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ABSTRACT 

The hydrodynamics of swimming at the millimeter-to-centimeter scale often present the 

challenge of having both viscous and inertial effects playing nontrivial roles. Inertial forces arise 

from the momentum of a moving fluid, while viscous forces come from friction within the flow. 

The non-dimensional Reynolds number (Re) compares the magnitudes of the inertial and viscous 

forces within a flow. At low Re (≪ 1), viscous forces dominate; at higher 끫뢊끫뢊 (≫ 1), inertial forces 

are more important. Efforts to understand the hydrodynamics of swimming have mainly focused 

on the extremes of fully viscous-dominated (끫뢊끫뢊 ≪ 1) or inertia-dominated flow (끫뢊끫뢊 ≫ 1). 

However, many animals swim in an intermediate regime, where inertia and viscosity are both 

significant. As an impactful and generalizable case study, we focus on ctenophores (comb jellies), 

a type of marine zooplankton. Ctenophores swim via the coordinated rowing of numerous highly 

flexible appendages (ctenes), with Reynolds numbers on the order of 10-100. Their locomotory 

dynamics present a unique opportunity to study the scaling of rowing (drag-based propulsion) 

across the low to intermediate Reynolds number range. With a combination of animal experiments, 

reduced-order analytical modeling, and physical-robotic modeling, we investigate how the 

kinematic and geometric variables of beating ctenes vary across Re, and how they affect swimming 

(including force production, speed, and maneuverability). Using animal experiments, we quantify 

the spatiotemporal asymmetry of beating ctenes across a wide range of animal sizes and 끫뢊끫뢊. With 

our reduced-order model—the first to incorporate adequate formulations for the viscous-inertial 

nature of this regime—we explore the maneuverability and agility displayed by ctenophores, and 

show that by controlling the kinematics of their distributed appendages, ctenophores are capable of 

nearly omnidirectional swimming. Finally, we use a compliant robotic model that mimics 

ctenophore rowing kinematics to study rowing performance with direct calculation of thrust and 

lift forces distributed along the propulsor. These experiments shed new light on the relationship 
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between motion asymmetries and thrust and lift production. This combination of animal 

experiments, analytical modeling, and physical modeling is the most detailed study of low to 

intermediate 끫뢊끫뢊 rowing to date, and provides a foundation for future applications in bio-inspired 

design. 
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Chapter 1 

 

Introduction 

1.1 Motivation: rowing at intermediate Reynolds numbers 

One of the most notable parameters in fluid mechanics is the Reynolds number (끫뢊끫뢊), which appears 

across virtually all problems and is often a centerpiece for swimming studies. The Reynolds number 

is a nondimensional grouping of variables that compares the magnitudes of the inertial and viscous 

forces within a flow. The Reynolds number is defined as 끫뢊끫뢊 =  끫뢐끫뢲 끫븠⁄ , where the numerator 

(characteristic speed and length of the flow) quantifies the inertial forces and denominator 

(kinematic viscosity) the viscous forces. The inertial forces are associated with the momentum of 

a moving fluid, while the viscous forces arise from the fluid’s resistance to being sheared. In simple 

terms, inertia keeps the fluid moving; viscosity brings it to a stop. This interplay has strong 

implications for the nature of a given flow; for example, high inertial forces (relative to viscous 

forces) can trigger the development of turbulence (chaotic vortices or eddies) because they will 

overwhelm the ability of viscosity to damp out perturbations. In a highly viscous environment, 

sharp gradients in fluid momentum are quickly smoothed. At low 끫뢊끫뢊 (<1), viscous forces dominate; 

at higher 끫뢊끫뢊, inertial forces take on more importance. Efforts to understand the physics of 

swimming have mainly focused on the extremes of fully viscous-dominated or inertia-dominated 

flow. However, many animals swim at intermediate 끫뢊끫뢊, where both inertia and viscosity are 

important. We can roughly separate these animals into two categories based on their propulsion 

mechanism: those that use whole-body motions to swim (Costello et al., 2015; Gemmell et al., 

2015; Jastrebsky et al., 2016; Webb & Fairchild, 2001) and those that use oscillating propulsors 

(Fish & Nicastro, 2003; Karakas et al., 2018; Murphy et al., 2016; Sutherland et al., 2014). In this 
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work, we consider the second category—oscillating propulsors which can produce both drag and 

lift as contributions to overall thrust.  

Drag- and lift-based thrust are achieved depending on the motion of the propulsor relative 

to the animal’s body. Rowing happens when the propulsor moves back and forth primarily along 

an axis aligned with the progression axis (swimming direction); this is the “drag-based swimming” 

case (Figure 1-1A). For this reciprocal motion to produce net thrust, the power stroke and the 

recovery stroke must be asymmetric in either space or time (so that there is a drag imbalance). 

When this reciprocal action primarily creates forces directed parallel to the direction of motion, the 

propulsor is known as a paddle. In contrast, thrust can also be generated by the reciprocal motion 

of a propulsor moving primarily orthogonally to the progression axis (Figure 1-1B). In this case, 

the propulsors are known as hydrofoils and must rotate to maintain a lift-generating angle of attack 

(“lift-based swimming”). For animals swimming at very low 끫뢊끫뢊 (<1), drag-based rowing is the 

only option since the circulation needed to create lift is difficult to achieve in this viscous-

dominated regime (Walker & Westneat, 2000). Lift-based swimming appears at 끫뢊끫뢊 as low as 300 

in animals such as Cuvierina atlantica, a pteropod whose motion resembles that of tiny flying 

insects (Karakas et al., 2020). We are interested in studying rowing through the spectrum of low to 

intermediate 끫뢊끫뢊 and will therefore focus on drag-based rowing mechanisms. 

 

 

Figure 1-1. Simplified schematic of the reciprocal motion of a paddle (drag-based) vs. a hydrofoil 

(lift-based). (A) Top view of drag-based propulsion (i.e., rowing), where the asymmetry between 

power and recovery strokes is represented by the rotation of the rectangular paddle (increasing the 
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flow-normal area on the power stroke relative to the recovery stroke). (B) Front view of lift-based 

propulsion, with the axis of progression pointing out of the page. The leading edge (black line) 

motion shows that lift-based propulsors must rotate over the stroke cycle to maintain a lift-

generating angle of attack.  

 

The simplest rowers are animals that use only one paddle or a single pair of opposing 

paddles. This configuration is efficient for accelerating from rest, but imposes a limit on the 

maximum speed of the animal: the animal cannot swim faster than the speed of its paddles (Vogel, 

1994). This velocity restriction is one reason why drag-based rowers tend to have multiple 

appendages and metachronal coordination, strategies that increase speed and/or maneuverability. 

By “metachronal coordination,” we refer to the movement of fluid via the sequential, coordinated 

motion of a row or carpet of closely spaced appendages (Barlow et al., 1993; Caldwell et al., 2012; 

J. L. Lim & DeMont, 2009; Murphy et al., 2011). This swimming strategy maintains a phase lag 

between adjacent paddles, which creates a “metachronal wave” traveling through the appendage 

row (see section 1.2). This behavior, classically exemplified by cilia (끫뢊끫뢊~10−2) (Brennen & 

Winet, 1977), occurs in a variety of organisms at 끫뢊끫뢊 up to several thousand for large shrimp or 

krill, which metachronally coordinate their legs and pleopods to swim (J. L. Lim & DeMont, 2009). 

In this work, we study ctenophores, a group of gelatinous marine zooplankton that are the world’s 

largest animals to swim using cilia (Tamm, 2014). In ctenophores, thousands of millimeter-long 

cilia are bundled into an appendage known as a ctene (Figure 1-2A). Ctenes are spaced in rows 

along the body of the ctenophore, and metachronally coordinated to produce flows for swimming 

and feeding (Tamm, 1980). Ctenes have a 끫뢊끫뢊 of 10-200, making them an ideal candidate to bridge 

the knowledge gap between the low and intermediate Re regimes for metachronal swimming and 

drag-based propulsion.  
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Ctenophores also exhibit remarkable three-dimensional locomotion, driven via eight rows 

of paddles (instead of the one or two rows found in crustaceans and other organisms that use 

metachronal locomotion). The coordination between ctene rows allows ctenophores to turn tightly 

around many axes. This is not the case for all swimmers: animals that rely on paired appendages 

or a single row of appendages tend to display maximum turning performance around a single axis, 

depending on the appendages' positions along the body (Murphy et al., 2016; Niimoto et al., 2020; 

Webb & Fairchild, 2001). Some swimmers exploit the flexibility of their bodies to turn, but these 

usually have anisotropic bending characteristics and thus have a preferential turning direction 

(Dabiri et al., 2020; Jastrebsky et al., 2016). Only a few animals have completely axisymmetric 

bending characteristics; jellyfish are one example (Gemmell et al., 2015). However, the single-jet 

propulsion used by jellyfish medusae has a notable disadvantage: an animal cannot easily reverse 

its swimming direction with this strategy. Ctenophores, by contrast, can quickly switch their 

swimming direction by reversing the power stroke direction of their ctenes (Mackie et al., 1992). 

The implications of our study of ctenophore rowing can be broadly categorized into 

biological and technological. Elucidating the role of hydrodynamic forces at this scale can help us 

understand crucial animal behaviors like swimming or feeding (Colin et al., 2010; Kiørboe et al., 

2014). This work also has the potential to identify physical-mechanical constraints on the evolution 

and development of ciliary arrays. Ctenophores are, evolutionary speaking, among the oldest 

animals on the planet (Li et al., 2020; Moroz et al., 2014; Whelan et al., 2017); they are likely the 

sister group for all other animals (Schultz et al., 2023) . Further knowledge of their swimming 

mechanics may help us understand how this ancient rowing system has been preserved over 

evolutionary time. On the technological/engineering side, a more comprehensive description of 

ctene hydrodynamics will provide source material for new bioinspired sensors, devices, and 

vehicles (Asadnia et al., 2016; C. Liu, 2007; Sitti, 2018). Cilia arrays have been a major source of 

inspiration for microfluidic devices (Hanasoge et al., 2020; Sareh et al., 2013; Toonder & Onck, 
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2013);  as we approach the intermediate Reynolds number regime, ctene-inspired devices may also 

provide promising new approaches for pumping or mixing fluid (Rockenbach et al., 2015; 

Rockenbach & Schnakenberg, 2017). In addition, the near-omnidirectional swimming capabilities 

of the ctenophore body plan show the potential of metachronal swimming as a source of design 

inspiration for robotic vehicles (particularly those that must navigate complex environments). 

However, our understanding of how such devices will interact with the surrounding fluid 

environment (intermediate 끫뢊끫뢊) is neither systemic nor general, despite the importance of fluid 

dynamics in determining their performance. 

1.2 Background and literature review 

1.2.1 Metachronal coordination 

In this section, we will explore key concepts and definitions in metachronal rowing by 

describing 1) a paddle as a single unit, 2) a row of multiple paddles, and 3) the metachronal 

coordination between them. To start, we define the appendage-based oscillatory Reynolds number 

as 끫뢊끫뢊끫븨 ≡ 2끫븖끫뢦끫뢲2 끫븐⁄ , where 끫뢦 is the beat frequency in Hz, 끫뢲 is the paddle length, and 끫븐 is the 

kinematic viscosity of the surrounding fluid. Figure 1-2 shows three characteristic examples of 

metachronal paddles from a ctenophore, an Antarctic krill, and an American lobster, spanning three 

orders of magnitude of 끫뢊끫뢊끫븨. Noticeably, the paddle flexibility decreases as 끫뢊끫뢊끫븨 increases: the 

ctene (Figure 1-2A) is a highly flexible cilia-based structure, while the pleopods (Figures 1-2B and 

C) resemble a two-link mechanism. Even between krill and lobster pleopods, we notice differences 

in rigidity: the distal part of the krill paddle is flexible, while the distal portion of the lobster is more 

rigid. Despite these structural differences, they all undergo similar rowing kinematics. Figure 1-2A 

shows the ctene tip trajectory, where dots represent equal time intervals. The top part of the 
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trajectory, where the paddle is extended and moving quickly, is the power stroke, followed by the 

recovery stroke, where the paddle is bent and moving slowly. By inspecting the ctene trajectory, 

we can conclude that in addition to its geometry, we need at least four parameters to describe the 

oscillation kinematics: the beat frequency 끫뢦, the stroke amplitude Φ, and a description of the time-

varying tip speed and tip trajectory, which together quantify the spatiotemporal asymmetry of the 

beating cycle. In this work, we propose two quantifiable, nondimensional parameters to describe 

the temporal (끫뢎끫뢎) and spatial asymmetry (끫뢌끫뢎) (e.g., the tip speed and trajectory shape; 끫뢎끫뢎 and 끫뢌끫뢎 

are fully defined in section 2.1). These parameters also apply to other metachronal paddles, such 

as those shown in Figures 1-2B and C. The work presented in this document frequently refers to 

the spatiotemporal asymmetry parameters 끫뢌끫뢎 and 끫뢎끫뢎, since they have proven to play crucial roles 

in thrust generation for the low to intermediate Reynolds number regime.  

 

 

Figure 1-2. Examples of metachronal paddles, showing how paddles shift from flexible to 

rigid/hinged structures as 끫뢊끫뢊 increases. (A) The ctenophore paddle (ctene) is a highly flexible cilia-

based structure. White dots overlaid on the tip trajectory indicate equal time intervals, and the 

dotted yellow line indicates the stroke amplitude (Φ); reprinted from (Herrera-Amaya et al., 2021). 

(B) Antarctic krill paddle (pleopod), resembling a two-link mechanism where the proximal part is 

rigid and the distal part is flexible; reprinted with permission from (Santos et al., 2022). (C) 
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American lobster paddle (pleopod), similar in construction to the krill but with a more rigid distal 

part; reprinted with permission from (J. L. Lim & DeMont, 2009).  

 

In metachronal rowing, the appendages are found in rows (or carpets, in the case of cilia; 

here, we consider only rows). Figure 1-3 shows a typical row. The row geometry is defined by the 

spacing ratio 끫룀 = 끫뢲/끫뷾, where 끫뷾 is the distance between appendages and 끫뢲 is the paddle length. 

Because appendages are metachronally coordinated, each appendage completes a beat cycle 

(power-recovery stroke) at a fixed phase lag (끫뢆끫롾) from one another. For example, if the paddles in 

Figure 1-3 have a phase lag of 25%, this means that paddle 2 is 25% ahead in its beat cycle with 

respect to paddle 1, paddle 3 is 25% ahead of paddle 2, and so forth. From this coordination, a 

traveling “metachronal wave” whose wavelength 끫브 is governed by 끫뢆끫롾 and 끫룀 appears in the row. 

Figure 1-3 shows an example of antiplectic metachrony, in which the metachronal wave travels in 

the opposite direction of the power stroke. Antiplectic metachrony is the dominant coordination 

mode in swimming; other types of metachrony include symplectic, dexioplectic, and laeoplectic 

(Blake & Sleigh, 1974; Brennen & Winet, 1977).  

 

 

Figure 1-3. Schematic of a row of metachronally coordinated paddles, in which paddles are 

separated by a distance 끫뷾 and have length 끫뢲. 
 

In summary, we can describe metachronal rowing with the following parameters: beat 

frequency 끫뢦, temporal asymmetry 끫뢎끫뢎, spatial asymmetry 끫뢌끫뢎, stroke amplitude Φ, spacing ratio 끫룀, 
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and phase lag 끫뢆끫롾 (if the paddles are finite, we also consider their width 끫룈). Metachronal 

coordination has many desirable features, as previously discussed: it lifts the constraint that body 

speed cannot be higher than paddle speed (Murphy et al., 2011), and is more efficient than 

synchronous rowing (Elgeti & Gompper, 2013; Ford & Santhanakrishnan, 2020). Metachronal 

coordination also has an advantage in viscous-dominated, time-reversible flows. At 끫뢊끫뢊끫븨 < 1, flow 

is time-reversible and spatial asymmetry is necessary for a single oscillating appendage to produce 

net fluid displacement (Purcell, 1977). However, metachronal coordination can remove this 

constraint (Takagi, 2015)—if appendages beat with a nonzero phase-lag, spatially symmetric 

stroking can produce net flow even at low 끫뢊끫뢊. Such performance has inspired recent research on 

the role of the phase-lag on the propulsive efficiency of metachronal swimming. Measurements 

from a krill-inspired robot place the optimal 끫뢆끫롾 between 16.7% and 25% (Ford et al., 2019), while 

a krill-inspired numerical model found it to be 20% < 끫뢆끫롾 < 25% (Granzier-Nakajima et al., 2020). 

Interestingly, this level of phase lag (끫뢆끫롾 = 25%) also yields the most robust coordination pattern 

that can be controlled by crustacean neural circuits (C. Zhang et al., 2014). Other studies have 

focused on the role of beat frequency and the spacing ratio (Barlow & Sleigh, 1993; Dauptain et 

al., 2008). However, the stroke spatiotemporal asymmetry has not been studied in the context of 

metachronal coordination. We seek to explore these parameters and their effects on swimming 

performance more fully. 

At 끫뢊끫뢊끫븨 < 1, it is evident that a spatially asymmetric beat increases the net propulsion force 

(due to the higher drag imbalance between the power and recovery stroke). However, a fast power 

stroke and a slow recovery stroke (high 끫뢎끫뢎) would be energetically expensive without necessarily 

increasing the net fluid displacement. At intermediate 끫뢊끫뢊, the role of spatiotemporal asymmetry is 

still unclear. Recently, (Saffaraval & Goudarzi, 2021) experimentally explored the roles of spatial 

and temporal asymmetries in a single oscillating long plate at intermediate 끫뢊끫뢊, finding that 

increasing temporal asymmetry increased pumping performance and the presence of spatial 
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asymmetry increased the pumping efficiency. However, experimental constraints in this study did 

not allow for continuous variation of spatial asymmetry, nor varying levels of both asymmetries 

simultaneously. Our experiments on living ctenophores show decreased spatial asymmetry and 

increased temporal asymmetry as the Reynolds number rises (see section 2.1). Our results also 

show significantly different flows in ctene rows with varying levels of spatial asymmetry at 

approximately equivalent 끫뢊끫뢊끫븨, hinting the importance of ctene kinematics to change the flow 

directionality (further discussed in section 2.1).  

1.2.2 Ctenophore morphology 

This section describes the morphology and physiology of ctenophores to the extent that it 

is of significant importance for their swimming (including parts of the organism that we will use 

as markers for tracking in section 2.2). Ctenophores (comb jellies) are gelatinous marine 

zooplankton, with bodies mainly composed of water (97%) (Hernandez-Nicaise, 1991). 

Ctenophores swim using eight rows of paddles called ctenes, circumscribing a spheroidal body 

(Figure 1-4A). Each ctene comprises thousands of long cilia which move as a unit (Heimbichner 

Goebel et al., 2020) (Figure 1-4C). These cilia are structurally similar to those found at the micron 

scale (low 끫뢊끫뢊), but are much longer at approximately 1 mm in length (Afzelius, 1961). Ctenophores 

are carnivorous, feeding on crustaceans, other comb jellies, eggs, and fish larvae. Figure 1-4 shows 

Bolinopsis vitrea, a lobate ctenophore, so-called for the two muscle structures surrounding the 

mouth (Figure 1-4B). As larvae, B. vitrea use long retractable tentacles (Figure 1-4B), covered with 

specialized sticky cells called colloblasts, to capture their prey. Tentacles are no longer used for 

feeding when mature, but the tentacular bulbs remain (Figure 1-4A). Because the tentacular bulbs 

are visually prominent, we will use those two points as reference markers for kinematic tracking. 

The apical organ (or statocyst) is at the aboral end of the animal, opposite to the mouth; it serves 
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as a gravity sensor (Figure 1-4B). When swimming, ctenophores often assume vertical positions 

where the principal body (oral-aboral) axis is aligned with gravity. This organ is the primary 

sensory interface (Hernandez-Nicaise, 1991) that enables that alignment. Like the tentacular bulbs, 

its visual prominence allows us to use it as a kinematic tracking marker (see section 2.2). 

 

 

Figure 1-4. A brief overview of relevant morphology of Bolinopsis vitrea. (A) top view showing 

the eight ctene rows and their radial symmetry, (B) lateral view of ctene rows circumscribing the 

body, and (C) close top view showing component cilia of each ctene. Reprinted with permission 

from (Herrera-Amaya et al., 2021). 

1.3 Dissertation outline 

This dissertation explores the following question: how do ciliary kinematics scale from 

low to intermediate Reynolds numbers, and what are the implications for drag-based 

swimming in this regime? We will combine animal experiments with physical and reduced-order 

analytical modeling to quantify the physics of ctene-generated flows across a range of 끫뢊끫뢊. Studying 

ctenophore swimming is challenging due to the range of scales involved. Ctenophore appendages 

are one or two orders of magnitude smaller than their bodies (Figure 1-4); appendage-scale 
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Reynolds numbers are 10-200, and body-scale Reynolds numbers are 100-6000 (Matsumoto, 

1991). Simultaneously measuring fluid velocity and swimming kinematics from the ctene scale to 

the body scale is a herculean task requiring high spatial and temporal resolution. We approach this 

difficulty by separating the problem into two behavioral experiments. We use high-speed 3D 

videography to analyze the maneuvering performance of freely swimming ctenophores, and 

Particle Shadow Velocimetry (PSV) to study ctene kinematics and flow production. We also 

measure variables involving the coordination of neighboring cilia (e.g., phase lag, spacing, and beat 

frequency). We use these experimental data to develop and verify a reduced-order analytical model, 

which serves as a numerical tool to explore the kinematic parameter space more fully than would 

be feasible with animal experiments alone. Finally, we create a dynamically scaled physical-robotic 

model of a single ctene, both as proof-of-concept for bioinspired design principles and as an 

additional tool to explore the parameter space of spatiotemporal asymmetry. We use the results of 

the animal experiments to verify both models’ accuracy, and to inform the physical model’s 

geometric and kinematic parameters. These two (non-behavioral) approaches will allow us to 

perform parametric studies of the effect of important variables across the range of Reynolds 

numbers observed in freely swimming ctenophores. This full sweep of the parameter space would 

be difficult to impossible to perform in natural systems, where variables of interest often cannot be 

controlled or prescribed. 

This dissertation is organized as follows: Chapter 2 describes our experiments with living 

ctenophores. We first describe ctenophore swimming mechanics to help frame our research 

questions. We then present three-dimensional swimming data demonstrating ctenophores’ 

excellent maneuverability and motivating our interest in their rowing mechanics. This is followed 

by a thorough description of the appendage kinematics and the observed changes of ctene/paddle 

kinematics as a function of 끫뢊끫뢊, which is a core question of this work. Chapter 3 presents a reduced-

order mathematical model, our first non-behavioral approach to elucidate the role of beat 
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kinematics in a viscous-inertial fluid environment across the intermediate 끫뢊끫뢊 range. Such models 

help estimate the propulsion forces and provide a first-pass, high-level view of the role of the 

different parameters on animal swimming. However, this model does not solve the complete flow 

generated by the appendages, a crucial component in fully understanding the problem. Chapter 4 

presents the rowing performance of bioinspired flexible and rigid robotic paddles, and explores the 

role of spatiotemporal asymmetries on thrust and lift production across the intermediate Reynolds 

number range. In this chapter, we also describe the adaptation of Particle Shadow Velocimetry (a 

flow quantification technique) to our experimental needs with live ctenophores (Chapter 2) as well 

as the dynamically scaled physical-robotic model. Chapter 5 summarizes our conclusions and 

proposes future avenues of exploration in bio-inspired aquatic locomotion.  Finally, Appendix A 

contains specific details of the reduced-order model: appendage kinematics, geometrical 

derivations, and drag coefficient expressions, Appendix B contains a force sensitivity analysis for 

the experimental pressure calculations described in Chapter 4. 
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Chapter 2 

 

Animal experiments 

Two sampling sites and species were used for the experiments outlined in this chapter 

(summarized in Table 2-1). Both species are lobate ctenophores, with muscular extensions (lobes) 

on the body that project beyond the mouth (Figure 1-4B). This family of ctenophores uses lobes in 

conjunction with cilia to form a filter-feeding mechanism capable of outcompeting other species 

(Colin et al., 2010), enabling them to thrive across (and invade) many habitats (Kideys, 2002; 

Shiganova et al., 2001). 

Bolinopsis vitrea were collected at Flatt's Inlet, Bermuda, in May 2018 and transported to 

the Bermuda Institute of Ocean Sciences (BIOS). Larger animals were maintained in a flow-

through planktonkreisel tank with filtered seawater. At the same time, smaller specimens were kept 

in glass jars partially submerged in an open sea table with a continuous flow of filtered seawater. 

Animals were fed ad libitum on freshly hatched nauplii of Artemia sp. All experiments were 

conducted at ambient temperature (21-23°C) and completed within 12 hours of animal collection.  

Bolinopsis infundibulum were sampled from existing cultures at the Monterey Bay 

Aquarium (MBA), Monterey, CA, in August 2019. Cultured animals were maintained in 

planktonkreisels with flow-through filtered seawater at 12-13°C and fed Artemia nauplii twice 

daily. Animals were removed from one kreisel, immediately used in experiments, and replaced in 

a second kreisel to avoid re-use.  

