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ABSTRACT

The hydrodynamics of swimming at the millimeter-to-centimeter scale often present the
challenge of having both viscous and inertial effects playing nontrivial roles. Inertial forces arise
from the momentum of a moving fluid, while viscous forces come from friction within the flow.
The non-dimensional Reynolds number (Re) compares the magnitudes of the inertial and viscous
forces within a flow. At low Re (< 1), viscous forces dominate; at higher Re (>> 1), inertial forces
are more important. Efforts to understand the hydrodynamics of swimming have mainly focused
on the extremes of fully viscous-dominated (Re << 1) or inertia-dominated flow (Re > 1).
However, many animals swim in an intermediate regime, where inertia and viscosity are both
significant. As an impactful and generalizable case study, we focus on ctenophores (comb jellies),
a type of marine zooplankton. Ctenophores swim via the coordinated rowing of numerous highly
flexible appendages (ctenes), with Reynolds numbers on the order of 10-100. Their locomotory
dynamics present a unique opportunity to study the scaling of rowing (drag-based propulsion)
across the low to intermediate Reynolds number range. With a combination of animal experiments,
reduced-order analytical modeling, and physical-robotic modeling, we investigate how the
kinematic and geometric variables of beating ctenes vary across Re, and how they affect swimming
(including force production, speed, and maneuverability). Using animal experiments, we quantify
the spatiotemporal asymmetry of beating ctenes across a wide range of animal sizes and Re. With
our reduced-order model—the first to incorporate adequate formulations for the viscous-inertial
nature of this regime—we explore the maneuverability and agility displayed by ctenophores, and
show that by controlling the kinematics of their distributed appendages, ctenophores are capable of
nearly omnidirectional swimming. Finally, we use a compliant robotic model that mimics
ctenophore rowing kinematics to study rowing performance with direct calculation of thrust and

lift forces distributed along the propulsor. These experiments shed new light on the relationship
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between motion asymmetries and thrust and lift production. This combination of animal
experiments, analytical modeling, and physical modeling is the most detailed study of low to
intermediate Re rowing to date, and provides a foundation for future applications in bio-inspired

design.
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Figure 1-1: Simplified schematic of the reciprocal motion of a paddle (drag-based) vs. a
hydrofoil (lift-based). (A) Top view of drag-based propulsion (i.e., rowing), where the
asymmetry between power and recovery strokes is represented by the rotation of the
rectangular paddle (increasing the flow-normal area on the power stroke relative to
the recovery stroke). (B) Front view of lift-based propulsion, with the axis of
progression pointing out of the page. The leading edge (black line) motion shows that
lift-based propulsors must rotate over the stroke cycle to maintain a lift-generating
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Figure 1-2: Examples of metachronal paddles, showing how paddles shift from flexible to
rigid/hinged structures as Re increases. (A) The ctenophore paddle (ctene) is a highly
flexible cilia-based structure. White dots overlaid on the tip trajectory indicate equal
time intervals, and the dotted yellow line indicates the stroke amplitude (®); reprinted
with permission from (Herrera-Amaya et al., 2021). (B) Antarctic krill paddle
(pleopod), resembling a two-link mechanism where the proximal part is rigid and the
distal part is flexible; reprinted with permission from (Santos et al., 2022). (C)
American lobster paddle (pleopod), similar in construction to the krill but with a more
rigid distal part; reprinted with permission from (J. L. Lim & DeMont, 2009)............... 6

Figure 1-3: Schematic of a row of metachronally coordinated paddles, in which paddles
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Figure 1-4: A brief overview of relevant morphology of Bolinopsis vitrea. (A) top view
showing the eight ctene rows and their radial symmetry, (B) lateral view of ctene rows
circumscribing the body, and (C) close top view showing component cilia of each
ctene. Reprinted with permission from (Herrera-Amaya et al., 2021)......cccccecevevenrnnennee. 10

Figure 2-1: (A) Schematic of experimental pPSV setup showing an in-line configuration
of the camera, ELWD objective, filming vessel, and light source. (B) Example image
collected via uPSV. Reprinted with permission from (Herrera-Amaya et al., 2021). .....15

Figure 2-2: Snapshots showing the tracked ctene base (circle) and ctene tip trajectories
(solid white line). White dots overlaid on the tip trajectory indicate equal time
intervals (At =0.001 s), showing the difference in tip speed between the power and
recovery strokes. Ctene length (I) and stroke amplitude (®) are also marked. (A)
shows an animal with Ly = 11.56 mm and [ = 0.62 £ 0.02 mm, with high spatial
asymmetry; (B) shows an animal with Lz = 40 mm and [ = 0.76 £+ 0.01 mm, with
lower spatial asymmetry. Reprinted with permission from (Herrera-Amaya et al.,
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Figure 2-3: (A) Graphical definition of spatial asymmetry parameter Sa overlaid on a time-
series of ctene kinematics (gray lines). The black half-circle is the reachable space of
a ctene with length [; the larger ellipse 4, (red dotted line) estimates the maximum
area that could be enclosed by ctene tip over a complete cycle; inner shape A, (blue
dotted line) is the actual ctene tip trajectory. (B) Schematic of ctene tip speed over one
beat cycle. The temporal asymmetry parameter T'a is a function of ¢, (time between
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the first two minima of the tip speed curve) and t,. (remaining cycle time). Reprinted
with permission from (Herrera-Amaya et al., 2021).....ccccccveriiniiniiiiiieireeeeeeeeeene 18

Figure 2-4: (A) Instantaneous velocity field for a ctenophore with a body length Lg =
11.56 mm and average ctene length [ = 0.62 £+ 0.02 mm. (B) Time-averaged radial
velocity magnitude. (C) Time-averaged tangential velocity magnitude. (D)
Instantaneous velocity field for a ctenophore with a body length Ly = 38.99 mm and
average ctene length [ = 0.93 + 0.03 mm. (E) Time-averaged radial velocity
magnitude. (F) Time-averaged tangential velocity magnitude. Panels B, C, E, and F
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Reprinted with permission from (Herrera-Amaya et al., 2021). .....cccovevvvieviiencreeenieenen. 21

Figure 2-5: (A) Spatial asymmetry Sa vs. oscillatory Reynolds number Re,,. Lower Re,,
data (shown in blue) indicates B. vitrea (BIOS); higher Re,, data (shown in red)
indicates B. infundibulum (MBA). Linear regressions for each dataset (solid lines)
have regression coefficients Rpgjos = 0.4 and Ryp4 = 0.01. (B) Temporal
asymmetry Ta vs oscillatory Reynolds number Re,,. Linear regressions for each
dataset (solid lines) have regression coefficients Rg;ps = 0.01 and Ryg4 = 0.79.
Open circles represent the mean value for a single ctene; errorbars show 95%
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confidence bands on the linear regressions. Reprinted with permission from (Herrera-
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Figure 2-7: Morphology and ctene row kinematics of a typical Bolinopsis vitrea. (A) Top
view showing the eight ctene rows, the ctene row position angle &, and the sagittal
and tentacular planes (dg = 7.6mm). (B) Side view showing the ctene rows along
the body (Lg = 7.4mm) and k, the angle for the most aboral ctene. (C) Stylized
example time-series of ctene tip speed for one ctene over one beat cycle, where t,, is
the power stroke duration and t,. the recovery stroke duration. (D) Ctene row close
side view, showing a tracked ctene tip trajectory (4., solid white line), and the
estimated ctene reachable space (4,, red dashed ellipsoid inscribed in a black half
circle of radius [; shown elsewhere on the ctene row for clarity). Stroke amplitude (D)
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Figure 2-8: Maneuverability-Agility Plot (MAP). Experimental measurements of freely
swimming B. vitrea. Lower values of R /L indicate sharp turns (more maneuverable);
higher values of V indicate faster swimming (more agile). Values in the upper left
(low V, high R/L) are straightforwardly achievable with straight swimming (mode 4)

Figure 2-9: Motor volume (MV) constructed from the 27 tracked swimming trajectories of
B. vitrea. Black lines show swimming trajectories (midpoint between tentacular bulbs)
and volume swept by animals' bodies (gray cloud) during each maneuver. Based on



morphological measurements, animal volume is estimated as a prolate spheroid (Table
2-5). (A) Side view and (B) front view of the tracked swimming trajectories and motor
volume show that B. vitrea can turn over a large range of angles. ..........ccceevvvevveeeennnns

Figure 3-1: (A) Sample trajectory of a real ctene and (B) simplified elliptical trajectory for
the analytical model. Thin solid lines (dark blue) depict tip trajectories; thick solid
line (light blue) represents an oscillating plate, whose tip position (x4, y,) is a function
of 8 and ellipse geometry. Dotted lines denote the stroke amplitude ®. The
spatiotemporal asymmetry parameters, Sa and Ta, are prescribed for each model run;
these determine the time-varying tip position (x4, ¥4), which subsequently determine
the oscillating plate's speed and flow-normal area on the power and recovery strokes...

Figure 3-2: (A) The ratio G(Fp) of the gradients of F, in Sa — Ta space as a function of
Re,,, averaged over the tested parameter space. On the right, contour plots show the
behavior of F, for several values of Re,: (B) Re,, = 5, (C) Re,, = 60, (D) Re,, =
145, and (E) Re, = 200. High Re,, leads to Ta being more influential in force
production than Sa, an effect that increases as Re,, increases; for lower Re,,, Sa more
strongly influences force production............cocvevueeruierienieniere e

Figure 3-3: Comparison between experimental (red line) and modeled (blue line)
swimming speed. The shaded area represents all Sa-Ta combinations considered in
Figure 3-2. (A) shows an animal accelerating from near rest. The modeled speed (blue
line) has Sa = 0.55 and Ta = 0.35. (B) shows an animal swimming at a steady speed.
The modeled speed (blue line) has Sa = 0.3 and Ta = 0.2.....ccccvevvevrvncrieieereeieenen,

Figure 3-4: (A) Modeled swimming speed of a mid-size ctenophore (L, = 8.18 mm, [ =
0.41 mm,n = 9,and d = 6.25 mm) accelerating from rest at a beat frequency of f =
20 Hz (Re, =20.1) with Sa = 0.4 and Ta = 0.5. The black line shows the highest
oscillations in speed (P, = 0%), the blue line shows the phase lag that gives optimal
efficiency for unsteady swimming (P, = 6.12% for this specific case), and the
magenta line shows the phase lag that reduces body speed oscillations to a minimum

(P, = 19.59% for this specific case). (B) Swimming efficiency n = % (ratio of power

output to power input) as a function of phase lag for both the unsteady and steady
swimming period, as demarcated in panel (A). Efficiency is calculated over the entire
unsteady/steady periods to obtain the results shown. Maximum efficiency (black dot)
occurs at a phase lag of 6.12% during the unsteady period for this case; there is no
clear maximum efficiency for the steady period. (C) Magnitude of swimming speed
oscillations x;," as a function of phase lag. Oscillations in x;, are minimized for this
case at a phase lag of 19.59% (black dot). Reprinted with permission from (Herrera-
AMAya €t al., 2021) .iiiiiiiiieciie e et e b e et b e e e taeetreenereeas

Figure 3-5: Contours of swimming efficiency at f = 20Hz (Re,, = 20.1) for (A) unsteady
swimming, at P, = 6.12% (which maximizes efficiency 1) and (B) steady
swimming, at P; = 19.59% (which minimizes body speed oscillations xj),
throUZhOUL SA — T'A SPACE ...ttt st s

33

37

43

X



Figure 3-6: Schematic of a ctenophore's simplified geometry moving in 3D space. The unit
vectors é;, é,, and é; define the global (fixed) coordinate system while &1, €5, and é3
correspond to the moving coordinate system attached to the spheroidal body................

Figure 3-7: Ctenophore reduced-order modeling. (A) Lateral view of a ctenophore; red dots
mark the position of the ctenes that circumscribe its body in eight rows. (B) Real ctene
tip trajectory from a tracked time series of ctene kinematics (gray lines, spaced equally
in time). (C) Ctenophore modeled as a spheroidal body; red dots indicate the
application point for each modeled (time-varying) ctene propulsion force. (D)
Simplified elliptical trajectory for a modeled ctene, which is a flat plate with time-
varying length. The plate oscillates parallel to a plane tangent to the curved surface of
the modeled body ( A, tangential angle to the body surface). The time-varying tip
position (x4,y4) is prescribed as a function of the five ctene beating control
parameters: f, @, [, SA, aNd T@ .....occeeeiieiiiieiieeeee ettt

Figure 3-8: Beat frequency measurements for the mode 1 turning trajectory. (A) Snapshot
of freely swimming ctenophore and the tracked points: apical organ (red) and
tentacular bulbs (blue and green). (B) shows the direct frequency measurements for
ctene rows 4 and 5 (bottom ctene rows). Dots represent measurements, and the fitted
black line is used as an input to calculate the kinematics of the oscillating plates in the
mathematical MOAEL .........coeoiiiiiiiee et

Figure 3-9: Comparison between experimental measurements (red) and mathematical
predictions (blue) for the mode 1 turning trajectory. (A) shows experimental vs
predicted swimming trajectories. The shaded area shows the entire spatiotemporal
solution space (Sa — Ta), while the blue line is the best model prediction (Sa = 0.2
and Ta = 0.6). (B) shows experimental vs predicted swimming orientation. The red
triangles show the experimental positions for the tentacular bulbs and the apical organ
for different time points t = 0, 1.5, and 2.5s. The blue triangles are the best fit (Sa =
0.2 and Ta = 0.6) predicted positions for the same time instants............c.ccoeceereeeeerennen.

Figure 3-10: Beat frequency measurements for the mode 3 turning trajectory. (A) Snapshot
of freely swimming ctenophore and the tracked points: apical organ (red) and
tentacular bulbs (blue and green). (B) to (I) show the direct frequency measurements
for ctene rows 1 to 8. Dots represent measurements, and the fitted black line is used
as an input to calculate the kinematics of the oscillating plates in the mathematical

Figure 3-11: Comparison between experimental measurements (red) and mathematical
predictions (blue) for the mode 3 turning trajectory. (A) shows experimental vs
predicted swimming trajectories. The shaded area shows the entire spatiotemporal
solution space (Sa — Ta), while the blue line is the best model prediction (Sa = 0.18
and Ta = 0.18). (B) shows experimental vs predicted swimming orientation. The red
triangles show the experimental positions for the tentacular bulbs and the apical organ
for different time points = 0, 1.5, and 3s. The blue triangles are the best fit (Sa = 0.18
and Ta = 0.18) predicted positions for the same time instants............ccocceveeereeeriereeennne.

Figure 3-12: Maneuverability-Agility Plot (MAP). Experimental measurements of freely
swimming B. vitrea (red dots) and for all simulated cases of modes 1, 2, and 3 (blue



dots). Lower values of R/L indicate sharp turns (more maneuverable); higher values
of V indicate faster swimming (more agile). Values in the upper left (low V, high R/L)
are straightforwardly achievable with straight swimming (mode 4) or with Af < 2Hz;
these points were not simulated. Simulating mode 4 mathematically would result in
R/L ~oo, since the eight rows beat at the same frequency. However, mode 3 will
approach the behavior of mode 4 as Af = f,,+ — fin approaches zero. Here, the
minimum value is Af = 2Hz, so the upper-left corner of the MAP is not occupied.
Simulations were halted after the timestep in which R/L exceeded 10, resulting in
some trials with R/L slightly greater than 10 ...........ccccoevvevevrveiereeeeeesereeeee s,

Figure 3-13: Computationally simulated MV for the 3 ctenophore row control strategies,
with a variable number of rows beating at 30 Hz, swimming either forward or
backward, for a simulated time of one second. The darker gray ellipsoid placed on the
origin illustrates the animal's initial position. (A) Side view displaying the backward
(-x) and forward (+x) swimming trajectories. Asymmetry arises from the distribution
of ctenes along the body. (B) Front view of the swimming trajectories, showing the
wide range of tUrnNing dir€CtIONS .......c.cccveeriieriieriierierrerteereereereereereeteessaesseesssessseasseens

Figure 3-14: Computationally simulated MV for 255 ctene row control strategies, with 1 <
ng < 8 rows beating at 30 Hz, swimming either forward or backward for a simulated
time of one second. (A) Side view displaying the backward (-x) and forward (+x)
swimming trajectories. (B) Front view of the swimming trajectories, showing the wide
range Of tUrNING AITECLIONS ...eevueertiiiiieiiieie ettt stce sttt e ete e te et e ebe e bt ebeesbeesbeesaeesneeens

Figure 4-1: (A) Schematic of experimental PSV setup showing the inline configuration of
the camera, macro lens, water-glycerol tank with paddle, Fresnel lens, and light
source. (B) Close-up of the paddle actuation system. (C) Flat and rigid paddle (FR) as
seen by the camera. (D) Flat and flexible paddle (FF). (D) Initially curved and flexible
oY a1 TS (3 2 TSP

Figure 4-2: (A) Example of a still frame from a collected video showing the tip trajectory
(blue line) of the CF paddle and several tracked centerline points (white dots). (B) CF
paddle tip velocity for Ta = 0,0.1,0.2,0.3,0.4. Red lines are the 3-cycle average
A1 (003 |y PSRRI

Figure 4-3: Timeseries of the three different paddle kinematics, with paddle side profiles
plotted at equal time intervals. Red lines are power stroke tip trajectories, and blue
lines are recovery stroke tip trajectories. (A) shows the FR paddle; only the recovery
stroke tip trajectory is visible due to complete spatial symmetry (Sa = 0). (B) shows
the FF paddle; here, the paddle bends more during the power stroke than on the
recovery stroke, resulting in a negative spatial asymmetry. (C) shows the CF paddle,
which mimics the positive spatial asymmetry of a real ctene...........ccceevevverveniercvennenns

Figure 4-4: Spatial asymmetry passively responds to fluid forces. The FF paddle is shown
in blue, and the CF paddle in magenta. Experiments at different Reynolds numbers
(Re,, = 2mf1?/v) are indicated by the line transparency. From the most transparent
line to the solid line, Reynolds numbers vary across 7.43 + 0.24,14.87 +
0.3,27.40 £ 0.53,and 62.93 £ 1.11 ..o
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Figure 4-5: Analysis procedure to calculate the force distribution along the paddle. (A)
Velocity field from PSV experiments; colormap shows vorticity. (B) Pressure fields
are computed by solving the Navier-Stokes equations using the measured velocity
field as input and assuming out-of-plane velocities and velocity gradients are zero. (C)
Schematic of the centerline and offset points used to evaluate equation 17; each point
is a at an offset distance d, = 3.5 mm from the centerline. (D) Force vectors (blue)
and velocity vectors (red) along the paddle .........cccceevverieriiiciiiiieieeeee e,

Figure 4-6: Analysis of propulsor force production at Re, = 14.87 + 0.3 and Ta =
0.21 4+ 0.003. (A) Thrust force production for the FR (red), FF (blue), and CF paddles
(magenta). (B) Lift force production for the FR (red), FF (blue), and CF paddles
(magenta). Thick lines are the 3-cycle-averaged time series, and thinner lines show
the standard deviation of the measurements. The shaded area illustrates the time
interval of the power stroke, and the white region is the recovery stroke. (C, D, and E)
Force (blue) and velocity (red) distributions for three time instants at the beginning of
the power stroke (t/T = 0.05), during the power stroke slightly after peak tip speed
(t/T = 0.3), and the beginning of the recovery stroke (t/T = 0.42) .....ccceeveeveveeenennne

Figure 4-7: Cycle-averaged force coefficients of the three rowing paddles at intermediate
Reynolds numbers, where (A) shows thrust coefficient C; and (B) shows lift
coefficient C,. The FR paddle is shown in red, the FF paddle in blue, and the CF
paddle in magenta. Experiments at different Reynolds numbers (Re,, = 27f[?/v) are
shown by the color transparency; from the most transparent line to the solid line, Re,,
increases as 7.43 + 0.24,14.87 + 0.3,27.40 + 0.53,and 62.93 + 1.11.......cceevvvveeeeeen

Figure 4-8: Performance of three rowing paddles at intermediate Reynolds numbers. (A)
Thrust production efficiency. (B) Lift production efficiency (equation 18). The FR
paddle is shown in red, the FF paddle in blue, and the CF paddle in magenta.
Experiments at different Reynolds numbers (Re,, = 2rf1?/v) are indicated by the
line transparency; from the most transparent line to the solid line, Re,, increases as
7.43 +0.24,14.87 £ 0.3,27.40 £ 0.53,and 62.93 + 1.11 .cceoveieiriniieeecee

Figure 4-9: (A) Schematic for a laser-based PIV system, where the thickness of the laser
sheet defines the thickness of the measurement region (MR) and (B) a PSV system
where the thickness of measurement region (dotted box) is defined by the optics of
the SYSTEM (DOC) ..ueiiieiiiiicieeie ettt re e e te ettt et e s tbessbeesbeesbeesseesseesseesses

Figure 4-10: To-scale schematic of the DoC (rectangle width) and FoV (rectangle height)
for 3 um particles at three different magnifications: 5X (NA=1.4), 10X (NA=0.21),
and 20X (NA=0.5), as illuminated by a collimated white LED with 4 = 0.55um and
a refractive iNdeX 0f 77 = 1 (A1) cueievuiiiiiiiciie ettt e

Figure 4-11: Particles imaged by PSV. (A) Particles imaged at different distances from the
focal plane for d, = 2.6 um, and a DoC of 200 um, reproduced from (L. Goss &
Estevadeordal, 2006). (B) Schematic of the regions created by the backlighting of a
hard sphere. The sphere is being illuminated from left to right. Adapted from (van de
HUISE, 1957) .ttt
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Figure 4-12: Focused tracer detection algorithm for particle shadow velocimetry, from (0)
the original image to (5) final processed image ready to be used in a PIV cross-
correlation algorithm. Haloing effects like those shown in Figure 4-11 are clearly
visible in the original IMAZE (0) .....cceecvieeviiciieiieieeesee et re e ene e

Figure 4-13: Velocity field of the metachronal rowing of an adult ctenophore, calculated
using (A) PIV common pre-processing techniques, and (B) our focused tracer
detection algorithm. False deceleration zones are circled in white..........ccccceevverivennnnee.

Figure A-1: Schematic of a ctenophore's simplified geometry moving in a 3D space. The
unit vectors €3, €,, and &3 define the global (fixed) coordinate system while e;, e,
and egcorrespond to the moving coordinate system attached to the spheroidal body......

Figure A-2: (A) Graphical description of the spatial asymmetry overlaid on the ctene lateral
profile time series. (B) Simplified elliptical trajectory (blue line, (x4, v4)) and the
oscillating flat plate (green line). Dotted red lines denote stroke amplitude (), and [
is the ctene length. (C) Top view of a modeled ctenophore, showing the tentacular and
sagittal planes. Black boxes indicate the i** ctene row and ;& the corresponding ctene
row position angle. (D) Side view showing a plane bisecting a ctene row. Black lines
protruding from the body represent the k" ctene on the row. Ctene rows start at a
fixed angle x with respect to the apical organ, and , is the ctene positioning angle.
(E) Close up of a ctene position (red dot), showing the tangential angle to the body
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Figure B-1: PSV cartesian grid placed on top of the rigid paddle shape. Blue lines show
how the paddle needs to be dilatated to be recognized as a solid region by the pressure-
calculation algorithm of QUEENZ .........cccoiiiiiiiiiiiiieneteeeeteeeeee e

Figure B-2: Pressure fields computed from PSV velocity data. (A) Computed without
considering a solid region. The centerline of the paddle is colored purple, and the rest
of the lines indicate pressure sampling points with offset distances of 0.8, 1, 2, 3, 4,
and 5 mm. (B) Computed considering a solid region. The center line of the paddle is
colored blue, and the green dots show the selected offset distance of 3.5 mm................

