EQUIDISTRIBUTION OF POLYNOMIAL SEQUENCES IN
FUNCTION FIELDS, WITH APPLICATIONS
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ABSTRACT. We prove a function field analog of Weyl’s classical theorem on equidistri-
bution of polynomial sequences. Our result covers the case in which the degree of the
polynomial is greater than or equal to the characteristic of the field, which is a natural
barrier when applying the Weyl differencing process to function fields. We also discuss
applications to van der Corput, intersective and Glasner sets in function fields.

1. INTRODUCTION

Equidistribution theory started with Weyl’s seminal paper [35]. We recall that a se-
quence (ap)>2; of real numbers is said to be equidistributed (mod1) if for any interval
[, B] € [0,1), we have

lim N~ 'card {n € [L, N]NZ": {a,} € [0, ]} = B — a.

N—oo

Here, we write ZT for the set of positive integers and {a} for the fractional part of a
real number a, which is to say a — |a|, where |a| denotes the largest integer not exceed-
ing a. Write e(z) = €2™®. Then Weyl’s criterion asserts that the sequence (a,)S%; is
equidistributed (mod1) if and only if for any integer m # 0, we have

1 N
lim — = 0.
i (3 cman)| =0

Let f(u) = Zf:o a,u” be a polynomial with real coefficients having degree k. Weyl

made the important observation that by squaring the sum ‘ Zﬁle e(f (n))‘, one can esti-
mate it in terms of other exponential sums involving the shift f(u+ h) — f(u), which is,
for each h € Z™, a polynomial of degree k — 1. This process is called Weyl differencing.
If one continues the differencing process, then the polynomial in question becomes linear
after k — 1 steps. Using this observation, Weyl [35] proved that the sequence (f(n))22,
is equidistributed (mod1) if and only if at least one of the coefficients aq,...,ay of f is
irrational. The proof of this result was later simplified with the help of van der Corput’s

difference theorem [33], which shows that, if for any h € Z™ the sequence (an+n — a5)5% 4
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is equidistributed (mod1), then the sequence (a,)22; is also equidistributed (mod1). Us-
ing van der Corput’s difference theorem, Weyl’s equidistribution theorem for polynomials
follows easily by induction on the degree of the polynomial. This remains to date the
standard proof of Weyl’s result.

Denote by F, the finite field of ¢ elements whose characteristic is p and let F,[t] be
the polynomial ring over F,. Since Z and F,[t] share many similarities from analytic
and number-theoretic points of view, it is natural to study equidistribution in the latter
setting. Let K = F,(t) be the field of fractions of F,[t]. When f/g € K, with f,g € F]t]
and g # 0, we define a norm |f/g| = ¢4°8f~4°¢9 (with the convention that deg0 = —o0).
The completion of K with respect to this norm is Ko = Fy((1/t)), the field of formal
Laurent series in 1/t. In other words, every element o € K, can be written in the form
a=Y" _ at for somen € Z and a; € Fy (i < n). Therefore, one sees that Fy[t], K,

Ko play the roles of Z, Q, R, respectively. Let
T = { Z ait': a; € Fy (i < —1)}.
i<—1

This compact group is the analog of R/Z, namely the unit interval [0,1) with addition
modulo 1. Let A be a normalized Haar measure on T such that A\(T) = 1. For M € Z*,

let I = (c1,...,cnm) be a finite sequence of elements of F,. A set of the form
C[Z{Z ait’' € T: a; = c_; (—Mgig—l)}
i<—1

satisfies A(Cr) = ¢~ ™. Thus, we refer to the set C; as a cylinder set of radius ¢~ . The
topology on T induced by the norm | - | is generated by cylinder sets. Therefore, cylinder
sets play the role of intervals.

For a = Y1 a;it’! € Ko with a, # 0, we define orda = n. Therefore, one has
la] = qord'a. We say « is rational if o € K and irrational if a ¢ K. We define {a} =
Eig—l a;t* € T to be the fractional part of o, and we refer to a_q as the residue of «a,
denoted by res . Next we define the exponential function on K. Let tr: F, — F,, denote

the familiar trace map given by
tr(a) =a+a’ +a” +...+a"" ",

in which we suppose that ¢ = p™. There is a non-trivial additive character e,: F, — C*
defined for each a € F, by taking e,(a) = e(tr(a)/p). This character induces a map, which
we also denote by e(-), from K, to C* by defining, for each element o € Ko, the value of
e(a) to be eg(resa). For N € Z*, we write G for the set of all polynomials in F,[t] having
degree smaller than N. The following notion of equidistribution was first introduced by
Carlitz in [8] (see also [19, Chapter 5, Section 3]).

Definition 1.1. Let (az),cr, [ be a sequence indexed by F,[t] and taking values in K.
We say that (az)qer,[q 18 equidistributed in T if for any cylinder set C C T, we have

lim ¢ Ncard {z € Gy: {a,} € C} = \(C).
N—o00



EQUIDISTRIBUTION OF POLYNOMIAL SEQUENCES IN FUNCTION FIELDS 3

Since one can prove analogs of Weyl’s criterion and van der Corput’s difference theorem
in function fields, one expects to establish an F,[t]-analog of Weyl’s equidistribution the-
orem for polynomial sequences. Let f(u) = Zf:o a,u” be a polynomial with coefficients
in Ky having degree k. All earlier works on equidistribution in T have been restricted
to the case in which k& < p. Under this condition, Carlitz [8] proved an analog of Weyl’s
equidistribution theorem for the sequence (f(7))er, - Dijksma [10] also established the
same result for another stronger notion of equidistribution, subject to the same constraint
k < p. In the work of both Carlitz and Dijksma, the use of Weyl differencing produces a
factor of k!. When k > p, the latter factor is 0, and hence this differencing method be-
comes ineffective in producing the desired equidistribution result. Actually, the following
example, already known to Carlitz [8, equation (6.8)], shows that a direct F[t]-analog of
Weyl’s equidistribution theorem is not always true when k& > p.

Example 1.2. For a =" a;t’ € Koo, define

1=—00
T(Oé) = a_lt_l + a_p_lt_2 + a_zp_lt_?’ + - (1.1)
Then T is a linear map from Ko, to T (this map will also be used in Section 5). By setting
a_1 = G_p—1 = ... = 0, a countability argument shows that we can find an irrational

element a € Ko with T'(a) = 0. Given such an irrational element «, it follows that for
any element x = Y i* j z;t’ of F,[t], the coefficient of t~! in az? is equal to

a1z +a_p 12l +a_gp_1ab+ - =0,

and thus the sequence (ax?),cp, [y is not equidistributed in T.