 

Table 2-1. Morphometric characteristics of observed animals (mean ± one standard deviation).   

Data set Sample size* Body length (mm) Ctene length (mm) 

BIOS 8 18.43±14.01 0.42±0.11 

MBA 4 24.01±8.12 0.87±0.1 

  *Number of animals; for some analyses, multiple recordings per animal were used. 
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 Section 2.1 has been published in Integrative and Comparative Biology (Herrera-Amaya 

et al., 2021), and section 2.2 is under review at the time of dissertation submission.  

2.1 Propulsion mechanics: ctene row kinematics and flow production 

This section focuses on the kinematics and fluid dynamics of the propulsion system 

employed by ctenophores. We use high-speed video and velocimetry to measure the kinematics 

and fluid dynamics of the beating ctene rows of two species of lobate ctenophores across a range 

of body sizes and 끫뢊끫뢊. This work is the first to focus on spatiotemporal asymmetry in the beating of 

metachronal appendages, quantifying temporal asymmetry (Ta) as defined by (Gauger et al., 2009) 

and proposing a new non-dimensional parameter (Sa) to quantify spatial asymmetry. In this section, 

we use data collected from both BIOS and MBA (section 2.2 uses only the BIOS dataset, as the 

MBA dataset does not include 3D swimming trajectory data). 

2.1.1 Imaging facilities 

To obtain both flow velocities and ctene kinematics, we used a micro-scale Particle 

Shadow Velocimetry (µPSV) system following (Gemmell et al., 2014). µPSV is also called 

“brightfield Particle Image Velocimetry” (Khodaparast et al., 2013). Collimated white light 

illuminates the entire filming vessel and produces sharply-defined shadows of tracer particles and 

the target organism, which are then imaged via an extra-long working distance (ELWD) 

microscope objective (Figure 2-1). After inverting and preprocessing raw images, they can be input 

into standard PIV algorithms to produce two-dimensional velocity fields (L. P. Goss et al., 2007). 

The imaging volume is controlled by the optical depth of correlation (Koutsiaris, 2012), such that 

strongly out-of-focus tracers do not contribute to the calculated flow field. Using ELWD objectives 
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permits the focal plane to be centered in the filming vessel, thus avoiding wall effects. A detailed 

description of the working principles of PSV can be found in section 4.2. 

 

 

Figure 2-1. (A) Schematic of experimental µPSV setup showing an in-line configuration of the 

camera, ELWD objective, filming vessel, and light source. (B) Example image collected via µPSV. 

Reprinted with permission from (Herrera-Amaya et al., 2021). 

 

System components (MBA//BIOS) include a collimated white LED light source (Thorlabs, 

Newton, NJ, USA// Dolan-Jenner Industries, Lawrence, MA, USA), a transparent filming vessel, 

an ELWD objective (Achrovid, Centennial, CO, USA // Mitutoyo, Aurora, IL, USA), and a high-

speed camera (Photron AX200, Photron USA Inc., San Diego, CA, USA // Phantom VEO 440, 

Vision Research Inc., Wayne, NJ, USA) (Figure 2-1A). In both experiments, images were collected 

at 1000 frames per second with an exposure time of 900 µs. To avoid adverse animal reactions to 

plastic or glass microbeads, the water was seeded with living phytoplankton, which served as 

approximately passive flow tracers since their swimming speed was much lower than the measured 

flow speeds (Gemmell et al., 2014). To accommodate differences in resolution between the two 

imaging systems, we used Tetriselmis chuii (average diameter of 10-12 µm) for the MBA dataset 

and Nannochloropsis oculata (2-3 µm) for the BIOS dataset. Tracer shadows were recorded in 

digital images with particle image diameters of 2-3 pixels, as appropriate for particle velocimetry 

(Raffel et al., 2018). We note that the brightfield imaging system used for the BIOS dataset is also 



16 

 

described in (Karakas et al., 2020), and that those data are contemporary with the results presented 

here. 

2.1.2 Velocimetry and kinematic analysis 

We recorded image sequences when animals rested against the bottom of the filming vessel 

(zero forward swimming velocity). In some cases, we constrained animals using transparent acrylic 

plates. In all cases, the focal plane remained far from solid surfaces to avoid wall effects. We 

pursued kinematics analysis only if the ctenes were normal to the focal plane, and velocimetry 

analysis only if the plane of focus was roughly bisecting the ctene row. These restrictions yielded 

12 image sequences for kinematics analysis and two for velocimetry analysis. The Depth of 

Correlation (DoC), or thickness of the useful measurement volume, is typically around 10 µm for 

µPSV, using magnifications of 10x – 40x (Gemmell et al., 2014). Our system required a 5x 

magnification to visualize several ctenes simultaneously (with a field of view of approximately 4 

x 2.5 mm), leading to a DoC of ~ 130 µm (Koutsiaris, 2012). Standard PIV image prefilters retain 

significant noise from out-of-focus tracers at this magnification. We therefore developed a custom 

prefiltering algorithm that finds each focused particle and generates a new inverted image 

containing only the focused particles (section 4.2.1). The image preprocessing algorithm is 

described in detail in section 4.2. In these processed images, the average seeding density through 

the focal plane is 1.3끫룊10−3 particles per pixel. We performed vector computation (two-pass 

iteration with subwindows of 128x128 px and 64x64 px, with 50% overlap) using the MATLAB-

based tool PIVLab (Thielicke & Stamhuis, 2014). All image preprocessing and vector field 

postprocessing was conducted with MATLAB (Mathworks Inc., Natick, MA, USA).  

Kinematic analysis was based on two-dimensional tracking data performed via the 

MATLAB-based tool DLTdv8 (Hedrick, 2008), including deep learning features. We tracked the 
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base and tip of all fully visible ctenes for each image sequence. Figure 2-2 shows examples of two 

tracked ctene rows from two different animals. From the measured tip trajectory, we calculated the 

spatial asymmetry (degree of difference in flow-normal area between the power and recovery 

stroke) and temporal asymmetry (difference in duration of the power and recovery stroke). These 

parameters are defined in the next section. 

 

 

Figure 2-2. Snapshots showing the tracked ctene base (circle) and ctene tip trajectories (solid white 

line). White dots overlaid on the tip trajectory indicate equal time intervals (Δ끫룂 =0.001 s), showing 

the difference in tip speed between the power and recovery strokes. Ctene length (끫뢲) and stroke 

amplitude (Φ) are also marked. (A) shows an animal with 끫롾끫롪 = 11.56 mm and 끫뢲 = 0.62 ±

0.02 mm, with high spatial asymmetry; (B) shows an animal with 끫롾끫롪 = 40 mm and 끫뢲 = 0.76 ±

0.01 mm, with lower spatial asymmetry. Reprinted with permission from (Herrera-Amaya et al., 

2021). 

2.1.3 Morphological and metachronal parameters 

As discussed in section 1.2.1, we describe the motion of a ctene row using seven 

parameters: three morphometric variables and five kinematic/coordination variables. 

Morphometric parameters include the ctene length (끫뢲), defined as the longest measured distance 

between the ctene base and tip during a beat cycle (Figure 2-2A), the ctene width (끫룈), and the 
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distance between appendages (끫뷾). Coordination parameters include beat frequency (끫뢦), phase lag 

(끫뢆끫롾), stroke amplitude (Φ), and temporal asymmetry (끫뢎끫뢎). Phase lag is the percentage of the cycle 

time that a ctene's beat cycle leads a neighboring ctene. Stroke amplitude (Φ) is the angle swept 

out by the ctene tip over one power stroke (Figure 2-2B). Temporal asymmetry (also known as the 

kinematic asymmetry parameter (Gauger et al., 2009)) is defined as: 

끫뢎끫뢎 =
끫룂끫뢾 − 끫룂끫뢺끫룂끫뢾 + 끫룂끫뢺        (1) 

where 끫룂끫뢾 is the recovery stroke duration and 끫룂끫뢺 the power stroke duration. This parameter is zero 

for a time-symmetric beat cycle and one for an infinitely fast power stroke (Figure 2-3B).   

 To quantify the level of spatial asymmetry in each beat cycle for each ctene, we define a 

new parameter: 

끫뢌끫뢎 =
끫롨끫뢤끫롨끫뢸        (2) 

where 끫롨끫뢤 is the area enclosed by the tip trajectory and 끫롨끫뢸 is the largest possible area of an ellipse 

inscribed within the reachable space of the ctene (that is, a half-circle with radius 끫뢲), as shown in 

Figure 2-3A. Because of the ctene's flexibility, this ellipse represents a rough estimate of the 

theoretical maximum of the area that its tip could trace out. The ratio 끫뢌끫뢎 =  끫롨끫뢤 끫롨끫뢸⁄  would therefore 

tend to one for highly asymmetric beat cycles, and zero for a rigid ctene moving symmetrically. 
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Figure 2-3. (A) Graphical definition of spatial asymmetry parameter Sa overlaid on a time-series 

of ctene kinematics (gray lines). The black half-circle is the reachable space of a ctene with length 끫뢲; the larger ellipse 끫롨끫뢸 (red dotted line) estimates the maximum area that could be enclosed by ctene 

tip over a complete cycle; inner shape 끫롨끫뢤 (blue dotted line) is the actual ctene tip trajectory. (B) 

Schematic of ctene tip speed over one beat cycle. The temporal asymmetry parameter 끫뢎끫뢎 is a 

function of 끫룂끫뢺 (time between the first two minima of the tip speed curve) and 끫룂끫뢾 (remaining cycle 

time). Reprinted with permission from (Herrera-Amaya et al., 2021). 

2.1.4 Results 

To examine the flows generated by ctene rows beating across a range of body sizes, 

Reynolds numbers, and spatiotemporal asymmetries, we used µPSV as described in the previous 

section. Figures 2-4A and D show sample velocity fields from two specimens of B. vitrea. Flow 

shown in Figure 2-4A is similar to previous observations of ctenophores (Barlow et al., 1993), with 

no apparent vortices—the peak flow speed is co-located with the ctene tip as it reaches its maximum 

speed. Flow reversal is only present in the sub-ctene layer; the outer flow is primarily unidirectional 

and relatively steady. The animal shown in Figure 2-4D is larger in both body size and ctene length 

and generates a slightly more complex flow. The maximum flow speed is no longer attached to the 

ctene tip. A clear tip vortex is present, indicating the growing importance of fluid inertia. A tip 

vortex such as that seen in Figure 2-4D has not been previously seen in ctenophores, but is 

consistent with observations of metachronal swimmers operating at slightly larger 끫뢊끫뢊 (250-1000) 

(Colin et al., 2020; Ford et al., 2019; Murphy et al., 2013). Figures 2-4B and E show the radial 

velocity magnitude, averaged over seven beat cycles, while Figures 2-4C and F show the time-

averaged tangential velocity magnitude, with the angular decomposition based on the center of a 

circular arc fitted to the body wall. The flow is tangentially dominated; however, the average radial 
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velocity component close to the ctenes is noticeably higher for the larger animal, indicating 

increased two-dimensionality of the flow. 

The animal shown in Figure 2-4D has a slightly higher 끫뢊끫뢊끫븨 (see Table 2-2) and shows a 

lower degree of spatial asymmetry (끫뢌끫뢎 = 0.29) relative to the animal shown in Figure 2-4A (끫뢌끫뢎 =

0.53), which has a slightly lower 끫뢊끫뢊끫븨 (see Table 2-2). It is likely that both the increased 끫뢊끫뢊끫븨 and 

the lower degree of spatial asymmetry in the stroke contributes to the presence of vortices in Figure 

2-4D. Though the Reynolds number is lower and the appendage is more deformable, the measured 

flows are similar to the well-characterized vortex-shedding behavior observed in flexible flapping 

foils (Dewey et al., 2013; Marais et al., 2012; Quinn et al., 2014). 

 

Table 2-2. Flow parameters for Figure 2-4 (mean ± one standard deviation of 30 (small animal) 

and 7 (large animal) cycles). 끫룦끫뤆(끫롌끫롌) 끫룲끫뤌끫뺜 끫뤚(끫롌끫롌) 끫뤎(끫렎끫렎) 끫룴끫룴 끫룶끫룴 끫룮끫룦(%) 끫뵺(°) 

11.56 23.93±

0.5 

0.62±

0.02 

16.74 ± 

0.98 

0.53 ± 

0.01 

0.04 ± 

0.07 

13.11 ± 

1.22 

101.76 ± 

4.83 

38.99 68.27±

3.39 

0.93±

0.03 

11.23 ± 

0.23 

0.29 ± 

0.03 

0.15 ± 

0.04 

13.04 ± 

1.24 

104.15 ± 

2.49 

 

We note that obtaining high-quality flowfields is technically challenging, as it requires 

delicate alignment between the ctene row and the focal plane of the imaging system. Furthermore, 

the ctene row must remain aligned for a nontrivial period of time to draw conclusions about the 

beat cycle. These quality standards resulted in only two video sequences suitable for µPSV analysis 

(out of 12 video sequences processed for ctene kinematics). While these sequences do show animals 

of different sizes and ctenes beating at slightly different 끫뢊끫뢊끫븨, the sample size is not large enough 

to draw definitive conclusions about the role of spatiotemporal asymmetry in flow generation 

across scales. We also note that these animals are somewhat constrained and measured with zero 

swimming speed, as discussed in the previous section. The velocity fields, particularly in the far 

field, will likely differ for a freely swimming animal. The ctene kinematics, particularly those 
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driven by passive fluid-structure interactions, may also be different for this case. However, our 

qualitative observations of the general character of the velocity fields – a more two-dimensional 

flowfield for larger animals with higher beat frequencies – are likely to hold for the free-swimming 

case as well. 

 

 

Figure 2-4. (A) Instantaneous velocity field for a ctenophore with a body length 끫롾끫롪 = 11.56 mm 

and average ctene length 끫뢲 = 0.62 ± 0.02 mm. (B) Time-averaged radial velocity magnitude. (C) 

Time-averaged tangential velocity magnitude. (D) Instantaneous velocity field for a ctenophore 

with a body length 끫롾끫롪 = 38.99 mm and average ctene length 끫뢲 = 0.93 ± 0.03 mm. (E) Time-



22 

 

averaged radial velocity magnitude. (F) Time-averaged tangential velocity magnitude. Panels B, C, 

E, and F are averaged over seven beat cycles and share the color scale displayed on the right. 

Reprinted with permission from (Herrera-Amaya et al., 2021). 

 

Of the previously defined kinematic/coordination parameters, several are commonly 

reported in published studies (stroke amplitude Φ, phase lag 끫뢆끫롾, and beat frequency 끫뢦). Table 2-3 

shows these parameters for several ctenophore species; our results are consistent with previous 

observations. However, the degree of spatiotemporal asymmetry is not typically reported. In the 

current study, we measure spatial asymmetry 끫뢌끫뢎 and temporal asymmetry 끫뢎끫뢎 for ctenes engaged 

in idle, steady beating as previously defined (Figure 2-3). 

 

Table 2-3. Measured values for stroke amplitude, (Φ), phase-lag (끫뢆끫롾), and beat frequency (끫뢦) of 

ctene rows. Where margins are indicated, they are the mean plus or minus one standard deviation. 

Species 끫뵺 (°) 끫룮끫룦 (%) 끫뤎(끫렎끫렎) Beating 

mode 

Source 

B. vitrea 112.1 ± 8.9 13.2 ± 1.7 15.1 ± 2.2 Idle/Tethered Current study 

B. 

infundibulum 

102.1 ± 5.2 13.9 ± 4.9 27.7 ± 1.9 Idle/Tethered Current study 

Mertensia 

ovum* 

− − 7 Active 

swimming 

(Matsumoto, 1991) 

Beroe artic* − − 15 Active 

swimming 

(Matsumoto, 1991) 

L. pulchra* − − 13 Active 

swimming 

(Matsumoto, 1991) 

P. pileus+ 135 ± 15.5 − 10, 27 Tethered (Barlow & Sleigh, 

1993) 

P. pileus + − 7.07 ± 3.5 5 to 25 Tethered (Barlow et al., 

1993) 

P. bachei − − 10.1 ± 5.1 Active 

swimming 

(Heimbichner 

Goebel et al., 2020) 

*Average of > 25 measurements (σ not reported), + Beat frequency controlled by a mechanical 
actuator. 

 

Our results show that for B. vitrea, as 끫뢊끫뢊끫븨 increases, 끫뢌끫뢎 declines and 끫뢎끫뢎 is nearly constant; 

for B. infundibulum, 끫뢌끫뢎 is nearly constant, and 끫뢎끫뢎 increases (Figure 2-5). All specimens of B. 
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infundibulum were observed to have higher 끫뢊끫뢊끫븨 than that of B. vitrea. While these data are 

somewhat sparse, they indicate that the roles of spatial and temporal asymmetry may interact with 

one another. This interaction may change depending on the relative importance of viscosity and 

inertia. The drop in 끫뢌끫뢎 is non-intuitive: since higher spatial asymmetry should correspond to greater 

force production, it is unclear why it would decrease with increasing 끫뢊끫뢊끫븨. To further investigate 

the relationship between 끫뢌끫뢎 and 끫뢎끫뢎, we turn to a simple reduced-order analytical model (described 

in section 3.1). Using this simple model, we can qualitatively investigate how increasing or 

decreasing spatiotemporal asymmetry can affect swimming efficiency. The model is simple by 

design, meant to predict trends in force and power generation (and how they vary with 

spatiotemporal asymmetry) rather than the true values of these quantities. Due to its necessary 

simplifying assumptions, this model will not capture the full complexity of an actual ctene row; 

however, it serves as a useful tool for investigating the role of spatiotemporal asymmetry across a 

large parameter space, which would be computationally prohibitive for a higher-fidelity model. 

 

Figure 2-5.  (A) Spatial asymmetry 끫뢌끫뢎 vs. oscillatory Reynolds number 끫뢊끫뢊끫븨. Lower 끫뢊끫뢊끫븨 data 

(shown in blue) indicates B. vitrea (BIOS); higher 끫뢊끫뢊끫븨 data (shown in red) indicates B. 

infundibulum (MBA). Linear regressions for each dataset (solid lines) have regression coefficients 끫뢊끫롪끫롪끫롪끫롪 = 0.4 끫뢎끫뢜끫뢜 끫뢊끫뢀끫롪끫뢀 = 0.01.  (B) Temporal asymmetry 끫뢎끫뢎 vs oscillatory Reynolds number 
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끫뢊끫뢊끫븨. Linear regressions for each dataset (solid lines) have regression coefficients 끫뢊끫롪끫롪끫롪끫롪 =

0.01 끫뢎끫뢜끫뢜 끫뢊끫뢀끫롪끫뢀 = 0.79. Open circles represent the mean value for a single ctene; errorbars show 

95% confidence interval based on measured cycles (>20). The dotted lines represent 95% 

confidence bands on the linear regressions. Reprinted with permission from (Herrera-Amaya et al., 

2021). 

2.1.5 Summary 

 Velocimetry and paddle kinematics of live animals show that a rowing appendage’s spatial 

and temporal asymmetry levels play an important role at intermediate Reynolds numbers. 

Laboratory experiments on lobate ctenophores showed both qualitative and quantitative differences 

between the flows generated by two animals whose ctenes beat at different Reynolds numbers and 

different spatiotemporal asymmetries, including the presence of tip vortices and increased two-

dimensionality for the higher 끫뢊끫뢊끫븨 / lower 끫뢌끫뢎 case. The higher 끫뢊끫뢊끫븨 / lower 끫뢌끫뢎 case also showed 

increased radial momentum production, which may also impact turning. However, the flowfields 

shown in Figure 2-4 are not enough to draw predictive conclusions. While the velocimetry analysis 

is limited, our observation of ctene kinematics in living animals revealed that as 끫뢊끫뢊끫븨 increases, 

spatial asymmetry decreases and temporal asymmetry increases. We will employ the reduced-order 

model of section 3.1 to explore the consequences of this trend for force production and swimming 

performance. 

2.2 Metachronal maneuverability 

 Metachronal coordination of appendages is seen in many aquatic organisms spanning a 

wide range of sizes and body plans, including shrimp, krill, polychaetes, and even aquatic insects 
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(Alben et al., 2010; Byron et al., 2021). The generated flow can be used for swimming or pumping 

to aid in feeding, clearance of wastes, and other functions (Garayev & Murphy, 2021; Larson et al., 

2014). This technique is highly scalable, with metachronal coordinated appendages ranging from 

microns to centimeters in length. Studies of metachronal locomotion have thus focused primarily 

on unidirectional swimming ability (Daniels et al., 2021; Garayev & Murphy, 2021; Hayashi & 

Takagi, 2020; Matsumoto, 1991), but some metachronal swimmers are also capable of surprising 

agility. Though ctenophores are primarily planktonic, they also swim actively. Their natural 

environment has led them to become highly skilled intermediate Reynolds number swimmers, with 

a propulsion system that can maneuver against a range of background flow scales (Sutherland et 

al., 2014). However, their turning behavior has only been described qualitatively (Tamm, 2014). 

Existing quantitative information on ctenophore swimming trajectories comes from single-camera 

(2D) experiments focused on straight swimming (Gemmell et al., 2019; Heimbichner Goebel et al., 

2020; Kreps et al., 1997; Matsumoto, 1991). There is no explicit quantitative data on ctenophores' 

turning, nor any direct measurements of ctene beating frequencies in the context of turning. 

 Therefore, we know little of the turning control strategies used by ctenophores (or other 

metachronal swimmers). We use multicamera high-speed videography and three-dimensional 

kinematic tracking to correlate overall trajectories with the beating frequencies of the ctene rows 

and identify three distinct turning modes. In this section, we introduce the Maneuverability-Agility 

Plot (MAP) to explore the observed turning performance of ctenophores, showing how they can 

sharply turn at high speeds relative to their top speed. In addition, by reconstructing B. vitrea's 

“reachable space,” also known as the Motor Volume (MV) (Snyder et al., 2007), we show that 

ctenophores have the potential to reorient around many directions within a small space over a short 

timeframe (omnidirectionality). Results from this section are drawn from 27 different recordings 

from eight ctenophores from the BIOS data set, with an average body length of 7.93 ± 1.97끫뢴끫뢴 

(mean ± standard deviation). 
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2.2.1 Imaging facilities 

 For the BIOS dataset, freely swimming animals were simultaneously filmed from multiple 

angles at high speeds in order to provide three-dimensional swimming trajectories. The recording 

setup consists of three synchronized high-speed cameras (Edgertronic, Sanstreak Corp., San Jose, 

CA, USA), observing an experimental volume (30 × 30 × 30끫뢴끫뢴3) from three orthogonal 

perspectives (Figure 2-6A). Cameras filmed at 600 Hz at a resolution of 1024x912 pixels and were 

equipped with 200끫뢴끫뢴 Nikon macro lenses with apertures set to f/32 (depth of field ~12끫뢴끫뢴). 

Collimated LED light sources were used to backlight each camera (Dolan-Jenner Industries, 

Lawrence, MA, USA). Calibration was performed by translating a calibration wand with a 

micromanipulator through 27 pre-mapped points, creating a virtual 3x3x3 cube. Calibration 

coefficients were calculated by mapping the 2D camera coordinates into 3D space using the direct 

linear transform algorithms embedded in the software DLTdv8 (Hedrick, 2008). After calibration, 

we tracked three points (the apical organ and the two tentacular bulbs) on each ctenophore (Figure 

2-6B) using the deep-learning features of DLTdv8. Figure 2-6C shows an example maneuver 

reconstructed from the described experimental setup. We note that the camera system is also 

described in (Karakas et al., 2020), which contains contemporary data with the results presented 

here. 
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Figure 2-6. (A) Schematic of the 3D recording system showing the three orthogonal camera views. 

(B) Tracked points: apical organ (red) and tentacular bulbs (blue and green). (C) Example of a 

reconstructed trajectory; black line is the midpoint of the line segment joining the two tentacular 

bulbs. 

2.2.2 Ctenophore morphometric and kinematic parameters 

 We need nine morphometric and five kinematic parameters to describe the overall 

ctenophore propulsion system. These are listed in Table 2-4, along with a brief description, while 

Figure 2-7 shows a graphical description of some parameters. Lastly, Table 2-5 shows the average 

of the morphometric parameters as measured from eight individuals.  

Table 2-4. Ctenophore morphometric and kinematic parameters.  