Figure B-3: Force sensitivity analysis for the pressure offset sampling distance (A and B).
Different colors indicate different offset distances from the centerline (do Ffset =

0.8,1,2,3,4,5 mm). (A) Thrust force. (B) Lift force. (C and D) shows the calculated
thrust and lift force for the selected offset distance 3.5 mm, considering the presence
of'a solid region in the pressure field. Thick lines are the 3-cycle-averaged time series,
and thinner lines show the standard deviation of the measurements. The darker shaded
area illustrates the time interval of the power stroke, and the lighter shaded region is
the TECOVETY SLIOKE ...e.ueiiiiieiieieeeiteetieet ettt ettt ettt ettt sbt et tesate st e snteeabeeabeebeeseenees
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Chapter 1

Introduction

1.1 Motivation: rowing at intermediate Reynolds numbers

One of the most notable parameters in fluid mechanics is the Reynolds number (Re), which appears
across virtually all problems and is often a centerpiece for swimming studies. The Reynolds number
is a nondimensional grouping of variables that compares the magnitudes of the inertial and viscous
forces within a flow. The Reynolds number is defined as Re = Ul/v, where the numerator
(characteristic speed and length of the flow) quantifies the inertial forces and denominator
(kinematic viscosity) the viscous forces. The inertial forces are associated with the momentum of
amoving fluid, while the viscous forces arise from the fluid’s resistance to being sheared. In simple
terms, inertia keeps the fluid moving; viscosity brings it to a stop. This interplay has strong
implications for the nature of a given flow; for example, high inertial forces (relative to viscous
forces) can trigger the development of turbulence (chaotic vortices or eddies) because they will
overwhelm the ability of viscosity to damp out perturbations. In a highly viscous environment,
sharp gradients in fluid momentum are quickly smoothed. At low Re (<1), viscous forces dominate;
at higher Re, inertial forces take on more importance. Efforts to understand the physics of
swimming have mainly focused on the extremes of fully viscous-dominated or inertia-dominated
flow. However, many animals swim at intermediate Re, where both inertia and viscosity are
important. We can roughly separate these animals into two categories based on their propulsion
mechanism: those that use whole-body motions to swim (Costello et al., 2015; Gemmell et al.,
2015; Jastrebsky et al., 2016; Webb & Fairchild, 2001) and those that use oscillating propulsors

(Fish & Nicastro, 2003; Karakas et al., 2018; Murphy et al., 2016; Sutherland et al., 2014). In this
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work, we consider the second category—oscillating propulsors which can produce both drag and
lift as contributions to overall thrust.

Drag- and lift-based thrust are achieved depending on the motion of the propulsor relative
to the animal’s body. Rowing happens when the propulsor moves back and forth primarily along
an axis aligned with the progression axis (swimming direction); this is the “drag-based swimming”
case (Figure 1-1A). For this reciprocal motion to produce net thrust, the power stroke and the
recovery stroke must be asymmetric in either space or time (so that there is a drag imbalance).
When this reciprocal action primarily creates forces directed parallel to the direction of motion, the
propulsor is known as a paddle. In contrast, thrust can also be generated by the reciprocal motion
of a propulsor moving primarily orthogonally to the progression axis (Figure 1-1B). In this case,
the propulsors are known as hydrofoils and must rotate to maintain a lift-generating angle of attack
(“lift-based swimming”). For animals swimming at very low Re (<1), drag-based rowing is the
only option since the circulation needed to create lift is difficult to achieve in this viscous-
dominated regime (Walker & Westneat, 2000). Lift-based swimming appears at Re as low as 300
in animals such as Cuvierina atlantica, a pteropod whose motion resembles that of tiny flying
insects (Karakas et al., 2020). We are interested in studying rowing through the spectrum of low to

intermediate Re and will therefore focus on drag-based rowing mechanisms.

Power stroke Recovery stroke
. . — — Down stroke Up stroke
= =
+ i
Axis of «— e -
(A) progression (B)

Figure 1-1. Simplified schematic of the reciprocal motion of a paddle (drag-based) vs. a hydrofoil
(lift-based). (A) Top view of drag-based propulsion (i.e., rowing), where the asymmetry between

power and recovery strokes is represented by the rotation of the rectangular paddle (increasing the
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flow-normal area on the power stroke relative to the recovery stroke). (B) Front view of lift-based
propulsion, with the axis of progression pointing out of the page. The leading edge (black line)
motion shows that lift-based propulsors must rotate over the stroke cycle to maintain a lift-

generating angle of attack.

The simplest rowers are animals that use only one paddle or a single pair of opposing
paddles. This configuration is efficient for accelerating from rest, but imposes a limit on the
maximum speed of the animal: the animal cannot swim faster than the speed of its paddles (Vogel,
1994). This velocity restriction is one reason why drag-based rowers tend to have multiple
appendages and metachronal coordination, strategies that increase speed and/or maneuverability.
By “metachronal coordination,” we refer to the movement of fluid via the sequential, coordinated
motion of a row or carpet of closely spaced appendages (Barlow et al., 1993; Caldwell et al., 2012;
J. L. Lim & DeMont, 2009; Murphy et al., 2011). This swimming strategy maintains a phase lag
between adjacent paddles, which creates a “metachronal wave” traveling through the appendage
row (see section 1.2). This behavior, classically exemplified by cilia (Re~1072) (Brennen &
Winet, 1977), occurs in a variety of organisms at Re up to several thousand for large shrimp or
krill, which metachronally coordinate their legs and pleopods to swim (J. L. Lim & DeMont, 2009).
In this work, we study ctenophores, a group of gelatinous marine zooplankton that are the world’s
largest animals to swim using cilia (Tamm, 2014). In ctenophores, thousands of millimeter-long
cilia are bundled into an appendage known as a ctene (Figure 1-2A). Ctenes are spaced in rows
along the body of the ctenophore, and metachronally coordinated to produce flows for swimming
and feeding (Tamm, 1980). Ctenes have a Re of 10-200, making them an ideal candidate to bridge
the knowledge gap between the low and intermediate Re regimes for metachronal swimming and

drag-based propulsion.
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Ctenophores also exhibit remarkable three-dimensional locomotion, driven via eight rows
of paddles (instead of the one or two rows found in crustaceans and other organisms that use
metachronal locomotion). The coordination between ctene rows allows ctenophores to turn tightly
around many axes. This is not the case for all swimmers: animals that rely on paired appendages
or a single row of appendages tend to display maximum turning performance around a single axis,
depending on the appendages' positions along the body (Murphy et al., 2016; Niimoto et al., 2020;
Webb & Fairchild, 2001). Some swimmers exploit the flexibility of their bodies to turn, but these
usually have anisotropic bending characteristics and thus have a preferential turning direction
(Dabiri et al., 2020; Jastrebsky et al., 2016). Only a few animals have completely axisymmetric
bending characteristics; jellyfish are one example (Gemmell et al., 2015). However, the single-jet
propulsion used by jellyfish medusae has a notable disadvantage: an animal cannot easily reverse
its swimming direction with this strategy. Ctenophores, by contrast, can quickly switch their
swimming direction by reversing the power stroke direction of their ctenes (Mackie et al., 1992).

The implications of our study of ctenophore rowing can be broadly categorized into
biological and technological. Elucidating the role of hydrodynamic forces at this scale can help us
understand crucial animal behaviors like swimming or feeding (Colin et al., 2010; Kigrboe et al.,
2014). This work also has the potential to identify physical-mechanical constraints on the evolution
and development of ciliary arrays. Ctenophores are, evolutionary speaking, among the oldest
animals on the planet (Li et al., 2020; Moroz et al., 2014; Whelan et al., 2017); they are likely the
sister group for all other animals (Schultz et al., 2023) . Further knowledge of their swimming
mechanics may help us understand how this ancient rowing system has been preserved over
evolutionary time. On the technological/engineering side, a more comprehensive description of
ctene hydrodynamics will provide source material for new bioinspired sensors, devices, and
vehicles (Asadnia et al., 2016; C. Liu, 2007; Sitti, 2018). Cilia arrays have been a major source of

inspiration for microfluidic devices (Hanasoge et al., 2020; Sareh et al., 2013; Toonder & Onck,
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2013); as we approach the intermediate Reynolds number regime, ctene-inspired devices may also
provide promising new approaches for pumping or mixing fluid (Rockenbach et al., 2015;
Rockenbach & Schnakenberg, 2017). In addition, the near-omnidirectional swimming capabilities
of the ctenophore body plan show the potential of metachronal swimming as a source of design
inspiration for robotic vehicles (particularly those that must navigate complex environments).
However, our understanding of how such devices will interact with the surrounding fluid
environment (intermediate Re) is neither systemic nor general, despite the importance of fluid

dynamics in determining their performance.

1.2 Background and literature review

1.2.1 Metachronal coordination

In this section, we will explore key concepts and definitions in metachronal rowing by
describing 1) a paddle as a single unit, 2) a row of multiple paddles, and 3) the metachronal
coordination between them. To start, we define the appendage-based oscillatory Reynolds number
as Re, = 2nfl?/v, where f is the beat frequency in Hz, [ is the paddle length, and v is the
kinematic viscosity of the surrounding fluid. Figure 1-2 shows three characteristic examples of
metachronal paddles from a ctenophore, an Antarctic krill, and an American lobster, spanning three
orders of magnitude of Re,,. Noticeably, the paddle flexibility decreases as Re,, increases: the
ctene (Figure 1-2A) is a highly flexible cilia-based structure, while the pleopods (Figures 1-2B and
C) resemble a two-link mechanism. Even between krill and lobster pleopods, we notice differences
in rigidity: the distal part of the krill paddle is flexible, while the distal portion of the lobster is more
rigid. Despite these structural differences, they all undergo similar rowing kinematics. Figure 1-2A

shows the ctene tip trajectory, where dots represent equal time intervals. The top part of the
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trajectory, where the paddle is extended and moving quickly, is the power stroke, followed by the
recovery stroke, where the paddle is bent and moving slowly. By inspecting the ctene trajectory,
we can conclude that in addition to its geometry, we need at least four parameters to describe the
oscillation kinematics: the beat frequency f, the stroke amplitude @, and a description of the time-
varying tip speed and tip trajectory, which together quantify the spatiotemporal asymmetry of the
beating cycle. In this work, we propose two quantifiable, nondimensional parameters to describe
the temporal (T'a) and spatial asymmetry (Sa) (e.g., the tip speed and trajectory shape; Ta and Sa
are fully defined in section 2.1). These parameters also apply to other metachronal paddles, such
as those shown in Figures 1-2B and C. The work presented in this document frequently refers to
the spatiotemporal asymmetry parameters Sa and Ta, since they have proven to play crucial roles

in thrust generation for the low to intermediate Reynolds number regime.

Figure 1-2. Examples of metachronal paddles, showing how paddles shift from flexible to
rigid/hinged structures as Re increases. (A) The ctenophore paddle (ctene) is a highly flexible cilia-
based structure. White dots overlaid on the tip trajectory indicate equal time intervals, and the
dotted yellow line indicates the stroke amplitude (®); reprinted from (Herrera-Amaya et al., 2021).
(B) Antarctic krill paddle (pleopod), resembling a two-link mechanism where the proximal part is

rigid and the distal part is flexible; reprinted with permission from (Santos et al., 2022). (C)
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American lobster paddle (pleopod), similar in construction to the krill but with a more rigid distal

part; reprinted with permission from (J. L. Lim & DeMont, 2009).

In metachronal rowing, the appendages are found in rows (or carpets, in the case of cilia;
here, we consider only rows). Figure 1-3 shows a typical row. The row geometry is defined by the
spacing ratio s = [/§, where 6 is the distance between appendages and [ is the paddle length.
Because appendages are metachronally coordinated, each appendage completes a beat cycle
(power-recovery stroke) at a fixed phase lag (P;) from one another. For example, if the paddles in
Figure 1-3 have a phase lag of 25%, this means that paddle 2 is 25% ahead in its beat cycle with
respect to paddle 1, paddle 3 is 25% ahead of paddle 2, and so forth. From this coordination, a
traveling “metachronal wave” whose wavelength A is governed by P, and s appears in the row.
Figure 1-3 shows an example of antiplectic metachrony, in which the metachronal wave travels in
the opposite direction of the power stroke. Antiplectic metachrony is the dominant coordination
mode in swimming; other types of metachrony include symplectic, dexioplectic, and laeoplectic

(Blake & Sleigh, 1974; Brennen & Winet, 1977).

Power Stroke Metachronal wave
\ ] Jrsmn (/)
= ®© © 0 O

Figure 1-3. Schematic of a row of metachronally coordinated paddles, in which paddles are

separated by a distance § and have length [.

In summary, we can describe metachronal rowing with the following parameters: beat

frequency f, temporal asymmetry Ta, spatial asymmetry Sa, stroke amplitude @, spacing ratio s,
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and phase lag P, (if the paddles are finite, we also consider their width w). Metachronal
coordination has many desirable features, as previously discussed: it lifts the constraint that body
speed cannot be higher than paddle speed (Murphy et al., 2011), and is more efficient than
synchronous rowing (Elgeti & Gompper, 2013; Ford & Santhanakrishnan, 2020). Metachronal
coordination also has an advantage in viscous-dominated, time-reversible flows. At Re,, < 1, flow
is time-reversible and spatial asymmetry is necessary for a single oscillating appendage to produce
net fluid displacement (Purcell, 1977). However, metachronal coordination can remove this
constraint (Takagi, 2015)—if appendages beat with a nonzero phase-lag, spatially symmetric
stroking can produce net flow even at low Re. Such performance has inspired recent research on
the role of the phase-lag on the propulsive efficiency of metachronal swimming. Measurements
from a krill-inspired robot place the optimal P; between 16.7% and 25% (Ford et al., 2019), while
a krill-inspired numerical model found it to be 20% < P, < 25% (Granzier-Nakajima et al., 2020).
Interestingly, this level of phase lag (P, = 25%) also yields the most robust coordination pattern
that can be controlled by crustacean neural circuits (C. Zhang et al., 2014). Other studies have
focused on the role of beat frequency and the spacing ratio (Barlow & Sleigh, 1993; Dauptain et
al., 2008). However, the stroke spatiotemporal asymmetry has not been studied in the context of
metachronal coordination. We seek to explore these parameters and their effects on swimming
performance more fully.

AtRe, < 1,itis evident that a spatially asymmetric beat increases the net propulsion force
(due to the higher drag imbalance between the power and recovery stroke). However, a fast power
stroke and a slow recovery stroke (high Ta) would be energetically expensive without necessarily
increasing the net fluid displacement. At intermediate Re, the role of spatiotemporal asymmetry is
still unclear. Recently, (Saffaraval & Goudarzi, 2021) experimentally explored the roles of spatial
and temporal asymmetries in a single oscillating long plate at intermediate Re, finding that

increasing temporal asymmetry increased pumping performance and the presence of spatial
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asymmetry increased the pumping efficiency. However, experimental constraints in this study did
not allow for continuous variation of spatial asymmetry, nor varying levels of both asymmetries
simultaneously. Our experiments on living ctenophores show decreased spatial asymmetry and
increased temporal asymmetry as the Reynolds number rises (see section 2.1). Our results also
show significantly different flows in ctene rows with varying levels of spatial asymmetry at
approximately equivalent Re,,, hinting the importance of ctene kinematics to change the flow

directionality (further discussed in section 2.1).

1.2.2 Ctenophore morphology

This section describes the morphology and physiology of ctenophores to the extent that it
is of significant importance for their swimming (including parts of the organism that we will use
as markers for tracking in section 2.2). Ctenophores (comb jellies) are gelatinous marine
zooplankton, with bodies mainly composed of water (97%) (Hernandez-Nicaise, 1991).
Ctenophores swim using eight rows of paddles called ctenes, circumscribing a spheroidal body
(Figure 1-4A). Each ctene comprises thousands of long cilia which move as a unit (Heimbichner
Goebel et al., 2020) (Figure 1-4C). These cilia are structurally similar to those found at the micron
scale (low Re), but are much longer at approximately 1 mm in length (Afzelius, 1961). Ctenophores
are carnivorous, feeding on crustaceans, other comb jellies, eggs, and fish larvae. Figure 1-4 shows
Bolinopsis vitrea, a lobate ctenophore, so-called for the two muscle structures surrounding the
mouth (Figure 1-4B). As larvae, B. vitrea use long retractable tentacles (Figure 1-4B), covered with
specialized sticky cells called colloblasts, to capture their prey. Tentacles are no longer used for
feeding when mature, but the tentacular bulbs remain (Figure 1-4A). Because the tentacular bulbs
are visually prominent, we will use those two points as reference markers for kinematic tracking.

The apical organ (or statocyst) is at the aboral end of the animal, opposite to the mouth; it serves
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as a gravity sensor (Figure 1-4B). When swimming, ctenophores often assume vertical positions
where the principal body (oral-aboral) axis is aligned with gravity. This organ is the primary
sensory interface (Hernandez-Nicaise, 1991) that enables that alignment. Like the tentacular bulbs,

its visual prominence allows us to use it as a kinematic tracking marker (see section 2.2).

\

Tentacular

Figure 1-4. A brief overview of relevant morphology of Bolinopsis vitrea. (A) top view showing
the eight ctene rows and their radial symmetry, (B) lateral view of ctene rows circumscribing the
body, and (C) close top view showing component cilia of each ctene. Reprinted with permission

from (Herrera-Amaya et al., 2021).

1.3 Dissertation outline

This dissertation explores the following question: how do ciliary kinematics scale from
low to intermediate Reynolds numbers, and what are the implications for drag-based
swimming in this regime? We will combine animal experiments with physical and reduced-order
analytical modeling to quantify the physics of ctene-generated flows across a range of Re. Studying
ctenophore swimming is challenging due to the range of scales involved. Ctenophore appendages

are one or two orders of magnitude smaller than their bodies (Figure 1-4); appendage-scale
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Reynolds numbers are 10-200, and body-scale Reynolds numbers are 100-6000 (Matsumoto,
1991). Simultaneously measuring fluid velocity and swimming kinematics from the ctene scale to
the body scale is a herculean task requiring high spatial and temporal resolution. We approach this
difficulty by separating the problem into two behavioral experiments. We use high-speed 3D
videography to analyze the maneuvering performance of freely swimming ctenophores, and
Particle Shadow Velocimetry (PSV) to study ctene kinematics and flow production. We also
measure variables involving the coordination of neighboring cilia (e.g., phase lag, spacing, and beat
frequency). We use these experimental data to develop and verify a reduced-order analytical model,
which serves as a numerical tool to explore the kinematic parameter space more fully than would
be feasible with animal experiments alone. Finally, we create a dynamically scaled physical-robotic
model of a single ctene, both as proof-of-concept for bioinspired design principles and as an
additional tool to explore the parameter space of spatiotemporal asymmetry. We use the results of
the animal experiments to verify both models’ accuracy, and to inform the physical model’s
geometric and kinematic parameters. These two (non-behavioral) approaches will allow us to
perform parametric studies of the effect of important variables across the range of Reynolds
numbers observed in freely swimming ctenophores. This full sweep of the parameter space would
be difficult to impossible to perform in natural systems, where variables of interest often cannot be
controlled or prescribed.

This dissertation is organized as follows: Chapter 2 describes our experiments with living
ctenophores. We first describe ctenophore swimming mechanics to help frame our research
questions. We then present three-dimensional swimming data demonstrating ctenophores’
excellent maneuverability and motivating our interest in their rowing mechanics. This is followed
by a thorough description of the appendage kinematics and the observed changes of ctene/paddle
kinematics as a function of Re, which is a core question of this work. Chapter 3 presents a reduced-

order mathematical model, our first non-behavioral approach to elucidate the role of beat
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kinematics in a viscous-inertial fluid environment across the intermediate Re range. Such models
help estimate the propulsion forces and provide a first-pass, high-level view of the role of the
different parameters on animal swimming. However, this model does not solve the complete flow
generated by the appendages, a crucial component in fully understanding the problem. Chapter 4
presents the rowing performance of bioinspired flexible and rigid robotic paddles, and explores the
role of spatiotemporal asymmetries on thrust and lift production across the intermediate Reynolds
number range. In this chapter, we also describe the adaptation of Particle Shadow Velocimetry (a
flow quantification technique) to our experimental needs with live ctenophores (Chapter 2) as well
as the dynamically scaled physical-robotic model. Chapter 5 summarizes our conclusions and
proposes future avenues of exploration in bio-inspired aquatic locomotion. Finally, Appendix A
contains specific details of the reduced-order model: appendage kinematics, geometrical
derivations, and drag coefficient expressions, Appendix B contains a force sensitivity analysis for

the experimental pressure calculations described in Chapter 4.
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Chapter 2

Animal experiments

Two sampling sites and species were used for the experiments outlined in this chapter
(summarized in Table 2-1). Both species are lobate ctenophores, with muscular extensions (lobes)
on the body that project beyond the mouth (Figure 1-4B). This family of ctenophores uses lobes in
conjunction with cilia to form a filter-feeding mechanism capable of outcompeting other species
(Colin et al., 2010), enabling them to thrive across (and invade) many habitats (Kideys, 2002;
Shiganova et al., 2001).

Bolinopsis vitrea were collected at Flatt's Inlet, Bermuda, in May 2018 and transported to
the Bermuda Institute of Ocean Sciences (BIOS). Larger animals were maintained in a flow-
through planktonkreisel tank with filtered seawater. At the same time, smaller specimens were kept
in glass jars partially submerged in an open sea table with a continuous flow of filtered seawater.
Animals were fed ad libitum on freshly hatched nauplii of Artemia sp. All experiments were
conducted at ambient temperature (21-23°C) and completed within 12 hours of animal collection.

Bolinopsis infundibulum were sampled from existing cultures at the Monterey Bay
Aquarium (MBA), Monterey, CA, in August 2019. Cultured animals were maintained in
planktonkreisels with flow-through filtered seawater at 12-13°C and fed Artemia nauplii twice
daily. Animals were removed from one kreisel, immediately used in experiments, and replaced in

a second kreisel to avoid re-use.

Table 2-1. Morphometric characteristics of observed animals (mean + one standard deviation).
Data set Sample size*  Body length (mm)  Ctene length (mm)
BIOS 8 18.43+14.01 0.42+0.11
MBA 4 24.01+8.12 0.87+0.1
*Number of animals; for some analyses, multiple recordings per animal were used.
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Section 2.1 has been published in Integrative and Comparative Biology (Herrera-Amaya

et al., 2021), and section 2.2 is under review at the time of dissertation submission.