It is desirable to give a complete description of all polynomials f(u) € Ko [u] for which
the sequence (f())ger, [ is equidistributed in T. However, in view of Example 1.2, such
a description may be complicated and not easy to state in such arithmetic terms as irra-
tionality. In particular, equidistribution could fail if the degree of f(u) is divisible by p.
Furthermore, for a polynomial such as aa? + Bz, it is not possible to determine whether
or not one has equidistribution if one is equipped with information concerning « or [
alone, since the terms zP and x “interfere” with one another, as the map z — P is linear
(see also [8, equation (6.9)]). However, one may suspect that the only pathologies that
prevent equidistribution are the ones described above (namely, exponents divisible by p
and interfering exponents). Thus one can make the following conjecture, which is the best
possible insofar as irrationality hypotheses are imposed on a single coefficient.

Conjecture 1.3. Let I be a finite set of positive integers, suppose that o, € Ko for
r € KU{0}, and define
flu) = Z ayu”.
reku{o}
Suppose that oy, is irrational for some k € KC satisfying p t k and furthermore p*k & K for
any v € Z. Then the sequence (f(2))aer,[q i equidistributed in T.

In this paper, we make some progress towards this conjecture. Given a set of positive
integers KC, we define the shadow of K to be the set

S(K) = {j cZt pt C) for some r € /c}.
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Here, as usual, we adopt the convention that (;) = 0 when 5 > r. Note in particular
that whenever K is a set of positive integers, then I C S(K). We provide a convenient
interpretation of the shadow of K in the preamble to Lemma 2.1 that makes for easy
computation in terms of the base p digital expansions of the elements of K. We may now
announce our main equidistribution result, which has no restriction on the degree of the
polynomial f(u) in question.

Theorem 1.4. Let K be a finite set of positive integers, suppose that o, € Koo for r €
K U {0}, and define
flu) = Z ayu”.
reku{o}
Suppose that ay, is irrational for some k € IC satisfying p t k and furthermore p'k ¢ S(K)
for any v € Z*. Then the sequence (f(2))zer,[y s equidistributed in T.

Example 1.5. If k is the largest element of a finite set of positive integers K, and further-
more p { k and ay is irrational, then Theorem 1.4 shows that the sequence (f(z)),er, [ is

equidistributed in T. More generally, let f(u) = Zf:o a,u” € Koo[u], and suppose that o
is irrational for some integer r with k/p < r < k and p{r. Then, as a direct consequence
of Theorem 1.4, the sequence (f(z)),er,[q is equidistributed in T.

Example 1.6. Consider the situation in which ¢ = 3 and £ = {7,11,45}. A modest
computation confirms that S(K) = {1,2,3,4,6,7,9,10,11,18,27,36,45}. By applying
Theorem 1.4, we see that the sequence (az*® + fz!! +'yx7)mqu ) is equidistributed in T if
either 5 or + is irrational. This fact does not follow from Example 1.5 because 11 < 45/3.

Example 1.7. Suppose that p > 3 and «, 8,7 € Ky with g irrational. We consider the
situation with £ = {1,3,3p + 1}. Since 3p € S(K), we find that Theorem 1.4 does not
imply directly the equidistribution of the sequence (ax + fx3 + 'yxgp“)xgpq (- However,
we will prove a more general form of Theorem 1.4 (see Proposition 5.2 below), and from
this one can conclude that the above sequence is equidistributed in T. In contrast, we are
not able to confirm that the sequence (B3 + ’)/$4p)x615‘q [ is equidistributed in T, although
Conjecture 1.3 suggests that such should be the case.

Remark 1.8. A result similar to that in Example 1.5 was proved independently by Bergel-
son and Leibman [3, Corollary 0.5] using a different method. See the discussion concluding
this section for a comparison of the latter results with those contained in this paper.

As experts will anticipate, our proof of Theorem 1.4 is based on an estimate for the
sum | Y, g, €(f(z))| of minor arc type. By combining the large sieve inequality with
a generalization of Vinogradov’s mean value theorem to the setting of F,[t], we obtain a
Weyl-type estimate which avoids the problematic use of Weyl differencing. The reader
will find a detailed explanation of this procedure in Section 3. This approach allows us
to surmount the barriers that previously obstructed viable conclusions when the degree of
f(u) exceeds or is equal to p. The assumption p'k ¢ S(K) in Theorem 1.4 comes from the
use of the Weyl shift in our minor arc estimate. The latter produces terms whose degrees
may lie throughout the set S(K), instead of being restricted to the potentially smaller
set KC (see equation (3.1)). Therefore, we need to consider a mean value estimate whose
associated indices are elements of S(K). Such an “extension of indices” is a common theme
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in the study of Diophantine problems. It occurs, for example, in Vinogradov’s approach
to the asymptotic formula in Waring’s problem, where one relates an equation involving
k-th powers to Vinogradov’s system of equations having degrees ranging from 1 to k (see
[34, Section 5.3] for more details). In the situation of Theorem 1.4, it requires the stronger
assumption pk ¢ S(K), instead of p'k ¢ K. Although, for this reason, we are unable
to prove Conjecture 1.3 in general, we can confirm it in the special case when g = p (see
Corollary 5.4). This follows from a more general form of Theorem 1.4 which we present
in Proposition 5.2 and Corollary 5.3.

Our equidistribution result is applicable in virtually any situation involving some notion
of equidistribution for polynomials in T. In particular, in Sections 6 and 7, we investigate
some special sets in F,[t] closely related to equidistribution and presently less well under-
stood than their integer counterparts. These are van der Corput, intersective and Glasner
sets. An accessible consequence of this work is the following result, which is a consequence
of our Theorem 6.3, established in Section 6.

Theorem 1.9. Let K be a finite set of positive integers, suppose that a, € Fgt] for
r € KU{0}, and define
D(u) = Z ayu”.

reku{0}
Suppose that ®(u) has a root modulo g for any g € Fy[t]\{0}. Suppose further that ay, # 0
for some k € K satisfying pt k and p°k & S(K) for any v € Z*. Then for any subset A
of positive upper density in Fy[t], there exist distinct elements a and o’ of A, and some
z € Fy[t], for which a — a’ = ®(x).

As is well-known, the condition that ®(u) have a root modulo g, for any g € F,[t] \ {0},
is required in order to handle scenarios in which the elements of A all lie in a common
congruence class modulo h, for some h € F,[t]\ {0}. Polynomials ® having a root modulo
g for any g € Fy[t] \ {0} are called intersective. The above theorem is an [F[t]-analog of a
result of Sarkozy [30]. Previously, such a result with no restriction on the degree of ® was
not available, except in cases where ®(0) = 0 [4] (see also [14]). We refer the reader to
Section 6 for an introduction to intersective and van der Corput sets and for the statement
of our results.