Variable Description 끫룦끫룒 Body length  끫뤊끫룒 Body diameter (measured in tentacular plane) 끫뤚 Ctene length 끫빲 Average distance between ctenes 끫뤞끫룴 Number of ctenes on each sagittal row 끫뤞끫룶 Number of ctenes on each tentacular row 끫빴끫룴 Sagittal ctene row position angles (measured from tentacular plane) 끫빴끫룶 Tentacular ctene row position angles (measured from tentacular plane) 끫빾 Position angle of the first ctene on the row (measured from centroid)  
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끫뤎 Beat frequency  끫뵺 Stroke amplitude 끫룮끫룦 Phase lag between adjacent ctenes, expressed as a percentage of the cycle period 끫룶끫룴
=
끫뤪끫뤦 − 끫뤪끫뤢끫뤪끫뤦 + 끫뤪끫뤢 

Temporal asymmetry, quantifying the time difference between the power (끫룂끫뢺) 

and recovery strokes (끫룂끫뢾); also known as the "kinematic parameter" (Gauger et 

al., 2009) 끫룴끫룴 =
끫룐끫뤌끫룐끫뤠 

Spatial asymmetry, quantifying the degree of difference in flow-normal area 

between the power and recovery stroke by comparing the area enclosed by the 

ctene tip trajectory 끫롨끫뢤 to its practical maximum 끫롨끫뢸 (Herrera-Amaya et al., 

2021) 

 

 

Figure 2-7. Morphology and ctene row kinematics of a typical Bolinopsis vitrea. (A) Top view 

showing the eight ctene rows, the ctene row position angle 끫븀,  and the sagittal and tentacular planes 

(끫뢜끫롪 = 7.6끫뢴끫뢴). (B) Side view showing the ctene rows along the body (끫롾끫롪 = 7.4끫뢴끫뢴) and 끫븊, the 

angle for the most aboral ctene. (C) Stylized example time-series of ctene tip speed for one ctene 

over one beat cycle, where 끫룂끫뢺 is the power stroke duration and 끫룂끫뢾 the recovery stroke duration. (D) 

Ctene row close side view, showing a tracked ctene tip trajectory (끫롨끫뢤, solid white line), and the 

estimated ctene reachable space (끫롨끫뢸, red dashed ellipsoid inscribed in a black half circle of radius 
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끫뢲; shown elsewhere on the ctene row for clarity). Stroke amplitude (Φ) and the direction of the 

power stroke are also marked.  

 

Table 2-5. Morphometric measurements of included B. vitrea (mean ± one standard deviation) 끫룦끫룒(끫뤜끫뤜) 끫뤊끫룒(끫뤜끫뤜) 끫뤚(끫뤜끫뤜) 끫뤨 끫뤞끫룴 끫뤞끫룶 끫빴끫룴(°) 끫빴끫룶(°) 끫빾(°) 

7.8 ± 1.6 6.1

± 1.7 

0.5

± 0.06 

0.8

± 0.2 

10

± 1.7 

7.1

± 1.2 

63.9

± 2.1 

23

± 2.4 

27

± 5.1 

2.2.3 Results 

 From 27 recorded sequences of eight individuals, we observed four different appendage 

control strategies. These strategies differ categorically in the total number and the geometrical 

arrangement of the rows actively beating. The first three strategies are used to turn, with rows on 

the outside of the turn beating at a higher frequency than the rows on the inside of the turn 

(끫뢦끫뢸끫뢸끫뢸 > 끫뢦끫뢬끫뢬). In the first strategy (mode 1), two adjacent rows beat at some frequency 끫뢦끫뢸끫뢸끫뢸 and the 

two opposite rows beat at a lower frequency 끫뢦끫뢬끫뢬 while the remaining four rows are inactive. In the 

second strategy (mode 2), the four outer rows beat at approximately the same frequency, which 

exceeds the frequency used by the four rows on the opposite side. For the third strategy (mode 3), 

six rows beat at a constant frequency 끫뢦끫뢸끫뢸끫뢸 while only two rows beat at a lower frequency 끫뢦끫뢬끫뢬. Lastly, 

in mode 4, all rows are beating at approximately the same frequency; thus, the animal swims 

roughly in a straight line. The observed control strategies agree with morphological studies of 

lobate ctenophores (Tamm, 2014): the apical organ has four compound balancer cilia, and each 

balancer controls the activation of one sagittal and one tentacular row. In other words, B. vitrea can 

independently control the ctenes in each body quadrant formed by the sagittal and tentacular planes 

(see Figure 2-7A). Both rows in each quadrant beat at approximately the same frequency. Table 2-

6 summarizes the control strategies and the number of times each was observed. The recorded beat 

frequencies range from 0 to 34.5 끫롶끫롶.  
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Table 2-6. Appendage control strategies observed in freely swimming B. vitrea  

Control 

strategy 

No. of rows beating at 끫뤎끫뤠끫뤠끫뤪 No. of rows beating 

at 끫뤎끫뤔끫뤞 

No. of observations 

(out of 27) 

Mode 1 2 2 2 

Mode 2 4 4 8 

Mode 3 6 2 9 

Mode 4 8 0 8 

 

 Two important variables explore and quantify turning performance: maneuverability and 

agility. Maneuverability refers to the ability to turn sharply within a short distance. It is typically 

quantified by the swimming trajectory's radius of curvature (usually normalized by body length) 

(Norberg & Rayner, 1987). Agility, however, is not clearly or consistently defined in the animal 

locomotion literature. A widely used definition is the ability to rapidly reorient the body (Webb, 

1994), quantified by the maximum observed angular velocity. However, the angular velocity on its 

own does not speak to whether the animal needs to stop or slow to perform a turn, which is another 

colloquial definition of agility. An animal’s translational speed while performing a turn can give 

insight into its agility (Fish & Nicastro, 2003; Walker, 2000; Webb & Fairchild, 2001). Here, we 

will use the average speed during the turn (끫뢒�) as a measure of agility, and the average normalized 

radius of curvature (끫뢊 끫롾⁄������ , where 끫뢊 is the radius of curvature and 끫롾 is the body length) during the 

turn as a measure of maneuverability. We can examine a large number of discrete turns to build a 

Maneuverability-Agility Plot (MAP), plotting 끫뢊/끫롾����� vs. 끫뢒�  for a given organism. 

 We used the observed 3D swimming trajectories of B. vitrea to build a MAP. In Figure 2-

8, the x-axis shows the average animal speed during the recorded sequence (끫뢒�), measured in body 

lengths per second, which we treat as a measure of agility. The y-axis shows the average normalized 

radius of curvature �끫뢊 끫롾⁄�������, which we treat as a measure of maneuverability. Movements that are 

both highly maneuverable and highly agile are found in the lower-right corner of the MAP, while 

highly maneuverable but less agile (slow) movements are found in the lower-left corner. From the 
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experimental observations, we observe an increase in  끫뢊 끫롾⁄������ as 끫뢒�  increases, an expected tradeoff 

between maneuverability and agility (Fish & Nicastro, 2003). The most maneuverable observed 

turn has  끫뢊 끫롾⁄������ = 0.08 at a speed of 끫뢒� = 0.22 끫롪끫롾/끫룀 (lower-left corner). In the lower-right corner, 

we have a turn with a measured speed of 끫뢒� = 1.89 끫롪끫롾/끫룀 for 끫뢊 끫롾⁄������ = 1.3—still a comparatively 

sharp turn, carried out at 71% of the maximum recorded straight-line swimming speed of 끫뢒� =

2.65 끫롪끫롾/끫룀 (rightmost point, Figure 2-8). Simply put, ctenophores are capable of sharp turning 

while maintaining considerable speeds—that is, they have both high maneuverability and high 

agility. 

 

 

Figure 2-8. Maneuverability-Agility Plot (MAP). Experimental measurements of freely swimming 

B. vitrea. Lower values of 끫뢊 끫롾⁄������ indicate sharp turns (more maneuverable); higher values of 끫뢒�  

indicate faster swimming (more agile). Values in the upper left (low 끫뢒� , high 끫뢊/끫롾�����) are 

straightforwardly achievable with straight swimming (mode 4).  
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 Due to their high number of appendages, the distribution of appendages along the body, 

and the independent frequency control between paired rows, ctenophores are capable of achieving 

the performance displayed in Figure 2-8 over numerous planes of motion. Using the observed 3D 

swimming trajectories, we estimate B. vitrea’s motor volume (MV) (Snyder et al., 2007), which 

illustrates the maneuvering capabilities of the ctenophore locomotor system (Figure 2-9). 

Conceptually, the MV represents the reachable space of a swimming ctenophore over a given time 

horizon. To build the MV, we translated and rotated the observed swimming trajectories so that at 

the start of the trajectory, the tentacular plane is on the x-y plane, with the midpoint between the 

tentacular bulbs on the origin, the aboral-oral axis of symmetry is aligned with the x-axis, and the 

tentacular bulbs facing the positive x-direction. From this starting position, the positive x-direction 

is forward swimming (lobes in front) and the negative x-direction is backward swimming (apical 

organ in front). Figure 2-9 shows the rearranged swimming trajectories (black lines) and the volume 

swept by the animals' bodies (gray cloud). Each animal body was estimated as a prolate spheroid 

based on its unique body length and diameter (끫롾끫롪 ,끫뢜끫롪). In our observations, animals swam freely 

(without external stimuli), and the trajectories were recorded through the time period that the animal 

was in the field of view. Each observation has a different initial speed and total swimming time 

(see Table 2-7); thus, this MV does not directly compare different appendage control strategies, 

since observed maneuvers have different initial speeds and durations. We also note that because 

we only observed animals who freely swam through the field of view, the experimental dataset is 

biased towards animals who had a nontrivial initial swimming speed, leading to a stretching of the 

MV along the x-axis. Nonetheless, the observed MV shown in Figure 2-9 provides some 

visualization of the 3D maneuvering capabilities of  B. vitrea's locomotor system. In section 3.2.3, 

we use reduced-order analytical modeling to further explore the potential motor volume across a 

wider range of behaviors than those observed in these experiments. 
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Table 2-7. Experimental recordings (mean ± one standard deviation) 

Swimming 

direction 

No. Recordings Initial speed (끫룒끫룦/끫뤨) Recording duration (끫뤨) 

Forward (+x) 19 0.61 ± 0.75 2.25 ± 1.34 

Backward (-x) 8 0.85 ± 0.55 1.82 ± 1.11 

 

 Figure 2-9 shows the potential of the ctenophore locomotor system for omnidirectional 

swimming, which we define as the ability to move in any direction from a given initial position 

within a relatively small space and a short time. Figure 2-9A shows nearly equal capacity between 

backward and forward swimming—an ability few swimmers share, and which typically requires 

major adjustments to control strategy (Sutherland et al., 2019). Ctenophores, by contrast, achieve 

agile backward swimming simply by reversing the direction of the ctene power stroke. The 

trajectories in Figure 2-9 are achieved via the activation of different ctene rows, which (when 

coupled with the ability to swim both forward and backward) allow ctenophores to quickly access 

many different swimming directions from the same initial position.  

 

 

Figure 2-9. Motor volume (MV) constructed from the 27 tracked swimming trajectories of B. vitrea. 

Black lines show swimming trajectories (midpoint between tentacular bulbs) and volume swept by 

animals' bodies (gray cloud) during each maneuver. Based on morphological measurements, animal 



34 

 

volume is estimated as a prolate spheroid (Table 2-5). (A) Side view and (B) front view of the 

tracked swimming trajectories and motor volume show that B. vitrea can turn over a large range of 

angles.  

2.2.4 Summary 

 Ctenophores' higher number of propulsive rows differentiates them from other metachronal 

swimmers, which typically have only one or two rows of propulsors (Garayev & Murphy, 2021; J. 

L. Lim & DeMont, 2009; Murphy et al., 2013; Ruszczyk et al., 2022; Sutherland et al., 2019). 

Flexibility in controlling a higher number of appendages, combined with the ability to swim 

backward and forward, allows for nearly omnidirectional swimming. Our results illustrate that the 

ctenophore body plan is highly agile and maneuverable. Ctenophores can turn sharply without 

slowing down, reverse directions easily, and turn about many planes, enabling them to access a 

nearly-unconstrained region of space from a given initial position over relatively short time 

horizons. To explore both the turning performance and the omnidirectional capabilities of B. vitrea 

more systematically, we will employ the reduced-order model of section 3.2. Using this 

mathematical model, we can investigate ctenophore turning across a range of beat frequencies and 

appendage control strategies, revealing the potential of the ctenophore body plan for bio-inspired 

design.  
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Chapter 3 

 

Reduced-order analytical modeling 

A limitation of behavioral experiments with living animals is that parameters cannot be 

varied independently; without a prohibitively large dataset, it is difficult to explore the parameter 

space and identify key functional dependencies fully. Numerical methods (e.g., computational fluid 

dynamics) are more controllable (Granzier-Nakajima et al., 2020; Y. Liu et al., 2021; Semati et al., 

2020a), but computationally costs can be prohibitive for a parameter sweep of a highly multivariate 

problem. In addition, to fully simulate ctenophore swimming would require a large domain to 

capture an entire maneuver (on the scale of centimeters) while resolving flow around the ctene rows 

(sub-millimeter scale). The ctenes are at least twenty times smaller than the body, so computational 

resources needed for a fully-coupled model of even a few ctenes in a row are already a limiting 

factor (Dauptain et al., 2008; D. Lim et al., 2019a; Semati et al., 2020a). However, a simplified 

modeling approach is still attractive due to the large and multivariate parameter space we seek to 

explore.  

Section 3.1 has been published in (Herrera-Amaya et al., 2021), and section 3.2 is under 

review at the time of dissertation submission.  

3.1 Rowing spatiotemporal asymmetry: One-dimensional swimming equation 

Here we develop a reduced-order analytical model based on known empirical expressions 

for fluid drag— an approach previously used to study metachronal rowing in 1D for low to 

intermediate Reynolds numbers (Alben et al., 2010; Du Clos et al., 2022; Takagi, 2015). This class 

of analytical model is limited because it does not consider hydrodynamic interactions between the 
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propulsors. Therefore, it cannot fully reproduce key features (such as enhanced swimming 

efficiency) of metachronal swimming. However, it can still reasonably predict swimming 

kinematics, and (most importantly) it provides a useful tool for comparing the relative effects of 

the many morphometric and kinematic parameters involved in metachronal swimming without 

prohibitive computational costs. 

Our model has three notable features, which distinguish it from previous (analytical or 

robotic) modeling attempts: (i) we directly prescribe the level of spatiotemporal asymmetry (Sa and 

Ta); (ii) we model the phase lag between appendages as a continuous (rather than discrete) variable, 

in contrast to (Alben et al., 2010), and (iii) we explicitly include both viscous and inertial effects 

by using an intermediate-끫뢊끫뢊 drag coefficient formulation (Shih & Buchanan, 1971).  

Each ctene is treated as an oscillating flat rigid plate, whose distal end traces an ellipse 

(Figure 3-1). The ellipse's major axis is set by the prescribed stroke amplitude (Φ), and its minor 

axis is set by the prescribed spatial asymmetry 끫뢌끫뢎 (see Appendix A1). The plate reciprocates 

horizontally over a total cycle period 끫뢎 equal to the inverse of the prescribed frequency 끫뢦. Time 

spent in the power (0 ≤ 끫븆 ≤ 끫븖, where 끫븆 is the angle swept out by the tip as it moves around the 

ellipse) and recovery (끫븖 < 끫븆 < 2끫븖) strokes is set by the prescribed temporal asymmetry 끫뢎끫뢎. This 

yields the parametric tip position (끫룊끫뢀(끫룂),끫료끫뢀(끫룂)) as a function of the prescribed variables (for further 

details of the modeled kinematics, see Appendix A1). 
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Figure 3-1. (A) Sample trajectory of a real ctene and (B) simplified elliptical trajectory for the 

analytical model. Thin solid lines (dark blue) depict tip trajectories; the thick solid line (light blue) 

represents an oscillating plate whose tip position (끫룊끫뢀,끫료끫뢀) is a function of 끫븆 and ellipse geometry. 

Dotted lines denote the stroke amplitude Φ. The spatiotemporal asymmetry parameters, 끫뢌끫뢎 and 끫뢎끫뢎, 

are prescribed for each model run; these determine the time-varying tip position (끫룊끫뢀,끫료끫뢀), which 

subsequently determines the oscillating plate's speed and flow-normal area on the power and 

recovery strokes. Reprinted with permission from (Herrera-Amaya et al., 2021). 

 

The propulsive force generated by a single plate as a function of time is given by: 

끫롲끫뢺 = − 1

2
끫븘끫롬끫뢀(끫̇룊끫뢀 + 끫̇룊끫롪 , 끫뢦)끫룈끫료끫뢀[(끫̇룊끫뢀 + 끫̇룊끫롪)|끫̇룊끫뢀 + 끫̇룊끫롪|]     (3) 

where 끫븘 is the fluid density, 끫룈 is the width of the appendage, 끫̇룊끫롪 is the body's swimming speed, 

and 끫롬끫뢀 is the plate drag coefficient. 끫롬끫뢀 is a function of both the plate's absolute speed 끫̇룊끫뢀 + 끫̇룊끫롪 and 

its oscillation frequency 끫뢦, following (Shih & Buchanan, 1971). Further details are given in 

Appendix A.3.2. 

To consider multiple appendages operating at a phase lag, we sum equation (3) over n 

plates: 
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끫롲끫뢬끫뢤끫뢸 = −1

2
�끫븘끫롬끫뢀(끫̇룊끫뢀 + 끫̇룊끫롪 , 끫뢦)끫룈끫료끫뢀(끫룂 + (끫뢰 − 1)끫븞)[(끫̇룊끫뢀(끫룂 + (끫뢰 − 1)끫븞)

끫뢬
끫뢰=1

+ 끫̇룊끫롪)|끫̇룊끫뢀(끫룂 + (끫뢰 − 1)끫븞) + 끫̇룊끫롪|]        (4) 

By dephasing the position variables 끫룊끫뢀 and 끫료끫뢀 by an amount (끫뢰 − 1)끫븞, we introduce metachronal 

coordination (where 끫븞 = 끫뢆끫롾 ∙ 끫뢎). The model does not consider inter-appendage interactions, so it is 

not affected by the spacing between appendages (unlike a real ctenophore).  

3.1.1 Spatiotemporal asymmetry in a single appendage 

We compute the total propulsive force (averaged over one cycle) for a single ctene on a 

fixed substrate (끫̇룊끫롪 = 0), modeled by equation (3). Because of its dependence on 끫룊끫뢀 and 끫료끫뢀 (which 

are prescribed—see Appendix A1), 끫롲끫뢺 is implicitly a function of Sa, Ta, Φ, and 끫뢦. Increasing Φ 

increases the magnitude of 끫롲끫뢺 but does not change 끫뢊끫뢊끫븨, which is based only on oscillation 

frequency and ctene length; we therefore set Φ to a fixed value (Φ = 100°). We compute 끫롲끫뢆 for a 

ctene with 끫뢲 = 1 mm, with 끫룈 assumed to be 끫뢲/2 (Afzelius, 1961), and beating at frequencies 

corresponding to  끫뢊끫뢊끫븨 between 5 and 200 (Afzelius, 1961; Matsumoto, 1991). For each frequency, 

we continuously vary spatial and temporal asymmetry (0.1 < 끫뢌끫뢎 < 0.6 and 0.1 < 끫뢎끫뢎 < 0.6).  

To examine the effect of varying spatiotemporal asymmetry throughout the parameter 

space, we calculate the gradient of  끫롲끫뢺 with respect to 끫뢌끫뢎 and with respect to 끫뢎끫뢎 throughout the 

tested 끫뢌끫뢎 − 끫뢎끫뢎 space. That is, we calculate two partial derivatives: 끫븪끫롲끫뢺 끫븪끫뢌끫뢎 ⁄ , the rate of change of 끫롲끫뢺 with respect to 끫뢌끫뢎, and 끫븪끫롲끫뢺/끫븪끫뢎끫뢎, the rate of change of 끫롲끫뢺 with respect to 끫뢎끫뢎. We compare the 

value of these two quantities over the full range of asymmetry observed in the behavioral 

experiments.  These derivatives measure how strongly 끫롲끫뢆 depends on either 끫뢌끫뢎 or 끫뢎끫뢎; for example, 
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if 끫븪끫롲끫뢺 끫븪끫뢌끫뢎 ⁄ is small but 끫븪끫롲끫뢺 끫븪끫뢎끫뢎 ⁄ is large, this means that force production is more sensitive to 

changes in temporal asymmetry than changes in spatial asymmetry (as we have defined them).  

We find that 끫븪끫롲끫뢺 끫븪끫뢌끫뢎 ⁄ > 0 and 끫븪끫롲끫뢺 끫븪끫뢎끫뢎 ⁄ > 0 always, indicating that an increase in either 끫뢌끫뢎 or 끫뢎끫뢎 increases propulsive force. However, 끫롲끫뢺 is influenced differently by changes in 끫뢎끫뢎 or 끫뢌끫뢎 

in different regions of the parameter space, depending on 끫뢊끫뢊끫븨. To measure their relative influence, 

we define the operator 끫롴(⋅) ≡ 끫븪(⋅)끫븪끫뢎끫븪 끫븪(⋅)끫븪끫롪끫븪� , so that 끫롴�끫롲끫뢺� =
끫븪끫롲끫뢺끫븪끫뢎끫븪 끫븪끫롲끫뢺끫븪끫롪끫븪� . A high value of 끫롴�끫롲끫뢺� indicates 

that propulsive force is more sensitive to changes in 끫뢎끫뢎; a low value of 끫롴�끫롲끫뢺� indicates that 

propulsive force is more sensitive to changes in 끫뢌끫뢎. 끫롴�끫롲끫뢺� is, therefore, a summary variable that 

quantifies the behavior of 끫롲끫뢺 with respect to 끫뢌끫뢎 and 끫뢎끫뢎.  

Figure 3-2A shows 끫롴�끫롲끫뢺� averaged over 끫뢌끫뢎 − 끫뢎끫뢎 space as a function of 끫뢊끫뢊끫븨. At lower 끫뢊끫뢊끫븨, the influence of 끫뢌끫뢎 is higher than that of 끫뢎끫뢎, as expected from stronger viscous effects. 

However, as we increase 끫뢊끫뢊끫븨, 끫롴�끫롲끫뢺� increases as well, making 끫뢎끫뢎 the most influential asymmetry 

as inertia starts to dominate. Recall from Figure 2-5 that in our experimental observations, 끫뢌끫뢎 

decreases and 끫뢎끫뢎 increases as 끫뢊끫뢊끫븨 increases. This trend is corroborated by the value of 끫롴�끫롲끫뢺� 
shown in Figure 3-2A. An increasing value of 끫롴�끫롲끫뢺� corresponds to a higher sensitivity of 끫롲끫뢺 to 

changes in 끫뢎끫뢎; in other words, it is easier to boost force production by increasing 끫뢎끫뢎 than by 

increasing 끫뢌끫뢎 as 끫뢊끫뢊끫븨 increases.  

Figure 3-2B-E shows the value of 끫롲끫뢆 for several discrete values of 끫뢊끫뢊끫븨, over the full range 

of 끫뢌끫뢎 and 끫뢎끫뢎 considered. The role of 끫뢌끫뢎 vs. 끫뢎끫뢎 can be inferred from the slope of the contours: a 

very shallow slope indicates that 끫롲끫뢆 is very sensitive to 끫뢌끫뢎, and a very steep slope indicates that 끫롲끫뢆 is more sensitive to 끫뢎끫뢎.  At low 끫뢊끫뢊끫븨, spatial asymmetry is at its highest level of influence; the 

slope of the contours is fairly uniform across 끫뢌끫뢎 − 끫뢎끫뢎 space, indicating that 끫롲끫뢆 changes slightly 

favor 끫뢌끫뢎 over 끫뢎끫뢎 in the same manner for all points in this space. As 끫뢊끫뢊끫븨 increases, the contours 
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steepen: a change in 끫뢎끫뢎 produces a higher 끫롲끫뢆 than a similar change in 끫뢌끫뢎. As is expected, the 

influence of 끫뢎끫뢎 is weaker at lower 끫뢊끫뢊끫븨, where the flow approaches time-reversible conditions 

(however, the drag coefficient in our model is not appropriate for these conditions, so we do not 

attempt to extend the model to 끫뢊끫뢊끫븨 < 1 where the flow would be fully time-reversible). In general, 

the contours are shallowest (indicating maximal sensitivity to 끫뢌끫뢎) for low 끫뢎끫뢎; the contours are 

steepest (indicating maximal sensitivity to 끫뢎끫뢎) at high 끫뢎끫뢎. 