2.1 Propulsion mechanics: ctene row kinematics and flow production

This section focuses on the kinematics and fluid dynamics of the propulsion system
employed by ctenophores. We use high-speed video and velocimetry to measure the kinematics
and fluid dynamics of the beating ctene rows of two species of lobate ctenophores across a range
of body sizes and Re. This work is the first to focus on spatiotemporal asymmetry in the beating of
metachronal appendages, quantifying temporal asymmetry (7a) as defined by (Gauger et al., 2009)
and proposing a new non-dimensional parameter (Sa) to quantify spatial asymmetry. In this section,
we use data collected from both BIOS and MBA (section 2.2 uses only the BIOS dataset, as the

MBA dataset does not include 3D swimming trajectory data).

2.1.1 Imaging facilities

To obtain both flow velocities and ctene kinematics, we used a micro-scale Particle
Shadow Velocimetry (uPSV) system following (Gemmell et al.,, 2014). uPSV is also called
“brightfield Particle Image Velocimetry” (Khodaparast et al., 2013). Collimated white light
illuminates the entire filming vessel and produces sharply-defined shadows of tracer particles and
the target organism, which are then imaged via an extra-long working distance (ELWD)
microscope objective (Figure 2-1). After inverting and preprocessing raw images, they can be input
into standard PIV algorithms to produce two-dimensional velocity fields (L. P. Goss et al., 2007).
The imaging volume is controlled by the optical depth of correlation (Koutsiaris, 2012), such that

strongly out-of-focus tracers do not contribute to the calculated flow field. Using ELWD objectives
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permits the focal plane to be centered in the filming vessel, thus avoiding wall effects. A detailed

description of the working principles of PSV can be found in section 4.2.

Focal Plane — | ELWD High speed
objective camars
(A= e Qﬂ (B)

Collimated LED

Figure 2-1. (A) Schematic of experimental uPSV setup showing an in-line configuration of the
camera, ELWD objective, filming vessel, and light source. (B) Example image collected via uPSV.

Reprinted with permission from (Herrera-Amaya et al., 2021).

System components (MBA//BIOS) include a collimated white LED light source (Thorlabs,
Newton, NJ, USA// Dolan-Jenner Industries, Lawrence, MA, USA), a transparent filming vessel,
an ELWD objective (Achrovid, Centennial, CO, USA // Mitutoyo, Aurora, IL, USA), and a high-
speed camera (Photron AX200, Photron USA Inc., San Diego, CA, USA // Phantom VEO 440,
Vision Research Inc., Wayne, NJ, USA) (Figure 2-1A). In both experiments, images were collected
at 1000 frames per second with an exposure time of 900 ps. To avoid adverse animal reactions to
plastic or glass microbeads, the water was seeded with living phytoplankton, which served as
approximately passive flow tracers since their swimming speed was much lower than the measured
flow speeds (Gemmell et al., 2014). To accommodate differences in resolution between the two
imaging systems, we used Tetriselmis chuii (average diameter of 10-12 um) for the MBA dataset
and Nannochloropsis oculata (2-3 um) for the BIOS dataset. Tracer shadows were recorded in
digital images with particle image diameters of 2-3 pixels, as appropriate for particle velocimetry

(Raffel et al., 2018). We note that the brightfield imaging system used for the BIOS dataset is also
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described in (Karakas et al., 2020), and that those data are contemporary with the results presented

here.

2.1.2 Velocimetry and kinematic analysis

We recorded image sequences when animals rested against the bottom of the filming vessel
(zero forward swimming velocity). In some cases, we constrained animals using transparent acrylic
plates. In all cases, the focal plane remained far from solid surfaces to avoid wall effects. We
pursued kinematics analysis only if the ctenes were normal to the focal plane, and velocimetry
analysis only if the plane of focus was roughly bisecting the ctene row. These restrictions yielded
12 image sequences for kinematics analysis and two for velocimetry analysis. The Depth of
Correlation (DoC), or thickness of the useful measurement volume, is typically around 10 pm for
uPSV, using magnifications of 10x — 40x (Gemmell et al., 2014). Our system required a 5x
magnification to visualize several ctenes simultaneously (with a field of view of approximately 4
X 2.5 mm), leading to a DoC of ~ 130 um (Koutsiaris, 2012). Standard PIV image prefilters retain
significant noise from out-of-focus tracers at this magnification. We therefore developed a custom
prefiltering algorithm that finds each focused particle and generates a new inverted image
containing only the focused particles (section 4.2.1). The image preprocessing algorithm is
described in detail in section 4.2. In these processed images, the average seeding density through
the focal plane is 1.3x1073 particles per pixel. We performed vector computation (two-pass
iteration with subwindows of 128x128 px and 64x64 px, with 50% overlap) using the MATLAB-
based tool PIVLab (Thielicke & Stamhuis, 2014). All image preprocessing and vector field
postprocessing was conducted with MATLAB (Mathworks Inc., Natick, MA, USA).

Kinematic analysis was based on two-dimensional tracking data performed via the

MATLAB-based tool DLTdv8 (Hedrick, 2008), including deep learning features. We tracked the
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base and tip of all fully visible ctenes for each image sequence. Figure 2-2 shows examples of two
tracked ctene rows from two different animals. From the measured tip trajectory, we calculated the
spatial asymmetry (degree of difference in flow-normal area between the power and recovery
stroke) and temporal asymmetry (difference in duration of the power and recovery stroke). These

parameters are defined in the next section.

Figure 2-2. Snapshots showing the tracked ctene base (circle) and ctene tip trajectories (solid white
line). White dots overlaid on the tip trajectory indicate equal time intervals (At =0.001 s), showing
the difference in tip speed between the power and recovery strokes. Ctene length (I) and stroke
amplitude (@) are also marked. (A) shows an animal with Lg = 11.56 mm and [ = 0.62 +
0.02 mm, with high spatial asymmetry; (B) shows an animal with L = 40 mm and [ = 0.76 +
0.01 mm, with lower spatial asymmetry. Reprinted with permission from (Herrera-Amaya et al.,

2021).

2.1.3 Morphological and metachronal parameters

As discussed in section 1.2.1, we describe the motion of a ctene row using seven
parameters: three morphometric variables and five kinematic/coordination variables.
Morphometric parameters include the ctene length (1), defined as the longest measured distance

between the ctene base and tip during a beat cycle (Figure 2-2A), the ctene width (w), and the
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distance between appendages (§). Coordination parameters include beat frequency (f), phase lag
(Pp), stroke amplitude (®), and temporal asymmetry (Ta). Phase lag is the percentage of the cycle
time that a ctene's beat cycle leads a neighboring ctene. Stroke amplitude (®) is the angle swept
out by the ctene tip over one power stroke (Figure 2-2B). Temporal asymmetry (also known as the

kinematic asymmetry parameter (Gauger et al., 2009)) is defined as:

tr —tp D
tr +tp

Ta =

where t, is the recovery stroke duration and t;, the power stroke duration. This parameter is zero
for a time-symmetric beat cycle and one for an infinitely fast power stroke (Figure 2-3B).

To quantify the level of spatial asymmetry in each beat cycle for each ctene, we define a
new parameter:

S—Ae 2
a—AO (2)

where A, is the area enclosed by the tip trajectory and A4, is the largest possible area of an ellipse
inscribed within the reachable space of the ctene (that is, a half-circle with radius [), as shown in
Figure 2-3A. Because of the ctene's flexibility, this ellipse represents a rough estimate of the
theoretical maximum of the area that its tip could trace out. The ratio Sa = A,/A, would therefore

tend to one for highly asymmetric beat cycles, and zero for a rigid ctene moving symmetrically.

Tip speed

Beat cycle



19

Figure 2-3. (A) Graphical definition of spatial asymmetry parameter Sa overlaid on a time-series
of ctene kinematics (gray lines). The black half-circle is the reachable space of a ctene with length
l; the larger ellipse A, (red dotted line) estimates the maximum area that could be enclosed by ctene
tip over a complete cycle; inner shape A, (blue dotted line) is the actual ctene tip trajectory. (B)
Schematic of ctene tip speed over one beat cycle. The temporal asymmetry parameter Ta is a
function of t,, (time between the first two minima of the tip speed curve) and t,. (remaining cycle

time). Reprinted with permission from (Herrera-Amaya et al., 2021).

2.1.4 Results

To examine the flows generated by ctene rows beating across a range of body sizes,
Reynolds numbers, and spatiotemporal asymmetries, we used uPSV as described in the previous
section. Figures 2-4A and D show sample velocity fields from two specimens of B. vitrea. Flow
shown in Figure 2-4A is similar to previous observations of ctenophores (Barlow et al., 1993), with
no apparent vortices—the peak flow speed is co-located with the ctene tip as it reaches its maximum
speed. Flow reversal is only present in the sub-ctene layer; the outer flow is primarily unidirectional
and relatively steady. The animal shown in Figure 2-4D is larger in both body size and ctene length
and generates a slightly more complex flow. The maximum flow speed is no longer attached to the
ctene tip. A clear tip vortex is present, indicating the growing importance of fluid inertia. A tip
vortex such as that seen in Figure 2-4D has not been previously seen in ctenophores, but is
consistent with observations of metachronal swimmers operating at slightly larger Re (250-1000)
(Colin et al., 2020; Ford et al., 2019; Murphy et al., 2013). Figures 2-4B and E show the radial
velocity magnitude, averaged over seven beat cycles, while Figures 2-4C and F show the time-
averaged tangential velocity magnitude, with the angular decomposition based on the center of a

circular arc fitted to the body wall. The flow is tangentially dominated; however, the average radial
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velocity component close to the ctenes is noticeably higher for the larger animal, indicating
increased two-dimensionality of the flow.

The animal shown in Figure 2-4D has a slightly higher Re,, (see Table 2-2) and shows a
lower degree of spatial asymmetry (Sa = 0.29) relative to the animal shown in Figure 2-4A (Sa =
0.53), which has a slightly lower Re,, (see Table 2-2). It is likely that both the increased Re,, and
the lower degree of spatial asymmetry in the stroke contributes to the presence of vortices in Figure
2-4D. Though the Reynolds number is lower and the appendage is more deformable, the measured
flows are similar to the well-characterized vortex-shedding behavior observed in flexible flapping

foils (Dewey et al., 2013; Marais et al., 2012; Quinn et al., 2014).

Table 2-2. Flow parameters for Figure 2-4 (mean + one standard deviation of 30 (small animal)
and 7 (large animal) cycles).

Ly(mm) Re, I(mm) f(Hz) Sa Ta P; (%) ®(°)
11.56 2393+ 0.62+ 16.74 = 053+ 0.04 + 13.11+ 101.76=+

0.5 0.02 0.98 0.01 0.07 1.22 4.83
38.99 68.27+ 093+ 1123 + 029+ 0.15 £ 13.04+ 104.15+
3.39 0.03 0.23 0.03 0.04 1.24 2.49

We note that obtaining high-quality flowfields is technically challenging, as it requires
delicate alignment between the ctene row and the focal plane of the imaging system. Furthermore,
the ctene row must remain aligned for a nontrivial period of time to draw conclusions about the
beat cycle. These quality standards resulted in only two video sequences suitable for pPSV analysis
(out of 12 video sequences processed for ctene kinematics). While these sequences do show animals
of different sizes and ctenes beating at slightly different Re,,, the sample size is not large enough
to draw definitive conclusions about the role of spatiotemporal asymmetry in flow generation
across scales. We also note that these animals are somewhat constrained and measured with zero
swimming speed, as discussed in the previous section. The velocity fields, particularly in the far

field, will likely differ for a freely swimming animal. The ctene kinematics, particularly those
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driven by passive fluid-structure interactions, may also be different for this case. However, our
qualitative observations of the general character of the velocity fields — a more two-dimensional
flowfield for larger animals with higher beat frequencies — are likely to hold for the free-swimming

case as well.
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Figure 2-4. (A) Instantaneous velocity field for a ctenophore with a body length Ly = 11.56 mm
and average ctene length [ = 0.62 £+ 0.02 mm. (B) Time-averaged radial velocity magnitude. (C)
Time-averaged tangential velocity magnitude. (D) Instantaneous velocity field for a ctenophore

with a body length Lgp = 38.99 mm and average ctene length [ = 0.93 £+ 0.03 mm. (E) Time-
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averaged radial velocity magnitude. (F) Time-averaged tangential velocity magnitude. Panels B, C,
E, and F are averaged over seven beat cycles and share the color scale displayed on the right.

Reprinted with permission from (Herrera-Amaya et al., 2021).

Of the previously defined kinematic/coordination parameters, several are commonly
reported in published studies (stroke amplitude @, phase lag P;, and beat frequency f). Table 2-3
shows these parameters for several ctenophore species; our results are consistent with previous
observations. However, the degree of spatiotemporal asymmetry is not typically reported. In the
current study, we measure spatial asymmetry Sa and temporal asymmetry Ta for ctenes engaged

in idle, steady beating as previously defined (Figure 2-3).

Table 2-3. Measured values for stroke amplitude, (P), phase-lag (P, ), and beat frequency (f) of
ctene rows. Where margins are indicated, they are the mean plus or minus one standard deviation.

Species D () P; (%) f(Hz) Beating Source
mode
B. vitrea 112.1+8.9 132+1.7 151+£22 Idle/Tethered Current study
B. 102.1+5.2 13.9+49 277+£19 Idle/Tethered Current study
infundibulum
Mertensia - - 7 Active (Matsumoto, 1991)
ovum* swimming
Beroe artic*  — - 15 Active (Matsumoto, 1991)
swimming
L. pulchra* - - 13 Active (Matsumoto, 1991)
swimming
P. pileus* 135+155 - 10, 27 Tethered (Barlow & Sleigh,
1993)
P. pileus™ - 7.07+3.5 5t025 Tethered (Barlow et al.,
1993)
P. bachei - - 10.1 £5.1  Active (Heimbichner

swimming Goebel et al., 2020)

*Average of > 25 measurements (¢ not reported), + Beat frequency controlled by a mechanical
actuator.

Our results show that for B. vitrea, as Re,, increases, Sa declines and Ta is nearly constant;

for B. infundibulum, Sa is nearly constant, and Ta increases (Figure 2-5). All specimens of B.
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infundibulum were observed to have higher Re, than that of B. vitrea. While these data are
somewhat sparse, they indicate that the roles of spatial and temporal asymmetry may interact with
one another. This interaction may change depending on the relative importance of viscosity and
inertia. The drop in Sa is non-intuitive: since higher spatial asymmetry should correspond to greater
force production, it is unclear why it would decrease with increasing Re,,. To further investigate
the relationship between Sa and T'a, we turn to a simple reduced-order analytical model (described
in section 3.1). Using this simple model, we can qualitatively investigate how increasing or
decreasing spatiotemporal asymmetry can affect swimming efficiency. The model is simple by
design, meant to predict trends in force and power generation (and how they vary with
spatiotemporal asymmetry) rather than the true values of these quantities. Due to its necessary
simplifying assumptions, this model will not capture the full complexity of an actual ctene row;
however, it serves as a useful tool for investigating the role of spatiotemporal asymmetry across a

large parameter space, which would be computationally prohibitive for a higher-fidelity model.
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Figure 2-5. (A) Spatial asymmetry Sa vs. oscillatory Reynolds number Re,. Lower Re,, data
(shown in blue) indicates B. vitrea (BIOS); higher Re, data (shown in red) indicates B.
infundibulum (MBA). Linear regressions for each dataset (solid lines) have regression coefficients

Rpros = 0.4 and Rygs = 0.01. (B) Temporal asymmetry Ta vs oscillatory Reynolds number
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Re,. Linear regressions for each dataset (solid lines) have regression coefficients Rg;g9s =
0.01 and Rypq = 0.79. Open circles represent the mean value for a single ctene; errorbars show
95% confidence interval based on measured cycles (>20). The dotted lines represent 95%
confidence bands on the linear regressions. Reprinted with permission from (Herrera-Amaya et al.,

2021).

2.1.5 Summary

Velocimetry and paddle kinematics of live animals show that a rowing appendage’s spatial
and temporal asymmetry levels play an important role at intermediate Reynolds numbers.
Laboratory experiments on lobate ctenophores showed both qualitative and quantitative differences
between the flows generated by two animals whose ctenes beat at different Reynolds numbers and
different spatiotemporal asymmetries, including the presence of tip vortices and increased two-
dimensionality for the higher Re,, / lower Sa case. The higher Re,, / lower Sa case also showed
increased radial momentum production, which may also impact turning. However, the flowfields
shown in Figure 2-4 are not enough to draw predictive conclusions. While the velocimetry analysis
is limited, our observation of ctene kinematics in living animals revealed that as Re,, increases,
spatial asymmetry decreases and temporal asymmetry increases. We will employ the reduced-order
model of section 3.1 to explore the consequences of this trend for force production and swimming

performance.

2.2 Metachronal maneuverability

Metachronal coordination of appendages is seen in many aquatic organisms spanning a

wide range of sizes and body plans, including shrimp, krill, polychaetes, and even aquatic insects
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(Alben et al., 2010; Byron et al., 2021). The generated flow can be used for swimming or pumping
to aid in feeding, clearance of wastes, and other functions (Garayev & Murphy, 2021; Larson et al.,
2014). This technique is highly scalable, with metachronal coordinated appendages ranging from
microns to centimeters in length. Studies of metachronal locomotion have thus focused primarily
on unidirectional swimming ability (Daniels et al., 2021; Garayev & Murphy, 2021; Hayashi &
Takagi, 2020; Matsumoto, 1991), but some metachronal swimmers are also capable of surprising
agility. Though ctenophores are primarily planktonic, they also swim actively. Their natural
environment has led them to become highly skilled intermediate Reynolds number swimmers, with
a propulsion system that can maneuver against a range of background flow scales (Sutherland et
al., 2014). However, their turning behavior has only been described qualitatively (Tamm, 2014).
Existing quantitative information on ctenophore swimming trajectories comes from single-camera
(2D) experiments focused on straight swimming (Gemmell et al., 2019; Heimbichner Goebel et al.,
2020; Kreps et al., 1997; Matsumoto, 1991). There is no explicit quantitative data on ctenophores'
turning, nor any direct measurements of ctene beating frequencies in the context of turning.
Therefore, we know little of the turning control strategies used by ctenophores (or other
metachronal swimmers). We use multicamera high-speed videography and three-dimensional
kinematic tracking to correlate overall trajectories with the beating frequencies of the ctene rows
and identify three distinct turning modes. In this section, we introduce the Maneuverability-Agility
Plot (MAP) to explore the observed turning performance of ctenophores, showing how they can
sharply turn at high speeds relative to their top speed. In addition, by reconstructing B. vitrea's
“reachable space,” also known as the Motor Volume (MV) (Snyder et al., 2007), we show that
ctenophores have the potential to reorient around many directions within a small space over a short
timeframe (omnidirectionality). Results from this section are drawn from 27 different recordings
from eight ctenophores from the BIOS data set, with an average body length of 7.93 + 1.97mm

(mean + standard deviation).
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2.2.1 Imaging facilities

For the BIOS dataset, freely swimming animals were simultaneously filmed from multiple
angles at high speeds in order to provide three-dimensional swimming trajectories. The recording
setup consists of three synchronized high-speed cameras (Edgertronic, Sanstreak Corp., San Jose,
CA, USA), observing an experimental volume (30 x 30 X 30mm3) from three orthogonal
perspectives (Figure 2-6A). Cameras filmed at 600 Hz at a resolution of 1024x912 pixels and were
equipped with 200mm Nikon macro lenses with apertures set to /32 (depth of field ~12mm).
Collimated LED light sources were used to backlight each camera (Dolan-Jenner Industries,
Lawrence, MA, USA). Calibration was performed by translating a calibration wand with a
micromanipulator through 27 pre-mapped points, creating a virtual 3x3x3 cube. Calibration
coefficients were calculated by mapping the 2D camera coordinates into 3D space using the direct
linear transform algorithms embedded in the software DLTdv8 (Hedrick, 2008). After calibration,
we tracked three points (the apical organ and the two tentacular bulbs) on each ctenophore (Figure
2-6B) using the deep-learning features of DLTdvS. Figure 2-6C shows an example maneuver
reconstructed from the described experimental setup. We note that the camera system is also
described in (Karakas et al., 2020), which contains contemporary data with the results presented

here.
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Figure 2-6. (A) Schematic of the 3D recording system showing the three orthogonal camera views.
(B) Tracked points: apical organ (red) and tentacular bulbs (blue and green). (C) Example of a
reconstructed trajectory; black line is the midpoint of the line segment joining the two tentacular

bulbs.

2.2.2 Ctenophore morphometric and kinematic parameters

We need nine morphometric and five kinematic parameters to describe the overall
ctenophore propulsion system. These are listed in Table 2-4, along with a brief description, while
Figure 2-7 shows a graphical description of some parameters. Lastly, Table 2-5 shows the average
of the morphometric parameters as measured from eight individuals.

Table 2-4. Ctenophore morphometric and kinematic parameters.

Variable Description
Lg Body length
dp Body diameter (measured in tentacular plane)
l Ctene length
() Average distance between ctenes
ng Number of ctenes on each sagittal row
nr Number of ctenes on each tentacular row
) Sagittal ctene row position angles (measured from tentacular plane)
£ Tentacular ctene row position angles (measured from tentacular plane)

K Position angle of the first ctene on the row (measured from centroid)
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f Beat frequency

P Stroke amplitude

P, Phase lag between adjacent ctenes, expressed as a percentage of the cycle period
Ta Temporal asymmetry, quantifying the time difference between the power (t,)
_ Ut =%  andrecovery strokes (t,); also known as the "kinematic parameter" (Gauger et

t.+t, al, 2009)
A,  Spatial asymmetry, quantifying the degree of difference in flow-normal area
between the power and recovery stroke by comparing the area enclosed by the

ctene tip trajectory A, to its practical maximum A, (Herrera-Amaya et al.,
2021)
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Figure 2-7. Morphology and ctene row kinematics of a typical Bolinopsis vitrea. (A) Top view
showing the eight ctene rows, the ctene row position angle €, and the sagittal and tentacular planes
(dg = 7.6mm). (B) Side view showing the ctene rows along the body (Lg = 7.4mm) and k, the
angle for the most aboral ctene. (C) Stylized example time-series of ctene tip speed for one ctene
over one beat cycle, where t,, is the power stroke duration and ¢, the recovery stroke duration. (D)
Ctene row close side view, showing a tracked ctene tip trajectory (4., solid white line), and the

estimated ctene reachable space (4,, red dashed ellipsoid inscribed in a black half circle of radius
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l; shown elsewhere on the ctene row for clarity). Stroke amplitude (®) and the direction of the

power stroke are also marked.