Remark 1.10. A result similar to Theorem 1.9 was proved independently by Bergelson and
Leibman [3, Theorem 9.5] using different methods. Bergelson and Leibman also addressed
a notion of intersective polynomials, although their notion differs from ours. It is a non-
trivial problem to determine if these two notions are one and the same. We refer the reader
to Question 1 in Section 6 and the associated discussion for an account of similarities and
differences between our Theorem 1.9 and [3, Theorem 9.5].

Our next application concerns Glasner sets in F,[t]. Generalizing a result of Glasner,
it was shown by Alon and Peres [2] that given a non-constant polynomial ®(u) € Z[ul,
for any infinite subset Y of R/Z and any e > 0, there exists n € Z such that the set
®(n)Y = {®(n)y: y € Y} intersects any interval of length € in R/Z. In view of Example
1.2 and the discussion preceding Conjecture 1.3, it is not surprising that an exact analog
of the result of Alon and Peres over F,[t] is not true in general. We establish the following
[F,[t]-analog of the latter result.
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Theorem 1.11. Let K be a finite set of positive integers, suppose that a, € Fy[t] for
r € KU{0}, and define
O(u) = Z ayu'.

reku{0}

Suppose that ar, # 0 for some k € K satisfying k > 1 with p t k, and furthermore
pk & S(K) for any v € Z*. Then for any infinite subset Y C T and any M € 7™, there
exists © € Fy[t] having the property that the set ®(x)Y intersects any cylinder set of radius
q in T.

This theorem is a restatement in different language of Theorem 7.3, which is itself an im-
mediate consequence of Theorem 7.4. We refer the reader to Section 7 for an introduction
to Glasner sets and for the statement and proof of our results.

We conclude this section with a brief comparison between the results of Bergelson and
Leibman and the results of this paper. As mentioned earlier in Remarks 1.8 and 1.10, some
results in this paper were obtained independently by Bergelson and Leibman [3], at about
the same time as an earlier version of this memoir!, using rather different methods. The
approach of Bergelson and Leibman is qualitative and very general. Their main result,
[3, Theorem 0.3], concerns multi-dimensional tori T¢. It asserts that any (multi-variate)
polynomial sequence in T¢ is equidistributed in a finite union of cosets of a subgroup of
Te¢. It also gives a condition for when a polynomial sequence is equidistributed in the full
torus. However, this condition is not easy to check in practice for a given polynomial and
we do not know if [3, Theorem 0.3] implies our Theorem 1.4. There are two important
features of our own work. First, our method (which relies on the large sieve inequality
and Vinogradov’s Mean Value Theorem) offers scope for quantitative applications. For
example, it was used by Yamagishi in work on Diophantine approximation [38] and War-
ing’s problem over F,[t] [37]. Second, the flexibility of our approach makes it applicable
to variants of Weyl sums in which summands are restricted in various ways. Indeed, in
recent work with Zhenchao Ge [12], the first and second authors extend the methods of the
current paper to study Weyl sums over the set I, of monic irreducible elements in Ft],
thereby obtaining equidistribution results for the sequence (f(7))zer, with concomitant
conclusions for allied Diophantine and combinatorial problems.

This paper is organized as follows. In Section 2 we introduce the preliminary infras-
tructure needed to prove our results. We prove an estimate of minor arc type in Section
3 and derive an extension of this conclusion suitable for our subsequent applications in
Section 4. Then, in Section 5, we apply these estimates to prove Theorem 1.4. Finally, in
Sections 6 and 7, we discuss applications of our equidistribution results to van der Corput,
intersective and Glasner sets over F[t].

Acknowledgements: We are grateful to Vitaly Bergelson for explaining aspects of the
paper [3], and to Bhawesh Mishra for interesting conversations related to the topic of our
paper and directing us to [1]. We are also grateful to the referee for their useful comments.

IThe first version of our paper was posted on arxiv (https://arxiv.org/abs/1311.0892) in November
2013.
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2. PRELIMINARIES

We begin this section by reviewing an orthogonality relation for the function e(-) defined
in Section 1. As is explained in [18, Lemma 7], for example, when a € K, we have

N _
Z e(a) = ¢, when ord{a} < —N, 2.1)
oyl 0, when ord{a} > —N.

Therefore, for any polynomials a, g € F,[t] with g # 0, we have

Z . (m) _ lg|, when CL.E 0 (mod g), (2.2)
g 0, otherwise.

ord x<ord g

As promised in the preamble to the statement of Theorem 1.4, we now interpret the
shadow S(K) of a set of indices K in a manner that eases explicit computations. First,
given j,r € ZT, we write j <, r when p (;) By Lucas’ theorem, the latter holds precisely
when all of the digits of j in base p are less than or equal to the corresponding digits of
r. From this characterization, it is easy to see that the relation =<, defines a partial order
on Z*. Note in particular that if j <, r, then we necessarily have j < r. Equipped with

this notation, we see that
S(K)y={jeZ":j=<,rforsomerek}. (2.3)

This interpretation makes clear the origin of the elements of S(K) occurring in Example
1.6. Thus, in transparent notation, the base 10 number 7 has base 3 expansion (21)3,
and thus S(K) must contain the numbers 7 = (21)3, 6 = (20)3, 4 = (11)3, 3 = (10)3 and
1 = (1)3. Likewise, the base 10 number 11 has base 3 expansion (102)3, and hence S(K)
must contain the numbers 11 = (102)3, 10 = (101)3, 9 = (100)3, 2 = (2)3 and 1 = (1)3.
Finally, the base 10 number 45 has base 3 expansion (1200)3, and hence S(K) contains
the numbers 45 = (1200)3, 36 = (1100)3, 27 = (1000)3, 18 = (200)3 and 9 = (100)3.

Our conclusions concerning estimates of Weyl-type and associated equidistribution re-
sults extend beyond those announced in Theorem 1.4. For ease of reference, we take the
opportunity here to collect together the definitions of certain subsets of the set of indices
K making an appearance later in this paper. First, define

K*={keK:ptkandp’k ¢ S(K) for any v € Z* } . (2.4)

The set I* is therefore the subset of I that is compatible with an application of Theorem
1.4, namely the subset of K consisting of indices, no non-trivial p-power multiple of which
lies in the shadow of K. The set I\ K£* consists of indices not immediately accessible
to Theorem 1.4. However, if we throw out the accessible exponents K* and treat the
remaining set K \ * in isolation, it may well be that a new set (K \ X£*)* can be identified
itself accessible to Theorem 1.4, and this process can be iterated. We are therefore led to
define the set K as follows. We put Ky = I, and inductively define for each n > 1 the set

Kn = Kn1 \ K.
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We then define the set of indices
o
o *
K=JK;. (2.5)
n=0

We show in Proposition 5.2 that the conclusion of Theorem 1.4 may be extended so that
indices k£ remain accessible throughout the set IC, instead of being constrained to lie in C*.