 

 

Figure 3-2.  (A) The ratio 끫롴�끫롲끫뢺� of the gradients of 끫롲끫뢺 in 끫뢌끫뢎 − 끫뢎끫뢎 space as a function of 끫뢊끫뢊끫븨, 

averaged over the tested parameter space. On the right, contour plots show the behavior of 끫롲끫뢺 for 

several values of 끫뢊끫뢊끫븨: (B) 끫뢊끫뢊끫븨 = 5, (C) 끫뢊끫뢊끫븨 = 60, (D) 끫뢊끫뢊끫븨 = 145, and (E) 끫뢊끫뢊끫븨 = 200. High 끫뢊끫뢊끫븨 leads to 끫뢎끫뢎 being more influential in force production than 끫뢌끫뢎, an effect that increases as 끫뢊끫뢊끫븨 

increases; for lower 끫뢊끫뢊끫븨, 끫뢌끫뢎 more strongly influences force production. Reprinted with permission 

from (Herrera-Amaya et al., 2021). 
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3.1.2 Spatiotemporal asymmetry in metachronal rowing 

To explore how spatiotemporal asymmetry can affect swimming efficiency, and to 

investigate the role of metachronal coordination, we consider several rows of oscillating plates as 

described by equation (4), unidirectionally propelling a spheroidal body. Drag on the spheroid is 

modeled as 

끫롲끫롮 = −1

2
끫븘끫롬끫롪(끫̇룊끫롪)끫븖끫뢾2끫̇룊끫롪|끫̇룊끫롪|      (5) 

where 끫롬끫롪 is the intermediate-끫뢊끫뢊 drag coefficient for a prolate spheroid aligned with the flow, and 

is a function of its speed and geometry ((Loth, 2008); see Appendix A3.2); 끫뢾 is the average radius 

of the body’s flow-normal area; and 끫̇룊끫롪 is the overall swimming speed. Summing forces 

(propulsion, body drag, and acceleration reaction force) in the x-direction yields:              

끫̈룊끫롪 +
끫븘끫븖끫뢾2

2(끫뢴 + 끫뷸끫븘끫뢒)
끫롬끫롪(끫̇룊끫롪)끫̇룊끫롪|끫̇룊끫롪| +

끫뢂
(끫뢴 + 끫뷸끫븘끫뢒)

끫롲끫뢬끫뢤끫뢸(끫뢌끫뢎,끫뢎끫뢎,Φ, f,끫뢆끫롾 , 끫̇룊끫롪) = 0       (6) 

where 끫뢂 is the number of appendage rows (in ctenophores, 끫뢂 = 8), 끫뢴 is the body mass, 끫뷸 is the 

added mass coefficient (Daniel, 1983), and 끫뢒 is the spheroid volume. The “added mass” term (끫뷸끫븘끫뢒)  

accounts for displaced water that must be accelerated along with the body (Vogel, 1994). This 

approach allows us to compute the swimming efficiency 끫븄, which we calculate as the ratio of the 

output power (끫뢆끫뢸) to the input power (끫뢆끫뢬) (끫븄 ≡ 끫뢆끫뢸/끫뢆끫뢬, see Appendix A2. To verify that our analytical 

model predicts forces comparable to those generated by the real animal it is meant to represent, we 

compare the model to actual measurements of freely swimming ctenophores from section 2.2.  

Our model considers a ctenophore swimming in a straight line, with a constant beat 

frequency, whose body orientation is aligned with the swimming trajectory (heading angle of zero 

degrees). We consider two unidirectional swimming trajectories that resemble the modeled 

situation—one steady swimming animal, and one animal which accelerates from near rest. The beat 

frequency and phase lag were measured manually, counting the beat period of two neighboring 



42 

 

ctenes from each visible ctene row on the three videos. Relevant morphometric and kinematic 

parameters can be found in Table 3-1. 

 

Table 3-1. Morphometric and kinematic measurements of observed animals (mean ± one standard 

deviation) 

Body length 

(mm) 

Body width 

(mm) 

No. 

Ctenes 

Ctene length 

(mm) 

Phase Lag (%) Beat frequency 

(Hz) 

6.24 5.36 9 0.38 13.5±4.82 28.97±1.74 

8.18 6.25 9 0.41 17.1±3.52 27.89±0.98 

 

Based on these experimental observations, we run the swimming model (equation 6) with 

the values listed in Table 3-1, using the mean value for 끫뢆끫롾 and 끫뢦. We also need to set values for Φ, 끫뢌끫뢎, and 끫뢎끫뢎; however, these are impossible to measure in our recordings due to a lack of spatial 

resolution. To measure Φ and 끫뢌끫뢎 together with whole-body trajectories, we need a perfectly aligned 

view and an extremely high-resolution sensor given the range of sizes that must be resolved. For 끫뢎끫뢎, our 600 fps recordings are resolved enough in time to calculate the overall beat frequency of a 

ctene row, but not to finely measure power vs. recovery stroke duration (necessary to calculate 끫뢎끫뢎). 

We therefore use representative values of Φ, 끫뢌끫뢎, and 끫뢎끫뢎 from our experimental observations (see 

Figure 2-5 and Table 2-3). The stroke amplitude shows almost no variation across our dataset; thus, 

we set it to the mean observed value of 112°. Shaded areas in Figure 3-3 represent solutions for the 

entire 끫뢌끫뢎-끫뢎끫뢎 space considered in this section (0.1 < 끫뢌끫뢎 < 0.6 and 0.1 < 끫뢎끫뢎 < 0.6). Blue lines in 

Figure 3-3 are the combinations of 끫뢌끫뢎 and 끫뢎끫뢎 that best predict the observed animal speed (red line), 

yielding 끫뢌끫뢎 = 0.55 and 끫뢎끫뢎 = 0.35 for the unsteady (accelerating) case and 끫뢌끫뢎 = 0.3 and 끫뢎끫뢎 =

0.2 for the steady swimming case. These values of 끫뢌끫뢎 and 끫뢎끫뢎 are within the experimental range 

observed in Figure 2-5. The agreement between observed and predicted swimming speeds shown 

in Figure 3-3 verifies that the model can produce similar propulsive forces as those generated by 

the animals.  
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For this parametric study, we consider a modeled ctenophore whose morphometric 

parameters are based on the experimental measurements of the second animal in Table 3-1. The 

geometry for the model is 끫롾끫뢞 = 8.18 mm, 끫뢲 = 0.41 mm,끫뢜 = 9, and 끫뢜 = 6.25 mm. We solve 

equation (6) for a total of 40,000 combinations of 끫뢌끫뢎, 끫뢎끫뢎, 끫뢊끫뢊끫븨, and 끫뢆끫롾 (see Table 3-2), separating 

each solution into two sequential events: unsteady swimming (acceleration from rest) and steady 

swimming. Once the model reaches a steady speed, we continue to run the calculations until the 

model “swims” for three times its body length (Figure 3-4A). We note that oscillations in 끫̇룊끫뢞 are 

still present in the steady swimming portion for some values of 끫뢆끫롾 due to the time dependence of 

the metachronal motion. 

 

 

 

Figure 3-3. Comparison between experimental (red line) and modeled (blue line) swimming speed. 

The shaded area represents all 끫뢌끫뢎-끫뢎끫뢎 combinations considered in Figure 3-2. (A) shows an animal 

accelerating from near rest. The modeled speed (blue line) has 끫뢌끫뢎 = 0.55 and 끫뢎끫뢎 = 0.35. (B) 

shows an animal swimming at a steady speed. The modeled speed (blue line) has 끫뢌끫뢎 = 0.3 and 끫뢎끫뢎 = 0.2. Reprinted with permission from (Herrera-Amaya et al., 2021). 
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We find that swimming efficiency 끫븄 depends only weakly on 끫뢊끫뢊끫븨 during both unsteady 

and steady swimming throughout the tested parameter space; 끫븄 varies less than 1% for each 끫뢌끫뢎 −끫뢎끫뢎 combination across the tested range of 끫뢊끫뢊끫븨. However, efficiency does depend on the other 

parametrically swept variables (끫뢆끫롾, 끫뢌끫뢎, and 끫뢎끫뢎). Figure 3-4B shows a representative example of 끫븄 (끫뢆끫롾) (for 끫뢌끫뢎 = 0.4 and 끫뢎끫뢎 = 0.3), where 끫븄 is calculated over the full duration of steady or 

unsteady swimming.  

For unsteady swimming, there is a clear maximum efficiency at a slight phase lag; this 

peak appears for every 끫뢌끫뢎 − 끫뢎끫뢎 combination at a phase lag of approximately 7.04 ± 1.12% (mean 

± standard deviation). For steady swimming, the efficiency is largely independent of 끫뢆끫롾 (Figure 3-

4B). We attribute this difference to the stronger influence of the added mass term (see equation (6)) 

during the acceleration, since this term is proportional to 끫̈룊끫뢞 . Any energetic advantage of 

metachronal coordination during steady swimming is likely to be due to hydrodynamic interactions 

between ctenes (de Brouwer et al., 2013; Ford et al., 2019; Ford & Santhanakrishnan, 2020), which 

are not captured here. While our model does not consider these interactions, we can consider how 

phase lag 끫뢆끫롾 affects oscillations in body speed 끫̇룊끫뢞′ . Figure 3-4C shows that zero phase lag produces 

strong oscillations in body speed; however, 끫̇룊끫뢞′  is minimized for 끫뢆끫롾 = 19.59% (for the specific 

combination of 끫뢌끫뢎 = 0.4 and 끫뢎끫뢎 = 0.3). Averaged across the tested 끫뢌끫뢎 − 끫뢎끫뢎 space, this minimum 

appears at 끫뢆끫롾 = 20.11 ± 0.46% (mean ± standard deviation). This phase lag is close to what we 

observe experimentally (see Table 2-3) and also within the optimal 끫뢆끫롾 range reported for a krill-

inspired robot (16.7% < 끫뢆끫롾 < 25%) (Ford et al., 2019) and by a krill-inspired numerical rowing 

model (20% < 끫뢆끫롾 < 25%) (Granzier-Nakajima et al., 2020). In our model, this corresponds to the 

range that produces the smallest values of 끫̇룊끫뢞′   (i.e., the smoothest and least “jerky” swimming), 

though these are not necessarily the values that maximize swimming efficiency (끫븄 has no clear 

maximum for the steady-swimming portion of the modeled trajectory). These two cases (unsteady 
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swimming at maximum 끫븄 and steady swimming with a minimum 끫̇룊끫뢞′ ) represent cases of particular 

interest, which we will further explore in the next section. 

This analysis highlights the importance of considering the added mass force as a significant 

component of propulsion at intermediate 끫뢊끫뢊, especially during bouts of whole-body acceleration; 

it also highlights a correlation between the range of optimal phase lags found in other studies and 

the range of phase lags which here produced the smoothest modeled swimming speeds. 

 

Table 3-2. Range and resolution of the parameter sweep study. 

 끫룴끫룴 끫룶끫룴 끫뤎(끫렎끫렎) 끫룲끫뤌끫뺜 끫룮끫룦 (%) 

Range 0.2-0.6 0-0.6 10-30 10-30.1 0-30 

Resolution 0.1 0.0316 1.0526 1.0526 1.5789 

 

 

Figure 3-4. (A) Modeled swimming speed of a mid-size ctenophore (끫롾끫뢞 = 8.18 mm, 끫뢲 =

0.41 mm,끫뢜 = 9, and 끫뢜 = 6.25 mm) accelerating from rest at a beat frequency of 끫뢦 = 20 Hz 

(끫뢊끫뢊끫븨 =20.1) with 끫뢌끫뢎 = 0.4 and 끫뢎끫뢎 = 0.5. The black line shows the highest oscillations in speed 

(끫뢆끫롾 = 0%), the blue line shows the phase lag that gives optimal efficiency for unsteady swimming 

(끫뢆끫롾 = 6.12% for this specific case), and the magenta line shows the phase lag that reduces body 

speed oscillations to a minimum (끫뢆끫롾 = 19.59% for this specific case). (B) Swimming efficiency 끫븄 ≡ 끫뢆끫뢸끫뢆끫뢬 (ratio of power output to power input) as a function of phase lag for both the unsteady and 
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steady swimming period, as demarcated in panel (A). Efficiency is calculated over the entire 

unsteady/steady periods to obtain the results shown. Maximum efficiency (black dot) occurs at a 

phase lag of 6.12% during the unsteady period for this case; there is no clear maximum efficiency 

for the steady period. (C) Magnitude of swimming speed oscillations 끫̇룊끫뢞′ as a function of phase lag. 

Oscillations in 끫̇룊끫뢞 are minimized for this case at a phase lag of 19.59% (black dot). Reprinted with 

permission from (Herrera-Amaya et al., 2021). 

 

3.1.3 Variation of swimming efficiency over Sa-Ta space 

Previously, we used a gradient-based analysis to examine the sensitivity of propulsive force 끫롲끫뢆 to both 끫뢌끫뢎 and 끫뢎끫뢎 throughout 끫뢌끫뢎 − 끫뢎끫뢎 space. However, this analysis considered a ctene on a 

fixed substrate, and thus could not include swimming efficiency. We extend this gradient-based 

analysis here to consider how 끫뢌끫뢎 and 끫뢎끫뢎 affect swimming efficiency 끫븄. The quantity G(끫븄) =

끫븪끫븪끫븪끫뢎끫븪 끫븪끫븪끫븪끫롪끫븪�  , defined for all points in 끫뢌끫뢎 − 끫뢎끫뢎 space, represents the relative sensitivity of 끫븄 to 끫뢎끫뢎 vs. 끫뢌끫뢎. Recall that 끫븄 is weakly dependent on beat frequency 끫뢦; for unsteady swimming, 끫븄 is maximized 

at a moderate phase lag 끫뢆끫롾, and for steady swimming 끫븄 depends only weakly on phase lag 끫뢆끫롾 . We 

consider a map of 끫븄 over 끫뢌끫뢎 − 끫뢎끫뢎 space for two cases of interest: A) unsteady swimming at 끫뢦 =

20끫롶끫롶 and 끫뢆끫롾 = 6.12%, which maximizes 끫븄, and B) steady swimming at 끫뢦 = 20끫롶끫롶 and 끫뢆끫롾 =

19.59%, which minimizes 끫̇룊끫뢞′ (Figure 3-4). 

In general, efficiency 끫븄 increases if either 끫뢌끫뢎 or 끫뢎끫뢎 increase, with a maximum at the edge 

of the considered parameter space where 끫뢌끫뢎 = 0.6 and 끫뢎끫뢎 = 0.6 (Figure 3-5A-B). However, 

efficiency is not dependent on 끫뢌끫뢎 and 끫뢎끫뢎 in the same way. This is apparent from the slope of the 
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contours in Figure 3-5, and how they vary over 끫뢌끫뢎 − 끫뢎끫뢎 space: very steep contours indicate higher 

sensitivity to 끫뢎끫뢎, and very shallow contours indicate higher sensitivity to 끫뢌끫뢎.  

We find that 끫븄 is more responsive to 끫뢎끫뢎 than it is to 끫뢌끫뢎 throughout 끫뢌끫뢎 − 끫뢎끫뢎 space. The 

gradient ratio 끫롴(끫븄) is greater than one over nearly the entire parameter space considered, indicating 

that 끫븄 is always more sensitive to changes in 끫뢎끫뢎 versus changes in 끫뢌끫뢎. Interestingly, 끫븄 is most 

sensitive to 끫뢌끫뢎 at very high values of 끫뢌끫뢎 for both unsteady and steady swimming. This means that 

when the stroke is very spatially asymmetric, further increases in 끫뢌끫뢎 can still produce nontrivial 

increases in 끫븄; there is no saturation point. We note that the analysis in Figure 3-5 is representative 

of all tested frequencies (10끫롶끫롶 < 끫뢦 < 30끫롶끫롶 and 10 < 끫뢊끫뢊끫븨 < 30), and that 끫롴(끫븄) can be inferred 

from the shape of the contours of 끫븄. 

 

 

Figure 3-5. Contours of swimming efficiency at 끫뢦 = 20끫롶끫롶 (끫뢊끫뢊끫븨 = 20.1) for (A) unsteady 

swimming, at 끫뢆끫롾 = 6.12%  (which maximizes efficiency 끫븄) and (B) steady swimming, at 끫뢆끫롾 =

19.59% (which minimizes body speed oscillations 끫̇룊끫뢞′ ), throughout 끫뢌끫뢎 − 끫뢎끫뢎 space. Reprinted with 

permission from (Herrera-Amaya et al., 2021). 
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3.1.4 Summary 

Results from the single appendage model show that force production is more sensitive to 

temporal asymmetry (vs. spatial asymmetry) at higher Reynolds numbers. In general, the model 

results showed that the relative sensitivity to spatial vs. temporal asymmetry is a function of both 

Reynolds number and the position in 끫뢌끫뢎 − 끫뢎끫뢎 space. This simple analysis would also dictate that 

increasing the spatiotemporal asymmetry always increases propulsive force generation. Since the 

experimental data do not suggest that animals always maximize both 끫뢎끫뢎 and 끫뢌끫뢎 (see section 2.1.4), 

we expanded the mathematical model to consider multiple rows of appendages propelling a freely-

swimming model ctenophore to consider the energetic costs. Results showed that swimming 

efficiency 끫븄 increases with both 끫뢌끫뢎 and 끫뢎끫뢎, but that 끫븄 is always more sensitive to changes in 끫뢎끫뢎 

than changes in 끫뢌끫뢎 (and that 끫븄 is most sensitive to 끫뢌끫뢎 when 끫뢌끫뢎 is already high). It is likely that 끫뢌끫뢎 

is somewhat passive – that is, some ctene deformation results from the fluid-structure interaction 

between the beating ctene, its material properties, and the surrounding flow (Colin et al., 2020). 

Ctenes become longer and thicker as an animal grows (Afzelius, 1961; Hernandez-Nicaise, 1991; 

Tamm, 2014), so the material properties of larger ctenes (which tend to beat at higher 끫뢊끫뢊끫븨) are 

different from those of smaller ctenes. It is, therefore, likely that some changes in 끫뢌끫뢎 passively arise 

from variations in size and beat frequency. In other words, increasing beat frequency is correlated 

with increasing size, so a larger and faster animal may have lower 끫뢌끫뢎 simply because ctenes have 

a higher bending modulus; 끫뢌끫뢎 may remain low simply because it is not mechanically possible to 

increase it, even if doing so would increase force generation and/or efficiency. For these larger 

animals, which are observed to beat with lower 끫뢌끫뢎, increasing 끫뢎끫뢎 represents a pathway to 

compensate for efficiency and speed losses (this is what we observe in the experimental data). The 

model shows that force production is generally more sensitive to 끫뢎끫뢎 at higher 끫뢊끫뢊끫븨, making it easier 
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to compensate for 끫뢌끫뢎 losses as 끫뢊끫뢊끫븨 increases. This is highly relevant for swimming animals, since 

it is likely that 끫뢎끫뢎 is more actively controlled than 끫뢌끫뢎. 

Further study is necessary to understand if and how ctenophores may actively control both 

the spatial and temporal asymmetry of the ctene beat cycle, as well as how the material properties 

of ctenes might dictate how 끫뢌끫뢎 change passively with 끫뢊끫뢊끫븨. Because our model does not consider 

hydrodynamic interactions between ctenes, it only partially captures the effects of phase lag. 

Nonetheless, it predicts enhanced efficiency while the animal is accelerating with a slight phase 

lag, which we attribute to the role of the added mass force. For steady swimming, the model results 

show that phase lag affects neither the overall magnitude of the propulsive force nor the swimming 

efficiency. We know that this is not true, and that hydrodynamic interactions lead to increased 

efficiency for metachronal coordination relative to synchronous stroking (Granzier-Nakajima et al., 

2020). However, even this simple model shows that there is an optimal phase lag to minimize 

unsteadiness in the swimming trajectory. This “smoothest trajectory” optimal phase lag was found 

to be similar to those which maximize efficiency in swimming animals and robots (Colin et al., 

2020; Ford et al., 2019; Granzier-Nakajima et al., 2020; Murphy et al., 2011). Further exploration 

of the role of spatiotemporal asymmetry in rowing would greatly benefit from using flexible robotic 

models for which frequency and ctene structural properties can be varied. Section 4.1 describes a 

ctene-inspired robotic model and the roles of spatiotemporal asymmetry on propulsion efficiency 

in this context.  

3.2 Ctenophore turning mechanics: 3D swimming equation 

In this section, we expand the 1D swimming equation (6) to three dimensions and use it to 

complement our experimental observations of ctenophore maneuverability. The 3D reduced-order 

analytical model allows us to explore the kinematics resulting from the range of physically possible 
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beat frequencies for each ctenophore turning mode (section 2.2). Unlike similar models, here we 

fully incorporate the combination of viscous and inertial effects, which arises at intermediate 

Reynolds numbers, by ensuring that relevant drag and torque coefficients are a function of the 

instantaneous speed and geometry of both the body and the ctenes. Based on the average body and 

appendage length (Table 2-5), the maximum recorded swimming speed (2.7 끫롪끫롾/끫룀) and maximum 

beat frequency (34 끫롶끫롶), we calculate body and appendage-based Reynolds numbers of 157 and 

57 (끫뢊끫뢊끫뢞 = 끫뢐끫롾 끫븐⁄  and  끫뢊끫뢊끫븨 = 2끫븖끫뢦끫뢲2 끫븐⁄ ), respectively. 

We model the ctenophore as a self-propelled spheroidal body suspended in a quasi-static 

flow (Figure 3-6), whose motion is governed by the balance between the propulsive and opposing 

forces and torques. Table 3-3 lists all the model parameters. To describe the motion of the 

spheroidal body, we require two coordinate systems: a global (fixed) coordinate system, in which 

a vector is expressed as 끫⃗룊 = 끫룊1끫̂뢊1 + 끫룊2끫̂뢊2 + 끫룊3끫̂뢊3, and a body-based coordinate system in which 끫⃗룊′ = 끫룊1′ 끫̂뢊1′ + 끫룊2′ 끫̂뢊2′ + 끫룊3′ 끫̂뢊3′ . 
 

 

Figure 3-6. Schematic of a ctenophore's simplified geometry moving in 3D space. The unit vectors 끫̂뢊1, 끫̂뢊2, and 끫̂뢊3 define the global (fixed) coordinate system while 끫̂뢊1′ , 끫̂뢊2′ , and 끫̂뢊3′   correspond to the 

moving coordinate system attached to the spheroidal body. 
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As is typical in vehicle dynamics (Schaub & Junkins, 2018), we relate the orientation 

between both coordinate systems by successive rotations: yaw (끫븦, rotation about 끫̂뢊3′ ), pitch, (끫븆, 

rotation about 끫̂뢊2′ ) and roll (끫븲, rotation about 끫̂뢊1′). The transformation between the global and body 

frames is given by 끫⃗룊′ = 끫룲끫⃗룊, where the transformation (rotation) matrix is given by  

끫룲 = � c(끫븆) c(끫븦) c(끫븆) s(끫븦) − s(끫븆)

s(끫븲) s(끫븆) c(끫븦) − c(끫븲) s(끫븦) s(끫븲) s(끫븆) s(끫븦) + c(끫븲) c(끫븦) s(끫븲) c(끫븆)

c(끫븲) s(끫븆) c(끫븦) + s(끫븲) s(끫븦) c(끫븲) s(끫븆) s(끫븦) − s(끫븲) c(끫븦) c(끫븲) c(끫븆)

�       (7) 

where (끫븦, 끫븆,끫븲) are the Euler angles, and c(∙) and s(∙) denote cosine and sine, respectively.  

 

Table 3-3. Reduced-order swimming model parameters. Vector quantities are expressed in the 

global frame unless marked with a prime (as in 끫븨��⃗ ′).  
Variable Description 끫븦,끫븆,끫븲 Euler angles (yaw, pitch, and roll) 끫⃗롲끫뢬끫뢤끫뢸 Net propulsive force 끫⃗롲끫롮 Body drag 끫⃗롲끫뢀끫롨 Acceleration reaction force 끫⃗뢖끫롪/끫롪 Body position vector 끫뢴 Body mass 끫뢎�⃗끫뢬끫뢤끫뢸′  Net propulsion torque 끫뢎�⃗끫뢸끫뢺′  Opposing torque 끫븨��⃗ ′ Angular velocity vector 끫룠 Moment of inertia matrix 끫룲 Rotation matrix 끫룈 Plate width 끫료끫뢀 Instantaneous plate length 끫룊끫뢀 Instantaneous plate oscillatory position 끫롬끫뢀 Plate drag coefficient 끫룄�⃗  Plate instantaneous velocity vector  끫롬끫롪 Body drag coefficient 끫뢎 Body semi-minor axis 끫뢞 Body semi-major axis 끫뢾′ Ctene position vector 끫븞 Phase lag time 끫롬끫뢴 Added mass coefficient 끫롬끫롨 Torque coefficient 
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The differential equations describing the propulsion-opposing force balance are based on 

Euler's first and second laws (Equations (8) and (9)). Equation (8) balances the propulsive force �끫⃗롲끫뢬끫뢤끫뢸�, the drag force �끫⃗롲끫롮�, the acceleration reaction force �끫⃗롲끫뢀끫롨�, the body mass (끫뢴), and the body 

acceleration with respect to the origin �끫̈⃗뢖끫롪 끫롪⁄ �. Equation (9) balances the propulsive torque �끫뢎�⃗끫뢬끫뢤끫뢸′ � 
and the opposing torque �끫뢎�⃗끫뢸끫뢺′ � with the moment of inertia matrix [끫롸] and the body's angular velocity 

(끫븨��⃗ ′) and acceleration �끫븨��⃗ ̇ ′�. We will define each one of these terms in the following subsections. 