Table 2-5. Morphometric measurements of included B. vitrea (mean + one standard deviation)

Lg(mm) dp(mm) l(mm) s ng nr £5(°) er(®) K(®)
78+ 1.6 6.1 0.5 0.8 10 7.1 63.9 23 27
+ 1.7 + 0.06 + 0.2 +1.7 + 1.2 +2.1 + 2.4 +5.1
2.2.3 Results

From 27 recorded sequences of eight individuals, we observed four different appendage
control strategies. These strategies differ categorically in the total number and the geometrical
arrangement of the rows actively beating. The first three strategies are used to turn, with rows on
the outside of the turn beating at a higher frequency than the rows on the inside of the turn
(fout > fin)- In the first strategy (mode 1), two adjacent rows beat at some frequency f,,,; and the
two opposite rows beat at a lower frequency f;,, while the remaining four rows are inactive. In the
second strategy (mode 2), the four outer rows beat at approximately the same frequency, which
exceeds the frequency used by the four rows on the opposite side. For the third strategy (mode 3),
six rows beat at a constant frequency f,,,; while only two rows beat at a lower frequency f;,. Lastly,
in mode 4, all rows are beating at approximately the same frequency; thus, the animal swims
roughly in a straight line. The observed control strategies agree with morphological studies of
lobate ctenophores (Tamm, 2014): the apical organ has four compound balancer cilia, and each
balancer controls the activation of one sagittal and one tentacular row. In other words, B. vitrea can
independently control the ctenes in each body quadrant formed by the sagittal and tentacular planes
(see Figure 2-7A). Both rows in each quadrant beat at approximately the same frequency. Table 2-
6 summarizes the control strategies and the number of times each was observed. The recorded beat

frequencies range from 0 to 34.5 Hz.
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Table 2-6. Appendage control strategies observed in freely swimming B. vitrea

Control No. of rows beating at No. of rows beating  No. of observations

strategy fout at f;, (out of 27)
Mode 1 2 2 2
Mode 2 4 4 8
Mode 3 6 2 9
Mode 4 8 0 8

Two important variables explore and quantify turning performance: maneuverability and
agility. Maneuverability refers to the ability to turn sharply within a short distance. It is typically
quantified by the swimming trajectory's radius of curvature (usually normalized by body length)
(Norberg & Rayner, 1987). Agility, however, is not clearly or consistently defined in the animal
locomotion literature. A widely used definition is the ability to rapidly reorient the body (Webb,
1994), quantified by the maximum observed angular velocity. However, the angular velocity on its
own does not speak to whether the animal needs to stop or slow to perform a turn, which is another
colloquial definition of agility. An animal’s translational speed while performing a turn can give
insight into its agility (Fish & Nicastro, 2003; Walker, 2000; Webb & Fairchild, 2001). Here, we
will use the average speed during the turn (V) as a measure of agility, and the average normalized
radius of curvature (R/L , where R is the radius of curvature and L is the body length) during the
turn as a measure of maneuverability. We can examine a large number of discrete turns to build a
Maneuverability-Agility Plot (MAP), plotting R/L vs. V for a given organism.

We used the observed 3D swimming trajectories of B. vitrea to build a MAP. In Figure 2-
8, the x-axis shows the average animal speed during the recorded sequence (V), measured in body
lengths per second, which we treat as a measure of agility. The y-axis shows the average normalized
radius of curvature (R_/L), which we treat as a measure of maneuverability. Movements that are
both highly maneuverable and highly agile are found in the lower-right corner of the MAP, while

highly maneuverable but less agile (slow) movements are found in the lower-left corner. From the
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experimental observations, we observe an increase in R/L as V increases, an expected tradeoff
between maneuverability and agility (Fish & Nicastro, 2003). The most maneuverable observed
turn has R/L = 0.08 at a speed of V = 0.22 BL/s (lower-left corner). In the lower-right corner,
we have a turn with a measured speed of V = 1.89 BL/s for R/L = 1.3—still a comparatively
sharp turn, carried out at 71% of the maximum recorded straight-line swimming speed of V =
2.65 BL/s (rightmost point, Figure 2-8). Simply put, ctenophores are capable of sharp turning
while maintaining considerable speeds—that is, they have both high maneuverability and high

agility.

0 05 1 15 2 25 3
V (BL/s)

Figure 2-8. Maneuverability-Agility Plot (MAP). Experimental measurements of freely swimming
B. vitrea. Lower values of R/L indicate sharp turns (more maneuverable); higher values of V
indicate faster swimming (more agile). Values in the upper left (low V, high R/L) are

straightforwardly achievable with straight swimming (mode 4).
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Due to their high number of appendages, the distribution of appendages along the body,
and the independent frequency control between paired rows, ctenophores are capable of achieving
the performance displayed in Figure 2-8 over numerous planes of motion. Using the observed 3D
swimming trajectories, we estimate B. vitrea’s motor volume (MV) (Snyder et al., 2007), which
illustrates the maneuvering capabilities of the ctenophore locomotor system (Figure 2-9).
Conceptually, the MV represents the reachable space of a swimming ctenophore over a given time
horizon. To build the MV, we translated and rotated the observed swimming trajectories so that at
the start of the trajectory, the tentacular plane is on the x-y plane, with the midpoint between the
tentacular bulbs on the origin, the aboral-oral axis of symmetry is aligned with the x-axis, and the
tentacular bulbs facing the positive x-direction. From this starting position, the positive x-direction
is forward swimming (lobes in front) and the negative x-direction is backward swimming (apical
organ in front). Figure 2-9 shows the rearranged swimming trajectories (black lines) and the volume
swept by the animals' bodies (gray cloud). Each animal body was estimated as a prolate spheroid
based on its unique body length and diameter (Lg, dg). In our observations, animals swam freely
(without external stimuli), and the trajectories were recorded through the time period that the animal
was in the field of view. Each observation has a different initial speed and total swimming time
(see Table 2-7); thus, this MV does not directly compare different appendage control strategies,
since observed maneuvers have different initial speeds and durations. We also note that because
we only observed animals who freely swam through the field of view, the experimental dataset is
biased towards animals who had a nontrivial initial swimming speed, leading to a stretching of the
MV along the x-axis. Nonetheless, the observed MV shown in Figure 2-9 provides some
visualization of the 3D maneuvering capabilities of B. vitrea's locomotor system. In section 3.2.3,
we use reduced-order analytical modeling to further explore the potential motor volume across a

wider range of behaviors than those observed in these experiments.
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Table 2-7. Experimental recordings (mean + one standard deviation)

Swimming No. Recordings Initial speed (BL/s) Recording duration (s)
direction
Forward (+x) 19 0.61 +0.75 2.25+1.34
Backward (-x) 8 0.85 + 0.55 1.82 + 1.11

Figure 2-9 shows the potential of the ctenophore locomotor system for omnidirectional
swimming, which we define as the ability to move in any direction from a given initial position
within a relatively small space and a short time. Figure 2-9A shows nearly equal capacity between
backward and forward swimming—an ability few swimmers share, and which typically requires
major adjustments to control strategy (Sutherland et al., 2019). Ctenophores, by contrast, achieve
agile backward swimming simply by reversing the direction of the ctene power stroke. The
trajectories in Figure 2-9 are achieved via the activation of different ctene rows, which (when
coupled with the ability to swim both forward and backward) allow ctenophores to quickly access

many different swimming directions from the same initial position.

Z (BL)
%r’
% (BL)
o
/j_ﬁ_
A\ 1

Figure 2-9. Motor volume (MV) constructed from the 27 tracked swimming trajectories of B. vitrea.
Black lines show swimming trajectories (midpoint between tentacular bulbs) and volume swept by

animals' bodies (gray cloud) during each maneuver. Based on morphological measurements, animal
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volume is estimated as a prolate spheroid (Table 2-5). (A) Side view and (B) front view of the
tracked swimming trajectories and motor volume show that B. vifrea can turn over a large range of

angles.

2.2.4 Summary

Ctenophores' higher number of propulsive rows differentiates them from other metachronal
swimmers, which typically have only one or two rows of propulsors (Garayev & Murphy, 2021; J.
L. Lim & DeMont, 2009; Murphy et al., 2013; Ruszczyk et al., 2022; Sutherland et al., 2019).
Flexibility in controlling a higher number of appendages, combined with the ability to swim
backward and forward, allows for nearly omnidirectional swimming. Our results illustrate that the
ctenophore body plan is highly agile and maneuverable. Ctenophores can turn sharply without
slowing down, reverse directions easily, and turn about many planes, enabling them to access a
nearly-unconstrained region of space from a given initial position over relatively short time
horizons. To explore both the turning performance and the omnidirectional capabilities of B. vitrea
more systematically, we will employ the reduced-order model of section 3.2. Using this
mathematical model, we can investigate ctenophore turning across a range of beat frequencies and
appendage control strategies, revealing the potential of the ctenophore body plan for bio-inspired

design.
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Chapter 3

Reduced-order analytical modeling

A limitation of behavioral experiments with living animals is that parameters cannot be
varied independently; without a prohibitively large dataset, it is difficult to explore the parameter
space and identify key functional dependencies fully. Numerical methods (e.g., computational fluid
dynamics) are more controllable (Granzier-Nakajima et al., 2020; Y. Liu et al., 2021; Semati et al.,
2020a), but computationally costs can be prohibitive for a parameter sweep of a highly multivariate
problem. In addition, to fully simulate ctenophore swimming would require a large domain to
capture an entire maneuver (on the scale of centimeters) while resolving flow around the ctene rows
(sub-millimeter scale). The ctenes are at least twenty times smaller than the body, so computational
resources needed for a fully-coupled model of even a few ctenes in a row are already a limiting
factor (Dauptain et al., 2008; D. Lim et al., 2019a; Semati et al., 2020a). However, a simplified
modeling approach is still attractive due to the large and multivariate parameter space we seek to
explore.

Section 3.1 has been published in (Herrera-Amaya et al., 2021), and section 3.2 is under

review at the time of dissertation submission.

3.1 Rowing spatiotemporal asymmetry: One-dimensional swimming equation

Here we develop a reduced-order analytical model based on known empirical expressions
for fluid drag— an approach previously used to study metachronal rowing in 1D for low to
intermediate Reynolds numbers (Alben et al., 2010; Du Clos et al., 2022; Takagi, 2015). This class

of analytical model is limited because it does not consider hydrodynamic interactions between the
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propulsors. Therefore, it cannot fully reproduce key features (such as enhanced swimming
efficiency) of metachronal swimming. However, it can still reasonably predict swimming
kinematics, and (most importantly) it provides a useful tool for comparing the relative effects of
the many morphometric and kinematic parameters involved in metachronal swimming without
prohibitive computational costs.

Our model has three notable features, which distinguish it from previous (analytical or
robotic) modeling attempts: (i) we directly prescribe the level of spatiotemporal asymmetry (Sa and
Ta); (i) we model the phase lag between appendages as a continuous (rather than discrete) variable,
in contrast to (Alben et al., 2010), and (iii) we explicitly include both viscous and inertial effects
by using an intermediate-Re drag coefficient formulation (Shih & Buchanan, 1971).

Each ctene is treated as an oscillating flat rigid plate, whose distal end traces an ellipse
(Figure 3-1). The ellipse's major axis is set by the prescribed stroke amplitude (®), and its minor
axis is set by the prescribed spatial asymmetry Sa (see Appendix Al). The plate reciprocates
horizontally over a total cycle period T equal to the inverse of the prescribed frequency f. Time
spent in the power (0 < 6 < m, where 0 is the angle swept out by the tip as it moves around the
ellipse) and recovery (m < 8 < 2m) strokes is set by the prescribed temporal asymmetry Ta. This
yields the parametric tip position (x4 (t), y4(t)) as a function of the prescribed variables (for further

details of the modeled kinematics, see Appendix Al).



37

(A)

Figure 3-1. (A) Sample trajectory of a real ctene and (B) simplified elliptical trajectory for the
analytical model. Thin solid lines (dark blue) depict tip trajectories; the thick solid line (light blue)
represents an oscillating plate whose tip position (x4, y,) is a function of 6 and ellipse geometry.
Dotted lines denote the stroke amplitude ®. The spatiotemporal asymmetry parameters, Sa and Ta,
are prescribed for each model run; these determine the time-varying tip position (x4, y4), which
subsequently determines the oscillating plate's speed and flow-normal area on the power and

recovery strokes. Reprinted with permission from (Herrera-Amaya et al., 2021).

The propulsive force generated by a single plate as a function of time is given by:

1 e
B = _EPCA(xA +3p, IWyal(Xa + %p) %0 + %5l1  (3)

where p is the fluid density, w is the width of the appendage, xz is the body's swimming speed,
and Cy is the plate drag coefficient. C, is a function of both the plate's absolute speed x4 + X and
its oscillation frequency f, following (Shih & Buchanan, 1971). Further details are given in
Appendix A.3.2.

To consider multiple appendages operating at a phase lag, we sum equation (3) over n

plates:
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Fret = —52 pCa(dy + %p, flWya(t + (k — D)[(%,(t + (k — D7)
k=1

+xp) s+ (k—D) + 23] (D)
By dephasing the position variables x, and y, by an amount (k — 1), we introduce metachronal
coordination (where T = P - T). The model does not consider inter-appendage interactions, so it is

not affected by the spacing between appendages (unlike a real ctenophore).

3.1.1 Spatiotemporal asymmetry in a single appendage

We compute the total propulsive force (averaged over one cycle) for a single ctene on a
fixed substrate (x5 = 0), modeled by equation (3). Because of its dependence on x4 and y, (which
are prescribed—see Appendix Al), F, is implicitly a function of Sa, Ta, @, and f. Increasing @
increases the magnitude of F, but does not change Re,, which is based only on oscillation
frequency and ctene length; we therefore set @ to a fixed value (@ = 100°). We compute Fp for a
ctene with [ = 1 mm, with w assumed to be [/2 (Afzelius, 1961), and beating at frequencies
corresponding to Re,, between 5 and 200 (Afzelius, 1961; Matsumoto, 1991). For each frequency,
we continuously vary spatial and temporal asymmetry (0.1 < Sa < 0.6 and 0.1 < Ta < 0.6).

To examine the effect of varying spatiotemporal asymmetry throughout the parameter
space, we calculate the gradient of F, with respect to Sa and with respect to Ta throughout the
tested Sa — Ta space. That is, we calculate two partial derivatives: dF,/dSa , the rate of change of
E, with respect to Sa, and dF,/dTa, the rate of change of F, with respect to Ta. We compare the
value of these two quantities over the full range of asymmetry observed in the behavioral

experiments. These derivatives measure how strongly Fp depends on either Sa or Ta; for example,
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if 0F,/dSa is small but 0F,/dTa is large, this means that force production is more sensitive to

changes in temporal asymmetry than changes in spatial asymmetry (as we have defined them).
We find that 9F, /0Sa > 0and 0F, /0Ta > 0 always, indicating that an increase in either

Sa or Ta increases propulsive force. However, F, is influenced differently by changes in Ta or Sa

in different regions of the parameter space, depending on Re,,. To measure their relative influence,

20 /30)
dTa’ dSa

OF, ,0F,

. so that G(Fp) = 5! 350"

we define the operator G(+) = A high value of G (Fp) indicates

that propulsive force is more sensitive to changes in Ta; a low value of G (Fp) indicates that
propulsive force is more sensitive to changes in Sa. G(Fp) is, therefore, a summary variable that
quantifies the behavior of F, with respect to Sa and Ta.

Figure 3-2A shows G(Fp) averaged over Sa — Ta space as a function of Re,,. At lower
Re,,, the influence of Sa is higher than that of Ta, as expected from stronger viscous effects.
However, as we increase Re,,, G (Fp) increases as well, making Ta the most influential asymmetry
as inertia starts to dominate. Recall from Figure 2-5 that in our experimental observations, Sa
decreases and Ta increases as Re,, increases. This trend is corroborated by the value of G (Fp)
shown in Figure 3-2A. An increasing value of G(Fp) corresponds to a higher sensitivity of F, to
changes in Ta; in other words, it is easier to boost force production by increasing Ta than by
increasing Sa as Re,, increases.

Figure 3-2B-E shows the value of Fp for several discrete values of Re,,, over the full range
of Sa and Ta considered. The role of Sa vs. Ta can be inferred from the slope of the contours: a
very shallow slope indicates that Fp is very sensitive to Sa, and a very steep slope indicates that
Fp is more sensitive to Ta. At low Re,,, spatial asymmetry is at its highest level of influence; the
slope of the contours is fairly uniform across Sa — Ta space, indicating that Fp changes slightly

favor Sa over Ta in the same manner for all points in this space. As Re,, increases, the contours
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steepen: a change in Ta produces a higher Fp than a similar change in Sa. As is expected, the
influence of Ta is weaker at lower Re,,, where the flow approaches time-reversible conditions
(however, the drag coefficient in our model is not appropriate for these conditions, so we do not
attempt to extend the model to Re,, < 1 where the flow would be fully time-reversible). In general,
the contours are shallowest (indicating maximal sensitivity to Sa) for low Ta; the contours are

steepest (indicating maximal sensitivity to Ta) at high Ta.

Figure 3-2. (A) The ratio G(Fp) of the gradients of F, in Sa — Ta space as a function of Re,,,
averaged over the tested parameter space. On the right, contour plots show the behavior of F, for
several values of Re,: (B) Re, =5, (C) Re,, = 60, (D) Re,, = 145, and (E) Re,, = 200. High
Re,, leads to Ta being more influential in force production than Sa, an effect that increases as Re,,
increases; for lower Re,,, Sa more strongly influences force production. Reprinted with permission

from (Herrera-Amaya et al., 2021).
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3.1.2 Spatiotemporal asymmetry in metachronal rowing

To explore how spatiotemporal asymmetry can affect swimming efficiency, and to
investigate the role of metachronal coordination, we consider several rows of oscillating plates as
described by equation (4), unidirectionally propelling a spheroidal body. Drag on the spheroid is

modeled as

1 ) .
Fp = _EPCB(xB)T[erleBl %)

where Cj is the intermediate-Re drag coefficient for a prolate spheroid aligned with the flow, and
is a function of its speed and geometry ((Loth, 2008); see Appendix A3.2); r is the average radius
of the body’s flow-normal area; and xg is the overall swimming speed. Summing forces
(propulsion, body drag, and acceleration reaction force) in the x-direction yields:

prr?

dp+ 5 Tt AV Foi(Sa,Ta, ®,£P,%5) =0 (6)

o N
Cp(xp)xp|xp| + mtapl)

where N is the number of appendage rows (in ctenophores, N = 8), m is the body mass, « is the
added mass coefficient (Daniel, 1983), and V is the spheroid volume. The “added mass” term (apV)
accounts for displaced water that must be accelerated along with the body (Vogel, 1994). This
approach allows us to compute the swimming efficiency 7, which we calculate as the ratio of the
output power (P,) to the input power (P;) (n = P, /P;, see Appendix A2. To verify that our analytical
model predicts forces comparable to those generated by the real animal it is meant to represent, we
compare the model to actual measurements of freely swimming ctenophores from section 2.2.
Our model considers a ctenophore swimming in a straight line, with a constant beat
frequency, whose body orientation is aligned with the swimming trajectory (heading angle of zero
degrees). We consider two unidirectional swimming trajectories that resemble the modeled
situation—one steady swimming animal, and one animal which accelerates from near rest. The beat

frequency and phase lag were measured manually, counting the beat period of two neighboring
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ctenes from each visible ctene row on the three videos. Relevant morphometric and kinematic

parameters can be found in Table 3-1.

Table 3-1. Morphometric and kinematic measurements of observed animals (mean + one standard
deviation)

Body length Body width No. Ctene length Phase Lag (%) Beat frequency
(mm) (mm) Ctenes (mm) (Hz)
6.24 5.36 9 0.38 13.5+4.82 28.97+1.74
8.18 6.25 9 0.41 17.1£3.52 27.89+0.98

Based on these experimental observations, we run the swimming model (equation 6) with
the values listed in Table 3-1, using the mean value for P, and f. We also need to set values for @,
Sa, and Ta; however, these are impossible to measure in our recordings due to a lack of spatial
resolution. To measure ® and Sa together with whole-body trajectories, we need a perfectly aligned
view and an extremely high-resolution sensor given the range of sizes that must be resolved. For
Ta, our 600 fps recordings are resolved enough in time to calculate the overall beat frequency of a
ctene row, but not to finely measure power vs. recovery stroke duration (necessary to calculate Ta).
We therefore use representative values of @, Sa, and Ta from our experimental observations (see
Figure 2-5 and Table 2-3). The stroke amplitude shows almost no variation across our dataset; thus,
we set it to the mean observed value of 112°. Shaded areas in Figure 3-3 represent solutions for the
entire Sa-Ta space considered in this section (0.1 < Sa < 0.6 and 0.1 < Ta < 0.6). Blue lines in
Figure 3-3 are the combinations of Sa and Ta that best predict the observed animal speed (red line),
yielding Sa = 0.55 and Ta = 0.35 for the unsteady (accelerating) case and Sa = 0.3 and Ta =
0.2 for the steady swimming case. These values of Sa and Ta are within the experimental range
observed in Figure 2-5. The agreement between observed and predicted swimming speeds shown
in Figure 3-3 verifies that the model can produce similar propulsive forces as those generated by

the animals.
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For this parametric study, we consider a modeled ctenophore whose morphometric
parameters are based on the experimental measurements of the second animal in Table 3-1. The
geometry for the model is L, = 8.18 mm, [ = 041 mm,n =9, and d = 6.25 mm. We solve
equation (6) for a total of 40,000 combinations of Sa, Ta, Re,,, and P; (see Table 3-2), separating
each solution into two sequential events: unsteady swimming (acceleration from rest) and steady
swimming. Once the model reaches a steady speed, we continue to run the calculations until the
model “swims” for three times its body length (Figure 3-4A). We note that oscillations in X, are
still present in the steady swimming portion for some values of P; due to the time dependence of

the metachronal motion.
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Figure 3-3. Comparison between experimental (red line) and modeled (blue line) swimming speed.

The shaded area represents all Sa-T'a combinations considered in Figure 3-2. (A) shows an animal

accelerating from near rest. The modeled speed (blue line) has Sa = 0.55 and Ta = 0.35. (B)

shows an animal swimming at a steady speed. The modeled speed (blue line) has Sa = 0.3 and

Ta = 0.2. Reprinted with permission from (Herrera-Amaya et al., 2021).
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We find that swimming efficiency n depends only weakly on Re,, during both unsteady
and steady swimming throughout the tested parameter space; n varies less than 1% for each Sa —
Ta combination across the tested range of Re,. However, efficiency does depend on the other
parametrically swept variables (P, Sa, and Ta). Figure 3-4B shows a representative example of
n (P;) (for Sa = 0.4 and Ta = 0.3), where 7 is calculated over the full duration of steady or
unsteady swimming.

For unsteady swimming, there is a clear maximum efficiency at a slight phase lag; this
peak appears for every Sa — Ta combination at a phase lag of approximately 7.04 + 1.12% (mean
+ standard deviation). For steady swimming, the efficiency is largely independent of P, (Figure 3-
4B). We attribute this difference to the stronger influence of the added mass term (see equation (6))
during the acceleration, since this term is proportional to X,. Any energetic advantage of
metachronal coordination during steady swimming is likely to be due to hydrodynamic interactions
between ctenes (de Brouwer et al., 2013; Ford et al., 2019; Ford & Santhanakrishnan, 2020), which
are not captured here. While our model does not consider these interactions, we can consider how
phase lag P, affects oscillations in body speed x},. Figure 3-4C shows that zero phase lag produces
strong oscillations in body speed; however, X; is minimized for P, = 19.59% (for the specific
combination of Sa = 0.4 and Ta = 0.3). Averaged across the tested Sa — Ta space, this minimum
appears at P, = 20.11 £+ 0.46% (mean =+ standard deviation). This phase lag is close to what we
observe experimentally (see Table 2-3) and also within the optimal P, range reported for a krill-
inspired robot (16.7% < P, < 25%) (Ford et al., 2019) and by a krill-inspired numerical rowing
model (20% < P;, < 25%) (Granzier-Nakajima et al., 2020). In our model, this corresponds to the
range that produces the smallest values of x;, (i.e., the smoothest and least “jerky” swimming),
though these are not necessarily the values that maximize swimming efficiency (1 has no clear

maximum for the steady-swimming portion of the modeled trajectory). These two cases (unsteady
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swimming at maximum 7 and steady swimming with a minimum X ) represent cases of particular
interest, which we will further explore in the next section.

