., Db2 work-

load manager [10], Oracle Database Resource Manager [18],

and the resource governor for Microsoft SQL server [20],

etc., can provide di�erent levels of capabilities in plan-

ning/prioritizing resource allocation at di�erent levels of

the system stack (e.g., session-level and database-level) to

apply throughput controls or optimize latency performance.

Although these approaches can potentially improve user ex-

perience to di�erent extents, they are incapable of o�ering

UDR target guarantees under multi-tenant environments.

In contrast, this paper proposes a UDR guaranteed system

UTSLO to precisely enforce per-connection UDR targets for

multi-tenant database systems (e.g., MongoDB [11]) with

minimized resource over-provisioning. To this end, inspired

by the insights obtained from the study cases in Section 1, the

design and implementation of UTSLO are to be governed by

the principles of 1© Estimate the feasibility for the UDR tar-

gets by generating and analyzing theoretically optimal query

latency CDF curves according to UDR targets for US tenants

at the connection level; 2© Dynamically track and regulate

highly variable query latency distributions as required by

UDR targets in a cost-e�ective fashion.

397

User Disengagement-Oriented Target Enforcement for Multi-Tenant Database Systems SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

C
D

F
 (

%
)

 Actual (32 connections)

 Estimate (32 connections)

Cloud service

C
D

F
 (

%
)

 Actual (64 connections)

 Estimate (64 connections)

Cloud service

C
D

F
 (

%
)

 Actual (128 connections)

 Estimate (128 connections)

Cloud service

C
D

F
 (

%
)

 Actual (256 connections)

 Estimate (256 connections)

Cloud service

C
D

F
 (

%
)

Service latency (ms)

 Actual (16 connections)

 Estimate (16 connections)

E-commerce service

C
D

F
 (

%
)

Service latency (ms)

 Actual (32 connections)

 Estimate (32 connections)

E-commerce service

C
D

F
 (

%
)

Service latency (ms)

 Actual (64 connections)

 Estimate (64 connections)

E-commerce service

C
D

F
 (

%
)

Service latency (ms)

 Actual (128 connections)

 Estimate (128 connections)

E-commerce service

Figure 3: The e�ectiveness of query latency distribution approximation under di�erent levels of query concurrency.

3 UTSLO DESIGN

In this paper, we propose UTSLO to regulate database

connection-level query latency distributions to meet each

UDR-sensitive (US) tenant’s target in an accurate manner. In

UTSLO, the resources required for the UDR target enforcement

will be minimized and thus more tenants (e.g., best-e�ort (BE)

tenants) can be served by the underlying database system.

Symbols Description

Đğ The ğĪℎ tenant’s database connection.

đğ The actual UDR for Đğ .

đ̂ğ The UDR target for Đğ .

āğ The UDR normalized by đğ

đ̂ğ

for Đğ .

[Ā , Ă] The allowed range for āğ .

ĉğ The mean latency for Đğ .

ĉ̂ğ The mean latency budget for Đğ .

ąğ The query throughput for Đğ .

ą̂ğ The query throughput budget for Đğ .

ÿĒğ The coe�cient of variation for Đğ query latency.

ę̂Ĭ The upper bound for ÿĒğ .

īğ (.) The UDR-latency function (UDRx) for Đğ .

ĈĎğ (.) The relationship between ą̂ğ and ÿĒ ğ .

ÿ The upper bound for query concurrency.

Ā The upper bound for query quota.

đģğĤ The min normalized UDR over all US connections.

đģėĮ The max normalized UDR over all US connections.

Ă The probability of choosing the US tenants.

Ā The coe�cient for reducing Ă .

ÿ The coe�cient for increasing Ă .
ˆąđď
ĪĥĪ The total throughput budget for the US tenants.
ˆąþāĪĥĪ The total throughput budget for the BE tenants.

Ħ The throughput ratio for the US tenants.

č̂ğ The queuing time budget for Đğ .

Table 1: Some symbols used in this paper.

3.1 Multi-Tenant UDR Target Guarantee

UTSLO is dedicated to a speci�c database system (e.g., Mon-

goDB [11]) that supports multiple concurrent query-intensive

tenants’ database connections.

The objective function: For each US tenant’s connection

Đğ , 1 f ğ f Ĥ, UTSLO aims tominimize the resources required

to enforce the given UDR targets (i.e., đ̂ğ) by maximizing

its mean latency (i.e.,ĉğ) so that the total query processing

capacity provided by the database system (i.e., «) can be fully

utilized to serve more tenants, which can be represented as:

Maximizeĉğ

subject to

đğ =

+ +∞
0+

ĜĔğ
(Į) ∗ īğ (Į) dĮ f đ̂ğ ,∀ğ, 1 f ğ f Ĥ

(1)

where īğ (Į) is given for Đğ while đ̂ğ has a positive corre-

lation withĉğ when the latency variation stays unchanged,

i.e., a more stringent (lower) đ̂ğ typically requires a lower

ĉğ (thus more resources) under a speci�c level of latency

variation represented byÿĒğ . Moreover, a lowerÿĒğ typically

indicates a more stable query latency and thus a shorter tail

to make UDR target easier to meet. All these suggests that

ĉğ is maximized, when the UDR targets are exactly met, un-

der the lowest level of latency variation. Hence, UTSLO is

designed to dynamically adjust ĜĔğ
(Į) in response to work-

load changes to keep all đğ as close to their respective đ̂ğ as

possible, while minimizing the query latency variances with

negligible throughput loss.

Query latency distribution: Next, we need to esti-

mate the query latency distribution ĜĔğ
(Į) for each US ten-

ant’s connection. To this end, we adopt the following hy-

brid modeling-and-measurement approach. We describe the

multi-tenant query processing with a single database system

by a ă/ă/1 queuing model under heavy load. According

to the central limit theorem [53] for heavy tra�c queuing

systems [41, 42], the distribution of query waiting time can

be approximated by an exponential distribution, which can

also apply to query latency since the latency distribution

will approximate the wait time distribution under a high I/O

tra�c load [55]. Inspired by this result,Đğ ’s query latency dis-

tribution ĜĔğ
(Į) for any arrival process can be approximated

by a generalized exponential distribution function [35]:

ĜĔğ
(Į) =

čğ

Ĉğ
(1 − ě−Į/Ĉğ)čğ−1ě−Į/Ĉğ (Į > 0, čğ > 0, Ĉğ > 0).

(2)

where čğ andĈğ are shape and scale parameters, respectively.

Its CDF function [35] can be represented as:

ĂĔğ
(Į) = (1 − ě−Į/Ĉğ)čğ (Į > 0, čğ > 0, Ĉğ > 0). (3)

398

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Ning Li, Hong Jiang, Hao Che, Zhijun Wang, Minh Q. Nguyen, and Todd Rosenkrantz

The corresponding mean and variance are given by [35]:

ā (Ĕğ) = Ĉğ [ć (čğ + 1) −ć (1)] . (4)

Ē (Ĕğ) = Ĉ
2
ğ [ć (1)

′

−ć (čğ + 1)
′

] . (5)

where ć (.) and ć (.)
′
are the digamma function and its de-

rivative, respectively. Since the distribution given in Eq. 2 or

Eq. 3 is determined by the shape and scale parameters (i.e.,

čğ and Ĉğ), which can be solved by Eq. 4 and Eq. 5 under the

given mean and variance of the query latency, the mean and

variance of the query latency completely determine ĜĔğ
(Į)

or ĂĔğ
(Į). To verify the e�ectiveness of the approximation,

we use the mean and variance of the query latency obtained

under di�erent levels of query concurrency (controlled by

the total number of database connections) for two type of

workloads (i.e., enterprise-class cloud services simulated by

YCSB benchmark [25] and e-commerce services simulated

by TPC-C workloads [14]) as the input parameters to derive

the theoretical latency CDF curves. As shown in Fig. 3, for

enterprise-class cloud services, the theoretical latency CDF

curves can �t the corresponding actual ones almost perfectly.

Although the approximation errors for e-commerce services

are higher than those for cloud services, their CDF curves are

still very closely approximated especially for higher latencies,

which contribute more to UDR.

Intuitively, to keepđğ close to its target đ̂ğ , an increased

variance must be compensated by a decreased mean and vice

versa. This lends us a convenient way to maintain a UDR,

đğ that closely tracks the UDR target for Đğ , by regulating

the mean query latency or query throughput in response to

query latency variability (or variance) changes.

3.2 Mean Latency Budget Exploration

Based on the discussion in Section 3.1, for any US tenant’s

connection Đğ , it is viable to exhaust all the possible com-

binations of mean query latency and latency variance to

�nd the highest mean latency budget or MLB (ĉ̂ğ) under

each speci�c variance that can determine the latency distri-

bution to exactly meet Đğ ’s UDR target. This will minimize

the throughput budget (TB) (ą̂ğ) which refers to the query

throughput required for the UDR target enforcement when

the utilization of the database connection is 100%.