However, we direct the reader to the supplementary material for details of the solution procedure, 

the numerical implementation, the formulations for various coefficients, and the validation of the 

model against experimental data. 끫⃗롲끫뢬끫뢤끫뢸 + 끫⃗롲끫롮 + 끫⃗롲끫뢀끫롨 = 끫뢴끫̈⃗뢖끫롪 끫롪⁄        (8) 끫뢎�⃗끫뢬끫뢤끫뢸′ + 끫뢎�⃗끫뢸끫뢺′ = [끫롸]끫븨��⃗ ̇ ′ + 끫븨��⃗ ′ × ([끫롸]끫븨��⃗ ′)      (9) 

For the 3D model, we consider each ctene as an oscillating flat plate with a time-varying 

length, just as in the 1D model (Figure 3-1). However, in this case, the flat plate proximal end 

oscillates along a plane tangent to the body surface (Figure 3-7D). We “place” a modeled ctene in 

each of the ctene positions (determined by 끫븀, 끫뷾, and 끫븊, coupled with the body geometry (Table 2-5 

and Figure 2-7)) around the spheroidal body (Figures 3-7A and C). Each ctene oscillates around its 

initial position (Figure 3-7D), creating a force tangential to the body surface. The total propulsive 

force of the 끫뢬끫뢸ℎ ctene row is modeled as the negative of the drag force summed over each of 끫뢜 

oscillating plates:  

끫⃗롲끫뢬 = −끫븘끫룈
2
� 끫료끫뢀끫뢬끫뢰끫뢬
끫뢰=1 끫롬끫뢀끫뢬끫뢰 ��끫̇⃗뢖끫롪 끫롪⁄ + 끫룄�⃗끫뢬끫뢰 �2 끫룄�⃗끫뢬끫뢰� 끫룄�⃗끫뢬끫뢰 ��        (10) 

where 끫븘 is the fluid density, and 끫뢜 is the number of ctenes in a given row (끫뢰 is the index of the 

ctene). The flow-normal area is given by the plate width 끫룈 (assumed to be 0.5 ∙ 끫뢲) times the 

instantaneous plate length 끫료끫뢀끫뢬끫뢰 (끫룂 + (끫뢰 − 1)끫븞). The drag coefficient 끫롬끫뢀끫뢬끫뢰 is that of an oscillating 
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flat plate at an intermediate Reynolds number and is a function of the instantaneous plate speed 끫̇룊끫뢀 

(Shih & Buchanan, 1971). The force is proportional to the square of the magnitude of the global 

ctene velocity vector 끫̇⃗뢖끫롪 끫롪⁄ + 끫룄�⃗끫뢬끫뢰 , where 끫̇⃗뢖끫롪 끫롪⁄  is the body velocity with respect to the origin and 끫룄�⃗끫뢬끫뢰  is the velocity of the 끫뢰th plate in the 끫뢬th row in the global frame, which is itself a function of the 

instantaneous plate oscillatory speed 끫̇룊끫뢀끫뢬끫뢰 (끫룂 + (끫뢰 − 1)끫븞):  끫룄�⃗끫뢬끫뢰 = 끫룲끫뢎  끫̇룊끫뢀끫뢬끫뢰 �끫뢠� 끫브끫뢰 �끫̂뢊1′ + 끫룀� 끫브끫뢰 �끫뢠� 끫븀끫뢬 �끫̂뢊2′ + 끫룀� 끫브끫뢰 �끫룀� 끫븀끫뢬 �끫̂뢊2′ �       (11) 

where 끫브끫뢰  is the angle defining the tangent to the body surface at the 끫뢰th plate (see Figure 3-7D). 

Metachronal coordination is incorporated by dephasing the plate kinematic variables 끫̇룊끫뢀끫뢬끫뢰  and 끫료끫뢀끫뢬끫뢰  by an amount (끫뢰 − 1)끫븞, where 끫븞 = 끫뢆끫롾 ∙ 끫뢎. Considering all 끫뢂 ctene rows, the net propulsive 

force is 

끫⃗롲끫뢬끫뢤끫뢸 = � 끫⃗롲끫뢬끫뢂
끫뢬=1        (12) 

Propulsive torque is calculated as the cross product of the ctene’s position relative to the 

centroid of the body and the force generated by the ctene: 

끫뢎�⃗끫뢬끫뢤끫뢸′ = �� 끫뢾′끫뢬끫뢰끫뢬
끫뢰=1 × −끫븘끫룈

2
끫렢 � 끫료끫뢀끫뢬끫뢰 끫롬끫뢀끫뢬끫뢰 ��끫̇⃗뢖끫롪 끫롪⁄ + 끫룄�⃗끫뢬끫뢰 �2 끫룄�⃗끫뢬끫뢰� 끫룄�⃗끫뢬끫뢰 ��� 끫뢂

끫뢬=1        (13) 

where 끫뢾′끫뢬끫뢰  is the position vector of the 끫뢰끫뢸ℎ ctene in the 끫뢬끫뢸ℎ row (relative to the body centroid), and 

the bracketed term is the ctene propulsion force in the global frame of reference. To calculate the 

propulsive torque, the propulsive force must be expressed in the body frame of reference; hence, 

we multiply it by the transformation matrix 끫룲. 
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Figure 3-7. Ctenophore reduced-order modeling. (A) Lateral view of a ctenophore; red dots mark 

the position of the ctenes that circumscribe its body in eight rows. (B) Real ctene tip trajectory from 

a tracked time series of ctene kinematics (gray lines, spaced equally in time). (C) Ctenophore 

modeled as a spheroidal body; red dots indicate the application point for each modeled (time-

varying) ctene propulsion force. (D) Simplified elliptical trajectory for a modeled ctene, which is a 

flat plate with time-varying length. The plate oscillates parallel to a plane tangent to the curved 

surface of the modeled body ( 끫브끫뢰 , tangential angle to the body surface). The time-varying tip 

position (끫룊끫뢀,끫료끫뢀) is prescribed as a function of the five ctene beating control parameters: 끫뢦, Φ, 끫뢲, 끫뢌끫뢎, and 끫뢎끫뢎. 

 

The drag force on the 3D spheroidal body is: 

끫⃗롲끫롮 = −끫렢끫렦 끫븘
2 ⎣⎢⎢
⎢⎢⎡(끫븖끫뢎2)끫롬끫롪∥ ��끫렢끫̇⃗뢖끫롪 끫롪⁄ �끫̇⃗뢖끫롪 끫롪⁄ �� ∙ 끫̂뢊1′�
(끫븖끫뢎끫뢞)끫롬끫롪⊥ ��끫렢끫̇⃗뢖끫롪 끫롪⁄ �끫̇⃗뢖끫롪 끫롪⁄ �� ∙ 끫̂뢊2′�
(끫븖끫뢎끫뢞)끫롬끫롪⊥ ��끫렢끫̇⃗뢖끫롪 끫롪⁄ �끫̇⃗뢖끫롪 끫롪⁄ �� ∙ 끫̂뢊3′�⎦⎥⎥

⎥⎥⎤        (14) 
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Because the body is spheroidal, we must consider two drag coefficients: 끫롬끫롪∥  is the drag coefficient 

for the longitudinal movements (roll axis, 끫̂뢊1′), and 끫롬끫롪⊥ is the drag coefficient for the lateral 

movements (pitch and yaw axes, 끫̂뢊2′  & 끫̂뢊3′ ). Because we are in the viscous-inertial (intermediate 

Reynolds number) regime, 끫롬끫롪∥   and 끫롬끫롪⊥ are each a function of both speed and geometry (Loth, 2008). 

These coefficients are multiplied by the respective velocity squared components (transformed to 

the body frame of reference by the transformation matrix 끫룲), the corresponding flow normal area 

(끫븖끫뢎2, for 끫롬끫롪||, and 끫븖끫뢎끫뢞, for 끫롬끫롪⊥), the fluid density, and a factor of 1/2. Finally, to transform the 

components of the drag force back to the global frame of reference, we multiply by the transpose 

of the transformation matrix 끫렢끫렦. The drag force on the ctenes has already been incorporated as part 

of 끫⃗롲끫뢬 , which opposes the direction of motion during the ctene's recovery stroke. 

The acceleration reaction (added mass) force is calculated as 끫롬끫뢴끫븘끫뢒, where 끫븘 is the fluid 

density, 끫뢒 is the body volume, and 끫롬끫뢴 is the added mass coefficient, which depends on the body 

shape and the direction of motion (Brennen, 1982). We need two added mass coefficients for our 

spheroidal body: 끫롬끫뢴∥ , for motion along the roll axis, and 끫롬끫뢴⊥ , for motion along the pitch/yaw axes 

(Horace, 1993). Similar to the derivation of the drag force (Equation (14)), we have: 

끫⃗롲끫뢀끫롨 = −끫룲끫렦끫븘끫뢒 ⎣⎢⎢
⎢⎡끫롬끫뢴∥ �끫렢끫̈⃗뢖끫롪 끫롪⁄ ∙ 끫̂뢊1′�끫롬끫뢴⊥ �끫렢끫̈⃗뢖끫롪 끫롪⁄ ∙ 끫̂뢊2′�끫롬끫뢴⊥ �끫렢끫̈⃗뢖끫롪 끫롪⁄ ∙ 끫̂뢊3′�⎦⎥⎥

⎥⎤
       (15) 

Finally, we model the overall resistance to body rotation, notated as the opposing torque �끫뢎�⃗끫뢸끫뢺′ �. The opposing torque comes from both viscous drag and acceleration reaction forces; 

however, an analytical formulation of this torque is outside the scope of this model. Here we use 

an expression based on torque coefficients for rotating prolate spheroids at intermediate Reynolds 

numbers, which are taken from numerical simulations (Zastawny et al., 2012):  
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끫뢎�⃗끫뢸끫뢺′ = −끫븘
2
�끫뢜끫뢤

2
�5 �끫룀끫룀끫뢜(끫븨끫룊′ )끫롬끫롨∥끫븨끫룊′2끫룀끫룀끫뢜(끫븨끫료′ )끫롬끫롨⊥끫븨끫료′2끫룀끫룀끫뢜(끫븨끫룎′)끫롬끫롨⊥끫븨끫룎′2 �       (16) 

where 끫뢜끫뢤 is the equivalent sphere diameter (i.e., the diameter of a sphere with the same volume as 

the spheroid), 끫롬끫롨∥  is the torque coefficient for rolling, and 끫롬끫롨⊥ for pitch and yaw. Both coefficients 

are a function of angular speed and geometry (see Appendix A4. The sign function is introduced 

so the resistive torque always opposes the body motion.  

3.2.1 Swimming model verification 

To confirm that our reduced-order model can estimate the forces and torques present in 

ctenophore swimming, we will compare the model predictions to freely swimming ctenophores. 

We considered two experimentally observed turning sequences: 1) mode 1, with only two active 

ctene rows, and 2) mode 3, with six rows beating at a higher frequency. Figure 3-8 shows the 

observed beat frequencies for the two active ctene rows for Sequence 1, measured by counting the 

beat period of ctenes on the three camera views. This sequence had 끫뢊 끫롾⁄������ = 0.13 and 끫뢒� = 0.4 끫롪끫롾/끫룀. 

We run our reduced-order swimming model based on these observations and the morphometrics 

reported in Table 3-4. Figure 3-9A compares the experimental (red line) and predicted (blue line) 

swimming trajectory. As explained before, available camera resolution precludes simultaneous 

measurement of the ctene-level spatiotemporal asymmetries together with trajectory tracking; thus, 

the shaded areas in Figure 3-9A show the entire solution space (0.1 < 끫뢌끫뢎 < 0.6 and 0.1 < 끫뢎끫뢎 <

0.6), and the blue solid line is the best prediction for this case (taking 끫뢌끫뢎 = 0.2 and 끫뢎끫뢎 = 0.6, both 

reasonable values). Figure 3-9B shows the experimental tracked triangle (red, formed by the 

tentacular bulbs and the apical organ; see Figure 2-6) vs. and the predicted triangle (blue) for 
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different time points (끫룂 = 0, 1.5,끫뢎끫뢜끫뢜 2.5 끫룀). The agreement between the experimental and 

predicted triangles shows the model's capacity to predict the animal's orientation. 

 

Table 3-4. Morphometric measurements of observed animals  

Maneuver 끫룦끫룒(끫뤜끫뤜) 끫뤊끫룒(끫뤜끫뤜) 끫뤚(끫뤜끫뤜) 끫뤨 끫뤞끫룴 끫뤞끫룶 

Mode 1 7.42 7.68 0.43 0.6 10 9 

Mode 2 8 5.07 0.47 1.2 9 7 

 

 

 

Figure 3-8. Beat frequency measurements for the mode 1 turning trajectory. (A) Snapshot of freely 

swimming ctenophore and the tracked points: apical organ (red) and tentacular bulbs (blue and 

green). (B) shows the direct frequency measurements for ctene rows 4 and 5 (bottom ctene rows). 

Dots represent measurements, and the fitted black line is used as an input to calculate the kinematics 

of the oscillating plates in the mathematical model. 
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Figure 3-9. Comparison between experimental measurements (red) and mathematical predictions 

(blue) for the mode 1 turning trajectory. (A) shows experimental vs predicted swimming 

trajectories. The shaded area shows the entire spatiotemporal solution space (끫뢌끫뢎 − 끫뢎끫뢎), while the 

blue line is the best model prediction (끫뢌끫뢎 = 0.2 and 끫뢎끫뢎 = 0.6). (B) shows experimental vs 

predicted swimming orientation. The red triangles show the experimental positions for the 

tentacular bulbs and the apical organ for different time points t = 0, 1.5, and 2.5s. The blue triangles 

are the best fit (끫뢌끫뢎 = 0.2 and 끫뢎끫뢎 = 0.6) predicted positions for the same time instants.    

 

For the second case (mode 3), Figure 3-10 shows the beat frequencies for each of the eight 

ctene rows.  Here turning is powered mainly by ctene rows 7 and 8 (Figures 3-10H and I), which 

beat with a lower frequency for the first second. This results in 끫뢊 끫롾⁄������ = 0.08 and 끫뢒� = 0.24 끫롪끫롾/끫룀. 

Figure 3-11A compares the experimental (red line) and predicted (blue line) swimming trajectory, 

and the shaded areas in Figure 3-11A show the entire solution space (0.1 < 끫뢌끫뢎 < 0.6 and 0.1 <끫뢎끫뢎 < 0.6). For this case, the best prediction (blue line) has asymmetry values of 끫뢌끫뢎 = 0.18 and 끫뢎끫뢎 = 0.18. Figure 3-11B shows the experimental tracked triangle (red), and the predicted triangle 

(blue) for different time points (끫룂 = 0, 1.5,끫뢎끫뢜끫뢜 3 끫룀).  

Both comparisons show that our highly simplified mathematical model can predict 

propulsion and opposing forces/torques similar to those experienced by a swimming ctenophore. 
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Therefore, we are justified in using this model for our parametric exploration of the maneuverability 

and agility of the ctenophore body plan and locomotion strategy.  

 

 

Figure 3-10. Beat frequency measurements for the mode 3 turning trajectory. (A) Snapshot of freely 

swimming ctenophore and tracked points: apical organ (red) and tentacular bulbs (blue and green). 

(B) to (I) show the direct frequency measurements for ctene rows 1 to 8. Dots represent 

measurements, and the fitted black line is used as an input to calculate the kinematics of the 

oscillating plates in the mathematical model. 
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Figure 3-11. Comparison between experimental measurements (red) and mathematical predictions 

(blue) for the mode 3 turning trajectory. (A) shows experimental vs predicted swimming 

trajectories. The shaded area shows the entire spatiotemporal solution space (끫뢌끫뢎 − 끫뢎끫뢎), while the 

blue line is the best model prediction (끫뢌끫뢎 = 0.18 and 끫뢎끫뢎 = 0.18). (B) shows experimental vs 

predicted swimming orientation. The red triangles show the experimental positions for the 

tentacular bulbs and the apical organ for different time points = 0, 1.5, and 3s. The blue triangles 

are the best fit (끫뢌끫뢎 = 0.18 and 끫뢎끫뢎 = 0.18) predicted positions for the same time instants.    

3.2.2 Turning performance 

We use the mathematical model to expand our analysis of B. vitrea’s turning performance 

by simulating all possible configurations of modes 1, 2, and 3 (as defined in section 2.2, Table 2-

6). We ran a total of 612 simulations covering the range and resolution of the beat frequencies 

reported in Table 3-5. Each simulation continued until the average of the normalized radius of 

curvature �끫뢊 끫롾⁄������� over two seconds (simulation time) reached steady-state, or if 끫뢊 끫롾⁄������ exceeded 10, 

which we considered straight swimming. Figure 3-12 shows the simulated range (blue dots) with 

the experimental results (red dots, Figure 2-8). Our model predicts that B. vitrea's locomotor system 

can reach 끫뢊 끫롾⁄������ = 0.08 at a speed of 끫뢒� = 0.58 끫롪끫롾/끫룀 (lower-left corner of the MAP, maximizing 
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maneuverability). However, the system is also capable of significant maneuverability at high 

speeds: in the lower-right corner of the MAP (highly maneuverable and agile), the system can reach 

a speed of 끫뢒� = 2.33 끫롪끫롾/끫룀 for 끫뢊 끫롾⁄������ = 0.98. These two data points range from 24% to 93% of the 

simulated top speed (끫뢒끫뢴끫븪끫룊 = 2.49 끫롪끫롾/끫룀, with eight rows beating at 34 끫롶끫롶), while maintaining a 

turning radius of less than one body length. The model results confirm that ctenophores’ 

metachronal rowing platform is highly maneuverable and agile, with performance limits that may 

extend beyond our experimental observations. 

 

Table 3-5. Range and resolution of the frequencies used in the analytical simulations. 

 끫뤎끫뤠끫뤠끫뤪 (끫룞끫룞) 끫뤎끫뤔끫뤞(끫룞끫룞) 

Range 2 − 34 0 − (끫뢦끫뢸끫뢸끫뢸 − 2 끫롶끫롶) 

Resolution 2 2 

 

 

Figure 3-12. Maneuverability-Agility Plot (MAP). Experimental measurements of freely 

swimming B. vitrea (red dots) and for all simulated cases of modes 1, 2, and 3 (blue dots). Lower 

values of 끫뢊 끫롾⁄������ indicate sharp turns (more maneuverable); higher values of 끫뢒�  indicate faster 
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swimming (more agile). Values in the upper left (low 끫뢒� , high 끫뢊/끫롾�����) are straightforwardly achievable 

with straight swimming (mode 4) or with Δ끫뢦 < 2끫롶끫롶; these points were not simulated. Simulating 

mode 4 mathematically would result in  끫뢊 끫롾⁄������  ~∞, since the eight rows beat at the same frequency. 

However, mode 3 will approach the behavior of mode 4 as ∆끫뢦 =  끫뢦끫뢸끫뢸끫뢸 − 끫뢦끫뢬끫뢬 approaches zero. Here, 

the minimum value is Δ끫뢦 = 2끫롶끫롶, so the upper-left corner of the MAP is not occupied. Simulations 

were halted after the timestep in which 끫뢊/끫롾����� exceeded 10, resulting in some trials with 끫뢊/끫롾����� slightly 

greater than 10.  

3.2.3 Omnidirectionality 

To explore the omnidirectional capabilities of B. vitrea in a more systematic fashion, we 

use the mathematical model to explore all possible permutations of modes 1, 2, and 3. For simplicity 

and clarity, Figure 3-13 displays only trajectories produced by active rows beating at a frequency 

of 끫뢦끫뢸끫뢸끫뢸 = 30 끫롶끫롶 and a Δ끫뢦 = 30 끫롶끫롶 (so that all other rows are not active), for a simulation time of 

one second. As expected by the number of active rows, mode 1 is the most maneuverable of the 

three (shortest trajectories, Figure 3-13A). In contrast, mode 2 and mode 3 reach higher speeds 

while turning (longer trajectories, Figure 3-13A). This suggests that activating only two ctene rows 

(mode 1) could be best suited for fine orientation control (for example, when maintaining a vertical 

orientation when resting/feeding)(Tamm, 2014). The higher number of active appendages used in 

modes 2 or 3 could be used for escaping, where both high speed and rapid reorientation are needed 

(Kreps et al., 1997). A front view of all modes (the y-z plane) displays the range of swimming 

directions accessible from a given initial position (Figure 3-13B). This MV—which captures only 

a fraction of the full capability of the swimming platform—shows the omnidirectionality of the 

ctenophore metachronal locomotor system, achieved only by constant pitching and yawing. In an 
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actual swimming trajectory, a ctenophore can change the active rows, the frequency, or the turning 

mode over time, resulting in much more complex maneuvers (as in Figure 2-6).  

 

 

Figure 3-13. Computationally simulated MV for the 3 ctenophore row control strategies, with a 

variable number of rows beating at 30 끫롶끫롶, swimming either forward or backward, for a simulated 

time of one second. The darker gray ellipsoid placed on the origin illustrates the animal's initial 

position. (A) Side view displaying the backward (-x) and forward (+x) swimming trajectories. 

Asymmetry arises from the distribution of ctenes along the body. (B) Front view of the swimming 

trajectories, showing the wide range of turning directions. 

 

To fully explore the maneuvering capabilities of the ctenophore body plan, we will explore 

the hypothetical case in which each ctene row has independent control. Figure 3-14 shows the MV 

for all 255 non-repeatable permutations of activating 끫뢜끫뢠끫뢾 ctene rows at a time (끫뢜끫뢠끫뢾 = 1,2, … ,8) at 

30 끫롶끫롶 for a simulation time of one second. This MV shows that nearly any swimming direction 

can be accessed from the same initial position.  
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Figure 3-14. Computationally simulated MV for 255 ctene row control strategies, with 1 ≤ 끫뢜끫뢠끫뢾 ≤
8 rows beating at 30 끫롶끫롶, swimming either forward or backward for a simulated time of one second. 

(A) Side view displaying the backward (-x) and forward (+x) swimming trajectories. (B) Front 

view of the swimming trajectories, showing the wide range of turning directions. 

3.2.4 Summary 

Results from the 3D swimming model show that metachronal swimming, particularly as 

used in the ctenophore body plan, allows for highly maneuverable/agile and nearly omnidirectional 

swimming. For the body plan studied here, which is typical of lobate ctenophores, we found that 

the asymmetric placement of ctenes within each row (i.e., ctenes distributed closer to the aboral 

than the oral end) enabled sharper turns during backward swimming when compared to forward 

swimming (Figure 3-13A). Ctene row asymmetries between the sagittal and tentacular rows of B. 

vitrea are due to the presence of the lobes (see Figure 1-4), which are used to create highly efficient 

feeding currents (Colin et al., 2010). However, cydippid ctenophores such as Pleurobrachia sp. 

feed by capturing prey with their tentacles, then bringing the prey to their mouth by rotating their 

bodies(Tamm, 2014). In Pleurobrachia and other cydippids, ctenes are approximately 
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symmetrically arranged from the oral to aboral end, which may eliminate the trajectory 

asymmetries observed in lobate ctenophores. Cydippid ctenophore swimming may likely be even 

more omnidirectional. To accomplish their stereotypical rotating behavior, cydippid ctenophores 

also reverse the direction of the power stroke on the inner ctene rows, potentially leading to even 

tighter turns that are not captured in our model. Another lobate ctenophore genus, Ocyropsis, 

contracts its lobes (like the bell of a jellyfish medusa) to increase its escape velocity, while still 

using ctene rows for orientation (Gemmell et al., 2019); this indicates that ctene rows can be 

coupled with other propulsive strategies to achieve goals beyond that of maximizing 

maneuverability (e.g., to increase overall swimming speed). Extinct ctenophores had as many as 

80 ctene rows, increasing the number of reachable turning planes. Some even had ctene rows placed 

diagonally on the body, potentially allowing them to roll (Morris, 1996). Real ctenophores also use 

sporadic, irregular beating for fine-scale positional control, which is not captured in our model; this 

likely increases maneuverability beyond what we have predicted. 
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Chapter 4 

 

Physical modeling and method development 

This dissertation aims to explore the scaling of metachronal rowing from low to 

intermediate Reynolds numbers. This requires studying appendage kinematics and the resulting 

flows as the effects of inertia become more important—that is, as we move away from time-

reversible flows (끫뢊끫뢊 ≪ 1). Our experimental observations of ctenophores (Chapter 2) show a 

general decrease in spatial asymmetry and increased temporal asymmetry with increasing 끫뢊끫뢊 

(Figure 2-6). Because obtaining important functional relationships between parameters from 

behavioral experiments is difficult without large datasets, we turned to reduced-order models to 

study the impact of appendage kinematics on ctenophore swimming (Chapter 3). While this 

approach enables a more systematic exploration of the kinematic parameter space, it does not allow 

us to explore the details of flows produced by the appendages. To address this missing link, we 

developed a physical (robotic) model inspired by ctene kinematics. In Section 4.1, we describe this 

model and the produced flows across a range of 끫뢊끫뢊 and kinematic parameters, as well as a new 

metric to study rowing performance. Using the concept of Froude efficiency, we analyze how 

spatiotemporal asymmetry of beating affects thrust and lift production. 

Section 4.2 outlines a key methodological innovation used here and in Chapter 2: a tracer 

detection/enhancement algorithm for Particle Shadow Velocimetry (PSV). PSV was initially 

developed as a micro-scale technique which uses optical elements to isolate the measurement plane 

(rather than a focused light sheet, as in the more commonly used Particle Image Velocimetry, PIV). 