This analysis highlights the importance of considering the added mass force as a significant
component of propulsion at intermediate Re, especially during bouts of whole-body acceleration;
it also highlights a correlation between the range of optimal phase lags found in other studies and

the range of phase lags which here produced the smoothest modeled swimming speeds.

Table 3-2. Range and resolution of the parameter sweep study.

Sa Ta f(Hz) Re, PL (%)
Range 0.2-0.6 0-0.6 10-30 10-30.1 0-30
Resolution 0.1 0.0316 1.0526 1.0526 1.5789
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Figure 3-4. (A) Modeled swimming speed of a mid-size ctenophore (L, = 8.18 mm, [ =
0.41 mm,n =9, and d = 6.25 mm) accelerating from rest at a beat frequency of f = 20 Hz
(Re,, =20.1) with Sa = 0.4 and Ta = 0.5. The black line shows the highest oscillations in speed
(P, = 0%), the blue line shows the phase lag that gives optimal efficiency for unsteady swimming
(P, = 6.12% for this specific case), and the magenta line shows the phase lag that reduces body

speed oscillations to a minimum (P, = 19.59% for this specific case). (B) Swimming efficiency

n= % (ratio of power output to power input) as a function of phase lag for both the unsteady and
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steady swimming period, as demarcated in panel (A). Efficiency is calculated over the entire
unsteady/steady periods to obtain the results shown. Maximum efficiency (black dot) occurs at a
phase lag of 6.12% during the unsteady period for this case; there is no clear maximum efficiency
for the steady period. (C) Magnitude of swimming speed oscillations %;," as a function of phase lag.
Oscillations in X, are minimized for this case at a phase lag of 19.59% (black dot). Reprinted with

permission from (Herrera-Amaya et al., 2021).

3.1.3 Variation of swimming efficiency over Sa-Ta space

Previously, we used a gradient-based analysis to examine the sensitivity of propulsive force
Fp to both Sa and Ta throughout Sa — Ta space. However, this analysis considered a ctene on a
fixed substrate, and thus could not include swimming efficiency. We extend this gradient-based

analysis here to consider how Sa and Ta affect swimming efficiency 7. The quantity G(n) =

o

0 . . . .
Ta / # , defined for all points in Sa — Ta space, represents the relative sensitivity of n to Ta vs.

Sa. Recall that n is weakly dependent on beat frequency f; for unsteady swimming, 7 is maximized
at a moderate phase lag P;, and for steady swimming 1 depends only weakly on phase lag P;. We
consider a map of 17 over Sa — Ta space for two cases of interest: A) unsteady swimming at f =
20Hz and P, = 6.12%, which maximizes 7, and B) steady swimming at f = 20Hz and P, =
19.59%, which minimizes x;," (Figure 3-4).

In general, efficiency 7 increases if either Sa or Ta increase, with a maximum at the edge
of the considered parameter space where Sa = 0.6 and Ta = 0.6 (Figure 3-5A-B). However,

efficiency is not dependent on Sa and Ta in the same way. This is apparent from the slope of the
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contours in Figure 3-5, and how they vary over Sa — Ta space: very steep contours indicate higher
sensitivity to Ta, and very shallow contours indicate higher sensitivity to Sa.

We find that 7 is more responsive to T'a than it is to Sa throughout Sa — Ta space. The
gradient ratio G (1) is greater than one over nearly the entire parameter space considered, indicating
that n is always more sensitive to changes in Ta versus changes in Sa. Interestingly, 1 is most
sensitive to Sa at very high values of Sa for both unsteady and steady swimming. This means that
when the stroke is very spatially asymmetric, further increases in Sa can still produce nontrivial
increases in 77; there is no saturation point. We note that the analysis in Figure 3-5 is representative
of all tested frequencies (10Hz < f < 30Hz and 10 < Re,, < 30), and that G(n) can be inferred

from the shape of the contours of 7.
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Figure 3-5. Contours of swimming efficiency at f = 20Hz (Re, = 20.1) for (A) unsteady
swimming, at P, = 6.12% (which maximizes efficiency 7) and (B) steady swimming, at P; =
19.59% (which minimizes body speed oscillations x},), throughout Sa — Ta space. Reprinted with

permission from (Herrera-Amaya et al., 2021).
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3.1.4 Summary

Results from the single appendage model show that force production is more sensitive to
temporal asymmetry (vs. spatial asymmetry) at higher Reynolds numbers. In general, the model
results showed that the relative sensitivity to spatial vs. temporal asymmetry is a function of both
Reynolds number and the position in Sa — Ta space. This simple analysis would also dictate that
increasing the spatiotemporal asymmetry always increases propulsive force generation. Since the
experimental data do not suggest that animals always maximize both Ta and Sa (see section 2.1.4),
we expanded the mathematical model to consider multiple rows of appendages propelling a freely-
swimming model ctenophore to consider the energetic costs. Results showed that swimming
efficiency 7 increases with both Sa and Ta, but that n is always more sensitive to changes in Ta
than changes in Sa (and that 77 is most sensitive to Sa when Sa is already high). It is likely that Sa
is somewhat passive — that is, some ctene deformation results from the fluid-structure interaction
between the beating ctene, its material properties, and the surrounding flow (Colin et al., 2020).
Ctenes become longer and thicker as an animal grows (Afzelius, 1961; Hernandez-Nicaise, 1991;
Tamm, 2014), so the material properties of larger ctenes (which tend to beat at higher Re,) are
different from those of smaller ctenes. It is, therefore, likely that some changes in Sa passively arise
from variations in size and beat frequency. In other words, increasing beat frequency is correlated
with increasing size, so a larger and faster animal may have lower Sa simply because ctenes have
a higher bending modulus; Sa may remain low simply because it is not mechanically possible to
increase it, even if doing so would increase force generation and/or efficiency. For these larger
animals, which are observed to beat with lower Sa, increasing Ta represents a pathway to
compensate for efficiency and speed losses (this is what we observe in the experimental data). The

model shows that force production is generally more sensitive to T'a at higher Re,,, making it easier
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to compensate for Sa losses as Re,, increases. This is highly relevant for swimming animals, since
it is likely that Ta is more actively controlled than Sa.

Further study is necessary to understand if and how ctenophores may actively control both
the spatial and temporal asymmetry of the ctene beat cycle, as well as how the material properties
of ctenes might dictate how Sa change passively with Re . Because our model does not consider
hydrodynamic interactions between ctenes, it only partially captures the effects of phase lag.
Nonetheless, it predicts enhanced efficiency while the animal is accelerating with a slight phase
lag, which we attribute to the role of the added mass force. For steady swimming, the model results
show that phase lag affects neither the overall magnitude of the propulsive force nor the swimming
efficiency. We know that this is not true, and that hydrodynamic interactions lead to increased
efficiency for metachronal coordination relative to synchronous stroking (Granzier-Nakajima et al.,
2020). However, even this simple model shows that there is an optimal phase lag to minimize
unsteadiness in the swimming trajectory. This “smoothest trajectory” optimal phase lag was found
to be similar to those which maximize efficiency in swimming animals and robots (Colin et al.,
2020; Ford et al., 2019; Granzier-Nakajima et al., 2020; Murphy et al., 2011). Further exploration
of the role of spatiotemporal asymmetry in rowing would greatly benefit from using flexible robotic
models for which frequency and ctene structural properties can be varied. Section 4.1 describes a
ctene-inspired robotic model and the roles of spatiotemporal asymmetry on propulsion efficiency

in this context.

3.2 Ctenophore turning mechanics: 3D swimming equation

In this section, we expand the 1D swimming equation (6) to three dimensions and use it to
complement our experimental observations of ctenophore maneuverability. The 3D reduced-order

analytical model allows us to explore the kinematics resulting from the range of physically possible
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beat frequencies for each ctenophore turning mode (section 2.2). Unlike similar models, here we
fully incorporate the combination of viscous and inertial effects, which arises at intermediate
Reynolds numbers, by ensuring that relevant drag and torque coefficients are a function of the
instantaneous speed and geometry of both the body and the ctenes. Based on the average body and
appendage length (Table 2-5), the maximum recorded swimming speed (2.7 BL/s) and maximum
beat frequency (34 Hz), we calculate body and appendage-based Reynolds numbers of 157 and
57 (Rep, = UL/v and Re,, = 2mf1?/v), respectively.

We model the ctenophore as a self-propelled spheroidal body suspended in a quasi-static
flow (Figure 3-6), whose motion is governed by the balance between the propulsive and opposing
forces and torques. Table 3-3 lists all the model parameters. To describe the motion of the
spheroidal body, we require two coordinate systems: a global (fixed) coordinate system, in which
a vector is expressed as ¥ = x;&; + x,&, + x3€3, and a body-based coordinate system in which

a4

X' =x18] + x385 + x363.

Figure 3-6. Schematic of a ctenophore's simplified geometry moving in 3D space. The unit vectors
é1, é,, and &5 define the global (fixed) coordinate system while &1, &5, and é5 correspond to the

moving coordinate system attached to the spheroidal body.
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As is typical in vehicle dynamics (Schaub & Junkins, 2018), we relate the orientation
between both coordinate systems by successive rotations: yaw (i, rotation about é3), pitch, (6,
rotation about ;) and roll (¢, rotation about é;). The transformation between the global and body

frames is given by X' = RX, where the transformation (rotation) matrix is given by

c(0) c(¥) c(0) s(¥) —s(6)
R =|s(¢)s(@) c(¥) —c(@)s(¥) s(¢p)sB)s@) + c(@) c@)) s(¢p)c(B) (7
c(@)s(8) c(}) +s()s(@) c(p)s(0)s(¥) —s(ep)c(@) c(¢p)c(B)

where (1, 0, ¢) are the Euler angles, and c(+) and s(-) denote cosine and sine, respectively.

Table 3-3. Reduced-order swimming model parameters. Vector quantities are expressed in the
global frame unless marked with a prime (as in @").

Variable Description
Y, 0,0 Euler angles (yaw, pitch, and roll)

Foot Net propulsive force
Fy Body drag
ﬁA R Acceleration reaction force
Xg /o Body position vector
m Body mass
_;’le . Net propulsion torque
fép Opposing torque
W' Angular velocity vector
I Moment of inertia matrix
R Rotation matrix
w Plate width
Va Instantaneous plate length
Xy Instantaneous plate oscillatory position

Cy Plate drag coefficient

U Plate instantaneous velocity vector
Cg Body drag coefficient
a
b
?I
T

Body semi-minor axis
Body semi-major axis
Ctene position vector
Phase lag time
Cyy Added mass coefficient
Cp Torque coefficient
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The differential equations describing the propulsion-opposing force balance are based on

Euler's first and second laws (Equations (8) and (9)). Equation (8) balances the propulsive force

(ﬁnet), the drag force (ﬁD), the acceleration reaction force (ﬁAR), the body mass (m), and the body
acceleration with respect to the origin ()? B /0). Equation (9) balances the propulsive torque (Tr’wt)

and the opposing torque (ﬁ;p) with the moment of inertia matrix [/] and the body's angular velocity

(w") and acceleration (5’) We will define each one of these terms in the following subsections.
However, we direct the reader to the supplementary material for details of the solution procedure,
the numerical implementation, the formulations for various coefficients, and the validation of the
model against experimental data.
ﬁnet + ﬁD + ﬁAR = m)?B/o €]
Tnet + Top = 113" + &' x (&) (9)

For the 3D model, we consider each ctene as an oscillating flat plate with a time-varying
length, just as in the 1D model (Figure 3-1). However, in this case, the flat plate proximal end
oscillates along a plane tangent to the body surface (Figure 3-7D). We “place” a modeled ctene in
each of the ctene positions (determined by ¢, §, and k, coupled with the body geometry (Table 2-5
and Figure 2-7)) around the spheroidal body (Figures 3-7A and C). Each ctene oscillates around its
initial position (Figure 3-7D), creating a force tangential to the body surface. The total propulsive
force of the i*" ctene row is modeled as the negative of the drag force summed over each of n

oscillating plates:

n

- pW S N 2. ﬁ)

iF = T [, kYA ikCa [|XB/O +iku| lk__,] (10)
k=1 |iku|

where p is the fluid density, and n is the number of ctenes in a given row (k is the index of the

ctene). The flow-normal area is given by the plate width w (assumed to be 0.5 -[) times the

instantaneous plate length ;;y, (t + (k — 1)7). The drag coefficient ;,C4 is that of an oscillating
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flat plate at an intermediate Reynolds number and is a function of the instantaneous plate speed x4

(Shih & Buchanan, 1971). The force is proportional to the square of the magnitude of the global
ctene velocity vector X B/o T ili, where X B/0 1s the body velocity with respect to the origin and

iU is the velocity of the k™ plate in the i row in the global frame, which is itself a function of the
instantaneous plate oscillatory speed ;x4 (t + (k — 1)7):

u = RT iy [c()ér +s( A )e( €)és +s(A)s( €)és] (A1)
where ;4 is the angle defining the tangent to the body surface at the k™ plate (see Figure 3-7D).
Metachronal coordination is incorporated by dephasing the plate kinematic variables ;x4 and

ixYa by an amount (k — 1), where T = P, - T. Considering all N ctene rows, the net propulsive
force is

N
Fet = Z iﬁ (12)
—

4

Propulsive torque is calculated as the cross product of the ctene’s position relative to the

centroid of the body and the force generated by the ctene:
N n -
- - pw > — 'ku
net = Z i’ X ——"R [ikyA iCa <|XB/0 + iku| _ll _,|>] (13)
i=1 k=1 it
where ;7' is the position vector of the k** ctene in the i row (relative to the body centroid), and
the bracketed term is the ctene propulsion force in the global frame of reference. To calculate the

propulsive torque, the propulsive force must be expressed in the body frame of reference; hence,

we multiply it by the transformation matrix R.
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Figure 3-7. Ctenophore reduced-order modeling. (A) Lateral view of a ctenophore; red dots mark

the position of the ctenes that circumscribe its body in eight rows. (B) Real ctene tip trajectory from

a tracked time series of ctene kinematics (gray lines, spaced equally in time). (C) Ctenophore

modeled as a spheroidal body; red dots indicate the application point for each modeled (time-

varying) ctene propulsion force. (D) Simplified elliptical trajectory for a modeled ctene, which is a

flat plate with time-varying length. The plate oscillates parallel to a plane tangent to the curved

surface of the modeled body ( 4, tangential angle to the body surface). The time-varying tip

position (x,,y,) is prescribed as a function of the five ctene beating control parameters: f, ®, [,

Sa,and Ta.

The drag force on the 3D spheroidal body is:
[(ﬂaz)cg ((R)?B/O |X)B/0|) )
- P S S5
Fp = —RTE{(ﬂab)sz‘ ((RXB/O |XB/O|) )

(rab)C4 ((R¥s /0 [Xs/0])-

Q>

>

>

i

1

/
2
/
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|
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Because the body is spheroidal, we must consider two drag coefficients: C g is the drag coefficient
for the longitudinal movements (roll axis, é;), and Cg is the drag coefficient for the lateral
movements (pitch and yaw axes, é; & é3). Because we are in the viscous-inertial (intermediate
Reynolds number) regime, C 1'3' and Cj are each a function of both speed and geometry (Loth, 2008).
These coefficients are multiplied by the respective velocity squared components (transformed to

the body frame of reference by the transformation matrix R), the corresponding flow normal area

(ra?, for C )5,', and mab, for C ;), the fluid density, and a factor of 1/2. Finally, to transform the
components of the drag force back to the global frame of reference, we multiply by the transpose

of the transformation matrix RT. The drag force on the ctenes has already been incorporated as part

of in , which opposes the direction of motion during the ctene's recovery stroke.

The acceleration reaction (added mass) force is calculated as C,,pV, where p is the fluid
density, V is the body volume, and C,, is the added mass coefficient, which depends on the body
shape and the direction of motion (Brennen, 1982). We need two added mass coefficients for our
spheroidal body: C,"n, for motion along the roll axis, and C;5, for motion along the pitch/yaw axes
(Horace, 1993). Similar to the derivation of the drag force (Equation (14)), we have:

Crﬂ1 (R)L(;B /0" é{)
ﬁAR = —-R"pV|Cx (R)?B/O : éé) (15)
CrJr'L (R)?B/O ! éé)

Finally, we model the overall resistance to body rotation, notated as the opposing torque
(?ép). The opposing torque comes from both viscous drag and acceleration reaction forces;
however, an analytical formulation of this torque is outside the scope of this model. Here we use
an expression based on torque coefficients for rotating prolate spheroids at intermediate Reynolds

numbers, which are taken from numerical simulations (Zastawny et al., 2012):
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5 sgn(w,’c)C,gwi,

! p !
Top = _E(Te) sgn(a)y)CRla);, (16)

sgn(wy)Crw’:
where d, is the equivalent sphere diameter (i.e., the diameter of a sphere with the same volume as
the spheroid), C ,'e' is the torque coefficient for rolling, and Ca for pitch and yaw. Both coefficients
are a function of angular speed and geometry (see Appendix A4. The sign function is introduced

so the resistive torque always opposes the body motion.

3.2.1 Swimming model verification

To confirm that our reduced-order model can estimate the forces and torques present in
ctenophore swimming, we will compare the model predictions to freely swimming ctenophores.
We considered two experimentally observed turning sequences: 1) mode 1, with only two active
ctene rows, and 2) mode 3, with six rows beating at a higher frequency. Figure 3-8 shows the
observed beat frequencies for the two active ctene rows for Sequence 1, measured by counting the
beat period of ctenes on the three camera views. This sequence had R/L = 0.13 and V = 0.4 BL/s.
We run our reduced-order swimming model based on these observations and the morphometrics
reported in Table 3-4. Figure 3-9A compares the experimental (red line) and predicted (blue line)
swimming trajectory. As explained before, available camera resolution precludes simultaneous
measurement of the ctene-level spatiotemporal asymmetries together with trajectory tracking; thus,
the shaded areas in Figure 3-9A show the entire solution space (0.1 < Sa < 0.6 and 0.1 < Ta <
0.6), and the blue solid line is the best prediction for this case (taking Sa = 0.2 and Ta = 0.6, both
reasonable values). Figure 3-9B shows the experimental tracked triangle (red, formed by the

tentacular bulbs and the apical organ; see Figure 2-6) vs. and the predicted triangle (blue) for
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different time points (t = 0,1.5,and 2.5s). The agreement between the experimental and

predicted triangles shows the model's capacity to predict the animal's orientation.

Table 3-4. Morphometric measurements of observed animals

Maneuver Lg(mm) dp(mm) l(mm) S ng L
Mode 1 7.42 7.68 0.43 0.6 10 9
Mode 2 8 5.07 0.47 1.2 9 7

n 40

351

30¢

2 mm

(A) (B) 0 05 1 bid 1.5 2 25

Figure 3-8. Beat frequency measurements for the mode 1 turning trajectory. (A) Snapshot of freely
swimming ctenophore and the tracked points: apical organ (red) and tentacular bulbs (blue and
green). (B) shows the direct frequency measurements for ctene rows 4 and 5 (bottom ctene rows).
Dots represent measurements, and the fitted black line is used as an input to calculate the kinematics

of the oscillating plates in the mathematical model.
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Figure 3-9. Comparison between experimental measurements (red) and mathematical predictions
(blue) for the mode 1 turning trajectory. (A) shows experimental vs predicted swimming
trajectories. The shaded area shows the entire spatiotemporal solution space (Sa — Ta), while the
blue line is the best model prediction (Sa = 0.2 and Ta = 0.6). (B) shows experimental vs
predicted swimming orientation. The red triangles show the experimental positions for the
tentacular bulbs and the apical organ for different time points t =0, 1.5, and 2.5s. The blue triangles

are the best fit (Sa = 0.2 and Ta = 0.6) predicted positions for the same time instants.

For the second case (mode 3), Figure 3-10 shows the beat frequencies for each of the eight
ctene rows. Here turning is powered mainly by ctene rows 7 and 8 (Figures 3-10H and I), which
beat with a lower frequency for the first second. This results in R/L = 0.08 and V = 0.24 BL/s.
Figure 3-11A compares the experimental (red line) and predicted (blue line) swimming trajectory,
and the shaded areas in Figure 3-11A show the entire solution space (0.1 < Sa < 0.6 and 0.1 <
Ta < 0.6). For this case, the best prediction (blue line) has asymmetry values of Sa = 0.18 and
Ta = 0.18. Figure 3-11B shows the experimental tracked triangle (red), and the predicted triangle
(blue) for different time points (t = 0, 1.5, and 3 s).

Both comparisons show that our highly simplified mathematical model can predict

propulsion and opposing forces/torques similar to those experienced by a swimming ctenophore.
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Therefore, we are justified in using this model for our parametric exploration of the maneuverability

and agility of the ctenophore body plan and locomotion strategy.
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Figure 3-10. Beat frequency measurements for the mode 3 turning trajectory. (A) Snapshot of freely
swimming ctenophore and tracked points: apical organ (red) and tentacular bulbs (blue and green).
(B) to (I) show the direct frequency measurements for ctene rows 1 to 8. Dots represent
measurements, and the fitted black line is used as an input to calculate the kinematics of the

oscillating plates in the mathematical model.
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Figure 3-11. Comparison between experimental measurements (red) and mathematical predictions
(blue) for the mode 3 turning trajectory. (A) shows experimental vs predicted swimming
trajectories. The shaded area shows the entire spatiotemporal solution space (Sa — Ta), while the
blue line is the best model prediction (Sa = 0.18 and Ta = 0.18). (B) shows experimental vs
predicted swimming orientation. The red triangles show the experimental positions for the
tentacular bulbs and the apical organ for different time points = 0, 1.5, and 3s. The blue triangles

are the best fit (Sa = 0.18 and Ta = 0.18) predicted positions for the same time instants.

3.2.2 Turning performance

We use the mathematical model to expand our analysis of B. vitrea’s turning performance
by simulating all possible configurations of modes 1, 2, and 3 (as defined in section 2.2, Table 2-
6). We ran a total of 612 simulations covering the range and resolution of the beat frequencies
reported in Table 3-5. Each simulation continued until the average of the normalized radius of
curvature (m) over two seconds (simulation time) reached steady-state, or if R_/L exceeded 10,
which we considered straight swimming. Figure 3-12 shows the simulated range (blue dots) with
the experimental results (red dots, Figure 2-8). Our model predicts that B. vitrea's locomotor system

can reach R/L = 0.08 at a speed of V = 0.58 BL/s (lower-left corner of the MAP, maximizing
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maneuverability). However, the system is also capable of significant maneuverability at high
speeds: in the lower-right corner of the MAP (highly maneuverable and agile), the system can reach
a speed of V = 2.33 BL/s for R/L = 0.98. These two data points range from 24% to 93% of the
simulated top speed (V4 = 2.49 BL/s, with eight rows beating at 34 Hz), while maintaining a
turning radius of less than one body length. The model results confirm that ctenophores’
metachronal rowing platform is highly maneuverable and agile, with performance limits that may

extend beyond our experimental observations.