Based on Algorithm 1, we can obtain a suboptimal MLB ĉ̂ğ

for each tenant’s connectionĐğ under the current measure of

latency variationÿĒğ based on the UDRx īğ (Į) and the UDR

target đ̂ğ of Đğ by binary searching. Speci�cally, we set the

search scope of query latency for Đğ as (ĉģğĤ, ĉģėĮ], where

ĉģğĤ can be set at 0 while ĉģėĮ can be determined by the

Little’s law [47] with the minimum guaranteed throughput

per tenant (e.g., 50 ops/s). Before we search an optimal MLB,

we �rst �gure out the generalized exponential distribution

function (i.e., ĂĔğ
(Į)) based on Eq. 3 by determining its shape

and scale parameters (i.e., čğ and Ĉğ). To this end, we can

ALGORITHM 1: MLB Exploration Algorithm

Input: The current measure of query latency variation for Đğ
(i.e., ÿĒğ), the UDRx for Đğ (i.e., īğ (Į)), the UDR target

for Đğ (i.e., đ̂ğ).

Output: The suboptimal mean latency budget (ĉ̂ğ).

ĉĈþģėĮ ← ĉģėĮ ;ĉĈþģğĤ ← ĉģğĤ ;

repeat

ĉ̂ğ = (ĉĈþģğĤ +ĉĈþģėĮ)/2;

/*Obtain the UDRđğ under the current ĉ̂ğ */

đğ ← 0;

Obtain ĂĔğ
(Į) according to ĉ̂ğ and ÿĒğ based on Eq. 4 and

Eq. 5;

/*Accumulate the UDR contributed by di�erent query

latencies.*/

for Ġ ← 1 toģğ do
đğ ← đğ + (ĂĔğ

(Į Ġ) − ĂĔğ
(Į Ġ−1)) ∗ īğ (Į Ġ);

end

/*Resource over-provisioning could happen for Đğ .*/

if đğ/đ̂ğ < Ā then

ĉĈþģğĤ ← ĉ̂ğ ;

end

/*Resource under-provisioning could happen for Đğ .*/

else if đğ/đ̂ğ > Ă then

ĉĈþģėĮ ← ĉ̂ğ ;

end

/*The preferred MLB.*/

else
break;

end

until (ĉĈþģėĮ −ĉĈþģğĤ f đĊĉĈþ);

return ĉ̂ğ ;

jointly solve Eq. 4 and Eq. 5 to pin down these two parameters

by substituting ĉ̂ğ and the latency variance (obtained by

(ÿĒğ ∗ĉ̂ğ)
2) into these two equations, respectively. And then,

we can accumulate the UDR contributed by all the latencies

indicated in the īğ (Į) to obtain the UDR for Đğ under the

current measurement of query latency variation (ÿĒğ) and

the current estimated MLB, which can help to assess the

e�ectiveness and accuracy of the suboptimal MLB.

The criterion of theMLB evaluation is the accuracy of UDR

target enforcement, which is quanti�ed by a small range of

the normalized UDR (i.e., āğ =
đğ

đ̂ğ

) between Ā and Ă . Only if

āğ falls in the allowed range, will the resource provisioning

for the UDR target enforcement be considered at the mini-

mum level. As shown in Algorithm 1, if āğ is smaller than Ā

(0.95 by default), then resource over-provisioning is expected

to happen under the current ĉ̂ğ while the resource under-

provisioning will be forecasted if āğ goes beyond Ă (0.98 by

default). These two bounds will help the binary search to lo-

cate the right ĉ̂ğ only if the di�erence betweenĉĈþģėĮ and

ĉĈþģğĤ is larger than đĊĉĈþ (set at (ĉģėĮ −ĉģğĤ)/4096

by default), which indicates the acceptable precision of the

399

User Disengagement-Oriented Target Enforcement for Multi-Tenant Database Systems SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

UDR targets

UTSLO Budget Enforcer

UTSLO Resource Estimator

The relationship between CVi and i

1 = LR1(CV1)
2 = LR2(CV2)

n = LRn(CVn)

UDRx ui(x)

UDR/query latency/service time/throughput

measurements

Query EDF queue

UTSLO Resource Allocator

DataBase

Query RR queue

Storage

6

1
Scheduling

optimization

3
2

4

5

Capacity planning
(offline or at a slow time scale)

Dynamic UDR target

enforcement
(online)

T1 T2 Tn

US connections

Tn+1 Tn+m

BE connections

Update Qi
^

Dynamic AC

Figure 4: The illustration of UTSLO architecture and work�ow.

MLB exploration. The time complexity of Algorithm 1 is

ċ (Ģĥĝ(ĉģėĮ−ĉģğĤ

đĊĉĈþ
)), indicating that only a few iterations (12

at the most by default) are required for a MLB exploration.

Discussion: UTSLO captures the entire query latency CDF

per tenant’s connection for the UDR computation during

its MLB exploration. Although the lower latency region has

less impact on UDR, it is costly to split the latency CDF per

tenant into a low-latency region to be discarded and a high-

latency region to focus on, because even if all tenants have

the same UDR target, which is not likely, their latency CDF

can be highly variable, making the cuto� a moving target

and introducing extra computational costs and inaccuracy.

3.3 UTSLO Components

UTSLO aims to implement the goal of the objective function

(i.e., Eq. 1), i.e., maximizing the mean latency for each US

tenant’s connection constrained by its UDR target and free-

ing up more service capacity of the database system to serve

other tenants. This is done through capacity planning and

dynamic UDR target enforcement that are jointly realized by

three UTSLO components, i.e., the resource estimator, the

budget enforcer, and the resource allocator, as shown in Fig.

4.

Capacity planning: It aims to �gure out the highest

throughput (i.e., when all the US tenants’ connections are

query intensive.) required for the US tenants according to

their UDR targets (i.e., ˆąđď
ĪĥĪ) under the optimized low-level

latency variation. Thus, the throughput for the BE tenants is

determined under the total throughput that can be provided

by the underlying database system minus ˆąđď
ĪĥĪ .

Dynamic UDR target enforcement: It targets at en-

forcing the given UDR targets under highly dynamic query

latency variation and resource provisioning, and adapting

resource allocation to dynamically changed UDR targets

within a predictable convergence time.

As the brain of UTSLO, the resource estimator and the

budget enforcer work together to do the capacity planning

for the given UDR targets. In addition, the budget enforcer

lays the foundation for the UDR target enforcement by op-

timizing scheduling parameters for the resource allocator.

In doing so, the resource allocator can strategically enforce

admission control and scheduling policies for concurrent

tenants’ queries to dynamically ensure US tenants’ targets

in a cost-e�ective fashion, while providing the maximum

available resources for more tenants (e.g., the BE tenants).

As illustrated in Fig. 4, the UTSLO work�ow comprises 6

steps. The �rst three are set for the capacity planning (3.3.1)

while the rest form a feedback-loop control for the dynamic

UDR target enforcement (3.3.2).

3.3.1 The Capacity Planning. UTSLO’s capacity planning

involves three steps. As shown in Fig. 4, we �rst set up UT-

SLO (in Step 1©) by establishing the relationship between the

throughput budget and the CV of latency for each US tenant’s

connection, and then tune the two-dimensional admission

control knobs to limit the multi-tenant query concurrency

and per-connection query bursts for optimizing the trade-o�

between high throughput and low-level latency variation (in

Step 2©). The capacity planning can be carried out based on

the throughput budget estimation for tenants (in Step 3©).

Step 1©: The inputs to UTSLO, including the UDR target đ̂ğ

of each US tenant’s connection Đğ , 1 f ğ f Ĥ, and its individ-

ual UDRx īğ (Į), are �rst passed to the resource estimator. It

can precisely estimate the mean latency/throughput budgets

(ĉ̂ğ and ą̂ğ) required for ensuring the UDR target under di�er-

ent levels of latency variation (ÿĒ ğ) by approximating the la-

tency distribution ofĐğ ’s queries as a generalized exponential

distribution [35] �tting the UDR target (đ̂ğ) (details in Section

3.1 and 3.2). To estimate the mean latency/throughput budget

under highly dynamic query latency variation, it is required

to repeat the estimation (i.e., MLB exploration algorithm in

Section 3.2) under di�erent levels of latency variation, gen-

erating a curve between the throughput budget values (ą̂ğ)

and the measurements of query latency variation (ÿĒ ğ) (i.e.,

ą̂ğ = ĈĎğ (ÿĒ ğ)), as shown in Fig. 4.

Step 2©: To estimate the throughput budget for each given

UDR target under the database system for a typical num-

ber of concurrent tenants (e.g., hundreds), we need to �rst

bound query latency variation (i.e.,ÿĒ ğ f ę̂Ĭ) with negligible

throughput loss. To this end, UTSLO �rst adopts the AppleS

algorithm[45] to obtain an optimized upper bound of query

concurrency ÿ . Further, UTSLO optimizes the upper limit

(Ā) for per-connection query bursts by �nding an optimal

throughput peak with the minimum Ā under the concur-

rency bounded by ÿ . In this way, the side e�ects caused

by unregulated multi-tenant query patterns that aggravate

query latency variation can be e�ectively alleviated almost

400

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Ning Li, Hong Jiang, Hao Che, Zhijun Wang, Minh Q. Nguyen, and Todd Rosenkrantz

0 32 64 96 128 160 192 224 256
0.0

0.5

1.0

1.5

2.0

2.5

 Query latency variation

 Total query throughput

of tenants

C
V

 o
f
q
u
e
ry

 l
a
te

n
c
y

0

5

10

15

20

25

 T
h
ro

u
g
h
p
u
t
(k

o
p
s
/s

)

0 2 4 6 8 10 12 14 16
0.0

0.5

1.0

1.5

2.0

2.5

 Query latency variation

Quota (ops)

C
V

 o
f
q
u
e
ry

 l
a
te

n
c
y

0

5

10

15

20

25
Impact of per-connection query burst

 Total query throughput T
h
ro

u
g
h
p
u
t
(k

o
p
s
/s

)

Impact of multi-tenant query concurrency

Figure 5: The impact of multi-tenant query concurrency and per-

connection query burst on query latency variation and throughput.

without sacri�cing throughput. To verify its e�ectiveness, we

�rst exponentially scale tenants’ connections for enterprise-

class cloud services and adopt the AppleS algorithm to hide

excessive query parallelism beyond the processing capacity

of the database system. This helps obtain the peak through-

put with the CV of query latency at around 1.22 (as shown in

the left sub�gure of Fig. 5). And then, based on query concur-

rency optimization, we further adjust the number of requests

allowed for each database connection to issue in a scheduling

round, or quota, to control per-connection query burst and

observe its impact on latency variation and throughput. As

a result, combining the optimization e�orts of multi-tenant

query concurrency and per-connection query burst further

reduces the CV of latency to around 0.82 (decrease by 32.8%)

at a similar peak throughput, as shown in the right sub�gure

of Fig. 5, which is a better trade-o� between latency variation

and throughput.