Like PIV, PSV uses cross-correlation of image subwindows to infer the average displacement (and 

therefore velocity) of tracers over a Cartesian grid. In PSV, Depth of Correlation (DoC) refers to 

the thickness of the planar volume within which the imaged tracer shadows contribute to the 
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measured subwindow cross-correlations, even if the tracers themselves are out of focus. Having a 

shallow DoC is crucial for obtaining accurate measurements of particle displacement. We chose to 

use PSV for all the velocimetry experiments in this dissertation because it is animal friendly 

(lacking laser light sources, which may cause damage or alter natural behavior), and because of its 

ability to resolve flow close to solid surfaces (no laser reflections). Additionally, PSV provides 

optical access not available with PIV, since the camera and light source lie along one single optical 

axis (rather than the orthogonal axes required by PIV, which often create shadowed regions where 

flow cannot be measured). However, our magnification requirements lead to nontrivial signal-to-

noise ratios (large DoC), necessitating significant image preprocessing to improve data quality. 

Section 4.2 describes the image processing algorithm we developed to remove out-of-focus 

particles digitally, effectively providing an a posteriori reduction of DoC.  

4.1 Ctene flexible robotic model 

Animal experiments (Chapter 2) show that ctene rows can produce different flows in 

different contexts—that is, different individuals, different beating frequencies (and 

correspondingly different 끫뢊끫뢊끫븨), or other shifts in kinematics can produce categorically dissimilar 

velocity fields (section 2.1). Figure 2-4 shows the flows generated by two different animals; one 

produces a strongly tangential flow, while the other shows an increased presence of radial flow. 

Both cases have a similar Reynolds number (끫뢊끫뢊끫븨 = 23 and 끫뢊끫뢊끫븨 = 68) and the same phase-lag 

(13%), but strongly differ in their spatiotemporal asymmetry (끫뢌끫뢎 = 0.53 vs. 0.29, with 끫뢎끫뢎 = 0.04 

vs. 0.15). Since the directionality of the flow affects the production of both thrust and lift, this also 

impacts the swimming dynamics of the animal. However, the effect of the paddle shape and motion 

asymmetries on rowing force production is not well understood. For a swimming body, thrust and 

lift are defined as the force parallel (thrust) and perpendicular (lift) to the swimming direction. In 
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this chapter we focus on the local forces produced by a single appendage; thus, we will be referring 

to thrust as the horizontal force and lift as the vertical force. These are also the global thrust and 

lift directions if we assume the appendage is placed on a flat horizontal surface or body (Figure 4-

1). 

Here we perform experiments on three robotic paddles with different material flexibilities 

and geometries, allowing us to parametrically explore the effect of motion asymmetry on force 

production. To analyze our results, we developed a new efficiency expression with the potential to 

be implemented broadly in both animal experiments and numerical simulations. The new efficiency 

formulation is motivated by the fact that existing widely used measures of swimming efficiency—

such as displacement efficiency (Ellington, 1984; Murphy et al., 2011), Froude efficiency (Gough 

et al., 2021; Jimenez et al., 2023; Lighthill, 1960; Mchenry et al., 1995), and cost of transport 

(Gemmell et al., 2013; Jahn & Seebacher, 2019; Tack & Gemmell, 2022)—all require the 

measurement of overall swimming speed, which is not applicable to directly evaluate the efficiency 

of a rowing appendage or set of appendages on their own. Analysis of a (globally) fixed set of 

rowing appendages is valuable in its own right, as this configuration occurs in many systems (Lim 

et al., 2019a; Milana et al., 2023; Park et al., 2016; Semati et al., 2020; Sensenig et al., 2009; 

Sensenig et al., 2010). This analysis is also a crucial step toward understanding a free-swimming 

system’s propulsion dynamics. For example, in behavioral experiments it is often methodologically 

simpler to study tethered animals (Alben et al., 2010; Barlow & Sleigh, 1993; Colin et al., 2020; 

Herrera-Amaya et al., 2021). Numerical simulations often focus on fixed appendages due to their 

lower computational costs, since allowing the model to swim freely would require significant two-

way coupling and large highly resolved meshes (Dauptain et al., 2008; Granzier-Nakajima et al., 

2020; D. Lim et al., 2019a; R. Zhang et al., 2021). Lastly, initial robotic prototypes typically begin 

with a non-moving device to enable more thorough analysis of potential propulsive strategies (Ford 



69 

 

et al., 2019; Gu et al., 2020; Kim & Gharib, 2011; Milana et al., 2020; Ren et al., 2022; Rockenbach 

et al., 2015; Saffaraval & Goudarzi, 2021; Santos et al., 2022).  

Existing efforts to evaluate the performance of globally fixed rowing paddles typically 

calculate fluid dynamic parameters such as thrust/lift coefficients, impulse, and momentum fluxes 

(Ford et al., 2019; Kim & Gharib, 2011), or use dimensionless ratios such as flowrate-to-power 

(Dauptain et al., 2008; Granzier-Nakajima et al., 2020). Alternatively, the paddle is placed in an 

enclosed channel to evaluate the pumping performance by measuring the generated volumetric flow 

(Saffaraval & Goudarzi, 2021). In our work, we approach the problem by modifying the 

formulation of the Froude efficiency to consider the forces and velocities along the rowing paddle. 

With this new formulation, we can calculate thrust and lift efficiencies and visualize the paddle 

force distributions, thus helping us understand the role of the motion asymmetries on the overall 

propulsion dynamics.  

4.1.1 Experimental facilities 

The experimental setup consisted of a 3D printed paddle fixed to a steel shaft and mounted 

to a servomotor (300 Alacritous servo, Reefs RC, Corona, CA, USA), which rotated the shaft 

according to a prescribed time-varying angular displacement (Figure 4-1B). The paddle, shaft, and 

motor were submerged within an acrylic tank filled with a glycerol-water mixture; we adjusted the 

mixture proportions to achieve varying Reynolds numbers. Inside the tank, the servomotor was 

fixed to an acrylic plate and connected to the rowing paddle models via a timing belt (Figure 4-

1B). Three different paddles were used in this experiment: one paddle was flat and rigid (made of 

PLA and printed using a MK3S+, Prusa Research, Prague, Czech Republic) and two paddles were 

flexible, with one initially flat geometry and one initially curved geometry (made of proprietary 

Elastic 50A resin, printed on a Form 2, Formlabs, Somerville, MA, USA). All paddles have 
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dimensions of 1x30x120 mm (thickness, height, and width); the aspect ratio (width-to-height) is 

purposefully large so that the produced flow is approximately 2D. Figures 4-1C-E show camera 

recordings of the three different paddles. We will refer to the paddles as FR (flat and rigid), FF (flat 

and flexible), and CF (curved and flexible). The prescribed shaft rotation produced a power stroke 

and a recovery stroke whose durations could be adjusted, thereby varying temporal asymmetry 끫뢎끫뢎. 

We used PSV to measure both flow velocities and paddle kinematics. The setup was similar 

to the one used in section 2.1, but used a macro lens instead of a long-working-distance microscope 

objective. Figure 4-1A shows the inline configuration of components; from left to right, we have a 

4MP high-speed camera (Phantom VEO E-340L, Vision Research Inc., Wayne, NJ, USA), 105 

mm F1.4 SIGMA lens (Ronkonkoma, NY, USA), the experimental tank with dimensions 

560x150x250 mm (length, width, and height), a 6.7x6.7” Fresnel lens with a focal length of 6” 

(Edmund optics, Barrington, NJ, USA), and a white 10,000 lux LED panel (Charmax, China) as 

our light source. In this configuration, the LED panel produces diffuse light which is collimated as 

it passes through the Fresnel lens, producing sharply-defined shadows of tracer particles.  
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Figure 4-1. (A) Schematic of experimental PSV setup showing the inline configuration of the 

camera, macro lens, water-glycerol tank with paddle, Fresnel lens, and light source. (B) Close-up 

of the paddle actuation system. (C) Flat and rigid paddle (FR) as seen by the camera. (D) Flat and 

flexible paddle (FF). (D) Initially curved and flexible paddle (CF).  

4.1.2 Velocimetry and kinematics analysis 

We recorded a side view of the paddle, as seen in Figure 4-1C-E, with the focal plane at 

the paddle’s width midpoint to ensure observation of 2D flow. Images were collected at 300 frames 

per second with an exposure time of 900 µs. The Depth of Correlation (DoC), or thickness of the 

useful measurement volume, is estimated at 1.69 mm (equation 17, section 4.2), using 100 µm 

hollow glass silver-coated tracer particles (Conduct-o-fil, Potters Industries, Carlstadt, NJ, USA). 

To mitigate the noise created by out-of-focus particles, we used the pre-processing algorithm 

described in section 4.2. Processed images have an average seeding density of 2.08 × 10−3 
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particles per pixel. We performed a vector computation (three-pass iteration with subwindows of 

256x256, 128x128, and 64x64 px, with 50% overlap) using the MATLAB-based tool PIVLab 

(Thielicke & Stamhuis, 2014). All image pre-processing and vector field postprocessing was 

conducted with MATLAB (Mathworks Inc., Natick, MA, USA). 

For each experiment, the paddle shaft’s angular velocity was controlled via an Arduino 

Uno microcontroller board which oscillated the shaft in a temporally asymmetric beat cycle, with 

a net frequency of 1.07 ± 0.2 끫롶끫롶 and a stroke amplitude of 101.97 ± 6.38° over ten cycles. To 

avoid start-up transients, only the last three cycles were recorded for analysis. This process was 

repeated for all three paddle types (FR, FF, and CF) using five levels of temporal asymmetry (끫뢎끫뢎 =

0, 0.1, 0.2, 0.3, 0.4) and four different Reynolds numbers (끫뢊끫뢊끫븨 = 7.43 ± 0.24, 14.87 ± 0.3, 

27.40 ± 0.53, and 62.93 ± 1.11, where 끫뢊끫뢊끫븨 ≡ 2끫븖끫뢦끫뢲2 끫븐⁄ ), for a total of sixty experiments. To 

achieve this range of 끫뢊끫뢊끫븨, we varied the kinematic viscosity (끫븐) using water-glycerol mixtures. 

Specific viscosities were targeted using the work of (Brindise et al., 2018), and we directly 

measured viscosity using a Brookfield DV-E viscometer (Amtek, Inc., Berwyn, PA, USA). Fluid 

properties are shown in Table 4-1. We tracked the propulsor kinematics by automatically extracting 

the centerline of the paddle via image processing and interpolating 100 equally spaced points along 

the centerline. Figure 4-2A shows the centerline points (white dots; subsampled for visual clarity) 

used to calculate the speed along the paddle, as well as the tip trajectory for a single cycle (blue 

line). Figure 4-2B shows (for the CF paddle) the average tip velocities for the five levels of temporal 

asymmetry, consistent with our approach from Chapters 2 and 3.  
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Figure 4-2. (A) Example of a still frame from a collected video showing the tip trajectory (blue 

line) of the CF paddle and several tracked centerline points (white dots). (B) CF paddle tip velocity 

for 끫뢎끫뢎 = 0, 0.1, 0.2, 0.3, 0.4. Red lines are the 3-cycle average velocity.  

 

Table 4-1. Fluid properties for the water-glycerol mixtures and the resulting oscillating Reynolds 

numbers (끫뢊끫뢊끫븨). 끫룲끫뤌끫뺜 Density �끫뤘끫뤘 끫뤜끫뾢⁄ � Kinematic viscosity �끫뤜끫뤜끫뾠 끫뤨⁄ � 
7.43 ± 0.24 1273.8 810.17 

14.87 ± 0.3 1248.6 407.89 

27.40 ± 0.53 1239.4 221.29 

62.93 ± 1.11 1220.1 96.17 

 

As previously mentioned, we are using three different paddles to explore the effects of 

propulsor shape and spatiotemporal asymmetry. Figure 4-3 shows the time series of the kinematics 

of these different paddles for the case of 끫뢎끫뢎 = 0.4, displaying the power stroke tip trajectory in red 

and the recovery stroke tip trajectory in blue. Figure 4-3A shows the FR paddle, which has 

completely symmetric power and recovery strokes (끫뢌끫뢎 = 0). Figure 4-3B displays the kinematics 

of the FF paddle. In this case, the paddle bends more during the power stroke (left to right, red line) 

than during the recovery stroke (right to left, blue line), as the difference in speed passively deforms 

the paddle. This is the opposite of the appendages of actual ctenophores (Figure 2-2, section 2.1), 

in which the projected area in the plane normal to the body surface (transversal area) is increased 
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during the power stroke and reduced during recovery (maximizing the ctene’s local thrust 

production). To account for this possibility, in this chapter we use a more specific definition of 

spatiotemporal asymmetry (previously defined as 끫뢌끫뢎 = 끫롨끫뢤 끫롨끫뢸⁄ , equation 2, where 끫롨끫뢤 is the tip 

trajectory enclosed area and 끫롨끫뢸 is the ellipse inscribed in the ctene’s reachable half-circle). We 

instead calculate 끫롨끫뢤 as the area under the power stroke trajectory (red line) minus the area under 

the recovery stroke trajectory (blue line), which does not alter the values of 끫뢌끫뢎 reported in previous 

chapters but appropriately results in a negative spatial asymmetry for the flat/flexible paddle studied 

here. This negative value results from the paddle's passive bending due to the higher speed during 

the power stroke when 끫뢎끫뢎 ≠ 0. The third paddle (CF) is designed to mimic the spatial asymmetry 

of a real ctene (끫뢌끫뢎 > 0). In this case, the curved profile unrolls during the power stroke (increasing 

the transversal area), and returns to its original curvature during the recovery stroke, resulting in a 

positive spatial asymmetry. 

 

Figure 4-3. Timeseries of the three different paddle kinematics, with paddle side profiles plotted at 

equal time intervals. Red lines are power stroke tip trajectories, and blue lines are recovery stroke 

tip trajectories. (A) shows the FR paddle; only the recovery stroke tip trajectory is visible due to 

complete spatial symmetry (끫뢌끫뢎 = 0). (B) shows the FF paddle; here, the paddle bends more during 

the power stroke than on the recovery stroke, resulting in a negative spatial asymmetry. (C) shows 

the CF paddle, which mimics the positive spatial asymmetry of a real ctene. 
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Due to its rigidity, the spatial asymmetry of the FR paddle is zero for all values of 끫뢎끫뢎 and 끫뢊끫뢊끫븨. However, this is not the case for flexible paddles. For both FF and CF the spatial asymmetry 

is a passive response to the fluid forces acting on the paddles. Therefore, the value of 끫뢌끫뢎 depends 

on 끫뢎끫뢎 and 끫뢊끫뢊끫븨. Figure 4-4 shows the spatial asymmetry values for the FF (blue) and CF (magenta) 

as a function of temporal asymmetry and Reynolds number. The four Reynolds numbers 

(끫뢊끫뢊끫븨 = 7.43 ± 0.24, 14.87 ± 0.3 , 27.40 ± 0.53, and 62.93 ± 1.11), are displayed by the color 

transparency level of the lines, with the most transparent being 끫뢊끫뢊끫븨 = 7.43 ± 0.24 and the solid 

line 끫뢊끫뢊끫븨 = 62.93 ± 1.11. The deformation of both paddles increases at higher values of 끫뢎끫뢎 due 

to the higher speed during the power stroke (Figure 4-2B). The force is directly proportional to the 

square of the velocity 0.5 끫븘끫룆2끫롬끫롮끫롨. For the CF paddle, a higher force helps unroll the paddle and 

thus produce a higher 끫뢌끫뢎 by extending the paddle during the power stroke. For the FF paddle, more 

force during the power stroke results on higher bending and therefore produces an increasingly 

negative value of 끫뢌끫뢎 by collapsing the paddle during the power stroke. This same principle is 

invoked to show that the opposite trends hold when considering how 끫뢌끫뢎 depends on 끫뢊끫뢊끫븨. From 

Table 4-1, we can observe that the fluid density decreases (끫븘) as kinematic viscosity (끫븐) decreases, 

thereby increasing 끫뢊끫뢊끫븨 (lowering the absolute force, 0.5 끫븘끫룆2끫롬끫롮끫롨, and resulting on less paddle 

deformation). This yields lower values of 끫뢌끫뢎 as 끫뢊끫뢊끫븨 increases for CF, and higher 끫뢌끫뢎 as 끫뢊끫뢊끫븨 

increases for FF.  
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Figure 4-4. Spatial asymmetry passively responds to fluid forces. The FF paddle is shown in blue, 

and the CF paddle in magenta. Experiments at different Reynolds numbers (끫뢊끫뢊끫븨 ≡ 2끫븖끫뢦끫뢲2 끫븐⁄ ) are 

indicated by the line transparency. From the most transparent line to the solid line, Reynolds 

numbers vary across 7.43 ± 0.24, 14.87 ± 0.3 , 27.40 ± 0.53, and 62.93 ± 1.11. 

4.1.3 Rowing paddle dynamics 

To evaluate rowing performance, we first calculate the force distribution over the paddle 

height. Using the measured velocity fields around the propulsor (Figure 4-5A), we solve the Navier-

Stokes equation and compute the pressure field with the tool QUEEN 2.0 (Dabiri et al., 2014), 

which has previously been used to calculate pressure fields of ctene-generated flows (Colin et al., 

2020). Figure 4-5B shows a sample pressure field for the FR paddle; here, the white-masked area 

denotes the solid region (paddle). On top of the computed pressure field, we plot the centerline of 

the paddle (blue line); we sample the pressure on both sides of the paddle over two transects parallel 
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to and equidistant from the centerline (green dots). The time-varying force imparted by the paddle 

to the fluid can be calculated as follows: 

끫⃗롲(끫룂) = �끫뢜� 끫뢆 끫뢜끫롨 − �끫뺒 ∙ 끫뢜�  끫뢜끫롨       (17) 

where 끫뢜� is the normal unit vector directed outward from the centerline, 끫뢆 is the fluid pressure, 끫뺒 is 

the viscous stress tensor, and 끫⃗롲 is the force applied to the fluid by the paddle. Here we assume that 

the shear term is small relative to the pressure term, thus neglecting the last term of equation 17 

(Lucas et al., 2017). Figure 4-5C shows a schematic of the centerline and the pressure sampling 

points. For each centerline point we use the unit normal to define two corresponding pressure 

sampling points to evaluate equation 17, such that there are two normal force vectors per centerline 

point. The net force for each centerline point is the vector sum of the two forces. The resulting force 

distribution is shown in Figure 4-5D, where the orange arrows correspond to the computed forces 

per unit length (2D flow), and the cyan arrows are the velocities for each point along the paddle. 

We note that force vectors for the rigid paddle are not strictly parallel due to a small errors produced 

by the automatic centerline identification; however, we do not consider this to be a significant 

source of error relative to existing noise in the velocity and pressure fields. We note that our analysis 

does not consider the hydrostatic pressure gradient; however, since each pair of sampled points is 

at approximately the same z-location, the pressure difference Δ끫뢆 (and therefore net force) at each 

centerline point is independent of hydrostatic variation.   
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Figure 4-5. Analysis procedure to calculate the force distribution along the paddle. (A) Velocity 

field from PSV experiments; colormap shows vorticity. (B) Pressure fields are computed by solving 

the Navier-Stokes equations using the measured velocity field as input and assuming out-of-plane 

velocities and velocity gradients are zero. (C) Schematic of the centerline and offset points used to 

evaluate equation 17; each point is a at an offset distance 끫뢜끫뢸 = 3.5 끫뢴끫뢴 from the centerline. (D) 

Force vectors (blue) and velocity vectors (red) along the paddle.  

 

The analysis procedure assumes that we are sampling the pressure exactly at the solid-fluid 

interface; however, in practice we choose the minimum possible distance between the centerline 

and the sampling points so that we measure fluid pressure outside the masked region (white area, 

Figure 4-5B) during the complete cycle. The mask resolution is constrained by the PSV velocity 

vectors’ cartesian grid positions, such that the masked region is slightly larger than the true paddle 

dimensions. Appendix B shows a sensitivity analysis of the sampling offset distance, similar to the 
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one in (Lucas et al., 2017), and shows that similar values for net force are obtained at distances up 

to five times the paddle thickness (5 mm). This sensitivity analysis also justifies the neglect of the 

shear term in equation 17. 

As a general example, we discuss the analysis for the case of 끫뢊끫뢊끫븨 = 14.87 ± 0.3 and 끫뢎끫뢎 =

0.21 ± 0.003 to describe the role of spatiotemporal asymmetry on the thrust and lift production. 

Figures 4-6A and B show the thrust and lift forces produced during one beat cycle (FR in red, FF 

in blue, and CF in magenta). From these two plots we observe that for the FR case (rigid propulsor), 

the force peaks at the beginning and end of the power stroke; however, these peaks are mitigated 

by flexibility in the FF and CF cases. In living animals, the presence of flexibility helps enhance 

swimming stability and reduces the risk of appendage fracture and fatigue (Kim & Gharib, 2011). 

We further note that for the CF case, thrust is generally higher during the power stroke (relative to 

FR and FF) and less negative during the recovery stroke, due to the higher spatial asymmetry 

present in the CF paddle. We discuss this in detail below. 

The force distributions in Figures 4-6C- E (FR, FF, and CF) are also useful to interpret 

thrust and lift production of each paddle. Each diagram shows three different time instants, 

representing the beginning of the power stroke, during the power stroke, and shortly after the 

completion of the power stroke (from left to right: 끫룂 끫뢎⁄  of 0.05, 0.3, and 0.42). We have placed a 

green arrow normal to the paddle and close to the peak force, to help visualize how the deformed 

shape of the paddle affects the distribution of the produced force between thrust (parallel to the 

substrate) and lift (normal to the substrate). At the beginning of the power stroke (끫룂 끫뢎⁄ = 0.05), the 

backward bending of the FF paddle (Figure 4-6D) increases the vertical component of the force 

vectors relative to the FR case (higher lift). On the other hand, the initial curvature of the CF paddle 

increases the horizontal vector components (higher thrust). As the power stroke continues (끫룂 끫뢎⁄ =

0.3), the FF paddle’s deformed shape maintains higher vertical components relative to the FR case, 

while the force vectors of the CF paddle have negative vertical components at this point. Thus, the 
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CF paddle produces the highest thrust force during the power stroke (Figure 4-6A), while the FF 

paddle has the highest lift force (Figure 4-6B). During the recovery stroke (끫룂 끫뢎⁄ = 0.42), due to the 

slower speeds, the shape of the FR and FF paddles are similar, and therefore have similar force 

production (Figure 4-6A and B). However, the curved shape of the CF paddle strongly reduces the 

horizontal force components during the recovery stroke (끫룂 끫뢎⁄ = 0.42); considerably reducing the 

negative thrust force (that is, drag) (Figure 4-6A).  

 

 

 

Figure 4-6.  Analysis of propulsor force production at 끫뢊끫뢊끫븨 = 14.87 ± 0.3 and 끫뢎끫뢎 = 0.21 ± 0.003. 

(A) Thrust force production for the FR (red), FF (blue), and CF paddles (magenta). (B) Lift force 

production for the FR (red), FF (blue), and CF paddles (magenta). Thick lines are the 3-cycle-

averaged time series, and thinner lines show the standard deviation of the measurements. The 

shaded area illustrates the time interval of the power stroke, and the white region is the recovery 
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stroke. (C, D, and E) Force (orange) and velocity (cyan) distributions for three time instants at the 

beginning of the power stroke (끫룂 끫뢎⁄ = 0.05), during the power stroke slightly after peak tip speed 

(끫룂 끫뢎⁄ = 0.3), and the beginning of the recovery stroke (끫룂 끫뢎⁄ = 0.42). 

 

 To compare thrust and lift force production for the three paddles at different Reynolds 

numbers, we compute the non-dimensional thrust and lift coefficients: 끫롬끫뢎 = 끫롲끫뢎 0.5끫븘끫뢐끫뢸끫뢬끫뢺2 끫뢲⁄  and 끫롬끫롾 = 끫롲끫롾 0.5끫븘끫뢐끫뢸끫뢬끫뢺2 끫뢲⁄ . Here, since we are collecting 2D data, both 끫롲끫뢎 and 끫롲끫롾 have dimensions of 끫뢂 끫뢴⁄  (Figure 4-6A and B); we therefore we use the paddle height (끫뢲) to normalize the coefficient 

instead of the paddle area. We choose 끫뢐끫뢸끫뢬끫뢺 to be the tip speed of the rigid paddle at 끫뢎끫뢎 = 0 (such 

that 끫뢐끫뢸끫뢬끫뢺 = 2끫뢲Φ끫뢦).  

 Figure 4-7 shows the cycle-averaged thrust and lift coefficients for the FR (red), FF (blue), 

and CF (magenta) paddles as a function of 끫뢎끫뢎 and 끫뢊끫뢊끫븨. In general, thrust increases as 끫뢎끫뢎 increases; 

however, lift is generally constant across all observed 끫뢎끫뢎. For all studied cases, we observe that the 

CF paddle produces the highest thrust (Figure 4-7A) at the expense of the lift production (Figure 

4-7B). The FF paddle produces the least thrust, but produces significant lift. The FR paddle is an 

intermediate case, producing both thrust and lift. These results are intuitive and agree with the 

previous discussion on the role of the paddle shape on force orientation (Figure 4-6). Figure 4-7 

also shows how the force production is dependent on Reynolds number: in general, force 

coefficients decrease as the Reynolds number increases. This can be attributed both to our 

experimental strategy of increasing 끫뢊끫뢊끫븨 by decreasing kinematic viscosity (and therefore lowering 

the density of the working fluid, see Table 4-1) and also to the passive response of the paddles to 

the hydrodynamic forces (Figure 4-4). Because the hydrodynamic forces and the paddle 

geometry/flexibility are coupled, performance cannot be evaluated solely from these cycle-
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averaged force coefficients. In the next section, we address this problem by introducing a new 

approach to calculate the efficiency of force generation (both thrust and lift).  