Table 3-5. Range and resolution of the frequencies used in the analytical simulations.

fout (HZ) fin(Hz)
Range 2—34 0— (four — 2 H2)
Resolution 2 2

14

12

Figure 3-12. Maneuverability-Agility Plot (MAP). Experimental measurements of freely

swimming B. vitrea (red dots) and for all simulated cases of modes 1, 2, and 3 (blue dots). Lower

values of R/L indicate sharp turns (more maneuverable); higher values of V indicate faster
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swimming (more agile). Values in the upper left (low ¥, high R /L) are straightforwardly achievable
with straight swimming (mode 4) or with Af < 2Hz; these points were not simulated. Simulating
mode 4 mathematically would result in R/L ~oo, since the eight rows beat at the same frequency.
However, mode 3 will approach the behavior of mode 4 as Af = f,,,+ — fin approaches zero. Here,
the minimum value is Af = 2Hz, so the upper-left corner of the MAP is not occupied. Simulations
were halted after the timestep in which R/L exceeded 10, resulting in some trials with R /L slightly

greater than 10.

3.2.3 Omnidirectionality

To explore the omnidirectional capabilities of B. vitrea in a more systematic fashion, we
use the mathematical model to explore all possible permutations of modes 1, 2, and 3. For simplicity
and clarity, Figure 3-13 displays only trajectories produced by active rows beating at a frequency
of four = 30 Hz and a Af = 30 Hz (so that all other rows are not active), for a simulation time of
one second. As expected by the number of active rows, mode 1 is the most maneuverable of the
three (shortest trajectories, Figure 3-13A). In contrast, mode 2 and mode 3 reach higher speeds
while turning (longer trajectories, Figure 3-13A). This suggests that activating only two ctene rows
(mode 1) could be best suited for fine orientation control (for example, when maintaining a vertical
orientation when resting/feeding)(Tamm, 2014). The higher number of active appendages used in
modes 2 or 3 could be used for escaping, where both high speed and rapid reorientation are needed
(Kreps et al., 1997). A front view of all modes (the y-z plane) displays the range of swimming
directions accessible from a given initial position (Figure 3-13B). This MV—which captures only
a fraction of the full capability of the swimming platform—shows the omnidirectionality of the

ctenophore metachronal locomotor system, achieved only by constant pitching and yawing. In an
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actual swimming trajectory, a ctenophore can change the active rows, the frequency, or the turning

mode over time, resulting in much more complex maneuvers (as in Figure 2-6).
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Figure 3-13. Computationally simulated MV for the 3 ctenophore row control strategies, with a
variable number of rows beating at 30 Hz, swimming either forward or backward, for a simulated
time of one second. The darker gray ellipsoid placed on the origin illustrates the animal's initial
position. (A) Side view displaying the backward (-x) and forward (+x) swimming trajectories.
Asymmetry arises from the distribution of ctenes along the body. (B) Front view of the swimming

trajectories, showing the wide range of turning directions.

To fully explore the maneuvering capabilities of the ctenophore body plan, we will explore
the hypothetical case in which each ctene row has independent control. Figure 3-14 shows the MV
for all 255 non-repeatable permutations of activating n, ctene rows at a time (n., = 1,2, ...,8) at
30 Hz for a simulation time of one second. This MV shows that nearly any swimming direction

can be accessed from the same initial position.
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Figure 3-14. Computationally simulated MV for 255 ctene row control strategies, with 1 < n., <
8 rows beating at 30 Hz, swimming either forward or backward for a simulated time of one second.
(A) Side view displaying the backward (-x) and forward (+x) swimming trajectories. (B) Front

view of the swimming trajectories, showing the wide range of turning directions.

3.2.4 Summary

Results from the 3D swimming model show that metachronal swimming, particularly as
used in the ctenophore body plan, allows for highly maneuverable/agile and nearly omnidirectional
swimming. For the body plan studied here, which is typical of lobate ctenophores, we found that
the asymmetric placement of ctenes within each row (i.e., ctenes distributed closer to the aboral
than the oral end) enabled sharper turns during backward swimming when compared to forward
swimming (Figure 3-13A). Ctene row asymmetries between the sagittal and tentacular rows of B.
vitrea are due to the presence of the lobes (see Figure 1-4), which are used to create highly efficient
feeding currents (Colin et al., 2010). However, cydippid ctenophores such as Pleurobrachia sp.
feed by capturing prey with their tentacles, then bringing the prey to their mouth by rotating their

bodies(Tamm, 2014). In Pleurobrachia and other cydippids, ctenes are approximately
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symmetrically arranged from the oral to aboral end, which may eliminate the trajectory
asymmetries observed in lobate ctenophores. Cydippid ctenophore swimming may likely be even
more omnidirectional. To accomplish their stereotypical rotating behavior, cydippid ctenophores
also reverse the direction of the power stroke on the inner ctene rows, potentially leading to even
tighter turns that are not captured in our model. Another lobate ctenophore genus, Ocyropsis,
contracts its lobes (like the bell of a jellyfish medusa) to increase its escape velocity, while still
using ctene rows for orientation (Gemmell et al., 2019); this indicates that ctene rows can be
coupled with other propulsive strategies to achieve goals beyond that of maximizing
maneuverability (e.g., to increase overall swimming speed). Extinct ctenophores had as many as
80 ctene rows, increasing the number of reachable turning planes. Some even had ctene rows placed
diagonally on the body, potentially allowing them to roll (Morris, 1996). Real ctenophores also use
sporadic, irregular beating for fine-scale positional control, which is not captured in our model; this

likely increases maneuverability beyond what we have predicted.
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Chapter 4

Physical modeling and method development

This dissertation aims to explore the scaling of metachronal rowing from low to
intermediate Reynolds numbers. This requires studying appendage kinematics and the resulting
flows as the effects of inertia become more important—that is, as we move away from time-
reversible flows (Re <« 1). Our experimental observations of ctenophores (Chapter 2) show a
general decrease in spatial asymmetry and increased temporal asymmetry with increasing Re
(Figure 2-6). Because obtaining important functional relationships between parameters from
behavioral experiments is difficult without large datasets, we turned to reduced-order models to
study the impact of appendage kinematics on ctenophore swimming (Chapter 3). While this
approach enables a more systematic exploration of the kinematic parameter space, it does not allow
us to explore the details of flows produced by the appendages. To address this missing link, we
developed a physical (robotic) model inspired by ctene kinematics. In Section 4.1, we describe this
model and the produced flows across a range of Re and kinematic parameters, as well as a new
metric to study rowing performance. Using the concept of Froude efficiency, we analyze how
spatiotemporal asymmetry of beating affects thrust and lift production.

Section 4.2 outlines a key methodological innovation used here and in Chapter 2: a tracer
detection/enhancement algorithm for Particle Shadow Velocimetry (PSV). PSV was initially
developed as a micro-scale technique which uses optical elements to isolate the measurement plane
(rather than a focused light sheet, as in the more commonly used Particle Image Velocimetry, PIV).
Like PIV, PSV uses cross-correlation of image subwindows to infer the average displacement (and
therefore velocity) of tracers over a Cartesian grid. In PSV, Depth of Correlation (DoC) refers to

the thickness of the planar volume within which the imaged tracer shadows contribute to the
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measured subwindow cross-correlations, even if the tracers themselves are out of focus. Having a
shallow DoC is crucial for obtaining accurate measurements of particle displacement. We chose to
use PSV for all the velocimetry experiments in this dissertation because it is animal friendly
(lacking laser light sources, which may cause damage or alter natural behavior), and because of its
ability to resolve flow close to solid surfaces (no laser reflections). Additionally, PSV provides
optical access not available with PIV, since the camera and light source lie along one single optical
axis (rather than the orthogonal axes required by PIV, which often create shadowed regions where
flow cannot be measured). However, our magnification requirements lead to nontrivial signal-to-
noise ratios (large DoC), necessitating significant image preprocessing to improve data quality.
Section 4.2 describes the image processing algorithm we developed to remove out-of-focus

particles digitally, effectively providing an a posteriori reduction of DoC.

4.1 Ctene flexible robotic model

Animal experiments (Chapter 2) show that ctene rows can produce different flows in
different contexts—that is, different individuals, different beating frequencies (and
correspondingly different Re,,), or other shifts in kinematics can produce categorically dissimilar
velocity fields (section 2.1). Figure 2-4 shows the flows generated by two different animals; one
produces a strongly tangential flow, while the other shows an increased presence of radial flow.
Both cases have a similar Reynolds number (Re,, = 23 and Re,, = 68) and the same phase-lag
(13%), but strongly differ in their spatiotemporal asymmetry (Sa = 0.53 vs. 0.29, with Ta = 0.04
vs. 0.15). Since the directionality of the flow affects the production of both thrust and lift, this also
impacts the swimming dynamics of the animal. However, the effect of the paddle shape and motion
asymmetries on rowing force production is not well understood. For a swimming body, thrust and

lift are defined as the force parallel (thrust) and perpendicular (lift) to the swimming direction. In
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this chapter we focus on the local forces produced by a single appendage; thus, we will be referring
to thrust as the horizontal force and lift as the vertical force. These are also the global thrust and
lift directions if we assume the appendage is placed on a flat horizontal surface or body (Figure 4-
1).

Here we perform experiments on three robotic paddles with different material flexibilities
and geometries, allowing us to parametrically explore the effect of motion asymmetry on force
production. To analyze our results, we developed a new efficiency expression with the potential to
be implemented broadly in both animal experiments and numerical simulations. The new efficiency
formulation is motivated by the fact that existing widely used measures of swimming efficiency—
such as displacement efficiency (Ellington, 1984; Murphy et al., 2011), Froude efficiency (Gough
et al., 2021; Jimenez et al., 2023; Lighthill, 1960; Mchenry et al., 1995), and cost of transport
(Gemmell et al., 2013; Jahn & Seebacher, 2019; Tack & Gemmell, 2022)—all require the
measurement of overall swimming speed, which is not applicable to directly evaluate the efficiency
of a rowing appendage or set of appendages on their own. Analysis of a (globally) fixed set of
rowing appendages is valuable in its own right, as this configuration occurs in many systems (Lim
et al., 2019a; Milana et al., 2023; Park et al., 2016; Semati et al., 2020; Sensenig et al., 2009;
Sensenig et al., 2010). This analysis is also a crucial step toward understanding a free-swimming
system’s propulsion dynamics. For example, in behavioral experiments it is often methodologically
simpler to study tethered animals (Alben et al., 2010; Barlow & Sleigh, 1993; Colin et al., 2020;
Herrera-Amaya et al., 2021). Numerical simulations often focus on fixed appendages due to their
lower computational costs, since allowing the model to swim freely would require significant two-
way coupling and large highly resolved meshes (Dauptain et al., 2008; Granzier-Nakajima et al.,
2020; D. Lim et al., 2019a; R. Zhang et al., 2021). Lastly, initial robotic prototypes typically begin

with a non-moving device to enable more thorough analysis of potential propulsive strategies (Ford
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etal.,2019; Guetal., 2020; Kim & Gharib, 2011; Milana et al., 2020; Ren et al., 2022; Rockenbach

et al., 2015; Saffaraval & Goudarzi, 2021; Santos et al., 2022).

Existing efforts to evaluate the performance of globally fixed rowing paddles typically
calculate fluid dynamic parameters such as thrust/lift coefficients, impulse, and momentum fluxes
(Ford et al., 2019; Kim & Gharib, 2011), or use dimensionless ratios such as flowrate-to-power
(Dauptain et al., 2008; Granzier-Nakajima et al., 2020). Alternatively, the paddle is placed in an
enclosed channel to evaluate the pumping performance by measuring the generated volumetric flow
(Saffaraval & Goudarzi, 2021). In our work, we approach the problem by modifying the
formulation of the Froude efficiency to consider the forces and velocities along the rowing paddle.
With this new formulation, we can calculate thrust and lift efficiencies and visualize the paddle
force distributions, thus helping us understand the role of the motion asymmetries on the overall

propulsion dynamics.

4.1.1 Experimental facilities

The experimental setup consisted of a 3D printed paddle fixed to a steel shaft and mounted
to a servomotor (300 Alacritous servo, Reefs RC, Corona, CA, USA), which rotated the shaft
according to a prescribed time-varying angular displacement (Figure 4-1B). The paddle, shaft, and
motor were submerged within an acrylic tank filled with a glycerol-water mixture; we adjusted the
mixture proportions to achieve varying Reynolds numbers. Inside the tank, the servomotor was
fixed to an acrylic plate and connected to the rowing paddle models via a timing belt (Figure 4-
1B). Three different paddles were used in this experiment: one paddle was flat and rigid (made of
PLA and printed using a MK3S+, Prusa Research, Prague, Czech Republic) and two paddles were
flexible, with one initially flat geometry and one initially curved geometry (made of proprietary

Elastic SOA resin, printed on a Form 2, Formlabs, Somerville, MA, USA). All paddles have
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dimensions of 1x30x120 mm (thickness, height, and width); the aspect ratio (width-to-height) is
purposefully large so that the produced flow is approximately 2D. Figures 4-1C-E show camera
recordings of the three different paddles. We will refer to the paddles as FR (flat and rigid), FF (flat
and flexible), and CF (curved and flexible). The prescribed shaft rotation produced a power stroke
and a recovery stroke whose durations could be adjusted, thereby varying temporal asymmetry Ta.

We used PSV to measure both flow velocities and paddle kinematics. The setup was similar
to the one used in section 2.1, but used a macro lens instead of a long-working-distance microscope
objective. Figure 4-1A shows the inline configuration of components; from left to right, we have a
4MP high-speed camera (Phantom VEO E-340L, Vision Research Inc., Wayne, NJ, USA), 105
mm F1.4 SIGMA lens (Ronkonkoma, NY, USA), the experimental tank with dimensions
560x150x250 mm (length, width, and height), a 6.7x6.7” Fresnel lens with a focal length of 6”
(Edmund optics, Barrington, NJ, USA), and a white 10,000 lux LED panel (Charmax, China) as
our light source. In this configuration, the LED panel produces diffuse light which is collimated as

it passes through the Fresnel lens, producing sharply-defined shadows of tracer particles.
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Figure 4-1. (A) Schematic of experimental PSV setup showing the inline configuration of the
camera, macro lens, water-glycerol tank with paddle, Fresnel lens, and light source. (B) Close-up
of the paddle actuation system. (C) Flat and rigid paddle (FR) as seen by the camera. (D) Flat and

flexible paddle (FF). (D) Initially curved and flexible paddle (CF).

4.1.2 Velocimetry and Kinematics analysis

We recorded a side view of the paddle, as seen in Figure 4-1C-E, with the focal plane at
the paddle’s width midpoint to ensure observation of 2D flow. Images were collected at 300 frames
per second with an exposure time of 900 ps. The Depth of Correlation (DoC), or thickness of the
useful measurement volume, is estimated at 1.69 mm (equation 17, section 4.2), using 100 pm
hollow glass silver-coated tracer particles (Conduct-o-fil, Potters Industries, Carlstadt, NJ, USA).
To mitigate the noise created by out-of-focus particles, we used the pre-processing algorithm

described in section 4.2. Processed images have an average seeding density of 2.08 x 1073
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particles per pixel. We performed a vector computation (three-pass iteration with subwindows of
256x256, 128x128, and 64x64 px, with 50% overlap) using the MATLAB-based tool PIVLab
(Thielicke & Stamhuis, 2014). All image pre-processing and vector field postprocessing was
conducted with MATLAB (Mathworks Inc., Natick, MA, USA).

For each experiment, the paddle shaft’s angular velocity was controlled via an Arduino
Uno microcontroller board which oscillated the shaft in a temporally asymmetric beat cycle, with
a net frequency of 1.07 + 0.2 Hz and a stroke amplitude of 101.97 + 6.38° over ten cycles. To
avoid start-up transients, only the last three cycles were recorded for analysis. This process was
repeated for all three paddle types (FR, FF, and CF) using five levels of temporal asymmetry (Ta =
0,0.1,0.2,0.3,0.4) and four different Reynolds numbers (Re, = 7.43 + 0.24, 14.87 £+ 0.3,
27.40 + 0.53, and 62.93 + 1.11, where Re,, = 2mtf1?/v), for a total of sixty experiments. To
achieve this range of Re,,, we varied the kinematic viscosity (v) using water-glycerol mixtures.
Specific viscosities were targeted using the work of (Brindise et al., 2018), and we directly
measured viscosity using a Brookfield DV-E viscometer (Amtek, Inc., Berwyn, PA, USA). Fluid
properties are shown in Table 4-1. We tracked the propulsor kinematics by automatically extracting
the centerline of the paddle via image processing and interpolating 100 equally spaced points along
the centerline. Figure 4-2A shows the centerline points (white dots; subsampled for visual clarity)
used to calculate the speed along the paddle, as well as the tip trajectory for a single cycle (blue
line). Figure 4-2B shows (for the CF paddle) the average tip velocities for the five levels of temporal

asymmetry, consistent with our approach from Chapters 2 and 3.
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Figure 4-2. (A) Example of a still frame from a collected video showing the tip trajectory (blue
line) of the CF paddle and several tracked centerline points (white dots). (B) CF paddle tip velocity

for Ta = 0,0.1,0.2,0.3,0.4. Red lines are the 3-cycle average velocity.

Table 4-1. Fluid properties for the water-glycerol mixtures and the resulting oscillating Reynolds
numbers (Re,).

Re,, Density Kinematic viscosity
(kg/m3) (mm?/s)
7.43 +0.24 1273.8 810.17
14.87 £ 0.3 1248.6 407.89
27.40 + 0.53 1239.4 221.29
62.93 + 1.11 1220.1 96.17

As previously mentioned, we are using three different paddles to explore the effects of
propulsor shape and spatiotemporal asymmetry. Figure 4-3 shows the time series of the kinematics
of these different paddles for the case of Ta = 0.4, displaying the power stroke tip trajectory in red
and the recovery stroke tip trajectory in blue. Figure 4-3A shows the FR paddle, which has
completely symmetric power and recovery strokes (Sa = 0). Figure 4-3B displays the kinematics
of the FF paddle. In this case, the paddle bends more during the power stroke (left to right, red line)
than during the recovery stroke (right to left, blue line), as the difference in speed passively deforms
the paddle. This is the opposite of the appendages of actual ctenophores (Figure 2-2, section 2.1),

in which the projected area in the plane normal to the body surface (transversal area) is increased
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during the power stroke and reduced during recovery (maximizing the ctene’s local thrust
production). To account for this possibility, in this chapter we use a more specific definition of
spatiotemporal asymmetry (previously defined as Sa = A,/A,, equation 2, where A, is the tip
trajectory enclosed area and A, is the ellipse inscribed in the ctene’s reachable half-circle). We
instead calculate A, as the area under the power stroke trajectory (red line) minus the area under
the recovery stroke trajectory (blue line), which does not alter the values of Sa reported in previous
chapters but appropriately results in a negative spatial asymmetry for the flat/flexible paddle studied
here. This negative value results from the paddle's passive bending due to the higher speed during
the power stroke when Ta # 0. The third paddle (CF) is designed to mimic the spatial asymmetry
of a real ctene (Sa > 0). In this case, the curved profile unrolls during the power stroke (increasing
the transversal area), and returns to its original curvature during the recovery stroke, resulting in a

positive spatial asymmetry.

Recovery Stroke Power Stroke

Figure 4-3. Timeseries of the three different paddle kinematics, with paddle side profiles plotted at
equal time intervals. Red lines are power stroke tip trajectories, and blue lines are recovery stroke
tip trajectories. (A) shows the FR paddle; only the recovery stroke tip trajectory is visible due to
complete spatial symmetry (Sa = 0). (B) shows the FF paddle; here, the paddle bends more during
the power stroke than on the recovery stroke, resulting in a negative spatial asymmetry. (C) shows

the CF paddle, which mimics the positive spatial asymmetry of a real ctene.
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Due to its rigidity, the spatial asymmetry of the FR paddle is zero for all values of Ta and
Re,,. However, this is not the case for flexible paddles. For both FF and CF the spatial asymmetry
is a passive response to the fluid forces acting on the paddles. Therefore, the value of Sa depends
on Ta and Re,,. Figure 4-4 shows the spatial asymmetry values for the FF (blue) and CF (magenta)
as a function of temporal asymmetry and Reynolds number. The four Reynolds numbers
(Re,, = 7.43 + 0.24,14.87 £ 0.3,27.40 £+ 0.53,and 62.93 + 1.11), are displayed by the color
transparency level of the lines, with the most transparent being Re,, = 7.43 £ 0.24 and the solid
line Re,, = 62.93 £+ 1.11. The deformation of both paddles increases at higher values of Ta due
to the higher speed during the power stroke (Figure 4-2B). The force is directly proportional to the
square of the velocity 0.5 pv?CpA. For the CF paddle, a higher force helps unroll the paddle and
thus produce a higher Sa by extending the paddle during the power stroke. For the FF paddle, more
force during the power stroke results on higher bending and therefore produces an increasingly
negative value of Sa by collapsing the paddle during the power stroke. This same principle is
invoked to show that the opposite trends hold when considering how Sa depends on Re,,. From
Table 4-1, we can observe that the fluid density decreases (p) as kinematic viscosity (v) decreases,
thereby increasing Re,, (lowering the absolute force, 0.5 pv?CpA, and resulting on less paddle
deformation). This yields lower values of Sa as Re,, increases for CF, and higher Sa as Re,

increases for FF.
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Figure 4-4. Spatial asymmetry passively responds to fluid forces. The FF paddle is shown in blue,
and the CF paddle in magenta. Experiments at different Reynolds numbers (Re,, = 2mf1?/v) are
indicated by the line transparency. From the most transparent line to the solid line, Reynolds

numbers vary across 7.43 + 0.24,14.87 £ 0.3,27.40 + 0.53,and 62.93 + 1.11.