Step 3©: Based on Step 1© and Step 2©, the con�gurations

(i.e., ą̂ğ = ĈĎğ (ÿĒ ğ) and ÿĒ ğ = ę̂Ĭ) will be used to estimate

the throughput budget for each US tenant’s connection and

obtain the total throughput budget for the US tenants (ˆąđď
ĪĥĪ).

Moreover, we can also know the total throughput provided by

the database system («) from Step 2©. Thus, if the throughput

required for the US tenants ˆąđď
ĪĥĪ is smaller than its upper limit,

UTSLO will consider the UDR targets feasible.

Note that step 2© is only needed to run once before serving

tenants while step 1© and 3© are only required for newly

added tenants, which can run o�ine or at a slow time scale.

3.3.2 Dynamic UDR Target Enforcement. The capacity plan-

ning only o�ers the static con�gurations for UTSLO under

the given query latency variation and throughput provision-

ing. Our goal is to dynamically track and regulate multi-

tenant latency distributions to accurately meet their indi-

vidual UDR targets (by Step 4© 5© 6© in Fig. 4). These three

steps form a feedback-loop control to enforce each US ten-

ant connection’s target under highly dynamic query latency

variation and throughput. Speci�cally, step 4© aims to collect

di�erent measurements from the database system, including

the UDRđğ , the query service time ďğ , mean latency, latency

variation ÿĒ ğ , and etc., which are statistics over the slid-

ing window (containing 1ć completed queries by default).

Based on the relationship between the throughput budget

for the database connection Đğ and its query latency vari-

ation (i.e., ą̂ğ = ĈĎğ (ÿĒ ğ)), the throughput budget (ą̂ğ) can

be dynamically adjusted under the current measurement of

query latency variation (ÿĒ ğ) and thus the corresponding

mean latency budget (ĉ̂ğ) can be obtained by 1

ą̂ğ
according

to Little’s law [47]. And then, in step 5©, the queuing time

budget (č̂ğ) can be derived by č̂ğ = ĉ̂ğ − ďğ , which indicates

the maximum time a Đğ ’s query can stay in the queue. The

earliest-deadline-�rst (EDF) scheduler sorts the US tenants’

connections in the ascending order of č̂ğ . In addition, step
6© aims to dynamically coordinate the resource allocation

across connections to fully exploit the instantaneous surplus

throughput by the two-dimensional admission control (AC)

(details in Section 4.2) driven by UDR targets.

In the event of UDR target change or temporary

resource under-provisioning, the corresponding mean-

latency/throughput budgets are required to be dynamically

adjusted to address the observed UDR target violations,

which needs a period of convergence time to transition. It

is necessary to �gure out the length of convergence time

according to the maximum allowed throughput for the US

tenants to o�er a predictable convergence time.

UDR needs to collect the disengagement ratio contributed

by all the queries that are completed in the reference pe-

riod ď (i.e., ď ranging from Ī1 to Ī2 with the length of

ĭď
= Ī2 − Ī1). Hence, for any US tenant’s connection

Đğ , we can calculate its UDR during ď based on UDRx of

īğ (Į) that is de�ned on ģğ (ģğ > 1) latency intervals,

i.e., (Ģ0, Ģ1], (Ģ1, Ģ2], ..., (Ģġ−1, Ģġ], ..., (Ģģğ−1, Ģģğ
], and Ģ0 = 0, as

đ ď
ğ =

∑ģğ

ġ=1

Ċď

ğ
(ĔğfĢġ)−Ċ

ď

ğ
(ĔğfĢġ−1)

Ċď

ğ

∗ īğ (Ģġ), where Ċ
ď
ğ (f Ģġ)

denotes the number of queries with smaller latency than Ģġ
while Ċ ď

ğ represents the number of queries completed in ď .

Thus, if the current UDR exceeds the target đ̂ğ , the length

of convergence time can be obtained by
(đ

ďī

ğ
−đ̂ğ)∗čğ

(đ̂ğ−đ
ďĥ

ğ
)∗ą

ďĥ

ğ

, where

đ ďī
ğ and čğ denote the UDR and the accumulated number

of completed queries respectively when UDR target viola-

tions happen, while đ ďĥ
ğ and ąďĥğ represent the UDR and

the throughput obtained over the convergence time respec-

tively. To shorten the convergence time, UTSLO will mini-

mize the throughput for the BE tenants and o�er the max-

imum throughput it can allocate for the US tenants. Note

that đ ďī
ğ , čğ , and ą

ďĥ
ğ are measurable or predictable by the

throughput-budget based estimation (see Section 3.1 and

3.2), and UTSLO can reserve adequate processing capacity

to respond to UDR target violations to reduce the UDR dur-

ing the convergence time (đ ďĥ
ğ) to a small value (close to 0).

Thus, UTSLO can estimate the convergence time for each US

tenant’s connection that experiences UDR target violations,

for which the e�ectiveness has been demonstrated in Fig. 10.

401

User Disengagement-Oriented Target Enforcement for Multi-Tenant Database Systems SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

4 UTSLO IMPLEMENTATION

Accurate UDR target enforcement under multi-tenant

databases highly relies on an easy-to-deploy, e�ective,

and e�cient implementation of the UTSLO resource al-

locator. To this end, it adopts a non-intrusive low-cost

query control/scheduling mechanism (Section 4.1). Further,

a concurrency-based sharing (CS) is adopted for an e�cient

�ne-grained resource allocation with a low-level query la-

tency variation (Section 4.2). In addition, more e�orts are

made on exploiting instantaneous surplus database process-

ing capacity by dynamic UDR-target-driven admission con-

trol (Section 4.3).

4.1 Non-Intrusive Query Control

Database systems (e.g., MongoDB [11]) receive tenants’

queries and send results back to tenants after business-logic-

induced query processing, by establishing TCP connections.

Thus, by strategically intercepting and suspending network-

I/O system calls, the UTSLO resource allocator can e�ec-

tively realize admission control/scheduling for multi-tenants’

connection-level query streams. It is implemented as a user-

space module based on a syscall_intercept library [3], to

intercept and schedule network-I/O system calls issued by

the database system. Thus, UTSLO supports agile deploy-

ment and fast upgrade without the need to instrument the

database system or OS kernels. The di�erence among di�er-

ent database systems only lies in the adoption of di�erent

types of network system calls to handle queries, where the

IP address and port for each connection is resolved. The

overhead of the system-call interception is found to be neg-

ligibly small, i.e., on the order of 100 nanoseconds, which

is su�cient in support of high-performance databases or

soft-realtime applications [26].

4.2 Admission Control & Scheduling

The UTSLO resource allocator is designed to realize the ef-

�cient multi-tenant connection-level query processing re-

source allocation to precisely enforce the given UDR tar-

gets, which relies on the collaboration between the two-

dimensional admission control/scheduling mechanisms. In

the view of the resource allocator, the running time of con-

current tenants’ connections consists of multiple schedul-

ing rounds, to each of which the admission control and

scheduling policies are applied to realize the following con-

trol/scheduling goals: 1) Low-level query concurrency and

burst. 2) Maintaining high total throughput. 3) Dynamic �ne-

grained throughput allocation over tenants’ connections.

As shown in Fig. 5, a low UDR prefers low-level query

concurrency and burst, which are controlled by tuning the

two knobs, (1) the multi-tenant concurrency limit Č and (2)

per-connection query quota (Ĉđď [ğ] , 1 f ğ f Ĥ, for Ĥ US

tenants’ connections and Ĉþā [Ġ] , 1 f Ġ f ģ, for BE tenants)

TUS[1]

TUS[u]

TUS[n]

U
S

 c
o

n
n

ec
ti

o
n

s

TBE[b]

TBE[1]

B
E

 c
o

n
n

ec
ti

o
n

s

TBE[m]

Q
u

er
y

 c
o

n
cu

rr
en

cy
:

C
=

u
+

b

Quota for US connections:

LUS[i]

Quota for BE connections:

LBE[j]

D
at

aB
as

e

E
D

F

S
ch

ed
u
le

r

R
R

S
ch

ed
u
le

r

TUS[n]

TUS[u]

TUS[1]

TBE[b]

TBE[1]

TBE[m]

Unordered Ordered

T
o

p
-u

T
o

p
-b

 Two-dimensional AC

~

~

~

~

~

~

Figure 6: UTSLO admission control/scheduling mechanisms.

respectively, while maintaining as high a total throughput as

possible without crossing their individual thresholds (i.e., ÿ

and Ā are the upper bounds for Č and per-connection query

quota respectively). These thresholds can help to form the

boundaries of a feasible two-dimensional region for query

admission control (AC), within which these control knobs

can be dynamically optimized for the �ne-grained resource

allocation among tenants’ connections to accurately meet

the UDR targets with a minimized throughput allocation

while providing as high a throughput allocation as possible

for the BE tenants.