Next, consider a set K C Z*. We say that an element k € K is mazimal if it is maximal
with respect to the partial ordering <,. Thus, for any » € K, one has either r <, k or
else r and k are not comparable. We record for future reference the following observations
concerning the partial ordering =,,.

Lemma 2.1. Suppose that K C Z*. Then the following hold.
(a) The index k is mazimal in S(K) whenever k is maximal in IC;
(b) One has K* C S(K)*;
(c) If k € K*, and j € K satisfies k =, j, then j € K*.

Proof. The maximality property (a) is immediate from the definition of S(K). Property
(b), meanwhile, follows from the definition (2.4) of K* on observing that S(S(K)) = S(K).
Finally, under the hypotheses of part (c), we have p { k and p t (i) By Lucas’ theorem,
it follows that p 1 j. A second application of Lucas’ theorem reveals that for any v € ZT,
we have pk <, p’j. If we were to have p’j € S(K) for some v € Z*, then for some r € K
we would have p'k <, pj <, v, whence k ¢ K*, yielding a contradiction. So p'j ¢ S(K)
for any v € Z™, and we conclude that j € K*. O

In order to state the version of the large sieve inequality that we employ to derive a
minor arc estimate, we must introduce some notation. Suppose that I' C K,,. We say
that the elements of I' are ¢°-spaced in T if, for any distinct elements 71,72 € I', we have
ord {y1 — 72} > 4.

Theorem 2.2. Let K and N be positive integers. Suppose that I' C Ky is a ¢~ -spaced
set in T. Consider a sequence (bgc)xe]yq[t] of complex numbers, and when 8 € Ky, define

S(B) = bae(p).

K

zeGy
Then
D oISO)P < max {g,¢" 1} D (bl
~yel' zeGn
Proof. This is Hsu [15, Theorem 2.4]. O

In order to apply Theorem 2.2, we employ a construction from [28]. It is convenient in
this setting to introduce some further notation.

Definition 2.3. Suppose that k € Z* and g € F,[t] \ {0}. We say that a set of monic
polynomials £ C F,[t] is a (k, g)-set if, for any ¢1,0y € L, one has £ = ¢5 (mod g) if and
only if ¢ = {3 (mod g).
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The next lemma allows us to partition a given finite subset of F[¢] into a small number
of (k, g)-sets.

Lemma 2.4. Let k be a positive integer satisfying p { k. Also, let g € Fy[t], and suppose
that A is a subset of Fy[t], all of whose elements are coprime to g. Then for each € > 0,
the set A can be partitioned into Oy q.(|g|¢) subsets, each of which is a (k,g)-set.

Proof. This is essentially [28, equation (12.4)], though for completeness we include a proof.
We begin with an estimate for the number of solutions of a certain polynomial congruence.
Working under the hypotheses of the statement of the lemma, when a € F,[t], denote by
J(g,a) the number of solutions of the congruence z* = a (mod g) with deg(z) < deg(g)
and (z,g) = 1. Thus, necessarily, one has (a,g) = 1. Then we claim that J(g,a) < k“(9),
where w(g) denotes the number of distinct monic irreducible factors of g. For each a €
Fqy[t], we write {z1(a),...,zs(a)} for the set of solutions of the above congruence, where
J = J(g,a) and the elements z;(a) are distinct for 1 <4 < J. Then A can be partitioned
into the sets

A; = {x € A: there exists a € F,[t] such that J(g,a) > i and z = z;(a) (mod g)},

for 1 < i < k¥ each of which is a (k,g)-set. The conclusion of the lemma follows by
means of the familiar estimate

degg

w(g) <logy d(g) <4 log deg g’

where d(g) denotes the number of divisors of g (see for example [23, Lemma 5]).

We now set about confirming the above claim. For each irreducible polynomial ¢ with
¢ | g, the congruence z* = a (mod £) has at most k solutions. Thus, since p { k, it follows
from Hensel’s lemma that for any r > 2, each solution of ¥ = a (mod ¢) lifts uniquely
to a corresponding solution modulo ¢". Factoring g as a product of powers of irreducible
polynomials in the form HE;j , and counting solutions modulo fgj for each j, we deduce
via the Chinese Remainder Theorem that there are at most k() solutions modulo g. This

completes the proof of the lemma. O

We next state a mean value theorem for a system of equations having indices defined
by the elements of the set S(K) defined in (2.3). For N € ZT, denote by J4(S(K); N) the

number of solutions of the system
w4 tul =0l 40l (5 € SIK)),

with u,, v, € Gy (1 <r <s). Since (ug + -+ + us)? = ul + -+ + u¥, these equations are
not always independent. To obtain independence, we consider the set

S(K) ={ieZ": ptiand p'i € S(K) for some v € Z* U {0}}. (2.6)

We note that when j = p¥i with p { ¢, we have uj1 4ol = (ul +---+ul)P". Tt therefore
follows that Js(S(K); N) also counts the number of solutions of the system

ul - tul =i+ k0l (e S(K)),
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with u,,v, € Gy (1 <r <s). We shall find it useful to define three quantities associated
with this system of equations, namely

P(K) = card S(K)', ¢(K)= max i and s(K)= ) i (2.7)
esky iE€S(K)
Where the intended meaning is unambiguous, we drop mention of K from this notation
without comment. The following result gives an upper bound on Js(S(K); V).

Theorem 2.5. Suppose that s > (¢ + 1). Then for any € > 0, there exists a constant
Cy = C1(s; K5 €;9) > 0 such that

TS N) < Cy(gN)2e e,

Proof. Observe that whenever j € S(K), and i € ZT satisfies ¢ <, j, one has i € S(K).
Therefore, the set S(K) satisfies the inclusion relation defined in Conditionx of [20, Section
1]. The desired conclusion therefore follows as a special case of [20, Theorem 1.1]. O

We remark that a multidimensional generalization of Theorem 2.5 can be found in [20].
Meanwhile, the condition s > (¢ + 1) of this theorem can be refined, as is shown in [29].

We now recall some facts about continued fractions in K., needed in our proof of
Theorem 1.4. For any irrational element « lying in K,,, we can write « as an infinite

continued fraction in the form

1
a=by+ —— = |by; b1, bo,...],
b1 + (,2% | ]
with b; € F,[t] and ordb; > 0 (i > 1). When « is a rational element of K., meanwhile,

one may write a as a finite continued fraction of the form

1
a = by + —————— = [bo; b1, b2, ..., by],
e

bn

with b; € Fy[t] and ordb; > 0 (1 < ¢ < n). We note that continued fraction expansions
in K are uniquely defined. We define two sequences (an)n>—2 and (gn)n>—2 in Fylt]
recursively by putting

a2=0, g2=1, aa1=1 g-1=0,
and for all n > 0,
an =bnan—1+an—2 and g, =bpgn—1+ gn—2.
Then for all n > 0, we have
InGn-1 — Gpgn—1 = (—1)" and [b0; b1,y ..., bn] = an/gn.