4.1.3 Rowing paddle dynamics

To evaluate rowing performance, we first calculate the force distribution over the paddle
height. Using the measured velocity fields around the propulsor (Figure 4-5A), we solve the Navier-
Stokes equation and compute the pressure field with the tool QUEEN 2.0 (Dabiri et al., 2014),
which has previously been used to calculate pressure fields of ctene-generated flows (Colin et al.,
2020). Figure 4-5B shows a sample pressure field for the FR paddle; here, the white-masked area
denotes the solid region (paddle). On top of the computed pressure field, we plot the centerline of

the paddle (blue line); we sample the pressure on both sides of the paddle over two transects parallel
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to and equidistant from the centerline (green dots). The time-varying force imparted by the paddle

to the fluid can be calculated as follows:
F(t) = fﬁPdA—Jr-ﬁ dA  (17)
where 1 is the normal unit vector directed outward from the centerline, P is the fluid pressure, 7 is

the viscous stress tensor, and F is the force applied to the fluid by the paddle. Here we assume that
the shear term is small relative to the pressure term, thus neglecting the last term of equation 17
(Lucas et al., 2017). Figure 4-5C shows a schematic of the centerline and the pressure sampling
points. For each centerline point we use the unit normal to define two corresponding pressure
sampling points to evaluate equation 17, such that there are two normal force vectors per centerline
point. The net force for each centerline point is the vector sum of the two forces. The resulting force
distribution is shown in Figure 4-5D, where the orange arrows correspond to the computed forces
per unit length (2D flow), and the cyan arrows are the velocities for each point along the paddle.
We note that force vectors for the rigid paddle are not strictly parallel due to a small errors produced
by the automatic centerline identification; however, we do not consider this to be a significant
source of error relative to existing noise in the velocity and pressure fields. We note that our analysis
does not consider the hydrostatic pressure gradient; however, since each pair of sampled points is
at approximately the same z-location, the pressure difference AP (and therefore net force) at each

centerline point is independent of hydrostatic variation.
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Figure 4-5. Analysis procedure to calculate the force distribution along the paddle. (A) Velocity
field from PSV experiments; colormap shows vorticity. (B) Pressure fields are computed by solving
the Navier-Stokes equations using the measured velocity field as input and assuming out-of-plane
velocities and velocity gradients are zero. (C) Schematic of the centerline and offset points used to
evaluate equation 17; each point is a at an offset distance d, = 3.5 mm from the centerline. (D)

Force vectors (blue) and velocity vectors (red) along the paddle.

The analysis procedure assumes that we are sampling the pressure exactly at the solid-fluid
interface; however, in practice we choose the minimum possible distance between the centerline
and the sampling points so that we measure fluid pressure outside the masked region (white area,
Figure 4-5B) during the complete cycle. The mask resolution is constrained by the PSV velocity
vectors’ cartesian grid positions, such that the masked region is slightly larger than the true paddle

dimensions. Appendix B shows a sensitivity analysis of the sampling offset distance, similar to the
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one in (Lucas et al., 2017), and shows that similar values for net force are obtained at distances up
to five times the paddle thickness (5 mm). This sensitivity analysis also justifies the neglect of the
shear term in equation 17.

As a general example, we discuss the analysis for the case of Re,, = 14.87 + 0.3 and Ta =
0.21 £ 0.003 to describe the role of spatiotemporal asymmetry on the thrust and lift production.
Figures 4-6A and B show the thrust and lift forces produced during one beat cycle (FR in red, FF
in blue, and CF in magenta). From these two plots we observe that for the FR case (rigid propulsor),
the force peaks at the beginning and end of the power stroke; however, these peaks are mitigated
by flexibility in the FF and CF cases. In living animals, the presence of flexibility helps enhance
swimming stability and reduces the risk of appendage fracture and fatigue (Kim & Gharib, 2011).
We further note that for the CF case, thrust is generally higher during the power stroke (relative to
FR and FF) and less negative during the recovery stroke, due to the higher spatial asymmetry
present in the CF paddle. We discuss this in detail below.

The force distributions in Figures 4-6C- E (FR, FF, and CF) are also useful to interpret
thrust and lift production of each paddle. Each diagram shows three different time instants,
representing the beginning of the power stroke, during the power stroke, and shortly after the
completion of the power stroke (from left to right: t/T of 0.05, 0.3, and 0.42). We have placed a
green arrow normal to the paddle and close to the peak force, to help visualize how the deformed
shape of the paddle affects the distribution of the produced force between thrust (parallel to the
substrate) and lift (normal to the substrate). At the beginning of the power stroke (t/T = 0.05), the
backward bending of the FF paddle (Figure 4-6D) increases the vertical component of the force
vectors relative to the FR case (higher lift). On the other hand, the initial curvature of the CF paddle
increases the horizontal vector components (higher thrust). As the power stroke continues (t/T =
0.3), the FF paddle’s deformed shape maintains higher vertical components relative to the FR case,

while the force vectors of the CF paddle have negative vertical components at this point. Thus, the



80
CF paddle produces the highest thrust force during the power stroke (Figure 4-6A), while the FF

paddle has the highest lift force (Figure 4-6B). During the recovery stroke (t/T = 0.42), due to the
slower speeds, the shape of the FR and FF paddles are similar, and therefore have similar force
production (Figure 4-6A and B). However, the curved shape of the CF paddle strongly reduces the
horizontal force components during the recovery stroke (t/T = 0.42); considerably reducing the

negative thrust force (that is, drag) (Figure 4-6A).

Fr(N/m)
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w

o

Figure 4-6. Analysis of propulsor force production at Re,, = 14.87 + 0.3 and Ta = 0.21 + 0.003.
(A) Thrust force production for the FR (red), FF (blue), and CF paddles (magenta). (B) Lift force
production for the FR (red), FF (blue), and CF paddles (magenta). Thick lines are the 3-cycle-
averaged time series, and thinner lines show the standard deviation of the measurements. The

shaded area illustrates the time interval of the power stroke, and the white region is the recovery
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stroke. (C, D, and E) Force (orange) and velocity (cyan) distributions for three time instants at the
beginning of the power stroke (t/T = 0.05), during the power stroke slightly after peak tip speed

(t/T = 0.3), and the beginning of the recovery stroke (t/T = 0.42).

To compare thrust and lift force production for the three paddles at different Reynolds

numbers, we compute the non-dimensional thrust and lift coefficients: Cr = Fr/ 0.5pUt2ipl and

C,=F,/ O.SpUtzl-pl. Here, since we are collecting 2D data, both Fy and F; have dimensions of
N /m (Figure 4-6A and B); we therefore we use the paddle height (1) to normalize the coefficient
instead of the paddle area. We choose Uy;;, to be the tip speed of the rigid paddle at Ta = 0 (such
that Uy, = 21Of).

Figure 4-7 shows the cycle-averaged thrust and lift coefficients for the FR (red), FF (blue),
and CF (magenta) paddles as a function of Ta and Re,,. In general, thrust increases as T'a increases;
however, lift is generally constant across all observed Ta. For all studied cases, we observe that the
CF paddle produces the highest thrust (Figure 4-7A) at the expense of the lift production (Figure
4-7B). The FF paddle produces the least thrust, but produces significant lift. The FR paddle is an
intermediate case, producing both thrust and lift. These results are intuitive and agree with the
previous discussion on the role of the paddle shape on force orientation (Figure 4-6). Figure 4-7
also shows how the force production is dependent on Reynolds number: in general, force
coefficients decrease as the Reynolds number increases. This can be attributed both to our
experimental strategy of increasing Re,, by decreasing kinematic viscosity (and therefore lowering
the density of the working fluid, see Table 4-1) and also to the passive response of the paddles to
the hydrodynamic forces (Figure 4-4). Because the hydrodynamic forces and the paddle

geometry/flexibility are coupled, performance cannot be evaluated solely from these cycle-
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averaged force coefficients. In the next section, we address this problem by introducing a new

approach to calculate the efficiency of force generation (both thrust and lift).
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Figure 4-7. Cycle-averaged force coefficients of the three rowing paddles at intermediate Reynolds
numbers, where (A) shows thrust coefficient C; and (B) shows lift coefficient C;. The FR paddle
is shown in red, the FF paddle in blue, and the CF paddle in magenta. Experiments at different
Reynolds numbers (Re, = 2mf1?/v) are shown by the color transparency; from the most
transparent line to the solid line, Re, increases as 7.43 4+ 0.24,14.87 +0.3,27.40 +

0.53,and 62.93 + 1.11.

4.1.4 Rowing paddle efficiency

The previous section discusses how motion asymmetry affects force production in rowing
propulsors. Our goal in this next section is to develop a useful and mathematically appropriate
expression for efficiency as a tool to quantify the performance of a rowing paddle (that is,
dimensionless and scaling from 0 to 1). As mentioned previously, current metrics of propulsive
efficiency commonly used for swimming organisms are based on the free motion of a body,

requiring an overall swimming velocity (Gemmell et al., 2013; Lighthill, 1960; Murphy et al.,
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2011). This is a problem for evaluating the performance of a single rowing paddle, since the speed
and force vary along the propulsor. For the case of (globally) fixed rowing appendages, it may be
tempting to use the average or maximum far field velocity in place of the free-swimming velocity.
However, the far field may not be a coherent velocity stream, nor is “far field” a well-defined
distance. Additionally, this approach would not necessarily result in an efficiency expression that
scales from 0 to 1, as desired. To calculate output power from a generated velocity field, we must
make assumptions about the flow. For example, (Barlow & Sleigh, 1993) assumed that the flow
above a ctene row behaves as a jet. The peak output power of a jet can be calculated as 0.5pu34,
where A is the cross-sectional area of the jet. For this work, the (1D) area may be estimated as the
distance from the top of the ctene to the point at which the flow velocity reaches only ~20% of the
peak velocity. However, this approach is somewhat arbitrary, is not guaranteed to correctly measure
the power output, and is not universally applicable to any type of oscillating appendage. We thus
seek a new metric for propulsive efficiency, suitable for all globally-fixed rowing appendages (and
extensible to appendages on a swimming body).

The definition of Froude efficiency (or propulsive efficiency) is the ratio between the
power used to overcome drag to the power expended to produce the motion (Lighthill, 1960). When
applied to a moving object it can be calculated as n = F;U/P, where F; is the thrust force, U is
the swimming speed and P is the power input to the fluid. Here we will rely on this concept to
develop an expression which accounts for the variable force and velocity distribution along the

paddle, such that integrated thrust efficiency n is defined as

_ X0 X1 FeVesgn(Fy)
Zol(z1F x7) - &

nr (18)

where F, and V, are the horizontal components of force and velocity for each point on the paddle
center line (summed over n spatial points, see Figure 4-5D, and T timepoints). The numerator of

this expression therefore is the net power (force x speed) required to move each tracked point along
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the paddle through the fluid over the entire operation time (7). The sign function indicates that the
power stroke produces thrust (positive), and the recovery stroke produces drag (negative) and
therefore decreases the net integrated efficiency 1. The denominator is the input power, which is
calculated as the absolute value of the inner product of torque and shaft angular speed. The (time
varying) net torque is calculated as the net force on each centerline point (ﬁ ) crossed with its
position vector (7) with respect to the shaft position. We calculate the (time varying) shaft angular
speed using the first tracked point on the paddle and the shaft position. To define the lift efficiency
(1), we consider the vertical components of force and velocity in the numerator.

Figures 4-8A and B show the integrated thrust and lift efficiencies for the FR (red), FF
(blue), and CF (magenta) paddles as a function of Ta and Re,,. As previously discussed, spatial
asymmetry Sa is not prescribed, and is a function of Ta and Re,, (Figure 4-4). We note that the
CF paddle has the highest spatial asymmetry, and that Sa increases as T'a increases (with a mean
of Sa = 0.144 £+ 0.01 across all tested conditions). The FR paddle is symmetric, with Sa = 0
across all Ta and Re,,; the FF paddle has negative spatial asymmetry (Sa = —0.03 + 0.01 across
all tested conditions).

For thrust production, we observe that the efficiency of all paddles rises as spatiotemporal
asymmetry increases (at a given Re,,). FF is the least efficient, slightly underperforming compared
to the FR paddle. The decrease in performance can be attributed to the negative Sa values of the
FF paddle. The CF paddle is the most efficient thrust producer: in fact, it is the only paddle which
produces net positive thrust for temporally symmetric cycles (Ta = 0). The thrust efficiency of
this paddle reaches a maximum value of 7~0.6, at the highest explored values of Ta. In Figure 4-
4, we see that for fixed Ta, lower Re,, always corresponds to higher Sa for the CF paddle. However,
at high Ta, lower Re,, counterintuitively produces lower n; (upper right, Figure 4-8A). At lower

values of Ta for the CF paddle, lower Re,, are more efficient (middle left, Figure 4-8A). This may
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indicate that while higher Sa generally produces more net thrust, the cost of producing that thrust
is a strong function of the viscous-inertial balance. In other words, producing thrust is easier at

higher Re,,, and when both Sa and Ta are high.
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Figure 4-8. Performance of three rowing paddles at intermediate Reynolds numbers. (A) Thrust
production efficiency. (B) Lift production efficiency (equation 18). The FR paddle is shown in red,
the FF paddle in blue, and the CF paddle in magenta. Experiments at different Reynolds numbers
(Re,, = 2mf1?/v) are indicated by the line transparency; from the most transparent line to the solid

line, Re,, increases as 7.43 + 0.24,14.87 + 0.3,27.40 + 0.53,and 62.93 + 1.11.

For the lift production efficiency 7;, we observe the opposite behavior with respect to
spatial asymmetry (Figure 4-8B). The FF paddle, with negative spatial asymmetry, is the best at
producing lift. The curved flexible paddle (CF), which carries the highest spatial asymmetry, is the
worst. This is partially due to the propulsors’ shape during the stroke cycle (Figure 4-6). As
explained previously, the backward bending seen in the FF paddle (Figure 4-6D) increases the
vertical force components during the power stroke. Conversely, the CF paddle’s bending tilts the

force vectors toward the horizontal, and actually produces negative values of lift force during the
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power stroke (Figure 4-6B). The FF paddle is the most efficient lift producer; this makes sense,
since its bending kinematics (Figure 4-6D) are similar to the tail kinematics of a fish or other lift-
based swimming strategy (Dewey et al., 2013). A fish’s tail must maximize spanwise force
production (corresponding to lift in these experiments). This strategy is typically used at much
higher Reynolds numbers (Kurt et al., 2021). Fish swimming experiments have also shown that a
flexible tail enhances swimming efficiency (Han et al., 2022), likely by smoothing force peaks and

increasing the spanwise force components as described in section 4.1.2.

4.1.5 Discussion

We evaluated the propulsive performance of three paddles with different flexibilities and
initial geometries in order to explore the role of spatiotemporal asymmetry for intermediate Re
rowing. The comparison between the flat/rigid (FR), flat/flexible (FF), and curved/flexible (CF)
paddles shows how flexibility smooths the aggressive force peaks observed on the rigid structure,
as well as the role that the deformed paddle shape plays in directing the overall orientation of the
hydrodynamic force. We showed how the CF paddle’s passive deformation during the beat cycle
resembles the spatially asymmetric motion of a ctene (Sa > 0). The geometry and flexibility of
this paddle encodes the Sa into the structure, thus simplifying the required controls and hardware
of a robotic rowing appendage (Ford & Santhanakrishnan, 2020; Santos et al., 2022). However, the
passive response of the paddle makes its time-varying geometry a function of both Ta and Re,,,
thus complicating attempts to directly investigate the role of spatiotemporal asymmetries vs.
Reynolds number.

We developed a new definition of propulsive efficiency that can be used to directly evaluate
a rowing appendage's performance independently from the full-body swimming dynamics. Instead

of swimming speed, the integrated efficiency considers the force and velocity distributions
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measured around the appendage. It also considers the directionality of appendage movement, so
that only net thrust is considered (subtracting the power produced by drag from the motions that
produce useful thrust power). The integrated efficiency may be calculated for robotic devices,
numerical simulations, and animal experiments as long as the system's input power can be measured
or estimated. Calculating the input power is typically feasible for robotic devices or numerical
simulations, but estimating the power consumption of a live animal is not trivial (Svendsen et al.,
2013). As it is defined here, the integrated efficiency (equation 18) is developed for 2D flows;
however, it is easily extensible to 3D motion if the force and velocity distributions over the
appendage surface are known. The expression is also extensible to non-globally fixed appendages,
such as those moving with a body, as the appendage(s) may simply be considered in the reference
frame of the body.

We showed that increasing both temporal and spatial asymmetries improve thrust
efficiency, but that this relationship is coupled to Reynolds number. Spatial asymmetry (Sa) plays
a significant role in thrust generation, and can substantially increase 1. Even for a stroke cycle
with Ta = 0, the CF paddle (which always has Sa > 0) has an efficiency of ~0.3 (Figure 4-8A).
Spatially symmetric motions (FR) can only achieve this level of efficiency at very high values of
temporal asymmetry (Ta > 0.3). To evaluate lift production, we found that the time-varying
deformation of the paddle—not just net asymmetry—during the beat cycle plays an important role.
The force distribution diagrams (Figures 4-6C-E) show how the bending kinematics of the FF
paddle maximize lift force production, similar to the mechanism used by e.g. the tails of fish. In
contrast, the CF paddle maximizes thrust, making the CF paddle the best of the three tested options
for thrust production (Figure 4-8). However, none of the three tested paddles strictly reproduces
the motion of the actual ctene. Real ctene bending kinematics (Figure 2-2) could be described as
the power stroke of the FF paddle combined with the recovery stroke of the CF paddle, suggesting

that ctene motion is a compromise between maximizing thrust while still generating some lift.
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Although thrust production for forward swimming is a primary goal of rowing, producing a certain
amount of lift in some cases is important. For ctenophores with spheroidal shapes (such as the small
to medium lobates examined in Chapter 2 or cydippid ctenophores such as Pleurobrachia sp.), their
ctenes protrude from strongly curved body surfaces. Depending on the co-located substrate
curvature, the local ctene lift production can contribute to full-body forward motion (Lionetti et al.,
n.d.). For other metachronal rowers like krill or shrimp, which operate at higher Re, lift production
is essential since they are negatively buoyant (Murphy et al., 2013). Future work may focus on
creating propulsors whose shape and stiffness can be tuned to reproduce these kinematics, which

balance lift and thrust for swimming organisms.

4.2 Particle Shadow Velocimetry: image pre-processing algorithm

Particle shadow velocimetry (PSV) is a flow measurement technique that differs in several
key ways from the more commonly used Particle Image Velocimetry (PIV) (see Table 4-2). It uses
back-lit (sometimes collimated) illumination to produce sharply defined shadows of tracer particles
rather than the light-scattering approach produced by a laser sheet, as in PIV. Given that its
illumination source is not usually laser-based, PSV is generally cheaper and safer to operate than
PIV (Estevadeordal & Goss, 2005). It is also useful for systems in which optical access points are
not ideal for PIV, or where backlighting can avoid undesirable shadows (e.g., in wake regions) (L.
P. Goss et al., 2007). Typical 2C2D (i.e., measuring two velocity components within a two-
dimensional plane) PIV and PSV experimental setups are shown in Figure 4-9. One notable contrast
is that in PIV, only the particles inside the laser sheet are imaged, even though other particles are
in focus (but not illuminated); PSV instead relies on the optical depth of correlation (DoC) to isolate
tracer motion to a plane. The DoC is the thickness of the imaged “plane” and is a property of the

system optics as well as the tracer size (Figure 4-9); it is defined as the thickness over which imaged
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objects (e.g. tracers) can contribute to image cross-correlations. In general, it is desirable to reduce
DoC as much as possible to confine velocity measurements to a single plane. Here is where one of
the significant restrictions of PSV lies: DoC scales with field of view (FoV). Larger FoVs
necessitate a larger imaged volume overall (and therefore a larger DoC), thus producing
unacceptable noise levels from the out-of-focus tracers. Laser-based PIV does not have this
problem because the imaged volume is defined by the thickness of the laser sheet, not the optics of
the system.

Table 4-2. Planar velocimetry using laser-based PIV vs PSV (2D2C).

Technique PIV PSV
Ilumination Laser light sheet Backlighting from collimated LED (or
similar)

Effect of Focal depth typically larger than light ~ Out-of-focus particles still visible, and
out-of-focus  sheet; significantly out-of-focus can decrease to the signal-to-noise
tracers tracers are not illuminated ratio

Field of Determined by optics, but not linked  Field of view varies with DoC, so
view to the measurement thickness large fields of view require mitigating

noise from out-of-focus tracers

‘ \Laser

-

g i

ol . ot

. -

{ '.h_ Collimated LED
(A) I (B) :
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Figure 4-9. (A) Schematic for a laser-based PIV system, where the thickness of the laser sheet
defines the thickness of the measurement region (MR) and (B) a PSV system where the thickness

of measurement region (dotted box) is defined by the optics of the system (DoC).
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The DoC can be calculated for micro and macro-PSV (Olsen & Adrian, 2000; Truong et

al., 2018) systems as

(M +1)%22 (217\7/14)4

M2

LV (L)2 d2 +5.95

2NA a7

where ¢ is a threshold parameter (Olsen & Adrian, 2000), 1 is the refractive index of the material
between the lens and the specimen, NA is the lens numerical aperture, d,, is the tracer diameter, M
is the lens magnification, and A is the wavelength of the illumination. The threshold ¢ is typically
taken to be 0.01, which fits experimental data on the extinction of out-of-focus tracers (Santiago et
al., 1998). The size of the FoV is inversely proportional to the magnification M. Following equation
(17), a higher magnification produces a smaller DoC, which is desirable but not always attainable.
If the DoC is on the order of the tracer diameter, the images can be inverted and processed as in
traditional 2D2C PIV. However, as magnification decreases, DoC increases, and simple image

inversion produces unacceptable noise levels from the out-of-focus tracers (Figure 4-10).

e
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Figure 4-10. To-scale schematic of the DoC (rectangle width) and FoV (rectangle height) for 3 pm
particles at three different magnifications: 5X (NA=1.4), 10X (NA=0.21), and 20X (NA=0.5), as

illuminated by a collimated white LED with A = 0.55um and a refractive index of n = 1 (air).
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Figure 4-11A show how a tracer looks in the camera when it is in front of, within, or behind
the focal plane. When the tracer is aligned with the focal plane (z~0 um) region where the "deep
shadow region" dominates (Figure 4-11B), it is clearly delineable. When the tracer is behind the
focal plane (on the shadowed side, z > 0) or in front of the focal plane (on the lit side, z < 0), it is
haloed. Figure 4-11A effectively represents how 2.6 um diameter out-of-focus tracers, captured at
a magnification of 3.5, look across an imaged thickness of 400 um (L. Goss & Estevadeordal,
2006). Although these are not the experimental conditions of our experiments, Figure 4-11A is
representative of the in and out-of-focus particles behavior in all PSV configurations. If the flow
of interest is three-dimensional enough that there is significant variability between the target plane
vs. planes where we can still image these out-of-focus tracers, the signal-to-noise ratio becomes a
problem. The haloing effect can extend for many particle diameters (Ovryn & Izen, 2000); it is

therefore important to avoid imaging this region by keeping the DoC as small as possible.

Deep shadow
region __.-=="""

-
—"- -
-

& -
. -~ Poisson
S~ ~_ cone
Diffr =

actlon ~

z= —200 =100 0 100 200 pm TTmmeea.__Jings
(A) (B)

Figure 4-11. Particles imaged by PSV. (A) Particles imaged at different distances from the focal
plane for d,, = 2.6 um, and a DoC of 200 um, reproduced from (L. Goss & Estevadeordal,

2006). (B) Schematic of the regions created by the backlighting of a hard sphere. The sphere is

being illuminated from left to right. Adapted from (van de Hulst, 1957).
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PSV is a logical choice for our experiments (outlined in Chapters 2 and 4) for two main
reasons: first, given the geometry of the ctene row (Figure 2-1) and the robotic paddles (Figure 4-
1C-E), side illumination is not an option as ctenes would cast shadows in the targeted imaging
regions. Second, zooplankton are generally photosensitive; thus, high-energy lasers are not
desirable. PSV has been used successfully for studying flows around plankton, but has generally
been applied to small creatures (<1mm) (Gemmell et al., 2014) or restricted to highly zoomed-in
regions (Colin et al., 2020). The ratio DoC /d,, for these experiments is less than 10 (i.e., the DoC
is less than ten tracer diameters thick). In our animal experiments, we are interested in
simultaneously capturing several ctenes in one row, increasing the size requirements of the FoV

and stretching to DoC/d,~43. This results in a strong signature of out-of-focus particles within

the images. This problem is also common when using PSV to investigate bubble dynamics (Broder
& Sommerfeld, 2007; Hessenkemper & Ziegenhein, 2018). However, there is currently no detailed
study on best practices for digitally removing the out-of-focus particles that decrease the quality of

the vector fields.