Since the queuing time budget can set the priority for

query throughput allocation across the US tenants’ con-

nections (see Section 3.3.2), how to share the total query

throughput between the US tenants and the BE tenants in

a �ne-grained fashion with a low-level query concurrency

and burst is challenging. To address the issue, we start by

exploring the alternative solutions, i.e., per-connection query

Quota based throughput Sharing (QS) or Concurrency based

throughput Sharing (CS). QS can roughly enforce the pro-

portion of throughput between the US tenants and the BE

tenants by keeping the approximate ratio of query quotas

assigned to the US tenants’ connections and the BE ten-

ants’ connections based on weighted fair queuing, which is

widely adopted by storage I/O resourcemanagement systems

[32, 33, 39, 58]. However, it can lead to serious query bursts

that can increase UDR, especially for stringent UDR targets

that require high query quotas for the US tenants’ connec-

tions and thus likely exacerbate their latency variation (as

shown in Fig. 5).

In contrast, CS enforces the resource sharing by assigning

the slots of query concurrency to the top-ÿ tenants’ con-

nections, which are chosen by two schedulers, i.e., the EDF

and round-robin (RR) schedulers for the US tenants and the

BE tenants respectively, on a speci�c probability of chance

for the US tenants (i.e., Ă). Speci�cally, the top-ÿ tenants’

connections (i.e.,ī US tenants’ connections and Ę BE tenants’

connections, ÿ = ī + Ę) will be selected from the tenant list

sorted by di�erent scheduling policies and Ă =
ī
ÿ
. The EDF

scheduler sorts the US tenants’ connections according to the

urgency of their latest queuing time budget č̂ğ while the RR

scheduler is used for the BE tenants to fairly share query

402

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Ning Li, Hong Jiang, Hao Che, Zhijun Wang, Minh Q. Nguyen, and Todd Rosenkrantz

throughput. In this way, the ratio of query throughput for

the US tenants (i.e., Ħ) can be coordinated by adjusting Ă in

a continuous fashion without aggravating latency variation.

4.3 UDR Targets VS. High Throughput

To exploit instantaneous resource over-provisioning, the

percentage of throughput allocated to the US tenants (Ħ) and

the per-connection quotas need to dynamically adapt to UDR

measurements.

Speci�cally, we adopt a feedback control similar to the

low-cost additive-increase/multiplicative-decrease (AIMD)

control [4] to adjust Ă for the Ħ adaption and work with per-

connection quota coordination under the constraints ofđģėĮ

andđģğĤ . IfđģėĮ is less than Ă (set at 0.98 by default) and

đģğĤ is less than Ā (set at 0.95 by default), surplus resources

are considered available for the US tenants while UDR target

violations are deemed imminent if đģėĮ is larger than Ă .

For the former case, Ă will be updated by Ă = Ă −
Ā

ęĬ
to

increase the throughput share for the BE tenants, where

Ā is set at 0.05 by default and ęĬ denotes the average CV

of query latency across US tenants’ connections, which is

used to o�set the side e�ects of unexpected spikes of latency

variation on UDR as Ħ decreases. Moreover, the BE tenants’

connections are allowed to increase their quotas (limited

by Ā) to further share the surplus throughput while the US

tenants’ connections will decrease their quotas to reduce the

unnecessary risk of query bursts. For the latter case, Ă will

be updated by Ă = (1 + ÿ) ∗ Ă to prevent the imminent UDR

target violations by increasing Ħ (ÿ is set at 0.25 by default).

Meanwhile, the BE tenants will back o� by minimizing their

quotas while each US tenant connection with the UDR (đğ)

larger than Ă will increase its quota by 1 until it reaches Ā .

Note that the Ħ adjustment coordinates the throughput

share between the BE and US groups. In the mean while, per-

connection quota coordination further enables throughput

reallocation across tenants’ connections within each group,

aiming to maximize the throughput share for the BE group

without violating the UDR targets under highly variable

resource provisioning.

5 PERFORMANCE EVALUATION

Test Environment: All the evaluation experiments are con-

ducted on a dedicated rack of PowerEdge R630 servers. The

storage server is equipped with a RAID-0 SSD array with

�ve 800GB SATA MLC Solid State Drives, consolidating all

the logical volumes for databases. The computing server is

con�gured with 2 Intel Xeon E5-2650 processors, 64GB of

RAM, a Broadcom NetXtreme II BCM57810 10Gb NIC and 4

× 1TB SATA HDDs. All the servers are connected by a Dell

N4032F switch with peak bandwidth of 10Gb.

Workloads and Databases:We deploy a key-value store,

MongoDB 3.6.0 [11], as a representative NoSQL database to

verify the e�ectiveness of UTSLO on enforcing UDR targets

in a multi-tenant environment for enterprise-class cloud ser-

vices. Speci�cally, we run Yahoo Cloud Serving Benchmark

(YCSB) [25] on MongoDB with multi-tenant connections,

each generating a Zipf distributed key-value query work-

load. Multi-tenant query workloads include di�erent com-

binations of GET and SET, and are write-heavy (50% GET,

50% SET) unless otherwise noted, accessing the underlying

MongoDB that stores a 150ăþ dataset to simulate intensive

key-value query processing generated during cloud services.

In addition, to e�ectively assess the capability of the UDR tar-

get enforcement for multi-tenant e-commerce services built

on a database system, we adopt Py-TPCC [40] to construct a

transactional database consisting of 1, 000 warehouses (for

a total dataset size of 78GB) on MongoDB 4.4.3 to simulate

intensive users’ online e-commerce transaction processing

through multi-tenants’ database connections.

5.1 Baselines and Methodology

UTSLO aims to enforce UDR targets for multi-tenant data-

base systems under di�erent online service scenarios (e.g.,

enterprise-class cloud services or e-commerce services) in a

cost-e�ective manner. A US tenant can own multiple data-

base connections each of which can have its own UDR target.

We adopt a state-of-the-art any-percentile tail latency SLO

guarantee solution, i.e., PSLO [46], as a baseline to verify

the e�ectiveness of UTSLO on UDR target enforcement in

terms of its accuracy5, cost (i.e., the throughput for the US

tenants), and the throughput for the BE tenants (a higher

value is better)6. Since tail latency SLO guarantee solutions

can not directly support UDR target enforcement, we use

three empirical rules (i.e., ċČĐ , Čāď , and ĉċĀ) to trans-

late each UDR target into its corresponding tail latency SLO.

ċČĐ assumes that the UDR contributed by the query laten-

cies falling into the unguaranteed percentile range are only

higher than the guaranteed percentile range by the smallest

margins (e.g., the next step above the guaranteed UDR step

in the UDR-latency staircase function of Fig. 2(d)), which

is an optimistic estimation and requires the least extra ef-

fort/resources. In contrast, Čāď , as a pessimistic estimation

and requiring the most extra e�ort/resources, means that

the UDR contributed by the query latencies falling into the

unguaranteed percentile range assume the highest UDR (i.e.,

100%). The moderate estimation, i.e.,ĉċĀ , aims to estimate

5It is evaluated by the percentage error between the actual UDR and the

target (a positive value means a UDR target violation and a smaller absolute

value indicates a higher enforcement accuracy), or the normalized UDR

that is de�ned by the actual UDR divided by the target (a value larger than

1 means a UDR target violation and a value closer to 1 indicates a higher

enforcement accuracy.)
6The throughput for the US (or BE) tenants is de�ned by the number of

completed queries for the US (or BE) tenants during the reference period of

time divided by its length.

403

User Disengagement-Oriented Target Enforcement for Multi-Tenant Database Systems SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.3%0.2%

U
D

R
 (

%
)

 UTSLO PSLO+OPT PSLO+MOD PSLO+PES

0.1% 0.3%0.2%0.1%
UDR target

0.3%0.2%0.1%
UDR target

0.3%0.2%0.1%
UDR target

0.0

0.5

1.0

1.5

2.0

2.5

C
V

 o
f
q
u
e
ry

 l
a
te

n
c
y

UDR target

0

2

4

6

8

10

T
h
ro

u
g
h
p
u
t
fo

r
U

S
 t
e
n
a
n
ts

(k
o
p
s
/s

)

0

5

10

15

20

25

T
h
ro

u
g
h
p
u
t
fo

r
B

E
 t
e
n
a
n
ts

(k
o
p
s
/s

)

Figure 7: Comparisons in UDR, CV of query latency, and the throughput for the US tenants and BE tenants under di�erent schemes for

enterprise-class cloud services.

between the above two extreme cases by averaging their

percentiles.

Enterprise-class cloud services built on key-value query

processing typically generate much higher query throughput

than that under e-commerce services that have to o�er ACID

guarantees for the correctness of online concurrent transac-

tion processing and compromise throughput performance.