The fractions a,/gn (n > 0) are called the convergents of a. An inductive argument shows
that the sequence (ord g,)n>0 is strictly increasing.

Proposition 2.6. Suppose that o € Ko,. Then the convergents a, /g, (n > 0) of a satisfy
the following properties.

(a) One has ord (gna — a,) = —ord gp+1 (n > 0).

(b) If a,g € Fy[t] satisfy ord (9o — a) < —ord g, then a/g is a convergent of c.
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Proof. See [32, Section 1]. O

The conclusion (b) of Proposition 2.6 is sometimes referred to as Legendre’s theorem.
The following lemma concerns elements of K., well-approximated by rationals.

Lemma 2.7. Let o € K. Suppose that there exists a constant k > 1 such that, for all
sufficiently large N, there ezist a € Fy[t] and g € Fy[t]\ {0} with ord (9ae —a) < —kN and
ordg < N. Then « is rational.

Proof. Suppose that « is irrational and a,, /g, (n > 0) are the convergents of «. Since « is
irrational, we have lim,,_,,, ord g,, = co. We take n sufficiently large and put N = ord g,.
By hypothesis, there exist a € Fy[t] and g € Fy[t] \ {0} such that ordg < N and

ord (g —a) < —kN < —ord g, = —N < —ordg. (2.8)

It therefore follows from Proposition 2.6(b) that a/g is a convergent of a. But ordg <
N = ord g,, and the sequence (ord g, )n>0 is strictly increasing, so there exists m € ZTU{0}
with m < n such that a = a,, and g = g,,. However, we find from Proposition 2.6(a) that

ord (ga — a) = ord (gma — an,) = —ord (gm+1) > —ord gn,
and this contradicts (2.8). We thus conclude that « is rational. ]

We end this section by recalling Weyl’s criterion for equidistribution in [y [t].

Theorem 2.8. The sequence (ax)me]yq[t] C Ko is equidistributed in T if and only if for
any m € Fy[t] \ {0}, we have

1
lim —= e(mag)| = 0.
N—oo qN Ig;N ( x)
Proof. This is Carlitz [8, Theorem 4]. O

3. A WEYL-TYPE ESTIMATE

Our goal in this section is the proof of an estimate of minor arc type for a certain
exponential sum. In advance of the statement of this estimate, we recall the definition
(2.4) of the set K.

Theorem 3.1. Fiz q and a finite set K C Z*. There exist positive constants ¢ and C,
depending only on K and q, such that the following holds. Let e > 0 and let N be sufficiently
large in terms of IC, € and q. Suppose that f(u) = ZTEICU{O} ayu” is a polynomial with
coefficients in Koo satisfying the bound

zeGn
for some positive number n with n < ¢N. Then, for each mazimal k € K*, there exist
a € Fy[t] and monic g € Fy[t] having the property that

ord (gag, —a) < —kN +eN +Cn and ordg <eN + Cn.
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We remark that an e-free version of this conclusion could be derived by making use
of major arc approximations to the exponential sum under consideration. We direct the
interested reader to [36, Lemma 2.1] for a model of the kind of argument that would be
required to achieve such a conclusion. Observe also that in Theorem 3.1, the coeflicient
ay plays the role of the leading coefficient of the polynomial, and might be regarded as
the “true” F,[t]-analog of the leading coefficient. Furthermore, clearly, if k is the greatest
element in C, then k is maximal in C. However, a set may have more than one maximal
element. For example, if p = 2 and £ = {1,3,5,9} then 9, 5, and 3 are all maximal
elements of KC and they all satisfy the hypothesis of Theorem 3.1.

We require two auxiliary lemmas in our proof of Theorem 3.1. First, we recall a familiar
lemma employing Weyl shifts of a form suitable for our subsequent deliberations.

Lemma 3.2. Let A be a multiset of elements from Gy, and write |A| for card(A). Then

we have
S elf@) =14 D0 D elfly—a).

€GN zeGy yeA

Proof. For y € Gy, it follows via a change of variable that

S e(f@) = 3 elfly - o).

zeGy €GN
Thus, it follows that
ALY e(f@) =D Y e(fly—z) = D > elfly—u)),
€GN yeAzeGy 2eGn yeA

and the desired conclusion is immediate. O

Consider a finite subset K of Z* and its shadow S(K). Let f(u) = > reufo} Gru” be a
polynomial with coefficients in Ko, and write a for {a, },cx. For any r € K, we have

r r j r—j r
=y =3 ()it + (o
— \J
J2pT
Therefore, if k is maximal in C, then for a fixed x € Gy there exist
Yo = Yo(ap, ;) € Koo and v =v(asz) e Ko (5 € S(K)N\ {k})

such that

fy—z)=arly—a) + Y aly—o)+a=ay+ D v+ (1)

rek\{k} JES(ON\{k}

The next lemma provides a conclusion occurring within the argument of the proof of [28,

Lemma 12.1].

Lemma 3.3. Let M € Z* with M < N, and let k € Z* with p { k and ap, € K.
Suppose that a, g € Fy[t] with (a,g) =1 and ord (gay, — a) < —kM, and suppose further
that either ord (9o, — a) > M — kN or ordg > M. Finally, let Lo be a (k,g)-subset
of monic polynomials of degree M. Then the points {ogl¥: 1 € Lo} are spaced at least
min{|g|~*, *M=NY apart in T.
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Proof. Suppose that 1,1y € Lo with 1 # Il (mod g). Then, since Ly is a (k, g)-subset, we
have I} # 15 (mod g). Write ay = a/g + 3. Then

ord {a (I — 15)} = ord {a(lf — 1§)/g + BT — 15)}.
Since ord (g8) < —kM and ordly = ordly = M, we have
ord {B(I¥ —15)} < =kM —ord g + kM = —ord g.
Also, since I¥ # 15 (mod g¢) and (a,g) = 1, we have
ord {a(l¥ —15)/g} > —ordg.
We therefore deduce that
ord {oy, (I¥ — 15)Y = ord {a (1} — 15)/g} > —ord g. (3.2)

We now divide into cases, according to the size of ord g.

Case 1. Suppose first that ordg > M. In this case, the elements of Ly are distinct
(mod g). Consequently, by (3.2), the points axl* are spaced at least |g|~! apart in T.