 

Figure 4-7. Cycle-averaged force coefficients of the three rowing paddles at intermediate Reynolds 

numbers, where (A) shows thrust coefficient 끫롬끫뢎��� and (B) shows lift coefficient 끫롬끫롾���. The FR paddle 

is shown in red, the FF paddle in blue, and the CF paddle in magenta. Experiments at different 

Reynolds numbers (끫뢊끫뢊끫븨 ≡ 2끫븖끫뢦끫뢲2 끫븐⁄ ) are shown by the color transparency; from the most 

transparent line to the solid line, 끫뢊끫뢊끫븨 increases as 7.43 ± 0.24, 14.87 ± 0.3 , 27.40 ±

0.53, and 62.93 ± 1.11. 

4.1.4 Rowing paddle efficiency 

The previous section discusses how motion asymmetry affects force production in rowing 

propulsors. Our goal in this next section is to develop a useful and mathematically appropriate  

expression for efficiency as a tool to quantify the performance of a rowing paddle (that is, 

dimensionless and scaling from 0 to 1). As mentioned previously, current metrics of propulsive 

efficiency commonly used for swimming organisms are based on the free motion of a body, 

requiring an overall swimming velocity (Gemmell et al., 2013; Lighthill, 1960; Murphy et al., 



83 

 

2011). This is a problem for evaluating the performance of a single rowing paddle, since the speed 

and force vary along the propulsor. For the case of (globally) fixed rowing appendages, it may be 

tempting to use the average or maximum far field velocity in place of the free-swimming velocity. 

However, the far field may not be a coherent velocity stream, nor is “far field” a well-defined 

distance. Additionally, this approach would not necessarily result in an efficiency expression that 

scales from 0 to 1, as desired. To calculate output power from a generated velocity field, we must 

make assumptions about the flow. For example, (Barlow & Sleigh, 1993) assumed that the flow 

above a ctene row behaves as a jet. The peak output power of a jet can be calculated as 0.5끫븘끫룄3끫롨, 

where 끫롨 is the cross-sectional area of the jet. For this work, the (1D) area may be estimated as the 

distance from the top of the ctene to the point at which the flow velocity reaches only ~20% of the 

peak velocity. However, this approach is somewhat arbitrary, is not guaranteed to correctly measure 

the power output, and is not universally applicable to any type of oscillating appendage. We thus 

seek a new metric for propulsive efficiency, suitable for all globally-fixed rowing appendages (and 

extensible to appendages on a swimming body). 

The definition of Froude efficiency (or propulsive efficiency) is the ratio between the 

power used to overcome drag to the power expended to produce the motion (Lighthill, 1960). When 

applied to a moving object it can be calculated as 끫븄 = 끫롲끫뢎끫뢐 끫뢆⁄ , where 끫롲끫뢎 is the thrust force, 끫뢐 is 

the swimming speed and 끫뢆 is the power input to the fluid. Here we will rely on this concept to 

develop an expression which accounts for the variable force and velocity distribution along the 

paddle, such that integrated thrust efficiency 끫븄끫뢎 is defined as 

끫븄끫뢎 =
∑ ∑ 끫롲끫룊끫뢒끫룊끫룀끫룀끫뢜(끫롲끫룊)끫뢬1끫뢎0∑ ��∑ 끫⃗롲 × 끫뢾끫뢬1 � ∙ 끫븨��⃗ �끫뢎0        (18) 

where 끫롲끫룊 and 끫뢒끫룊 are the horizontal components of force and velocity for each point on the paddle 

center line (summed over 끫뢜 spatial points, see Figure 4-5D, and 끫뢎 timepoints). The numerator of 

this expression therefore is the net power (force x speed) required to move each tracked point along 
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the paddle through the fluid over the entire operation time (끫뢎). The sign function indicates that the 

power stroke produces thrust (positive), and the recovery stroke produces drag (negative) and 

therefore decreases the net integrated efficiency 끫븄끫뢎. The denominator is the input power, which is 

calculated as the absolute value of the inner product of torque and shaft angular speed. The (time 

varying) net torque is calculated as the net force on each centerline point �끫⃗롲� crossed with its 

position vector (끫뢾) with respect to the shaft position. We calculate the (time varying) shaft angular 

speed using the first tracked point on the paddle and the shaft position. To define the lift efficiency 

(끫븄끫롾), we consider the vertical components of force and velocity in the numerator.  

Figures 4-8A and B show the integrated thrust and lift efficiencies for the FR (red), FF 

(blue), and CF (magenta) paddles as a function of 끫뢎끫뢎 and 끫뢊끫뢊끫븨. As previously discussed, spatial 

asymmetry 끫뢌끫뢎 is not prescribed, and is a function of  끫뢎끫뢎 and 끫뢊끫뢊끫븨 (Figure 4-4). We note that the 

CF paddle has the highest spatial asymmetry, and that 끫뢌끫뢎 increases as 끫뢎끫뢎 increases (with a mean 

of 끫뢌끫뢎 =  0.144 ± 0.01 across all tested conditions). The FR paddle is symmetric, with 끫뢌끫뢎 = 0 

across all 끫뢎끫뢎 and 끫뢊끫뢊끫븨; the FF paddle has negative spatial asymmetry (끫뢌끫뢎 = −0.03 ± 0.01 across 

all tested conditions).  

For thrust production, we observe that the efficiency of all paddles rises as spatiotemporal 

asymmetry increases (at a given 끫뢊끫뢊끫븨). FF is the least efficient, slightly underperforming compared 

to the FR paddle. The decrease in performance can be attributed to the negative 끫뢌끫뢎 values of the 

FF paddle. The CF paddle is the most efficient thrust producer: in fact, it is the only paddle which 

produces net positive thrust for temporally symmetric cycles (끫뢎끫뢎 = 0). The thrust efficiency of 

this paddle reaches a maximum value of 끫븄끫뢎~0.6, at the highest explored values of 끫뢎끫뢎. In Figure 4-

4, we see that for fixed 끫뢎끫뢎, lower 끫뢊끫뢊끫븨 always corresponds to higher 끫뢌끫뢎 for the CF paddle. However, 

at high 끫뢎끫뢎, lower 끫뢊끫뢊끫븨 counterintuitively produces lower 끫븄끫뢎 (upper right, Figure 4-8A). At lower 

values of 끫뢎끫뢎 for the CF paddle, lower 끫뢊끫뢊끫븨 are more efficient (middle left, Figure 4-8A). This may 
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indicate that while higher 끫뢌끫뢎 generally produces more net thrust, the cost of producing that thrust 

is a strong function of the viscous-inertial balance. In other words, producing thrust is easier at 

higher 끫뢊끫뢊끫븨, and when both 끫뢌끫뢎 and 끫뢎끫뢎 are high. 

 

 

Figure 4-8. Performance of three rowing paddles at intermediate Reynolds numbers. (A) Thrust 

production efficiency. (B) Lift production efficiency (equation 18). The FR paddle is shown in red, 

the FF paddle in blue, and the CF paddle in magenta. Experiments at different Reynolds numbers 

(끫뢊끫뢊끫븨 ≡ 2끫븖끫뢦끫뢲2 끫븐⁄ ) are indicated by the line transparency; from the most transparent line to the solid 

line, 끫뢊끫뢊끫븨 increases as 7.43 ± 0.24, 14.87 ± 0.3 , 27.40 ± 0.53, and 62.93 ± 1.11. 

 

For the lift production efficiency 끫븄끫롾, we observe the opposite behavior with respect to 

spatial asymmetry (Figure 4-8B). The FF paddle, with negative spatial asymmetry, is the best at 

producing lift. The curved flexible paddle (CF), which carries the highest spatial asymmetry, is the 

worst. This is partially due to the propulsors’ shape during the stroke cycle (Figure 4-6). As 

explained previously, the backward bending seen in the FF paddle (Figure 4-6D) increases the 

vertical force components during the power stroke. Conversely, the CF paddle’s bending tilts the 

force vectors toward the horizontal, and actually produces negative values of lift force during the 
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power stroke (Figure 4-6B). The FF paddle is the most efficient lift producer; this makes sense, 

since its bending kinematics (Figure 4-6D) are similar to the tail kinematics of a fish or other lift-

based swimming strategy (Dewey et al., 2013). A fish’s tail must maximize spanwise force 

production (corresponding to lift in these experiments). This strategy is typically used at much 

higher Reynolds numbers (Kurt et al., 2021). Fish swimming experiments have also shown that a 

flexible tail enhances swimming efficiency (Han et al., 2022), likely by smoothing force peaks and 

increasing the spanwise force components as described in section 4.1.2.  

4.1.5 Discussion 

We evaluated the propulsive performance of three paddles with different flexibilities and 

initial geometries in order to explore the role of spatiotemporal asymmetry for intermediate Re 

rowing. The comparison between the flat/rigid (FR), flat/flexible (FF), and curved/flexible (CF) 

paddles shows how flexibility smooths the aggressive force peaks observed on the rigid structure, 

as well as the role that the deformed paddle shape plays in directing the overall orientation of the 

hydrodynamic force. We showed how the CF paddle’s passive deformation during the beat cycle 

resembles the spatially asymmetric motion of a ctene (끫뢌끫뢎 > 0). The geometry and flexibility of 

this paddle encodes the 끫뢌끫뢎 into the structure, thus simplifying the required controls and hardware 

of a robotic rowing appendage (Ford & Santhanakrishnan, 2020; Santos et al., 2022). However, the 

passive response of the paddle makes its time-varying geometry a function of both 끫뢎끫뢎 and 끫뢊끫뢊끫븨, 

thus complicating attempts to directly investigate the role of spatiotemporal asymmetries vs. 

Reynolds number.  

We developed a new definition of propulsive efficiency that can be used to directly evaluate 

a rowing appendage's performance independently from the full-body swimming dynamics. Instead 

of swimming speed, the integrated efficiency considers the force and velocity distributions 
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measured around the appendage. It also considers the directionality of appendage movement, so 

that only net thrust is considered (subtracting the power produced by drag from the motions that 

produce useful thrust power). The integrated efficiency may be calculated for robotic devices, 

numerical simulations, and animal experiments as long as the system's input power can be measured 

or estimated. Calculating the input power is typically feasible for robotic devices or numerical 

simulations, but estimating the power consumption of a live animal is not trivial (Svendsen et al., 

2013). As it is defined here, the integrated efficiency (equation 18) is developed for 2D flows; 

however, it is easily extensible to 3D motion if the force and velocity distributions over the 

appendage surface are known.  The expression is also extensible to non-globally fixed appendages, 

such as those moving with a body, as the appendage(s) may simply be considered in the reference 

frame of the body. 

We showed that increasing both temporal and spatial asymmetries improve thrust 

efficiency, but that this relationship is coupled to Reynolds number. Spatial asymmetry (끫뢌끫뢎) plays 

a significant role in thrust generation, and can substantially increase 끫븄끫뢎. Even for a stroke cycle 

with 끫뢎끫뢎 = 0, the CF paddle (which always has 끫뢌끫뢎 > 0) has an efficiency of ~0.3 (Figure 4-8A). 

Spatially symmetric motions (FR) can only achieve this level of efficiency at very high values of 

temporal asymmetry (끫뢎끫뢎 > 0.3). To evaluate lift production, we found that the time-varying 

deformation of the paddle—not just net asymmetry—during the beat cycle plays an important role. 

The force distribution diagrams (Figures 4-6C-E) show how the bending kinematics of the FF 

paddle maximize lift force production, similar to the mechanism used by e.g. the tails of fish. In 

contrast, the CF paddle maximizes thrust, making the CF paddle the best of the three tested options 

for thrust production (Figure 4-8). However, none of the three tested paddles strictly reproduces 

the motion of the actual ctene. Real ctene bending kinematics (Figure 2-2) could be described as 

the power stroke of the FF paddle combined with the recovery stroke of the CF paddle, suggesting 

that ctene motion is a compromise between maximizing thrust while still generating some lift. 
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Although thrust production for forward swimming is a primary goal of rowing, producing a certain 

amount of lift in some cases is important. For ctenophores with spheroidal shapes (such as the small 

to medium lobates examined in Chapter 2 or cydippid ctenophores such as Pleurobrachia sp.), their 

ctenes protrude from strongly curved body surfaces. Depending on the co-located substrate 

curvature, the local ctene lift production can contribute to full-body forward motion (Lionetti et al., 

n.d.). For other metachronal rowers like krill or shrimp, which operate at higher Re, lift production 

is essential since they are negatively buoyant (Murphy et al., 2013). Future work may focus on 

creating propulsors whose shape and stiffness can be tuned to reproduce these kinematics, which 

balance lift and thrust for swimming organisms. 

4.2 Particle Shadow Velocimetry: image pre-processing algorithm 

Particle shadow velocimetry (PSV) is a flow measurement technique that differs in several 

key ways from the more commonly used Particle Image Velocimetry (PIV) (see Table 4-2). It uses 

back-lit (sometimes collimated) illumination to produce sharply defined shadows of tracer particles 

rather than the light-scattering approach produced by a laser sheet, as in PIV. Given that its 

illumination source is not usually laser-based, PSV is generally cheaper and safer to operate than 

PIV (Estevadeordal & Goss, 2005). It is also useful for systems in which optical access points are 

not ideal for PIV, or where backlighting can avoid undesirable shadows (e.g., in wake regions) (L. 

P. Goss et al., 2007). Typical 2C2D (i.e., measuring two velocity components within a two-

dimensional plane) PIV and PSV experimental setups are shown in Figure 4-9. One notable contrast 

is that in PIV, only the particles inside the laser sheet are imaged, even though other particles are 

in focus (but not illuminated); PSV instead relies on the optical depth of correlation (DoC) to isolate 

tracer motion to a plane. The DoC is the thickness of the imaged “plane” and is a property of the 

system optics as well as the tracer size (Figure 4-9); it is defined as the thickness over which imaged 
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objects (e.g. tracers) can contribute to image cross-correlations. In general, it is desirable to reduce 

DoC as much as possible to confine velocity measurements to a single plane. Here is where one of 

the significant restrictions of PSV lies: DoC scales with field of view (FoV). Larger FoVs 

necessitate a larger imaged volume overall (and therefore a larger DoC), thus producing 

unacceptable noise levels from the out-of-focus tracers. Laser-based PIV does not have this 

problem because the imaged volume is defined by the thickness of the laser sheet, not the optics of 

the system. 

Table 4-2. Planar velocimetry using laser-based PIV vs PSV (2D2C). 

Technique PIV PSV 

Illumination Laser light sheet Backlighting from collimated LED (or 

similar) 

Effect of 

out-of-focus 

tracers 

Focal depth typically larger than light 

sheet; significantly out-of-focus 

tracers are not illuminated 

Out-of-focus particles still visible, and 

can decrease to the signal-to-noise 

ratio 

Field of 

view  

Determined by optics, but not linked 

to the measurement thickness 

Field of view varies with DoC, so 

large fields of view require mitigating 

noise from out-of-focus tracers 

 

 

 

Figure 4-9. (A) Schematic for a laser-based PIV system, where the thickness of the laser sheet 

defines the thickness of the measurement region (MR) and (B) a PSV system where the thickness 

of measurement region (dotted box) is defined by the optics of the system (DoC).  
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The DoC can be calculated for micro and macro-PSV (Olsen & Adrian, 2000; Truong et 

al., 2018) systems as  

끫롮끫롮끫롬 = 2�1− √끫븀√끫븀 �� 끫븄
2끫뢂끫롨�2  끫뢜끫뢺2 + 5.95

(끫뢀 + 1)2끫브2 � 끫븄
2끫뢂끫롨�4끫뢀2 �       (17) 

where 끫븀 is a threshold parameter (Olsen & Adrian, 2000), 끫븄 is the refractive index of the material 

between the lens and the specimen, 끫뢂끫롨 is the lens numerical aperture, 끫뢜끫뢺 is the tracer diameter, 끫뢀 

is the lens magnification, and 끫브 is the wavelength of the illumination. The threshold 끫븀 is typically 

taken to be 0.01, which fits experimental data on the extinction of out-of-focus tracers (Santiago et 

al., 1998). The size of the FoV is inversely proportional to the magnification 끫뢀. Following equation 

(17), a higher magnification produces a smaller DoC, which is desirable but not always attainable. 

If the DoC is on the order of the tracer diameter, the images can be inverted and processed as in 

traditional 2D2C PIV. However, as magnification decreases, DoC increases, and simple image 

inversion produces unacceptable noise levels from the out-of-focus tracers (Figure 4-10). 

 

Figure 4-10. To-scale schematic of the DoC (rectangle width) and FoV (rectangle height) for 3 µm 

particles at three different magnifications: 5X (NA=1.4), 10X (NA=0.21), and 20X (NA=0.5), as 

illuminated by a collimated white LED with 끫브 = 0.55끫븎끫뢴 and a refractive index of 끫븄 = 1 (air). 
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Figure 4-11A show how a tracer looks in the camera when it is in front of, within, or behind 

the focal plane. When the tracer is aligned with the focal plane (끫롶~0 끫븎끫뢴) region where the "deep 

shadow region" dominates (Figure 4-11B), it is clearly delineable. When the tracer is behind the 

focal plane (on the shadowed side, 끫롶 > 0) or in front of the focal plane (on the lit side, 끫롶 < 0), it is 

haloed. Figure 4-11A effectively represents how 2.6 끫븎끫뢴 diameter out-of-focus tracers, captured at 

a magnification of 3.5, look across an imaged thickness of 400 µm (L. Goss & Estevadeordal, 

2006). Although these are not the experimental conditions of our experiments, Figure 4-11A is 

representative of the in and out-of-focus particles behavior in all PSV configurations. If the flow 

of interest is three-dimensional enough that there is significant variability between the target plane 

vs. planes where we can still image these out-of-focus tracers, the signal-to-noise ratio becomes a 

problem. The haloing effect can extend for many particle diameters (Ovryn & Izen, 2000); it is 

therefore important to avoid imaging this region by keeping the DoC as small as possible.  

 

Figure 4-11. Particles imaged by PSV. (A) Particles imaged at different distances from the focal 

plane for  끫뢜끫뢺 = 2.6 끫븎끫뢴, and a DoC of 200 끫븎끫뢴, reproduced from (L. Goss & Estevadeordal, 

2006). (B) Schematic of the regions created by the backlighting of a hard sphere. The sphere is 

being illuminated from left to right. Adapted from (van de Hulst, 1957). 
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PSV is a logical choice for our experiments (outlined in Chapters 2 and 4) for two main 

reasons: first, given the geometry of the ctene row (Figure 2-1) and the robotic paddles (Figure 4-

1C-E), side illumination is not an option as ctenes would cast shadows in the targeted imaging 

regions. Second, zooplankton are generally photosensitive; thus, high-energy lasers are not 

desirable. PSV has been used successfully for studying flows around plankton, but has generally 

been applied to small creatures (<1mm) (Gemmell et al., 2014) or restricted to highly zoomed-in 

regions (Colin et al., 2020). The ratio 끫롮끫롮끫롬/끫뢜끫뢺 for these experiments is less than 10 (i.e., the DoC 

is less than ten tracer diameters thick). In our animal experiments, we are interested in 

simultaneously capturing several ctenes in one row, increasing the size requirements of the FoV 

and stretching to 끫롮끫롮끫롬/끫뢜끫뢺~43. This results in a strong signature of out-of-focus particles within 

the images. This problem is also common when using PSV to investigate bubble dynamics (Bröder 

& Sommerfeld, 2007; Hessenkemper & Ziegenhein, 2018). However, there is currently no detailed 

study on best practices for digitally removing the out-of-focus particles that decrease the quality of 

the vector fields. 

4.2.1 Image pre-processing for focused tracer detection (FTD) 

Here we outline our image pre-processing method that extends the PSV technique for 

scenarios with nontrivial DoC. Figure 4-12 shows the pre-processing method applied to a 200x200 

pixel subwindow of a PSV image obtained from the experiments of section 2.1.1. When processing 

an entire image, intensity variation is significant between different regions of the image. To avoid 

thresholding problems, we apply the method by subwindows with an overlap. This way, all the 

operations are based on local rather than global parameters. The overlap also ensures that we will 

not lose tracers at the intersections between subwindows. 
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Each image describes one step in the detection algorithm, corresponding to a panel in 

Figure 4-12: 

(0) The first image is the original (raw) image from the PSV setup. The in-focus and out-of-

focus particles are distinguishable; there is one alien particle at the top left corner (too big 

to be a tracer; in this experiment, it is likely to be a piece of algae or mucus).  

(1) We first invert the image. 

(2) We then enhance the contrast using an exponential intensity transformation. In other words, 

we rescale the intensity distribution so it will follow an exponential distribution. This 

allows us to more easily separate the brighter regions (focused tracers) from the other areas 

of the image (out-of-focus tracers, background, and miscellaneous noise).  

(3) Next, we apply a weak spatial Gaussian filter, which further reduces noise without 

eliminating the sharp edges of in-focus tracers. 

(4) We isolate discrete regions using an edge detection operation. Given the nature of the 

image, a non-directionally based edge detection is needed; in this case, we use a Canny 

edge detection algorithm (Gonzalez et al., 2004) and fill closed contours with white to 

make the shapes uniform in intensity. 

(5) We use two geometric threshold criteria to distinguish between artifacts, alien particles, 

and tracers: circularity (끫롬 = 4끫롨끫븖/끫뢆2, where 끫롨 is the area and 끫뢆 the perimeter) and the 

diameter 끫뢜끫뢺. If 끫롬 < 1 or if 끫뢜끫뢺 is outside the anticipated range (based on the known tracer 

dimensions), the spot is eliminated. The remaining spots represent in-focus particles. 

Finally, a Gaussian smoothing operation helps to avoid potential peak-locking effects (so 

that tracers themselves may still be centered at fractional pixel locations). 
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Figure 4-12.  Focused tracer detection algorithm for particle shadow velocimetry, from (0) the 

original image to (5) final processed image ready to be used in a PIV cross-correlation algorithm. 

Haloing effects like those shown in Figure 4-11 are clearly visible in the original image (0) 

4.2.2 Results 

Because ctenes have finite dimensions (i.e., a rectangular plate with defined width, height, 

and thickness), they produce 3D flow structures. However, in our context of planar flow 

visualization, the finite width imposes two restrictions on what constitutes a useful 2D2C ctene 

velocimetry analysis: 1) the focal plane must be normal to the ctenes, and 2) it should bisect the 

ctene row as closely as possible. These two restrictions ensure that the flow within the measured 

plane is as 2D as possible, improving data quality and enabling analyses that would not otherwise 

be possible. The difficulty of achieving these conditions with live animals—combined with the 
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large depth of correlation (끫롮끫롮끫롬/끫뢜끫뢺 = 43) necessitated by the relatively large FoV required to 

image multiple ctenes simultaneously—yielded many out-of-focus particles, as shown in Figure 4-

12 (0). Typical PIV image pre-processing techniques such as adaptive histogram equalization, 

highpass intensity filtering, and intensity capping (Thielicke & Stamhuis, 2014) were not helpful 

when dealing with noise levels produced by simply inverting the raw images, such as that seen in 

Figure 4-12 (1). When using these typical PIV preprocessing techniques, we obtained velocity 

fields similar to the one in Figure 4-13A. Here we observe numerous artefacts, such as false 

deceleration zones (circled), resulting from the influence of the out-of-focus tracers. These out-of-

focus tracers, positioned on either side of the focal plane, are likely to be moving at low velocity 

or with a velocity primarily directed normal to the plane of focus; their contribution to the image 

correlation artificially decreases the calculated in-plane velocities.   In contrast, Figure 4-13B, 

generated from the same raw images but using the prefiltering described in the previous section, 

shows more reasonable velocity measurements and demonstrates the algorithm's capacity to 

eradicate out-of-focus noise. 
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Figure 4-13.  Velocity field of the metachronal rowing of an adult ctenophore, calculated using (A) 

PIV common pre-processing techniques, and (B) our focused tracer detection algorithm. False 

deceleration zones are circled in white. 

4.2.3 Summary and planned future work 

We have developed a focused tracer detection algorithm for PSV systems with nontrivial 

DoC, which is qualitatively shown to increase the signal-to-noise ratio (Figure 4-13). This pre-

processing algorithm is used for the velocimetry described in Sections 2.1 and 4.1. Given the lack 

of information available on reducing the effective DoC via image prefiltering in PSV systems, we 

suggest a comprehensive study to systematically characterize the performance of our algorithm. By 

comparing the velocity vectors obtained under different 끫롮끫롮끫롬/끫뢜끫뢺 ratios when imaging a canonical, 

well-described flow (e.g., Poiseuille flow or a laminar jet), we can quantitatively calculate how 
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much our prefiltering algorithm improves the probability of detecting valid velocity vectors (Shavit 

et al., 2006).  
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Chapter 5 

 

Conclusions 

The study of locomotion at intermediate Reynolds on the order of 1-1000 has tremendous 

potential for bioinspired design, particularly for scalability across the viscous-inertial flow regime. 