Thus, enterprise-class cloud services are more sensitive to

query concurrency and burst control and throughput under-

provisioning. In contrast, e-commerce services’ workloads

are characterized by a higher level of query latency vari-

ability than enterprise-class cloud services and thus bring a

bigger challenge for UTSLO in dynamically tracking and reg-

ulatingmulti-tenant query latency distributions to accurately

guarantee UDR targets at the connection-level. Therefore,

besides comparing against tail latency SLO guarantee so-

lutions, we’ll focus on evaluating the cost-e�ectiveness of

UTSLO in enforcing UDR targets for enterprise-class cloud

services under highly variable resource provisioning and

dynamic UDR target enforcement. In addition, we’ll assess

the ability of UTSLO to di�erentiate di�erent levels of UDR

targets accurately for e-commerce services.

Speci�cally, for the �rst three subsections, we conduct the

experiments for enterprise-class cloud services with up to

512 database connections, where each US tenant has one

connection with the UDR-latency function (UDRx) that re-

�ects the rule of thumb reported by Amazon (i.e., each 100ģĩ

increase in service latency means a 6% drop in sales [15]).

In Section 5.2, we aim to verify the e�ectiveness and ac-

curacy of UTSLO in UDR target enforcement and assess the

ability of UTSLO to track and regulate dynamic multi-tenant

query latency distribution under highly dynamic latency

variation and throughput. In Section 5.3, we examine the ef-

�ciency of di�erent implementations of the UTSLO resource

allocator under distinct schemes, i.e., quota-based sharing

(QS) and the concurrency-based sharing (CS). In Section

5.4, we verify the e�ectiveness and robustness of dynamic

UDR target enforcement when some US tenants dynamically

change their UDR targets. We also verify how closely the UT-

SLO implementation can approximate its theoretical goals,

by obtaining theoretical metrics (e.g., the throughput for the

US tenants) based on the model (described in Section 3.1)

as another baseline under an ideal case where all US ten-

ants achieve their UDR targets without error, and the query

throughput and latency variation are constant. The experi-

ments for e-commerce services in Section 5.5 are conducted

with a total of 256 connections. A US e-commerce tenant

establishes three connections for the users via three types of

devices (i.e., desktop, mobile, and tablet), each of which has

its unique UDRx, as shown in Fig. 2(d).

For both online service scenarios, the BE tenants share the

rest of database connections and make full use of the residual

database query processing capacity. To verify the e�ective-

ness of UTSLO on the UDR target enforcement under high

load where online services often su�er from compromised

QoS, all the following experiments are conducted under a

very high I/O utilization (typically over 95%).

5.2 The E�ectiveness and Accuracy of UDR
Target Enforcement

In this subsection, we adopt PSLO [46] as the baseline system

to enforce the tail latency SLOs obtained under three levels

of empirical estimation (i.e., ċČĐ , Čāď , andĉċĀ), denoted

by ČďĈċ +ċČĐ , ČďĈċ +Čāď , and ČďĈċ +ĉċĀ , respectively.

To e�ectively simulate the scenario where the US tenants

su�er from a strong I/O interference from many BE tenants,

we let 512 tenants, of which only 10 are US tenants, access

the underlying database. Thus, the ratio of BE and US tenants

is over 50 : 1. For the US tenants, we set their UDR target at

0.1%, 0.2%, and 0.3%, respectively.

As shown in Fig. 7, the high-percentile unguaranteed

range left by tail latency SLO enforcement solutions can sig-

ni�cantly impact UDR and likely violate the target, especially

for ċČĐ . Under ČďĈċ +ċČĐ , the tail latency SLOs for the

three UDR targets (i.e., 0.1%, 0.2%, and 0.3%) are < Č90 :

25ģĩ >7, < Č80 : 25ģĩ >, and < Č70 : 25ģĩ >, respectively.

In fact, PSLO can precisely enforce these tail latency SLOs of

25ģĩ for the US tenants in the ranges of (23.84ģĩ, 24.98ģĩ),

(23.97ģĩ, 24.97ģĩ), and (23.72ģĩ, 24.98ģĩ) at the Č90, Č80,

and Č70, respectively. However, the actual UDR values are

3.75×, 4.11×, and 4.21× their individual UDR targets of

0.1%, 0.2%, and 0.3%, resulting in unacceptable UDR tar-

get violations. In contrast, ČďĈċ + Čāď goes to the other

7<Px:y> denotes the tail latency SLO of y at the ĮĪℎ percentile.

404

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Ning Li, Hong Jiang, Hao Che, Zhijun Wang, Minh Q. Nguyen, and Todd Rosenkrantz

0 60 120 180 240 300 360

0

10

20

30

40

50

0 60 120 180 240 300 360

0.0

0.5

1.0

1.5

2.0

0 60 120 180 240 300 360

0

1

2

3

4

5

0 60 120 180 240 300 360

500

400

100
80
60
40
20

Time (Seconds)

T
e
n
a
n
t
ID

5.000

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

QY latency

(ms)

T
h
ro

u
g
h
p
u
t
(k

o
p
s
/s

)

Time (Seconds)

 Total throughput

0

2

4

6

8

10

 Latency variation

C
V

 o
f
q
u
e
ry

 l
a
te

n
c
y

N
o
rm

a
liz

e
d
 U

D
R

Time (Seconds)

T
h
ro

u
g
h
p
u
t
(k

o
p
s
/s

)

Time (Seconds)

 The budget for US tenants

 The actual for US tenants

(a) (b) (c) (d)

Figure 8: The veri�cation of the capability of UTSLO to enforce UDR targets under highly variable throughput provisioning and query

latency variation for enterprise-class cloud services.

extreme, i.e., an over-conservative estimation for the unguar-

anteed percentile range, resulting in a serious resource over-

provisioning. For ČďĈċ + Čāď , the tail latency SLOs for the

three UDR targets are < Č99.9 : 25ģĩ >, < Č99.8 : 25ģĩ >,

and < Č99.7 : 25ģĩ >, respectively. PSLO can also accurately

guarantee these tail latency SLOs of 25ģĩ for the US tenants

in the ranges of (22.48ģĩ, 23.60ģĩ), (22.37ģĩ, 24.05ģĩ), and

(23.18ģĩ, 24.20ģĩ) at the Č99.9, Č99.8, and Č99.7, respec-

tively. Nevertheless, all the UDR values under ČďĈċ + Čāď

are close to 0. Although the UDR targets are guaranteed, the

throughput for the US tenants required for the UDR targets

of 0.1%, 0.2%, and 0.3% are 9.25×, 10.87×, and 11.19× higher

than those obtained under UTSLO. As for ČďĈċ +ĉċĀ , all

the UDR targets are violated although the resource over-

provisioning for the US tenants is alleviated compared with

ČďĈċ + Čāď . Note that the throughput for the US tenants

under ČďĈċ +ĉċĀ for all the three UDR targets is higher

than those obtained underđĐďĈċ , especially for the targets

of 0.1% and 0.2%. This means that UTSLO requires less query

throughput than ČďĈċ to enforce the UDR target largely

because the design/implementation of UTSLO strengthens

its ability on cutting down the level of query latency varia-

tion and thus reduce the cost of UDR target enforcement. As

shown in Fig. 7, the CV of latency variation for the US tenants

under đĐďĈċ for the three UDR targets are 2.56×, 2.47×,

and 2.24× lower than those obtained under ČďĈċ +ċČĐ . A

similar advantage of UTSLO on reducing the level of query la-

tency variation can also be observedwhen comparing against

ČďĈċ + Čāď and ČďĈċ +ĉċĀ . All in all, UTSLO provides

the highest throughput for the BE tenants among all the

schemes with accurate UDR target enforcement (the average

percentage error is −5.88%).

Now we further assess the sensitivity of the UDR target

enforcement under UTSLO to highly variable query latency

variation and throughput when all the UDR targets are 0.1%.

We draw two observations from results shown in Fig. 8. First,

temporary throughput under-provisioning does not a�ect the

UDR target enforcement. Fig. 8(b) shows a U-shaped through-

put curve during the time between 39ĩ and 85ĩ , indicating

a period of throughput under-provisioning during which

the BE tenants (with the tenant ID ranging from 11 to 512)

yield query throughput to the US tenants (the top 10 ten-

ants) and result in a higher query latency for BE tenants

(the yellow part), as illustrated by Fig. 8(a). In contrast, all

US tenants’ UDR values closely approach their individual

targets (ranging from 0.92 to 1.00 based on the measurement

every 100ģĩ) but without violating any target, as shown in

Fig. 8(c). This means that the throughput diverted from the

BE tenants to the US tenants is necessary for the latter’s

UDR target enforcement. Second, the throughput for the US

tenants can e�ectively adapt to the �uctuation of query la-

tency variation, as re�ected by the comparison between their

variation trends in Fig. 8(b) and (d), respectively. Since the

throughput required for the UDR target enforcement is pos-

itively associated with query latency variation, UTSLO is

designed to adapt the throughput budget for each US tenant

to its current level of latency variation to minimize through-

put over-provisioning. The resource allocator can precisely

allocate the throughput to the US tenants according to their

throughput budgets (in Fig. 8(d)), which contributes to accu-

rate UDR target enforcement (in Fig. 8(c)).