Case 2. If instead ordg < M, then the hypotheses of the lemma ensure that one has
ord (gag, —a) > M — kEN. When [y,ly € Ly satisfy the condition [; # lo (mod g), then it
follows from (3.2) that alf and al} are spaced at least |g|~! apart in T. Otherwise, when
l1 = I3 (mod g), the bounds ord (gay, — a) < —kM and ord (gax — a) > M — kN lead to
the relation

ord {ay,(If — 1)} = ord {(ay, — a/g)(If — 15)}
= ord ((ax — a/g) (I} — 1))
> M — kN — ord g + ord (If —15). (3.3)
We note that
ord (I¥ —15) = ord (Iy — lp) +ord (¥ + 182y -+ 1571,

If iy # 1y and I3 = lp (mod g), we have ord (I; — l2) > ordg. Furthermore, since the
elements of £y are monic and of degree M, the term l’f_l + l’f_2lg +- 4 l§_2 is of degree
(k — 1)M with leading coefficient k. Since pt k, we have

ord (VM + 15 2l + -+ 157 = (k— 1) M.
On combining the above two estimates, we obtain the lower bound
ord (I¥ —15) > ord g + (k — 1) M,
and hence we infer from (3.3) that
ord {ag (I¥ — 15)} > k(M — N).

In this case, therefore, we find that al¥ and al§ are spaced at least ¢#(M—N)

apart in T.

Combining the bounds obtained in the two respective cases, we conclude that for any dis-
tinct elements Iy, lo € Lo, the points ail¥ and oyl% are spaced at least min{|g| ™!, ¢*(M~N)}
apart in T. This completes the proof of the lemma. ([l

We are now ready to prove Theorem 3.1.
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Proof of Theorem 3.1. We first note that should Theorem 3.1 hold for the polynomial
fu) —ag = Y ¢ aru”, then it holds also for f(u). There is consequently no loss of
generality in assuming that ap = 0. Next, let k£ be a maximal element of K satisfying p { k
and p'k € S(K) for any v € ZT. Let oy € Ky and consider M € Z* with 2M < N. By
Dirichlet’s approximation theorem in F,[t] (see [18, Lemma 3]), there exist a € F,[t] and
monic g € Fy[t] with

(a,g) =1, ord(gar —a) < —kM and ordg < kM.
Suppose that either
ord (ga, —a) > M — kN or ordg > M. (3.4)

We will show that, for M suitably chosen, such an assumption leads to an upper bound

for | 3 ,ccy e(f ()],

theorem.

Let £ be the set of monic irreducible polynomials [ satisfying ordl = M and (I, g) = 1.
Since ordg < kM, the polynomial g has at most k irreducible factors of degree M. It
therefore follows from the prime number theorem in F,[t] that when M is sufficiently large
in terms of £ (and thus also K) and ¢, we have

MyoM) < card(£) < ¢™ /M.
Let A be the multiset
A={yeGy:y=Iwwithl € L and w € Gy_p}, (3.5)

where the multiplicity of each element y of A is equal to the number of its representations
y = lw. Then

A = card(A) > ¢¥ M - M /(2M) = ¢ /(2M).
By Lemma 3.2 and (3.1), we therefore find that

Z e(f(x))| <2Mq™N Z Ze(aky + Z ’yj(a;x)yJ)
€GN zeGN yeA JES(K)\{k}
< 2M max el apy® + v (e )y )|.
zeGyn %;4 ( k jES(zIC):\{k} J )

For j € S(K)\ {k}, fix 7; = vj(a; ) to be the element of K., corresponding to the choice
of z which maximizes the expression on the right hand side here.

Recall the definitions (2.7) of ¢ and ¢, and let s be a positive integer with s > 1o + 1.
Then in view of (3.5), an application of Holder’s inequality delivers the bound
2s

> ef@)| < eMEE@/MPETY ST et YD )

2€Gy lel '"weGN_m JES(K\{k}

2s

Let € > 0 be arbitrary. By Lemma 2.4, there exists a constant C; = C1(k, q,€) > 0 such
that the set £ can be divided into L < C1|g|® subsets Ly, ..., L1, having the property that
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L; is a (k, g)-set for 1 <i < L. Then there exists r € Z* with r < L for which

2s
> elf(x)] < 22M(gM)* ! Cilg| W, (3.6)
zeGy
where )
U = Z Z e(ak(lw)k + Z vj(lw)j) (3.7)
leLr ' weGN - FESUIO\{K}

Let S(K)’ be the relation of the shadow set defined in (2.6). For h = (h;);es(cy with
hi € Fy[t], let b(h) denote the number of solutions of the system

wi+ - +wl=h (ieSK)),
with w, € Gy (1 <7 < 's). Fori € S(K), we have h; € G;y_ps). Furthermore, for
j=p"i € S(K), with i € S(K)' and v € Z", we have w] + -+ + wl = hfv. Therefore, by
defining h; = h? U, we see that b(h) also counts the number of solutions of the system
wl+-wl =h; (jeSK)), (3.8)

with w, € Gy_p (1 < r < s). We remark here that since p t k, we have k € S(K)".
Moreover, since p'k ¢ S(K) for any v € ZT, the equation of degree k in (3.8) is independent
of the remaining equations of degree j € S(K)\ {k}. Therefore, we deduce from (3.7) that

2
U= Z‘ S bme(aphid®+ >0 k)|
lel, hiGGi(N_M) JGS(]C)\{k}
1€S(K)
On recalling the definition (2.7) of k(K), we have
Yo i=r(K) -k
i€S(K)\{k}
Thus, we may conclude via Cauchy’s inequality that
2

R CE D SEED Sl SR SN

hi€Gy(n— ) €LY ' hkEGr(N_ 1)
i€S(K)"\{k}

. (3.9)

Since p t k, it follows from Theorem 2.2 and Lemma 3.3 that

2
2] S bWl < (ol + V)Y )P

Furthermore, by considering the underlying equations and recalling our assumption that
s > p+1), it follows from Theorem 2.5 that there exists a constant Co = Cy(s; K;€;¢) > 0
having the property that

> S )2 < J(S(K); N — M) < Cy(gN—My2s—n(k)+e

hi €GNy PEEGR(N—11)
i€S(K)\{k}
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Since ordg < kM and 2M < N, we may combine these estimates within (3.9) to obtain
the bound

U < 02(qN—M)2s—k+e(|g| + qk(N—M))
< 202(qN—M)2s+e'
We substitute this bound into (3.6), again noting that ord g < kM, to obtain the estimate

> elf(@)

zeGy

< 2qN (20102M(qM)—1(qu>e (qN—M)e) 1/(28)_

Therefore, there exists a constant C3 = C5(s;/K;€;9) > 0 such that for values of M
sufficiently large in terms of I, € and ¢, one has

Z e(f(x))‘ < qN(C3(qM>_1(qN)ke)1/(2s)'

€GN

We now make the specific choice

M = |log,C3 + kNe+2sn+1]. (3.10)

> elf(@)

€GN
which contradicts the lower bound assumed in the statement of Theorem 3.1. In view of
the assumed bounds (3.4), this contradiction forces us to conclude that there exist a € F|t]
and monic g € Fy[t] such that

ord (gay, —a) < —kN + M and ordg < M.