4.2.1 Image pre-processing for focused tracer detection (FTD)

Here we outline our image pre-processing method that extends the PSV technique for
scenarios with nontrivial DoC. Figure 4-12 shows the pre-processing method applied to a 200x200
pixel subwindow of a PSV image obtained from the experiments of section 2.1.1. When processing
an entire image, intensity variation is significant between different regions of the image. To avoid
thresholding problems, we apply the method by subwindows with an overlap. This way, all the
operations are based on local rather than global parameters. The overlap also ensures that we will

not lose tracers at the intersections between subwindows.
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Each image describes one step in the detection algorithm, corresponding to a panel in

Figure 4-12:

(0)

(1)
2)

3)

4

)

The first image is the original (raw) image from the PSV setup. The in-focus and out-of-
focus particles are distinguishable; there is one alien particle at the top left corner (too big
to be a tracer; in this experiment, it is likely to be a piece of algae or mucus).

We first invert the image.

We then enhance the contrast using an exponential intensity transformation. In other words,
we rescale the intensity distribution so it will follow an exponential distribution. This
allows us to more easily separate the brighter regions (focused tracers) from the other areas
of the image (out-of-focus tracers, background, and miscellaneous noise).

Next, we apply a weak spatial Gaussian filter, which further reduces noise without
eliminating the sharp edges of in-focus tracers.

We isolate discrete regions using an edge detection operation. Given the nature of the
image, a non-directionally based edge detection is needed; in this case, we use a Canny
edge detection algorithm (Gonzalez et al., 2004) and fill closed contours with white to
make the shapes uniform in intensity.

We use two geometric threshold criteria to distinguish between artifacts, alien particles,
and tracers: circularity (C = 4Am/P?, where A is the area and P the perimeter) and the
diameter d,,. If C < 1 or if d,, is outside the anticipated range (based on the known tracer
dimensions), the spot is eliminated. The remaining spots represent in-focus particles.
Finally, a Gaussian smoothing operation helps to avoid potential peak-locking effects (so

that tracers themselves may still be centered at fractional pixel locations).



Figure 4-12. Focused tracer detection algorithm for particle shadow velocimetry, from (0) the

original image to (5) final processed image ready to be used in a PIV cross-correlation algorithm.

Haloing effects like those shown in Figure 4-11 are clearly visible in the original image (0)

4.2.2 Results

Because ctenes have finite dimensions (i.e., a rectangular plate with defined width, height,
and thickness), they produce 3D flow structures. However, in our context of planar flow
visualization, the finite width imposes two restrictions on what constitutes a useful 2D2C ctene
velocimetry analysis: 1) the focal plane must be normal to the ctenes, and 2) it should bisect the
ctene row as closely as possible. These two restrictions ensure that the flow within the measured
plane is as 2D as possible, improving data quality and enabling analyses that would not otherwise

be possible. The difficulty of achieving these conditions with live animals—combined with the
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large depth of correlation (DoC/d, = 43) necessitated by the relatively large FoV required to
image multiple ctenes simultaneously—yielded many out-of-focus particles, as shown in Figure 4-
12 (0). Typical PIV image pre-processing techniques such as adaptive histogram equalization,
highpass intensity filtering, and intensity capping (Thielicke & Stamhuis, 2014) were not helpful
when dealing with noise levels produced by simply inverting the raw images, such as that seen in
Figure 4-12 (1). When using these typical PIV preprocessing techniques, we obtained velocity
fields similar to the one in Figure 4-13A. Here we observe numerous artefacts, such as false
deceleration zones (circled), resulting from the influence of the out-of-focus tracers. These out-of-
focus tracers, positioned on either side of the focal plane, are likely to be moving at low velocity
or with a velocity primarily directed normal to the plane of focus; their contribution to the image
correlation artificially decreases the calculated in-plane velocities. In contrast, Figure 4-13B,
generated from the same raw images but using the prefiltering described in the previous section,
shows more reasonable velocity measurements and demonstrates the algorithm's capacity to

eradicate out-of-focus noise.
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Figure 4-13. Velocity field of the metachronal rowing of an adult ctenophore, calculated using (A)
PIV common pre-processing techniques, and (B) our focused tracer detection algorithm. False

deceleration zones are circled in white.

4.2.3 Summary and planned future work

We have developed a focused tracer detection algorithm for PSV systems with nontrivial
DoC, which is qualitatively shown to increase the signal-to-noise ratio (Figure 4-13). This pre-
processing algorithm is used for the velocimetry described in Sections 2.1 and 4.1. Given the lack
of information available on reducing the effective DoC via image prefiltering in PSV systems, we
suggest a comprehensive study to systematically characterize the performance of our algorithm. By

comparing the velocity vectors obtained under different DoC /d,, ratios when imaging a canonical,

well-described flow (e.g., Poiseuille flow or a laminar jet), we can quantitatively calculate how
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much our prefiltering algorithm improves the probability of detecting valid velocity vectors (Shavit

et al., 2000).
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Chapter 5

Conclusions

The study of locomotion at intermediate Reynolds on the order of 1-1000 has tremendous
potential for bioinspired design, particularly for scalability across the viscous-inertial flow regime.
Animals living in this flow regime deal nontrivially with viscous and inertial effects. Therefore,
their locomotive strategies must be adaptable for success in either viscous-dominated (Re < 1) or
inertia-dominated environments (Re > 1). The vast number of animals at the millimeter to
centimeter scale represent a potential source of inspiration for engineers to develop both micro-
and macro-robotic platforms. However, understanding the operational limits—and therefore the
contextual applicability—of different propulsors is crucial. We stress that strict biomimicry should
not be the goal in designing vehicles and devices based on animal models: for all animals, their
morphology is a compromise that allows them to perform all vital functions, not just locomotion
(and some aspects of morphology may be vestigial and irrelevant to performance in any sense).

In the preceding chapters, we have studied the swimming dynamics of ctenophores via
behavioral observation, mathematical modeling, and physical (robotic) modeling. Ctenophores
base their locomotion on the metachronal (sequential) actuation of multiple appendages; this
rowing technique exists across a wide range of sizes, from unicellular organisms (micrometers,
Re < 1) to marine crustaceans (tens of centimeters, Re > 1000). Ctenophores with appendage-
based Reynolds numbers on the order of 10-100 are a bridge to understanding how this technique
scales from low to intermediate Reynolds numbers. Using several methods, we showed the
importance of appendage motion asymmetries (spatial and temporal) on force production. At
intermediate Reynolds numbers, both spatial and temporal asymmetries increase the performance

of the propulsors. However, spatial asymmetries are dominant—that is, they are observed to be
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stronger in behaving animals, and calculated to be more effective in models—in more viscous
environments (Re ~1). Temporal asymmetry gains importance as the inertial effects grow; we
observe increasing temporal asymmetry with Reynolds numbers in behaving animals, and our
modeling shows that increasing temporal asymmetry is more effective at higher Reynolds numbers.

Through our robotic appendage experiments, we developed a new expression for rowing
efficiency which is tailored for oscillating appendages (flexible or rigid). The integrated efficiency
allows more accurate performance analysis of robotic devices and can be used to improve our
understanding of animal motion. By analyzing the ctene-inspired robotic appendage, we showed
how the rowing propulsor’s shape throughout the beat cycle could reorient the direction of the
produced force—an important factor to consider in designing a bio-inspired Unmanned Underwater
Vehicle (UUV). Finally, with a combination of animal observations and mathematical modeling,
we studied how the spheroidal body shape of ctenophores—combined with the large number of
appendages circumscribing their body and the independent frequency control between paired
appendages—enables near-omnidirectional swimming.

Our results show how geometric and kinematic parameters, together with flexibility, affect
ctenophores’ swimming dynamics. As a representative intermediate Reynolds number metachronal
rower, our findings can be extrapolated to a large number of organisms in a wide variety of
ecological niches. Additionally, our new understanding the role of these parameters will help us
tailor the design of bio-inspired devices depending on their specific task and context. Metachronal
coordination is well known for being an efficient locomotor strategy (Guo & Kanso, 2016);
therefore, the development of an intermediate to high Reynolds number metachronal-swimming
UUV may meet the needs of certain ocean exploration tasks (Xu & Dabiri, 2022). At the other end
of the size spectrum, the near-omnidirectional swimming of ctenophores is a highly desirable skill
for low-Reynolds number robots needed for therapeutic or diagnostic operations inside the human

body (Sitti, 2018). By successfully investigating the hydrodynamic scaling of metachronal rowing



100

and its dependence on kinematic and geometric variation of the propulsors, the research presented
in this dissertation provides a firm foundation for the development of new flexible bio-inspired

robotic vehicles and fluidic devices.
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Appendix A

Reduced-order modeling

A.1 Ctene kinematics

We model each ctene as a flat plate which oscillates unidirectionally with a time-varying
height, such that the tip of the plate traces out an elliptical trajectory (section 2.1, Figure 14). To
define the beating kinematics, we first derive expressions to construct the elliptical trajectory for
the plate tip—namely, finding the semimajor and semiminor axes (a and b) as function of the
spatial asymmetry (Sa) and the ctene length (). In equation (2), 4, is defined as the largest possible
area of an ellipse contained within the reachable area of the ctene, which is 0.77 times the reachable
area of a rigid, non-bending ctene (the half circle with area l?/2). Substituting into equation (2)
we get Sa = A,/0.385ml?, where 4, is the area of the elliptical tip trajectory (4, = mab). From

this we can calculate the semiminor axis b as

2
b=0385—Sa (A1)

To calculate the semimajor axis a, we must include the stroke amplitude (®). Figure 6B
shows that the starting and ending points of the power stroke are defined by ® and the perimeter of
the half circle with radius [. Focusing on a triangle formed by the origin, the center of the ellipse,
and a major axis vertex we can calculate the semimajor axis length and the y-coordinate of the
center of the ellipse as:

a=Isin(®/2) (A.2)

vy, =lcos(®/2) (A.3)
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The position of the plate tip is given by the parametric equations of the ellipse: x, =
acosf and y, = y. + bsin 6. The tip velocity is given by the corresponding derivatives x, =
—absinf and y, = b6 cos A. To evaluate the kinematics, we must define expressions for the
angular velocity (8) and the angular position (8) as functions of time. We will assume a constant

angular velocity for the power and recovery strokes (ép and 6,.):

g, =2 A.3
s (A.3a)

. Vs
6,=— (A3b)

T

The power and recovery stroke time are easily calculated from the temporal asymmetry

and cycle period: t, = T(Ta + 1)/2 and t, = T — t,.. Lastly, 8(t) can be continuously evaluated
for as many cycles as needed following this piecewise-defined function:

8(t) = { 6,[t — (mt,)] + mn for mT <t <mT +t, (4.4

(m+Dr+6,.[t—(m+1t,] for mT+t,<t<(m+1)T
where m is the cycle number (m = 0,1,2,3, ...). Equations A.1 to A.4, define the kinematics of the

model.

A.2 Swimming efficiency (1D model)

The swimming efficiency (n = P,/P;) is defined as the ratio between the output power (P,)

to the input power (P;). These are computed as

n t
p, = ngFp g + 24 (t + (k= DDldt  (A.5a)
0

t

1
0 0
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where the summation in A.5a calculates the work done by the n ctenes in a row, multiplied
by the number of ctene rows (N = 8) and divided by the swimming time (t) to obtain power.
Equation (A.5b) accounts for the work needed to overcome drag (first integral) and the work
expended to overcome the acceleration reaction force and produce the body's own acceleration

(second integral) (Daniel, 1983).

A.3 Three-dimensional swimming model

This supplementary material outlines the dynamics and solution procedure for the three-
dimensional reduced-order ctenophore swimming model. Figure A-1 shows the coordinate systems
used to model the spheroidal body motion. We need two coordinate systems, an inertial system X =
X6 + X, + x363, and a body-based coordinate system ¥’ = xje] + xye} + x3es. As is typical
in vehicle dynamics (Schaub & Junkins, 2018), we use the successive rotations (Z-Y-X or 3-2-1)

yaw, pitch, and roll (s, 6, §).

Figure A-1. Schematic of a ctenophore's simplified geometry moving in a 3D space. The unit
vectors €3, é,, and é3 define the global (fixed) coordinate system while g{, é;, and gécorrespond

to the moving coordinate system attached to the spheroidal body.
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The transformation between the inertial and body frames is given by ¥’ = [C]X, where the

transformation matrix is given by

cos(0) cos(yp) cos(0) sin(y) —sin(0)
[C] = |sin(¢) sin(8) cos(¥) — cos(¢p) sin(yp) sin(¢) sin(O) sin(yp) + cos(¢p) cos(y) sin(¢p) cos(8) (A6)
cos(¢) sin(0) cos(yp) + sin(¢p) sin(xp) cos(¢) sin(0) sin(y) — sin(¢p) cos(y) cos(¢) cos(H)

To avoid mathematical singularities when solving 3D motion using Euler angles (s, 6, ¢),

we performed all calculations using Euler parameters instead:

BS+BE—B3—B3  2(B1Bz + BoBs) 2(B1Bs — BoB2)
[Cl=| 2(BiB2—BoB3)  BG —BE+B5—B5  2(B2B3 + PoB1) (A7)
2(B1B3 + BoB2) 2(BaBs — BoB)  BE—BL— B3+ B3

The most general rigid body rotation has only three degrees of freedom; thus, the Euler

parameters are subject to the constraint 82 + B + 2 + f2 = 1. To calculate the Euler parameters
(E), we use the Stanley method (Schaub & Junkins, 2018). The last step for a formulation based

on Euler parameters is to find the relationship between the time rates of change of ﬁ and the body
angular velocities (@"). This relationship is known as the Euler parameter kinematic differential

equation:

ﬁ_O —B1 B2 —bBs Wt
X
Bl_| B B B loh] W
ﬁz ﬁ3 ﬁo _ﬁl W,
B3 —B2 B Bo
Hence, under an Euler parameter formulation, we have three (vector) governing equations:

the first and second Euler's laws (equations 8 and 9 in the manuscript) and the Euler parameter

kinematic differential equation (A.8).

A.3.1 Propulsion force

As described in the main manuscript, each ctene is modeled as an oscillating flat plate,

whose kinematics (xA (), ya (t)) depend on the beating parameters and placement on the animal
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body (section3.2, Figure 3-8). The 3D model uses the same flat plate kinematics as the 1D version
(A1), but here we will “place” them on the 3D body. To "place" each oscillating flat plate, we need
three position angles: the ctene row angle &, the ctene position angle on the ctene row ¢, and
the angle of the first ctene on the row k (Figures A-2C and D). These angles are based on
measurements from experimentally observed animals: ;€ and k are measured directly, while . is

determined based on the average spacing ratio s = [/&, where § is the arc length of the body surface

between ctenes (the perimeter of the modeled body is given by a fO{\/ 1 — m sin?({)d{, where

m =1— (b/a)? ). Finally, the plates oscillate tangentially to the body surface (Fig A-2E); the

tangential angle is calculated from the parametric equations of the ellipse that defines the spheroidal

2l )

— -1
body as ;4 = tan [ bsin{ 10)

(A)
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Sagittal plane

©) (D) =
Figure A-2. (A) Graphical description of the spatial asymmetry overlaid on the ctene lateral profile
time series. (B) Simplified elliptical trajectory (blue line, (x4,y,4)) and the oscillating flat plate
(green line). Dotted red lines denote stroke amplitude (®), and [ is the ctene length. (C) Top view

of a modeled ctenophore, showing the tentacular and sagittal planes. Black boxes indicate the i"
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ctene row and ;e the corresponding ctene row position angle. (D) Side view showing a plane
bisecting a ctene row. Black lines protruding from the body represent the k" ctene on the row.

Ctene rows start at a fixed angle x with respect to the apical organ, and ,{ is the ctene positioning

angle. (E) Close up of a ctene position (red dot), showing the tangential angle to the body surface

WA

A.3.2 Force and drag coefficients

To model the drag of the oscillating plate while considering the correct Reynolds number range for
ctene beating (1 < Re < 200 ), we use the empirical expression obtained by (Shih & Buchanan,

1971), appropriate for Reynolds numbers between 1 and 1057.

1.88
C, = 15Pe ™05 exp( (A.9)

Re0.547)

where Pe is the period parameter and is defined as Pe = ( maxy _ Xp /0| T) /w, and the Reynolds

number is defined as Re = ( mexu — );)(B/O| W)/U.

From (Loth, 2008), we obtain an expression for the drag coefficient of a prolate spheroid:

*0.687) 0.42

24
Cs = Cshape F(l + 0.15Rep +—500| (410
5 1+—11
Reg™™
« _ Cshape |XB de
ReB =
fshape v
Cshape = 1+ 0.7 /(Asurf* —1) + 24(Agy” — 1)
a
Asyrs” >[1+ - —sin L ( 1- as‘z)]
2a43 1—-as
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where d, is the spherical equivalent diameter and fp, 45, depends on flow direction

(4'/3)0:5_%(1 - asz)

o
fstape Qa2 —-1) ln(as +Jag? — 1)

s

as? —1

(8/3)6{5_%(“52 - 1)
(2as? —3) ln(aS + a2 — 1)

L —
fshape -

as +
° a2 —1

where a is the aspect ratio of the body, a; = L, /d.
From (Horace, 1993), we obtain the added mass coefficients for a spheroidal body for the axial

and lateral movements (kq, k5 ):

1-—e? 1+e
ky = >3 [ln(l_e)—Ze] (A.11a)

_1—62[ e 1 (1+e
1—e2 2

k, = n Tg)] (A.11D)

e3 1

where e is the eccentricity (e = \/m ) This approach is fully valid only for linearly
superposable flows (i.e. potential flow (high Re) or Stokes flow (low Re)) but is a good
engineering approximation for intermediate Reynolds numbers (Brennen, 1982).

To model the opposing torques, we used the numerical expressions obtained by (Zastawny et al.,
2012), which is appropriate for rotating Reynolds numbers (ReR = @), between 101 — 103.

T3
(Reg)™

CR = Tl(ReR)TZ + (S 8)

where the coefficients r; depend on the rotating direction (rolling or pitch/yaw axes); see Table
A-1.

Table A-1. Values for the torque coefficient expression along the roll and pitch/yaw directions

Turning axis £ T T3 7
roll 0.573 —0.154 116.61 1
pitch/yaw 1.244 0.239 378.12 0.789
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A.3.3 Solution procedure for the 3D swimming model

We solved the reduced-order model using a fourth-order Runge-Kutta scheme for implicit

equations, using the MATLAB function odel5i. The solution algorithm consists of the following

steps:
I.

2.

Input the initial particle position, orientation, and speeds (translational and angular).
Calculate the initial transformation matrix using equation (A.6).

Calculate the corresponding initial values of the Euler parameters using the Stanley method
and evaluate the transformation matrix in its parametrized form using equation (A.7).
Evaluate the propulsion and opposing forces and torques (equations 12, 13, 14, 15, and 16,
section 3.2) at the current time instant for all the (predetermined) morphometric and
metachronal parameters.

Solve the equations of motion as given by equations 8, 9, and (A.8).

Return to step 4 and continue until the halting condition is met. Validations and Motor
Volume calculations are halted after a certain solution time; while the MAP results are
halted when a steady state radius of curvature is achieved.

The numerical integration of the equations of motion iterated until it reached tolerances of

107>,
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Appendix B

Pressure-based force calculations

B.1 Force calculations at different sampling distances

One of the primary features of QUEEN 2.0 is the ability to define the presence of a solid
object in a flow. Not specifying the solid region for the pressure calculation via solving the Navier-
Stokes equations results in noise and affects the algorithm accuracy (Dabiri et al., 2014). For this
work's velocity fields, the PSV Cartesian grid has a resolution of 64x64 px, restricted by our tracer
particle density and camera resolution. Figure B-1 shows the problem of defining the solid region
of our paddles by using the cartesian grid points. To define the solid region in the pressure-
calculation algorithm, several points need to define the thickness of the paddle. Therefore, we must

dilate the solid to a size that assures solid identification.

Figure B-1. PSV cartesian grid placed on top of the rigid paddle shape. Blue lines show how the
paddle needs to be dilatated to be recognized as a solid region by the pressure-calculation algorithm

of QUEEN2.
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Given that pressure values are non-existing in the solid region, our sampling points (section
4.1, Figure 4-5) need to be placed where the pressure is defined—further increasing the distance
from the real solid. Here we present a sensitivity analysis of the force calculation as a function of
the pressure sampling distance. To do this, we calculated the thrust and lift forces for the rigid
paddle without defining a solid region, sampling from a point right at the true fluid-solid interface
to one five times the paddle thickness away (d, = 0.8,1, 2, 3,4, 5 mm). Figure B-2A shows the
pressure field calculated without a solid region with the paddle centerline (purple) and several
sampling distances, and Figure 4B-2B the case considering the solid region and the distance chosen

for this work (d, = 3.5 mm).
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Figure B-2. Pressure fields computed from PSV velocity data. (A) Without considering a solid
region. The centerline of the paddle is colored purple, and the rest of the lines indicate pressure
sampling points with offset distances of 0.8, 1, 2, 3, 4, and 5 mm. (B) Considering a solid region.
The center line of the paddle is colored blue, and the green dots show the selected offset distance

of 3.5 mm.

Figures B-3A and B show that both the thrust and lift forces have limited change for all the
sampling distances (0.8 — 5 mm). Therefore, we choose an offset distance of 3.5 mm; this
clearance is enough to sample pressure values along our three different paddles. Looking at Figure

B-2B, it is clear how the presence of the solid region improves the pressure estimation. The force
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calculation considering the presence of the solid (Figures B-3C and D), can capture the initial peak
in force produced by the rigidity of the paddle. The peak force is an expected result not well
captured by the calculation neglecting the solid region. The results of this sensitivity analysis agree

with those conducted at higher Reynolds (Lucas et al., 2017).

/
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Figure B-3. Force sensitivity analysis for the pressure offset sampling distance (A and B). Different
colors indicate different offset distances from the centerline (do rfset = 0.8,1,2,3,4,5 mm). (A)
Thrust force. (B) Lift force. (C and D) shows the calculated thrust and lift force for the selected
offset distance 3.5 mm, considering the presence of a solid region in the pressure field. Thick lines
are the 3-cycle-averaged time series, and thinner lines show the standard deviation of the
measurements. The darker shaded area illustrates the time interval of the power stroke, and the

lighter shaded region is the recovery stroke.
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