5.3 E�ciency of the Resource Allocator

In this subsection, we let 512 tenants, with di�erent ratios of

US and BE tenants, access the MongoDB database. Speci�-

cally, we exponentially increase the number of the US tenants

from 25 to 200 and divide the US tenants into 5 groups with

each having a di�erent UDR target, i.e., 0.1%, 0.15%, 0.2%,

0.25%, 0.3%, respectively. In this way, we can assess the ef-

fectiveness and e�ciency of the UTSLO resource allocator

under di�erent implementations (i.e., QS and CS) in terms

of the throughput for the US tenants, the throughput for the

BE tenants, query latency variation, and normalized UDR,

where the minimum, the maximum, and the average are re-

ported for the former three metrics over three runs while

the minimum, the maximum, and the average normalized

UDR across the US tenants are used to assess the sensitivity

of UDR target enforcement to di�erent UDR targets.

For all the cases shown in Fig. 9, the CS implementation

provides a smaller throughput for the US tenants than the

QS implementation while the throughput allocated to the BE

tenants by CS is higher than that by QS. This is because CS

can keep a lower level of query latency variation than QS.

QS relies on adjusting per-connection query quota to realize

resource allocation between the US and BE tenants, likely ag-

gravating query latency variation. More importantly, CS can

405

User Disengagement-Oriented Target Enforcement for Multi-Tenant Database Systems SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

0

4

8

12

T
h
ro

u
g
h
p
u
t
fo

r
U

S
 t
e
n
a
n
ts

 (

k
o
p
s
/s

)
 UTSLO (QS) UTSLO (CS) UTSLO (Theoretical)

20010050
of the US tenants

25
0

5

10

15

20

T
h
ro

u
g
h
p
u
t
fo

r
B

E
 t
e
n
a
n
ts

(k
o
p
s
/s

)

20010050
of the US tenants

25
0.0

0.2

0.4
0.6

0.8

1.0

1.2

1.4
1.6

1.8

2.0

N
o
rm

a
liz

e
d
 U

D
R

20010050
of the US tenants

25
0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
V

 o
f
q
u
e
ry

 l
a
te

n
c
y

20010050
of the US tenants

25

Figure 9: Comparisons in the throughput for the US tenants and the BE tenants, normalized UDR, and CV of query latency under di�erent

schemes for enterprise-class cloud services.

0 60 120 180 240 300 360

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 60 120 180 240 300 360

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 60 120 180 240 300 360

0.0

0.2

0.4

0.6

0.8

1.0

(d)(c)(b)

UDR SLO:

0.15% 0.1%

UDR SLO:

0.2% 0.1%

UDR SLO:

0.25% 0.1%

UDR SLO:

0.3% 0.1%

N
o
rm

a
liz

e
d
 U

D
R

Time (Seconds)

 US tenants (UDR target: 0.1%) US tenants (UDR target: 0.15%) US tenants (UDR target: 0.2%) US tenants (UDR target: 0.25%) US tenants (UDR target: 0.3%)
C

V
 o

f
q
u
e
ry

 l
a
te

n
c
y

Time (Seconds)

 The variability of lat. variation

T
h
ro

u
g
h
p
u
t
(k

o
p
s
/s

)

Time (Seconds)

UDR SLO:

0.3% 0.1%

0

10

20

30

40

50

UDR SLO:

0.15% 0.1%

UDR SLO:

0.2% 0.1%

UDR SLO:

0.25% 0.1%

APE: 1.75%

APE: 0.81%APE: 0.52%

0.15% 0
.1%

0.2% 0
.1%

0.25% 0
.1%

C
o
n
v
e
rg

e
n
c
e
 t
im

e
 (

S
) Estimates Actual

0.3% 0
.1%

APE: 4.58%

(a)

0.0

0.2

0.4

0.6

0.8

1.0

 Actual ratio of tput. for US tenants

 Theo. ratio of tput. for US tenants

T
h
e
 r

a
ti
o
 o

f
tp

u
t.
 f
o
r

U
S

 t
e
n
a
n
ts

Figure 10: The illustration of dynamic UDR target enforcement consisting of 4 UDR target changes (i.e., 0.3%→0.1%, 0.25%→0.1%, 0.2%→0.1%,

and 0.15%→0.1%), each of which involves 5 US tenants while the total number of tenants is 512 for enterprise-class cloud services.

accurately ensure di�erent UDR targets when the number

of US tenants increases with the throughput allocated to the

US tenants approaching the theoretical values. This means

that UTSLO can e�ectively and accurately track and regu-

late highly variable multi-tenant query latency distribution

required by the given targets, which approximates the ideal

situation where the query throughput and latency variation

are constant. In contrast, QS shows the fastest increasing

rate for the throughput allocated to the US tenants largely

due to its quota-base resource allocation mechanism. For the

case of 200 US tenants, the CV of query latency under QS

is 1.68× higher than that under CS, respectively. Note that

CS provides much stabler allocation than QS, for which we

must use the best-case QS results from the multiple runs in

the �gure. Despite this, only the US tenant group with the

loosest UDR target, i.e., 0.3%, can meet its target and the US

tenant group with the tightest target has a normalized UDR

of 1.8 or more, resulting in serious UDR target violations.

5.4 Dynamic UDR Target Enforcement

In this experiment, there are a total of 512 tenants of which

25 are US tenants that are divided into 5 groups of 5 each.

We initially assign 5 di�erent UDR targets to the 5 groups,

i.e., 0.1%, 0.15%, 0.2%, 0.25%, 0.3%, respectively. At the time

of 120 seconds, we �rst change the UDR target of the group

with the target of 0.3% to 0.1%. After that, we change the

groups with the targets of 0.25%, 0.2%, and 0.15% of their

targets all to 0.1%, one at a time every 60 seconds and in

that order. Throughout the process, the maximum allowed

throughput share for the US tenants is 25%. And then, we

can assess the e�ectiveness and predictability of dynamic

multi-tenant UDR target enforcement under UTSLO.

As shown in Fig. 10, before any UDR target changes, UT-

SLO can e�ectively enforce the distinct UDR targets of the 5

US tenant groups accurately (Fig. 10(a)). Fig. 10(b) demon-

strates that, from the start of the observation period when

the �rst target is changed, the curve of the actual ratio of the

throughput allocated to the US tenants quickly converges to

the theoretical one after around 22.5 seconds, where around

8.5 seconds are used to accumulate adequate queries (1024 by

default) for each tenant’s UDR statistics. After that, we can

observe from Fig. 10(a) four similar triangle-shaped spikes

each corresponding a UDR target change. When the UDR

target of 0.3% is changed to 0.1%, the normalized UDR of

the corresponding 5 US tenants steeply increase to near 3.0,

before they use about 25.8 seconds to converge to their new

UDR target. During the convergence time, as shown in Fig.

10(c), we can �nd that the instantaneous throughput (ob-

tained every 100ģĩ) for the US tenants experiencing UDR

target changes signi�cantly increase as UTSLO forces the BE

tenants to yield the extra throughput beyond their minimum

quota. Accordingly, the actual ratio of the throughput allo-

cated to the US tenants increases from 9.3% to 13.5%. After

that, a stable and precise UDR target enforcement is observed

until the next round of UDR target changes. Although the

actual ratio of the throughput allocated to the US tenants

�nally decreases to 12.3%, slightly higher than the theoretical

one of 10.1%, the actual measure shows an obvious trend

to converge to the theoretical curve. We can also observe

similar patterns for the subsequent three rounds of UDR tar-

get changes. Note that UTSLO can accurately estimate the

convergence time (the maximum absolute percentage error

(APE) is less than 5%), as shown in Fig. 10(d), which makes

dynamic UDR target enforcement predictable.

406

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Ning Li, Hong Jiang, Hao Che, Zhijun Wang, Minh Q. Nguyen, and Todd Rosenkrantz

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 U

D
R

0

20

40

60

80

100

120

140
BE tenentsUS tenentsUS tenents

 UTSLO PSLO+OPT PSLO+MOD PSLO+PES

M
e
a
n
 l
a
te

n
c
y
 (

m
s
)

US tenents

0

1

2

3

4

Q
u
e
ry

 t
h
ro

u
g
h
p
u
t
(k

o
p
s
/s

)

0

2

4

6

8

(d)(c)(b)(a)
UDR targets

Q
u
e
ry

 t
h
ro

u
g
h
p
u
t
(k

o
p
s
/s

)

(0
.4

%
,0

.5
%

,0
.6

%
)

(0
.2

%
,0

.2
5%

,0
.3

%
)

(0
.8

%
,1

%
,1

.2
%

)

(0
.6

%
,0

.7
5%

,0
.9

%
)

(1
.2

%
,1

.5
%

,1
.8

%
)

(1
.0

%
,1

.2
5%

,1
.5

%
)

(1
.6

%
,2

%
,2

.4
%

)

(1
.4

%
,1

.7
5%

,2
.1

%
)

(2
%

,2
.5

%
,3

%
)

(1
.8

%
,2

.2
5%

,2
.7

%
)

UDR targets
(0

.4
%

,0
.5

%
,0

.6
%

)

(0
.2

%
,0

.2
5%

,0
.3

%
)

(0
.8

%
,1

%
,1

.2
%

)

(0
.6

%
,0

.7
5%

,0
.9

%
)

(1
.2

%
,1

.5
%

,1
.8

%
)

(1
.0

%
,1

.2
5%

,1
.5

%
)

(1
.6

%
,2

%
,2

.4
%

)

(1
.4

%
,1

.7
5%

,2
.1

%
)

(2
%

,2
.5

%
,3

%
)