Take s = 1¢+1), and then put ¢ = 1/(8s) and C' = 2s. By assuming that e < 1/(4(k+1)),
we see that the requirement 2M < N is satisfied when 0 < 1 < ¢N, provided that N is
sufficiently large in terms of IC, € and q. We note that ¢ and C are then constants depending
only on K and ¢q. Moreover, when N is sufficiently large, it follows from (3.10) that

M < N(k+1)e+2sn < N(k+1)e+Cn.

Since € > 0 is arbitrary, the conclusion of Theorem 3.1 follows. O

Then it follows that

Nf
<q' ",

4. EXTENDING THE WEYL-TYPE ESTIMATE TO OTHER COEFFICIENTS

In this section, we extend Theorem 3.1 to indices which are not maximal. In preparation
for the statement of this conclusion, we recall the definition (2.4) of K*.

Theorem 4.1. Fiz q and a finite set K C Z*, and consider an integer k € K*. There
exist positive constants cp and Cy, depending only on k, K and q, such that the following
holds. Let € > 0 and let N be sufficiently large in terms of K, € and q. Suppose that
flu) = ZTGICU{O} a,u” 1s a polynomial with coefficients in Ko satisfying the bound
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for some positive number n withn < ¢, N. Then, there ezist ar, € Fy[t] and monic g, € F,t]
such that

ord (grag — ar) < —kN + €N + Cxn and ord gy < eN + Cgn.

Proof. Without loss of generality, we can assume that g = 0. We prove this theorem by
downward induction on k € K* with respect to the partial order =<,,. If k is maximal in I,
then the conclusion is immediate from Theorem 3.1. Suppose that the conclusion of the
theorem has been established for any h € K* with £ <, h and h # k. Define
Ho={heK:k=<p,hand h #k} and H; =K\ Ho. (4.1)

Then it follows from Lemma 2.1(c) that Ho C K*. For h € Hy, let ¢;, and C}, be the positive
constants whose existence is assured by the inductive hypothesis, as a consequence of the
conclusion of Theorem 4.1. Let

c:min{ch:he”Ho} and C = ZCh.
heHo

Suppose that for some positive number 1 with n < c¢N, one has

> elf@)

zeGn

> qN_n. (4.2)

Let € > 0 be arbitrary, and let N be sufficiently large in terms of I, € and q. Then, by the
inductive hypothesis, for any h € H there exist aj, € F,[t] and monic g, € F,[t] such that

ord (ghan — ap) < —hN + [Ho|'eN + Cypn and  ord gy < [Ho| 'eN + Cun.

Define
g= H gn and by =ay H gj-
heHo JEHO\{h}
Then ¢ is monic and we have
ord (gap, —bp) < —hN +€eN +Cn and ordg <eN +Cn. (4.3)

Consider a positive integer M with M < N — ordg. We rewrite the set Gy first
as a union of arithmetic progressions modulo g, and then subdivide these arithmetic
progressions into subprogressions of appropriately small length. Thus we obtain

Gy = {gv +w:v € GN_grag and w € Gordg}
= {g(th +y)+w: 2 €GN_M-ordg, ¥ € Gy and w € Gorag -

For each z € GN_pr—ordg and w € Gorg 4, Write s = gt"z + w. Then ords < N and we
see that the set Gy can be partitioned into ¢V~ blocks of the form

By ={gy+s:ycCGu}.
Then it follows from the lower bound (4.2) that there exists a block By such that

> e(f(w))’ =3 e(flgy+9)| =" (M) =M (4.4)

x€Bs yeG
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By reference to (4.1), we see that

Z e(f(gy +s)) Z 6(2 an(gy + )" + Z ah(gy—i—s)h)‘.

yeGs yeGpr heHo heH
Write 8y, = ap — by /g (h € Hp). Also, note that

(5o

heHo

is a constant independent of y, and

e(z bgh((g —i—s)h—sh)) =1

heHo
Then we see that
S clstor+ )| = | X o X sl + o -+ X antan+9") | @9
yeGpr yeGs heHo heH

For any y € Gj; and h € Hy, we have
ord ((gy + s)h — sh) < ord (gy) + (h — 1) - max {ord (gy), ord s }
<ordg+ M + (h—1)N.
It therefore follows from (4.3) that
ord (B ((gy + s)h — sh)) < (=hN +eN+Cn—ordg)+ (ordg+ M + (h—1)N)
=eN+Cn+M—N.

We now make the specific choice
M=|(1-¢N—-Cn-—1].

Then it follows that
eN+Cn+M—-N < -1,

and hence

ord (B ((gy + s — sh)) < -1.
Therefore, we have

e< Z Br((gy +s)" —s") + Z ap(gy + s)h> = e< Z an(gy + s)h>. (4.6)
heHo heH, heH1
Combining (4.4), (4.5) and (4.6), we obtain the lower bound

We note here that from (4.3) we have ord g < e N 4+ C7n, and thus for N sufficiently large,
the above choice of M satisfies 0 < M < N —ordg.

In view of the definition (2.3), we have

danlgy+s) = > v, (4.8)

heH, JES(H1)U{0}
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for suitable coefficients v; = v;(a, g,5) € K. Since k € K* is maximal in H,, it follows
from Lemma 2.1 that k is maximal in S(#H;) and k € S(H1)*. Furthermore, the coefficient
of ¥* in the polynomial on the left hand side of (4.8) is axg*. Note also that we may suppose
the parameter M to be sufficiently large in terms of K, € and ¢. Thus, by Theorem 3.1,
there exist positive constants di and D, having the property that whenever the lower
bound (4.7) holds for some positive number n with n < diM, then there exist aj € Fyt]
and monic g € Fy[t] such that

ord (Grarg® — ) < —kM 4+ eM + Dy and  ord gy < eM + Dyn.
Let gx = grg” and aj, = @. Since (1 —€)N — Cn—2 < M < N, for N sufficiently large,
we have
ord (grou, — ag) < —k((1 — )N — Cnp—2) + eN + Dyp
< —kN + e(k+2)N + (kC + Dg)n
and, on recalling (4.3),
ord gr, < (eM + Dyn) + k(eN + Cn) < e(k + 1)N + (kC + D).