Animals living in this flow regime deal nontrivially with viscous and inertial effects. Therefore, 

their locomotive strategies must be adaptable for success in either viscous-dominated (끫뢊끫뢊 < 1) or 

inertia-dominated environments (끫뢊끫뢊 > 1). The vast number of animals at the millimeter to 

centimeter scale represent a potential source of inspiration for engineers to develop both micro- 

and macro-robotic platforms. However, understanding the operational limits—and therefore the 

contextual applicability—of different propulsors is crucial. We stress that strict biomimicry should 

not be the goal in designing vehicles and devices based on animal models: for all animals, their 

morphology is a compromise that allows them to perform all vital functions, not just locomotion 

(and some aspects of morphology may be vestigial and irrelevant to performance in any sense). 

In the preceding chapters, we have studied the swimming dynamics of ctenophores via 

behavioral observation, mathematical modeling, and physical (robotic) modeling. Ctenophores 

base their locomotion on the metachronal (sequential) actuation of multiple appendages; this 

rowing technique exists across a wide range of sizes, from unicellular organisms (micrometers, 끫뢊끫뢊 ≪ 1) to marine crustaceans (tens of centimeters, 끫뢊끫뢊 > 1000). Ctenophores with appendage-

based Reynolds numbers on the order of 10-100 are a bridge to understanding how this technique 

scales from low to intermediate Reynolds numbers. Using several methods, we showed the 

importance of appendage motion asymmetries (spatial and temporal) on force production. At 

intermediate Reynolds numbers, both spatial and temporal asymmetries increase the performance 

of the propulsors. However, spatial asymmetries are dominant—that is, they are observed to be 
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stronger in behaving animals, and calculated to be more effective in models—in more viscous 

environments (끫뢊끫뢊 ~1). Temporal asymmetry gains importance as the inertial effects grow; we 

observe increasing temporal asymmetry with Reynolds numbers in behaving animals, and our 

modeling shows that increasing temporal asymmetry is more effective at higher Reynolds numbers.  

Through our robotic appendage experiments, we developed a new expression for rowing 

efficiency which is tailored for oscillating appendages (flexible or rigid). The integrated efficiency 

allows more accurate performance analysis of robotic devices and can be used to improve our 

understanding of animal motion. By analyzing the ctene-inspired robotic appendage, we showed 

how the rowing propulsor’s shape throughout the beat cycle could reorient the direction of the 

produced force—an important factor to consider in designing a bio-inspired Unmanned Underwater 

Vehicle (UUV). Finally, with a combination of animal observations and mathematical modeling, 

we studied how the spheroidal body shape of ctenophores—combined with the large number of 

appendages circumscribing their body and the independent frequency control between paired 

appendages—enables near-omnidirectional swimming.  

Our results show how geometric and kinematic parameters, together with flexibility, affect 

ctenophores’ swimming dynamics. As a representative intermediate Reynolds number metachronal 

rower, our findings can be extrapolated to a large number of organisms in a wide variety of 

ecological niches. Additionally, our new understanding the role of these parameters will help us 

tailor the design of bio-inspired devices depending on their specific task and context. Metachronal 

coordination is well known for being an efficient locomotor strategy (Guo & Kanso, 2016); 

therefore, the development of an intermediate to high Reynolds number metachronal-swimming 

UUV may meet the needs of certain ocean exploration tasks (Xu & Dabiri, 2022). At the other end 

of the size spectrum, the near-omnidirectional swimming of ctenophores is a highly desirable skill 

for low-Reynolds number robots needed for therapeutic or diagnostic operations inside the human 

body (Sitti, 2018). By successfully investigating the hydrodynamic scaling of metachronal rowing 
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and its dependence on kinematic and geometric variation of the propulsors, the research presented 

in this dissertation provides a firm foundation for the development of new flexible bio-inspired 

robotic vehicles and fluidic devices.  
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Appendix A 

 

Reduced-order modeling 

A.1 Ctene kinematics 

We model each ctene as a flat plate which oscillates unidirectionally with a time-varying 

height, such that the tip of the plate traces out an elliptical trajectory (section 2.1, Figure 14). To 

define the beating kinematics, we first derive expressions to construct the elliptical trajectory for 

the plate tip—namely, finding the semimajor and semiminor axes (끫뢎 and 끫뢞) as function of the 

spatial asymmetry (Sa) and the ctene length (끫뢲). In equation (2), 끫롨끫뢸 is defined as the largest possible 

area of an ellipse contained within the reachable area of the ctene, which is 0.77 times the reachable 

area of a rigid, non-bending ctene (the half circle with area 끫븖끫뢲2 2⁄ ). Substituting into equation (2) 

we get 끫뢌끫뢎 = 끫롨끫뢤 0.385끫븖끫뢲2⁄ , where 끫롨끫뢤 is the area of the elliptical tip trajectory (끫롨끫뢤 = 끫븖끫뢎끫뢞). From 

this we can calculate the semiminor axis 끫뢞 as 

끫뢞 = 0.385
끫뢲2끫뢎 끫뢌끫뢎       (끫롨. 1) 

To calculate the semimajor axis 끫뢎, we must include the stroke amplitude (Φ). Figure 6B 

shows that the starting and ending points of the power stroke are defined by Φ and the perimeter of 

the half circle with radius 끫뢲. Focusing on a triangle formed by the origin, the center of the ellipse, 

and a major axis vertex we can calculate the semimajor axis length and the y-coordinate of the 

center of the ellipse as: 끫뢎 = 끫뢲 sin(Φ 2⁄ )       (끫롨. 2) 끫료끫뢠 = 끫뢲 cos(Φ 2⁄ )      (끫롨. 3) 
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The position of the plate tip is given by the parametric equations of the ellipse: 끫룊끫뢀 =끫뢎 cos 끫븆 and 끫료끫뢀 = 끫료끫뢠 + 끫뢞 sin끫븆. The tip velocity is given by the corresponding derivatives 끫̇룊끫뢀 =−끫뢎끫̇븆 sin끫븆 and 끫̇료끫뢀 = 끫뢞끫̇븆 cos끫븆. To evaluate the kinematics, we must define expressions for the 

angular velocity (끫̇븆) and the angular position (끫븆) as functions of time. We will assume a constant 

angular velocity for the power and recovery strokes (끫̇븆끫뢺 and 끫̇븆끫뢾): 

끫̇븆끫뢺 =
끫븖끫룂끫뢺        (끫롨. 3끫뢎) 

끫̇븆끫뢾 =
끫븖끫룂끫뢾        (끫롨. 3끫뢞) 

The power and recovery stroke time are easily calculated from the temporal asymmetry 

and cycle period: 끫룂끫뢾 = 끫뢎(끫뢎끫뢎 + 1)/2 and 끫룂끫뢺 = 끫뢎 − 끫룂끫뢾. Lastly, 끫븆(끫룂) can be continuously evaluated 

for as many cycles as needed following this piecewise-defined function: 

끫븆(끫룂) = � 끫̇븆끫뢺[끫룂 − (끫뢴끫룂끫뢾)] + 끫뢴끫븖 끫뢦끫롮끫뢾 끫뢴끫뢎 ≤ 끫룂 ≤ 끫뢴끫뢎 + 끫룂끫뢺
(끫뢴 + 1)끫븖 + 끫̇븆끫뢾[끫룂 − (끫뢴 + 1)끫룂끫뢺] 끫뢦끫롮끫뢾 끫뢴끫뢎 + 끫룂끫뢺 < 끫룂 ≤ (끫뢴 + 1)끫뢎        (끫롨. 4) 

where  끫뢴 is the cycle number (끫뢴 = 0,1,2,3, …). Equations A.1 to A.4, define the kinematics of the 

model. 

A.2 Swimming efficiency (1D model) 

The swimming efficiency (끫븄 = 끫뢆끫뢸/끫뢆끫뢬) is defined as the ratio between the output power (끫뢆끫뢸) 

to the input power (끫뢆끫뢬). These are computed as  

끫뢆끫뢬 =
끫뢂끫룂 ��끫롲끫뢺끫뢸

0 [끫̇룊끫룒 + 끫̇룊끫뢀(끫룂 + (끫뢰 − 1)끫븞)]끫뢜끫룂끫뢬
끫뢰=1        (끫롨. 5끫뢎) 

끫뢆끫뢸 =
1끫룂 ��끫롲끫뢢끫̇룊끫롪끫뢜끫룂끫뢸

0 + �(끫뢴 + 끫뷸끫븘끫뢒)끫̈룊끫롪끫̇룊끫롪끫뢜끫룂끫뢸
0 �        (끫롨. 5끫뢞) 
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where the summation in A.5a calculates the work done by the n ctenes in a row, multiplied 

by the number of ctene rows (끫뢂 = 8) and divided by the swimming time (끫룂) to obtain power. 

Equation (A.5b) accounts for the work needed to overcome drag (first integral) and the work 

expended to overcome the acceleration reaction force and produce the body's own acceleration 

(second integral) (Daniel, 1983). 

A.3 Three-dimensional swimming model 

This supplementary material outlines the dynamics and solution procedure for the three-

dimensional reduced-order ctenophore swimming model. Figure A-1 shows the coordinate systems 

used to model the spheroidal body motion. We need two coordinate systems, an inertial system 끫⃗룊 =끫룊1끫뢊1� + 끫룊2끫뢊2� + 끫룊3끫뢊3� , and a body-based coordinate system 끫⃗룊′ = 끫룊1′끫뢊1′� + 끫룊2′끫뢊2′� + 끫룊3′끫뢊3′� . As is typical 

in vehicle dynamics (Schaub & Junkins, 2018), we use the successive rotations (Z-Y-X or 3-2-1) 

yaw, pitch, and roll (ψ, θ,ϕ). 

 

Figure A-1. Schematic of a ctenophore's simplified geometry moving in a 3D space. The unit 

vectors 끫뢊1� , 끫뢊2� , and 끫뢊3�  define the global (fixed) coordinate system while 끫뢊1′� , 끫뢊2′� , and 끫뢊3′� correspond 

to the moving coordinate system attached to the spheroidal body.  
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The transformation between the inertial and body frames is given by 끫⃗룊′ = [끫롬]끫⃗룊, where the 

transformation matrix is given by  

[끫롬] = � cos(끫븆) cos(끫븦) cos(끫븆) sin(끫븦) − sin(끫븆)

sin(끫븲) sin(끫븆) cos(끫븦) − cos(끫븲) sin(끫븦) sin(끫븲) sin(끫븆) sin(끫븦) + cos(끫븲) cos(끫븦) sin(끫븲) cos(끫븆)

cos(끫븲) sin(끫븆) cos(끫븦) + sin(끫븲) sin(끫븦) cos(끫븲) sin(끫븆) sin(끫븦) − sin(끫븲) cos(끫븦) cos(끫븲) cos(끫븆)

�      (A.6) 

To avoid mathematical singularities when solving 3D motion using Euler angles (ψ, θ,ϕ), 

we performed all calculations using Euler parameters instead: 

[끫롬] = �끫뷺02 + 끫뷺12 − 끫뷺22 − 끫뷺32 2(끫뷺1끫뷺2 + 끫뷺0끫뷺3) 2(끫뷺1끫뷺3 − 끫뷺0끫뷺2)

2(끫뷺1끫뷺2 − 끫뷺0끫뷺3) 끫뷺02 − 끫뷺12 + 끫뷺22 − 끫뷺32 2(끫뷺2끫뷺3 + 끫뷺0끫뷺1)

2(끫뷺1끫뷺3 + 끫뷺0끫뷺2) 2(끫뷺2끫뷺3 − 끫뷺0끫뷺1) 끫뷺02 − 끫뷺12 − 끫뷺22 + 끫뷺32�       (A.7) 

The most general rigid body rotation has only three degrees of freedom; thus, the Euler 

parameters are subject to the constraint 끫뷺02 + 끫뷺12 + 끫뷺22 + 끫뷺32 = 1. To calculate the Euler parameters �끫뷺�, we use the Stanley method (Schaub & Junkins, 2018). The last step for a formulation based 

on Euler parameters is to find the relationship between the time rates of change of 끫⃗뷺 and the body 

angular velocities (끫븨��⃗ ′). This relationship is known as the Euler parameter kinematic differential 

equation: 

⎣⎢⎢⎢
⎡끫̇뷺0끫̇뷺1끫̇뷺2끫̇뷺3⎦⎥⎥

⎥⎤
= �−끫뷺1 −끫뷺2 −끫뷺3끫뷺0 −끫뷺3 끫뷺2끫뷺3−끫뷺2 끫뷺0끫뷺1 −끫뷺1끫뷺0 � �

끫븨끫룊′끫븨끫료′끫븨끫룎′�        (끫롨. 8) 

Hence, under an Euler parameter formulation, we have three (vector) governing equations: 

the first and second Euler's laws (equations 8 and 9 in the manuscript) and the Euler parameter 

kinematic differential equation (A.8). 

A.3.1 Propulsion force  

As described in the main manuscript, each ctene is modeled as an oscillating flat plate, 

whose kinematics �끫룊끫뢀(끫룂),끫료끫뢀(끫룂)� depend on the beating parameters and placement on the animal 
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body (section3.2, Figure 3-8). The 3D model uses the same flat plate kinematics as the 1D version 

(A1), but here we will “place” them on the 3D body. To "place" each oscillating flat plate, we need 

three position angles: the ctene row angle 끫븀끫뢬 , the ctene position angle on the ctene row 끫븂끫뢰 , and 

the angle of the first ctene on the row 끫븊 (Figures A-2C and D). These angles are based on 

measurements from experimentally observed animals: 끫븀끫뢬  and 끫븊 are measured directly, while 끫븂끫뢰  is 

determined based on the average spacing ratio 끫룀 = 끫뢲 끫뷾⁄ , where 끫뷾 is the arc length of the body surface 

between ctenes (the perimeter of the modeled body is given by 끫뢎 ∫ �1 −끫뢴 끫룀끫뢬끫뢜2(끫븂)끫뢜끫븂끫븂0 , where 끫뢴 = 1 − (끫뢞/끫뢎)2 ). Finally, the plates oscillate tangentially to the body surface (Fig A-2E); the 

tangential angle is calculated from the parametric equations of the ellipse that defines the spheroidal 

body as 끫브끫뢰 = 끫룂끫뢎끫뢜−1 �−acos� 끫븂끫뢰 �끫뢞 sin� 끫븂끫뢰 � �. 

 

Figure A-2. (A) Graphical description of the spatial asymmetry overlaid on the ctene lateral profile 

time series. (B) Simplified elliptical trajectory (blue line, (끫룊끫뢀, 끫료끫뢀)) and the oscillating flat plate 

(green line). Dotted red lines denote stroke amplitude (Φ), and 끫뢲 is the ctene length. (C) Top view 

of a modeled ctenophore, showing the tentacular and sagittal planes. Black boxes indicate the 끫뢬끫뢸ℎ 
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ctene row and 끫븀끫뢬  the corresponding ctene row position angle. (D) Side view showing a plane 

bisecting a ctene row. Black lines protruding from the body represent the 끫뢰끫뢸ℎ ctene on the row. 

Ctene rows start at a fixed angle 끫븊 with respect to the apical organ, and 끫븂끫뢰  is the ctene positioning 

angle. (E) Close up of a ctene position (red dot), showing the tangential angle to the body surface 끫브끫뢰 . 

A.3.2 Force and drag coefficients  

To model the drag of the oscillating plate while considering the correct Reynolds number range for 

ctene beating (1 < 끫뢊끫뢊 < 200 ), we use the empirical expression obtained by (Shih & Buchanan, 

1971), appropriate for Reynolds numbers between 1 and 1057. 

끫롬끫뢀 = 15끫뢆끫뢊−0.5 exp � 1.88끫뢊끫뢊0.547�        (끫롨. 9) 

where  끫뢆끫뢊 is the period parameter and is defined as 끫뢆끫뢊 = �� 끫룄�⃗끫뢬끫뢰끫뢴끫븪끫룊 − 끫̇⃗뢖끫롪/0� 끫뢎� 끫룈� , and the Reynolds 

number is defined as 끫뢊끫뢊 = �� 끫룄�⃗끫뢬끫뢰끫뢴끫븪끫룊 − 끫̇⃗뢖끫롪/0� 끫룈� 끫븠� . 

From (Loth, 2008), we obtain an expression for the drag coefficient of a prolate spheroid: 

끫롬끫롪 = 끫롬끫뢸ℎ끫븪끫뢺끫뢤 ⎣⎢⎢
⎡

24끫뢊끫뢊끫롪∗ �1 + 0.15끫뢊끫뢊끫롪∗0.687� +
0.42

1 +
42,500끫뢊끫뢊끫롪∗1.16⎦⎥⎥

⎤
       (끫롨. 10) 

끫뢊끫뢊끫롪∗ =
끫롬끫뢸ℎ끫븪끫뢺끫뢤끫뢦끫뢸ℎ끫븪끫뢺끫뢤 ��끫̇⃗뢖끫롪� 끫뢜끫뢤끫븐 � 

끫롬끫뢸ℎ끫븪끫뢺끫뢤 = 1 + 0.7��끫롨끫뢸끫뢸끫뢾끫뢸∗ − 1� + 2.4�끫롨끫뢸끫뢸끫뢾끫뢸∗ − 1� 
끫롨끫뢸끫뢸끫뢾끫뢸∗ =

1

2끫뷸끫뢸23 �1 +
끫뷸끫뢸�1 − 끫뷸끫뢸−2 끫룀끫뢬끫뢜−1 ��1 − 끫뷸끫뢸−2�� 
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where 끫뢜끫뢤 is the spherical equivalent diameter and 끫뢦끫뢸ℎ끫븪끫뢺끫뢤 depends on flow direction 

끫뢦끫뢸ℎ끫븪끫뢺끫뢤∥ =
(4/3)끫뷸끫뢸−13(1 − 끫뷸끫뢸2)끫뷸끫뢸 − (2끫뷸끫뢸2 − 1) ln�끫뷸끫뢸 + �끫뷸끫뢸2 − 1��끫뷸끫뢸2 − 1

 

끫뢦끫뢸ℎ끫븪끫뢺끫뢤⊥ =
(8/3)끫뷸끫뢸−13(끫뷸끫뢸2 − 1)끫뷸끫뢸 +

(2끫뷸끫뢸2 − 3) ln�끫뷸끫뢸 + �끫뷸끫뢸2 − 1��끫뷸끫뢸2 − 1

 

where 끫뷸끫뢸 is the aspect ratio of the body, 끫뷸끫뢸 ≡ 끫롾끫뢞 끫뢜⁄ . 

From (Horace, 1993), we obtain the added mass coefficients for a spheroidal body for the axial 

and lateral movements (끫뢰1,끫뢰2): 

끫뢰1 =
1 − 끫뢊2끫뢊3 �ln �1 + 끫뢊

1 − 끫뢊 � − 2끫뢊�        (끫롨. 11끫뢎)  

끫뢰2 =
1 − 끫뢊2끫뢊3 � 끫뢊

1 − 끫뢊2 − 1

2
ln �1 + 끫뢊

1 − 끫뢊 ��        (끫롨. 11끫뢞)  

where 끫뢊 is the eccentricity �끫뢊 = �끫뢞2 − 끫뢎2 끫뢞2⁄ �. This approach is fully valid only for linearly 

superposable flows (i.e. potential flow (high 끫뢊끫뢊) or Stokes flow (low 끫뢊끫뢊)) but is a good 

engineering approximation for intermediate Reynolds numbers (Brennen, 1982). 

To model the opposing torques, we used the numerical expressions obtained by (Zastawny et al., 

2012), which is appropriate for rotating Reynolds numbers �끫뢊끫뢊끫롨 =
끫뢢끫뢤2�끫븨���⃗ ′�끫븐 �, between 10−1 − 103. 

끫롬끫롨 = 끫뢾1(끫뢊끫뢊끫롨)끫뢾2 +
끫뢾3

(끫뢊끫뢊끫롨)끫뢾4       (끫뢌. 8) 

where the coefficients 끫뢾끫뢬 depend on the rotating direction (rolling or pitch/yaw axes); see Table 

A-1.  

Table A-1. Values for the torque coefficient expression along the roll and pitch/yaw directions 

Turning axis 끫뢾1 끫뢾2 끫뢾3 끫뢾4 

roll 0.573 −0.154 116.61 1 

pitch/yaw 1.244 0.239 378.12 0.789 
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A.3.3 Solution procedure for the 3D swimming model  

We solved the reduced-order model using a fourth-order Runge-Kutta scheme for implicit 

equations, using the MATLAB function ode15i. The solution algorithm consists of the following 

steps: 

1. Input the initial particle position, orientation, and speeds (translational and angular). 

2. Calculate the initial transformation matrix using equation (A.6). 

3. Calculate the corresponding initial values of the Euler parameters using the Stanley method 

and evaluate the transformation matrix in its parametrized form using equation (A.7). 

4. Evaluate the propulsion and opposing forces and torques (equations 12, 13, 14, 15, and 16, 

section 3.2) at the current time instant for all the (predetermined) morphometric and 

metachronal parameters. 

5. Solve the equations of motion as given by equations 8, 9, and (A.8). 

6. Return to step 4 and continue until the halting condition is met. Validations and Motor 

Volume calculations are halted after a certain solution time; while the MAP results are 

halted when a steady state radius of curvature is achieved. 

The numerical integration of the equations of motion iterated until it reached tolerances of 

10−5.  
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Appendix B 

 

Pressure-based force calculations 

B.1 Force calculations at different sampling distances 

One of the primary features of QUEEN 2.0 is the ability to define the presence of a solid 

object in a flow. Not specifying the solid region for the pressure calculation via solving the Navier-

Stokes equations results in noise and affects the algorithm accuracy (Dabiri et al., 2014). For this 

work's velocity fields, the PSV Cartesian grid has a resolution of 64x64 px, restricted by our tracer 

particle density and camera resolution. Figure B-1 shows the problem of defining the solid region 

of our paddles by using the cartesian grid points. To define the solid region in the pressure-

calculation algorithm, several points need to define the thickness of the paddle. Therefore, we must 

dilate the solid to a size that assures solid identification.  

 

Figure B-1. PSV cartesian grid placed on top of the rigid paddle shape. Blue lines show how the 

paddle needs to be dilatated to be recognized as a solid region by the pressure-calculation algorithm 

of QUEEN2.  
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Given that pressure values are non-existing in the solid region, our sampling points (section 

4.1, Figure 4-5) need to be placed where the pressure is defined—further increasing the distance 

from the real solid. Here we present a sensitivity analysis of the force calculation as a function of 

the pressure sampling distance. To do this, we calculated the thrust and lift forces for the rigid 

paddle without defining a solid region, sampling from a point right at the true fluid-solid interface 

to one five times the paddle thickness away (끫뢜끫뢸 = 0.8, 1, 2, 3, 4, 5 끫뢴끫뢴). Figure B-2A shows the 

pressure field calculated without a solid region with the paddle centerline (purple) and several 

sampling distances, and Figure 4B-2B the case considering the solid region and the distance chosen 

for this work (끫뢜끫뢸 = 3.5 끫뢴끫뢴). 

 

Figure B-2. Pressure fields computed from PSV velocity data. (A) Without considering a solid 

region. The centerline of the paddle is colored purple, and the rest of the lines indicate pressure 

sampling points with offset distances of 0.8, 1, 2, 3, 4, and 5 mm. (B) Considering a solid region. 

The center line of the paddle is colored blue, and the green dots show the selected offset distance 

of 3.5 mm.  

 

Figures B-3A and B show that both the thrust and lift forces have limited change for all the 

sampling distances (0.8 −  5 끫뢴끫뢴). Therefore, we choose an offset distance of 3.5 끫뢴끫뢴; this 

clearance is enough to sample pressure values along our three different paddles. Looking at Figure 

B-2B, it is clear how the presence of the solid region improves the pressure estimation. The force 
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calculation considering the presence of the solid (Figures B-3C and D), can capture the initial peak 

in force produced by the rigidity of the paddle. The peak force is an expected result not well 

captured by the calculation neglecting the solid region. The results of this sensitivity analysis agree 

with those conducted at higher Reynolds (Lucas et al., 2017). 

 

Figure B-3. Force sensitivity analysis for the pressure offset sampling distance (A and B). Different 

colors indicate different offset distances from the centerline �끫뢜끫뢸끫뢸끫뢸끫뢸끫뢤끫뢸 = 0.8, 1, 2, 3, 4, 5 끫뢴끫뢴�. (A) 

Thrust force. (B) Lift force. (C and D) shows the calculated thrust and lift force for the selected 

offset distance 3.5 mm, considering the presence of a solid region in the pressure field. Thick lines 

are the 3-cycle-averaged time series, and thinner lines show the standard deviation of the 

measurements. The darker shaded area illustrates the time interval of the power stroke, and the 

lighter shaded region is the recovery stroke.
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