(1
.8

%
,2

.2
5%

,2
.7

%
)

UDR targets
(0

.4
%

,0
.5

%
,0

.6
%

)

(0
.2

%
,0

.2
5%

,0
.3

%
)

(0
.8

%
,1

%
,1

.2
%

)

(0
.6

%
,0

.7
5%

,0
.9

%
)

(1
.2

%
,1

.5
%

,1
.8

%
)

(1
.0

%
,1

.2
5%

,1
.5

%
)

(1
.6

%
,2

%
,2

.4
%

)

(1
.4

%
,1

.7
5%

,2
.1

%
)

(2
%

,2
.5

%
,3

%
)

(1
.8

%
,2

.2
5%

,2
.7

%
)

UDR targets
(0

.4
%

,0
.5

%
,0

.6
%

)

(0
.2

%
,0

.2
5%

,0
.3

%
)

(0
.8

%
,1

%
,1

.2
%

)

(0
.6

%
,0

.7
5%

,0
.9

%
)

(1
.2

%
,1

.5
%

,1
.8

%
)

(1
.0

%
,1

.2
5%

,1
.5

%
)

(1
.6

%
,2

%
,2

.4
%

)

(1
.4

%
,1

.7
5%

,2
.1

%
)

(2
%

,2
.5

%
,3

%
)

(1
.8

%
,2

.2
5%

,2
.7

%
)

Figure 11: Comparisons in normalized UDR, mean latency, and the throughput for the US tenants and BE tenants under di�erent schemes

for e-commerce services.

5.5 E-commerce services

We evaluate the capability of UTSLO to di�erentiate the

UDR targets of three concurrent US tenants, which linearly

increases from (0.2%, 0.25%, 0.3%) to (2%, 2.5%, 3%) at incre-

ments of 0.2%, 0.25%, 0.3% respectively, and enforcing them

accurately for e-commerce services. We also conduct the

same experiments under the tail latency SLO solution PSLO

with three empirical rules (i.e., OPT, PES, and MOD). The

maximum ratio of query throughput for the US tenants is

60% beyond which the scheme is considered as infeasible.

As shown in Fig. 11(a), all the 30 di�erent UDR targets

for the 9 US tenants’ connections (each US tenant assigns

the same UDR target for its three connections at a time) can

be accurately met under UTSLO. Speci�cally, the average

normalized UDR over all the cases is 0.969 while the highest

normalized UDR is 0.989 (1.0 is the normalized UDR target).

In contrast, the schemes of ČďĈċ +ĉċĀ and ČďĈċ + Čāď

conservatively enforce the UDR targets at a high cost. Specif-

ically, as shown in Fig. 11(b), UTSLO only needs 1.85× the

mean latency required by ČďĈċ +ĉċĀ for the same UDR

target on average. At the same time, the average normalized

UDR obtained under ČďĈċ +ĉċĀ is only 0.577 over all the

cases, which is far below the target. It is no wonder that

ČďĈċ +ĉċĀ requires 79.53% more throughput for the US

tenants and 16.87% less throughput for the BE tenants than

UTSLO on average for all the UDR targets, as shown in Fig.

11(c)(d). ČďĈċ + Čāď , as the most extreme conservative solu-

tion, requires the highest throughput for US tenants over all

the schemes and is only feasible for the two loosest targets

(i.e., (1.8%, 2.25%, 2.7%) and (2%, 2.5%, 3%)). ČďĈċ +ċČĐ , as

a solution for UDR target enforcement with optimistic esti-

mation, essentially ignores the impact of high tails happened

in the unguaranteed percentile range on the UDR measure

and cause much more UDR target violations. As a result, the

maximum normalized UDR for ČďĈċ +ċČĐ is 28% higher

than the target while its average normalized UDR is 1.09 over

all the cases. In contrast, UTSLO can dynamically track and

regulate the entire query latency distribution for all the US

tenants’ connections in an e�cient fashion by �ne-grained

resource allocation with a low-level query latency variation.

Therefore, ČďĈċ+ċČĐ still requires 17.82%more throughput

than UTSLO for the US tenants on average for all the UDR

target enforcement cases. Note that UTSLO can e�ectively

di�erentiate and enforce UDR targets highly accurately for

e-commerce services.

6 CONCLUSIONS AND FUTUREWORK

We propose UTSLO to cost-e�ectively bound the latency-

induced UDR for multi-tenant database systems. As the brain

of UTSLO, the resource estimator and budget enforcer per-

form capacity planning for precisely guaranteeing UDR tar-

gets with a minimized resource over-provisioning. To sup-

port the dynamic UDR target enforcement, the UTSLO re-

source allocator adopts the UDR-target-driven dynamic ad-

mission control and scheduling mechanisms to minimize the

throughput required for the UDR targets and provides as

much throughput as possible for the BE tenants. Our exten-

sive evaluation for both enterprise-class cloud services and

e-commerce services demonstrates that UTSLO can accu-

rately enforce per-connection UDR targets (the normalized

UDR ranging from 0.941 to 0.999 for all the experimental

cases) with minimized throughput provisioning.

For distributed databases based on replica sets or sharded

clusters, UTSLO can be applied by guaranteeing UDR targets

at the database-instance level that typically involves single

replica or data shard. A major challenge is for scatter-and-

gather queries that access some or even all the shards (e.g.,

range queries). In this case, we need to decompose the query

UDR target into shard-level ones, which we will consider as

our future work.

7 ACKNOWLEDGMENTS

This work is supported in part by the US National Science

Foundation grants CNS-2008835 and CCF-2226117. We thank

the anonymous reviewers for their valuable comments. We

are especially grateful to our shepherd, Alexander B¥ĥhm, for

helping improve the paper’s presentation.

407

User Disengagement-Oriented Target Enforcement for Multi-Tenant Database Systems SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

REFERENCES
[1] 2016. Why Brands Are Fighting Over Milliseconds. https:

//www.forbes.com/sites/steveolenski/2016/11/10/why-brands-are-

�ghting-over-milliseconds/?sh=56aacfa04ad3.

[2] 2017. The State of Online Retail Performance. https:

//s3.amazonaws.com/so�st-marketing/State+of+Online+Retail+

Performance+Spring+2017+-+Akamai+and+SOASTA+2017.pdf.

[3] 2019. The system call intercepting library . https://github.com/pmem/

syscall_intercept.

[4] 2021. Additive increase/multiplicative decrease. https://en.wikipedia.

org/wiki/Additive_increase/multiplicative_decrease.

[5] 2021. Amazon study: Every 100ms in Added Page Load Time Cost 1%

in Revenue. https://www.contentkingapp.com/academy/page-speed-

resources/faq/amazon-page-speed-study/.

[6] 2022. Bounce rate. https://en.wikipedia.org/wiki/Bounce_rate.

[7] 2022. Churn rate. https://en.wikipedia.org/wiki/Churn_rate.

[8] 2022. Coe�cient of variation. https://en.wikipedia.org/wiki/

Coe�cient_of_variation.

[9] 2022. Conversion rate. https://en.wikipedia.org/wiki/Conversion_

marketing#Conversion_rate.

[10] 2022. Db2 workload manager. https://www.ibm.com/docs/en/db2/11.

1?topic=administration-db2-workload-manager.

[11] 2022. MongoDB. http://www.mongodb.org/.

[12] 2022. MySQL. http://www.mysql.com.

[13] 2022. Oracle. https://www.oracle.com.

[14] 2022. TRANSACTION PROCESSING PERFORMANCE COUNCIL. The

TPC-C home page . http://www.tpc.org/tpcc/.

[15] 2022. Website Speed Matters More Than You Think. https://

callchrishenry.com/website-speed/.

[16] 2023. Build a Multi-Tenant Architecture. https://www.mongodb.com/

docs/atlas/build-multi-tenant-arch/.

[17] 2023. cgroups - Linux control groups. http://man7.org/linux/man-

pages/man7/cgroups.7.html.

[18] 2023. Managing Resources with Oracle Database Resource

Manager. https://docs.oracle.com/en/database/oracle/oracle-

database/21/admin/managing-resources-with-oracle-database-

resource-manager.html.

[19] 2023. MongoDB Atlas. https://www.mongodb.com/cloud/atlas.

[20] 2023. MSSQL Server: Resource Governor. https://learn.microsoft.

com/en-us/sql/relational-databases/resource-governor/resource-

governor?view=sql-server-ver16.

[21] 2023. PostgreSQL. https://www.postgresql.org/.

[22] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and

S. Shenker. 2013. pfabric: Minimal near-optimal datacenter transport.

In SIGCOMM.

[23] Prince Bharadwaj, Sameer Kumar, Ashwin Raj, and Manoj Hudnurkar.

2022. Role of Database Management in E-Commerce Firms. CHANG-

ING FACE OF E-COMMERCE IN ASIA (2022), 297–313.

[24] Binlei Cai, Rongqi Zhang, Laiping Zhao, and Keqiu Li. 2018. Less

provisioning: A �ne-grained resource scaling engine for long-running

services with tail latency guarantees. In In Proceedings of International

Conference on Parallel Processing (ICPP).

[25] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.

2010. Benchmarking cloud serving systems with YCSB. In Proceedings

of the ACM symposium on Cloud computing (SoCC).

[26] S. S. Craciunas, C. M. Kirsch, and H. R ¥ĥck. 2008. I/O Resource Man-

agement Through System Call Scheduling. SIGOPS Oper. Syst. Rev 42,

5 (2008), 44–54.

[27] J. Dean and L. A. Barroso. 2013. The Tail At Scale. Commun. ACM 56

(2013), 74–80.

[28] Aaron J. Elmore, Sudipto Das, Alexander Pucher, Divyakant Agrawal,

Amr El Abbadi, and Xifeng Yan. 2013. Characterizing tenant behavior

for placement and crisis mitigation in multitenant dbmss. In In Proceed-

ings of the 2013 ACM SIGMOD International Conference on Management

of Data.

[29] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and S.

Shenker. 2015. phost: Distributed near-optimal datacenter transport

over commodity network fabric. In CoNEXT.

[30] R. Gracia-Tinedo, J. Sampé, E. Zamora, M. Sánchez-Artigas, P. García-

López, Y. Moatti, and E. Rom. 2017. Crystal: Software-De�ned Storage

for Multi-Tenant Object Stores. In Proccedings of the conference on File

and storage technologies (FAST).

[31] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W. Moore,

S. Hand, and J. Crowcroft. 2015. Queues don’t matter when you can

jump them!. In Proceedings of the USENIX conference on Networked

systems design and implementation (NSDI).

[32] A. Gulati, I. Ahmad, and C. A.Waldspurger. 2009. PARDA: proportional

allocation of resources for distributed storage access. In Proccedings of

the conference on File and storage technologies (FAST).

[33] A. Gulati, A. Merchant, M. Uysal, and Peter J. Varman. 2009. E�cient

and adaptive proportional share I/O scheduling. In Proceedings of the

International Conference on Measurement and Modeling of Computer

Systems (SIGMETRICS).

[34] A. Gulati, A. Merchant, and P. J. Varman. 2010. mClock: handling

throughput variability for hypervisor IO scheduling. In Proceedings

of the Symposium on Operating Systems Design and Implementation

(OSDI).

[35] R. D. Gupta and D. Kundu. 1999. Generalized Exponential Distributions.

Australian & New Zealand Journal of Statistics 41, 2 (1999), 173–188.

[36] Sergio Hernė́ndez, Pedro ý́lvareza, Javier Fabra, and Joaquğ́n Ezpeleta.

2017. Analysis of users’ behavior in structured e-commerce websites.

IEEE Access 5 (2017), 11941–11958.

[37] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and C.

Yan. 2013. Speeding up Distributed Request-Response Work�ows. In

SIGCOMM.

[38] K. Jang, J. Sherry, H. Ballani, and T. Moncaster. 2015. Silo: Predictable

message latency in the cloud. In SIGCOMM.

[39] W. Jin, J. S. Chase, and J. Kaur. 2004. Interposed proportional sharing

for a storage service utility. ACM SIGMETRICS Performance Evaluation

Review 32, 1 (2004), 37–48.

[40] Asya Kamsky. 2019. Adapting TPC-C benchmark to measure perfor-

mance of multi-document transactions in MongoDB. In Proceedings of

the VLDB Endowment.

[41] Julian K ¥ĥllerstr ¥ĥm. 1974. Heavy tra�c theory for queues with several

servers. I. Journal of Applied Probability 11, 3 (1974), 544–552.

[42] J. F. C Kingman. 1961. The single server queue in heavy tra�c. Mathe-

matical Proceedings of the Cambridge Philosophical Society 57, 4 (1961),

902–904.

[43] Yipkei Kwok, Patricia J. Teller, and Sarala Arunagiri. 2017. 2TL: A

scheduling algorithm for meeting the latency requirements of bursty

I/O streams at user-speci�ed percentiles. In IEEE International Confer-

ence on Cloud and Autonomic Computing (ICCAC).

[44] Zhenyu Leng, Dejun Jiang, Liuying Ma, and Jin Xiong. 2020. Gecko:

Guaranteeing Latency SLO on a Multi-Tenant Distributed Storage

System. In IEEE International Conference on Parallel and Distributed

Systems (ICPADS).

[45] Ning Li, Hong Jiang, Hao Che, Zhijun Wang, and Minh Q. Nguyen.

2022. Improving scalability of database systems by reshaping user

parallel I/O. In Proceedings of the 3th European conference on Computer

systems (EuroSys).

[46] N. Li, H. Jiang, D. Feng, and Z. Shi. 2016. PSLO: Enforcing the Ĕ Īℎ

Percentile Latency and Throughput SLOs for Consolidated VM Storage.

408

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Ning Li, Hong Jiang, Hao Che, Zhijun Wang, Minh Q. Nguyen, and Todd Rosenkrantz

In Proceedings of the 3th European conference on Computer systems

(EuroSys).

[47] JDC Little. 1961. NA proof for the queuing formula: L= ąW. Operations

research 9, 3 (1961), 383–387.

[48] C. R. Lumb and R. Golding. 2004. D-SPTF: Decentralized Request

Distribution in Brick-based Storage Systems. SIGOPS Oper. Syst. Rev.

38, 5 (2004), 37–47.

[49] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi. 2015. Retro: Targeted

Resource Management in Multi-tenant Distributed Systems. In Pro-

ceedings of the USENIX conference on Networked systems design and

implementation (NSDI).

[50] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic,

Somali Chaterji, and Saurabh Bagchi. 2021. SONIC: Application-aware

Data Passing for Chained Serverless Applications. In Proceedings of

the USENIX Annual Technical Conference (ATC).

[51] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh El-

nikety, Somali Chaterji, and Saurabh Bagchi. 2022. ORION and the

Three Rights: Sizing, Bundling, and Prewarming for Serverless DAGs.

In Proceedings of the Symposium on Operating Systems Design and

Implementation (OSDI).

[52] J. C. McCullough, J. Dunagan, A. Wolman, and A. C. Snoeren. 2010.

Stout: An adaptive interface to scalable cloud storage. In Proceedings

of the USENIX Annual Technical Conference (ATC).

[53] JyotiprasadMedhi. 2002. Stochastic models in queueing theory. Elsevier.

[54] Vivek Narasayya and Surajit Chaudhuri. 2021. Cloud data services:

Workloads, architectures and multi-tenancy. Foundations and Trends®

in Databases 10, 1 (2021), 1–107.

[55] M. Nguyen, S. Alesawi, N. Li, H. Che, and H. Jiang. 2018. Forktail: a

black-box fork-join tail latency prediction model for user-facing data-

center workloads. In Proceedings of the ACM International Symposium

on High Performance Distributed Computing (HPDC).

[56] J. Perrya, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. 2014.

Fastpass: A centralized zero-queue datacenter network. In SIGCOMM.

[57] Eric Schurman and Jake Brutlag. 2009. Performance Related Changes

and their User Impact. In Velocity-Web Performance and Operations

Conf.

[58] D. Shue, M. J. Freedman, and A. Shaikh. 2012. Performance Isolation

and Fairness for Multi-Tenant Cloud Storage. In Proceedings of the

Symposium on Operating Systems Design and Implementation (OSDI).

[59] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. 2015. C3: Cutting

Tail Latency in Cloud Data Stores via Adaptive Replica Selection. In

Proceedings of the USENIX conference on Networked systems design and

implementation (NSDI).

[60] B. Vamanan, J. Hasan, and T. Vijaykumarn. 2012. Deadline-aware

datacenter tcp (d2tcp). In SIGCOMM.

[61] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S.

Shenker. 2013. Low Latency via Redundancy. In CoNEXT.

[62] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica. 2012.

Cake: enabling high-level SLOs on shared storage systems. In Proceed-

ings of the ACM symposium on Cloud computing (SoCC).

[63] Z. Wu, C. Yu, and H. V. Madhyastha. 2015. CosTLO: Cost-E�ective

Redundancy for Lower Latency Variance on Cloud Storage Services.

In Proceedings of the USENIX conference on Networked systems design

and implementation (NSDI).

[64] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. 2013. Bobtail: Avoiding

Long Tails in the Cloud. In Proceedings of the USENIX conference on

Networked systems design and implementation (NSDI).

[65] J. Zhang, A. Riska, A. Sivasubramaniam, Q. Wang, and E. Riedel. 2006.

Storage performance virtualization via throughput and latency control.

ACM Transactions on Storage (TOS) 2, 3 (2006), 283–308.

[66] T. Zhu, D. S. Berger, and M. Harchol-Balter. 2016. SNC-Meister: Ad-

mitting More Tenants with Tail Latency SLOs. In Proceedings of the

ACM symposium on Cloud computing (SoCC).

[67] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R. Ganger.

2014. PriorityMeister: Tail Latency QoS for Shared Networked Storage.

In Proceedings of the ACM symposium on Cloud computing (SoCC).

409

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background and Case Studies
	2.2 Related Work

	3 UTSLO Design
	3.1 Multi-Tenant UDR Target Guarantee
	3.2 Mean Latency Budget Exploration
	3.3 UTSLO Components

	4 UTSLO Implementation
	4.1 Non-Intrusive Query Control
	4.2 Admission Control & Scheduling
	4.3 UDR Targets VS. High Throughput

	5 Performance Evaluation
	5.1 Baselines and Methodology
	5.2 The Effectiveness and Accuracy of UDR Target Enforcement
	5.3 Efficiency of the Resource Allocator
	5.4 Dynamic UDR Target Enforcement
	5.5 E-commerce services

	6 Conclusions and Future Work
	7 Acknowledgments
	References