Since € > 0 is arbitrary, the conclusion of Theorem 4.1 follows for k by taking c; =
min{c,d;} and Cy = kC + Dy. This confirms the inductive step, and thus the proof of
the theorem is complete. O

One can extend Theorem 4.1 to indices that are not in £*. Recall the definition (2.5)

of K. Then by induction on n, one can apply the method of the proof of Theorem 4.1 to
obtain the following conclusion.

Proposition 4.2. Fiz q and a finite set KK C Z*. There exist positive constants ¢ and C,
depending only on KC and q, such that the following holds. Let e > 0 and let N be sufficiently
large in terms of IC, € and q. Suppose that f(u) = Zremu{o} a,u” is a polynomial with
coefficients in Koo satisfying the bound

> elf(@)

zeGn

Nf
>q ",

for some positive number n with n < c¢N. Then, for any k € IE, there exist aj, € Fy[t] and
monic g € Fglt] such that

ord (gyax, —ap) < —kN +eN +Cn and ordgy < eN + Ch.

It seems that there is no simple description of the set K. In many cases, it is apparent
that KC is larger than K£*. For example, if p > 3 and K = {1,3,3p+ 1} (as in the first case
of Example 1.7), then

S(K) ={1,2,3,p,p+1,2p,2p+ 1,3p,3p + 1},
and so K* = {3p+1}. Meanwhile, since £; = {1, 3}, one finds that K} = {1, 3}, and since
S(Ky) = {1,2,3}, it follows from (2.5) that L = K. More generally, if (k,p) = 1 for any

k € I, then it can be proved by induction that K = K. On the other hand, if p > 3 and
K = {3,4p} (as in the second case of Example 1.7), then

S(K) ={1,2,3,p,2p, 3p,4p},
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and hence K* = ). Thus we find that in this case, one has K = (). Therefore, we cannot
go as far as proving Conjecture 1.3 by using this method.

5. EQUIDISTRIBUTION OF POLYNOMIAL SEQUENCES

In this section, we first prove the equidistribution result recorded in Theorem 1.4, and
then discuss a variant of this theorem. The following lemma is essential for our proof of
Theorem 1.4. We again recall the set of exponents K* defined in (2.4).

Lemma 5.1. Fiz q and a finite set K C Z*. Let f(u) = >_rexufo} Qru” be a polynomial
with coefficients in Ko. For k € K, suppose that k is mazimal in IC and oy, is irrational.
Then, for any fized n > 0, there exists No € Z such that, for any s € Fy[t], we have

S ey + s>>] < %o,

yEGN,

Proof. By way of deriving a contradiction, suppose that n > 0, and that for any N € Z™T,
there exists sy € Fy[t] such that

S ettt o] (5.1)

yeG N

We note that for each s € Fy[t], the only monomials y" having non-zero coefficient in the
expansion of f(y + s) are those with r € §(K). Since k € K£* is maximal in K, it follows
from Lemma 2.1 that k is maximal in S(K) and further that k£ € S(K)*. Moreover, the
coefficient of y* in f(y + s) is ap. Applying Theorem 3.1 with e = 1/3, we find that there
exists a constant C' > 0 such that, for N sufficiently large in terms of I and ¢, there exist
a € Fy[t] and monic g € F,[t] having the property that

ord (gay —a) < —kN + N/3+Cn and ordg < N/3+Ch.

For each sufficiently large M € Z™, we apply these inequalities with N = |3(M — Cn)].
Thus, we have

ord (gag, —a) < —(3k —1)M + (3kCn+k —1/3) < —=3M/2 and ordg < M.

Since these inequalities hold for all sufficiently large M € Z*, we deduce from Lemma 2.7
that «y is rational, contradicting the hypothesis that «y is irrational. Consequently, the
assumed lower bound (5.1) is untenable, and the conclusion of the lemma follows. O

We are now equipped for the proof of Theorem 1.4.

Proof of Theorem 1.4. 1t is apparent that there is no loss of generality in assuming that
ap = 0. Let k € K* and suppose that ay, is irrational. We prove Theorem 1.4 by downward
induction on £ with respect to the partial order <,,. Suppose first that k is maximal in K
and n > 0. Let Ny be the natural number provided in the conclusion of Lemma 5.1. For
any N > Ny, we can partition the set Gy into ¢~ blocks of the form

Bs={y+s:yeGnpn},
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where s = N0z for some z € Gy_ N,- Therefore, it follows from Lemma 5.1 that

> 6(f(ﬂt’))‘ < ¢V M sup

2€Gy s€F[t]

e(fly + 8))‘ < gV Noghomn — gN=n,
yEGN,
Since 1 > 0 is arbitrary, it follows that

1

lim —
N—oo qN

zeGn

We note that for any m € Fy[t] \ {0}, this relation holds with f replaced by mf, where
mf is the polynomial

By reference to Theorem 2.8, we therefore conclude that Theorem 1.4 holds in the special
case in which & is maximal in K.

Suppose next that the theorem is established for any A € K* with k <, h and h # k.
We define Hy and #H; as in (4.1). Note that, should there exist h € Hy for which ay, is
irrational, then Theorem 1.4 follows from the inductive hypothesis. Therefore, it suffices
to consider the situation in which all of the coefficients «y, (h € Hy) are rational. Let g

be the common denominator of the coefficients «y, for h € Ky. Then for any s € [F4[t] and
M € Z", we have

> elflgy + S))’ =

> 6(2 an(gy + 8)h> ’

yeGm yEGy  “hek
= Z e(z ah<(gy+s)h—sh>+ Z ah(gy—ks)h)’.
yeGas heHo heH

Here, we have made use of the observation that
e( Z ah(—sh)>
heHo

is a unimodular constant independent of y. Since the definition of g implies that gay, € Fyt]

for each h € Hp, we have
6< > O‘h((gyJFS)h - Sh)> =
heHo

> e< > anlgy + 8)h> ‘ (5.2)

yE(GM heH,

Given N € Z* with N > ord g, we define the integer M € Z* by putting M = N —ord g.
Then we can partition the set Gy into ¢~ blocks of the form

It follows that

> elflgy+9)

yeG

Bs ={gy+s:y€Guy},
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where s € Gorqg. We now deduce from (5.2) that

> " e(f(@)| <" M max | > e(flgy+5))
SEGordg
zeGy yeG s
_ N-M h
=" max > e< > anlgy +9) ) : (5.3)
yeGs heH,

We observe that for each s € Fy[t], the only monomials y" having non-zero coefficient
in the expansion of
> anlgy +5)" (5.4)
heH1
are those with 7 € S(H1). Since k € K* is maximal in H;, we discern from Lemma 2.1
that k is maximal in S(#H;) and k € S(H1)*. Furthermore, the coefficient of y* in the
polynomial (5.4) is ayg*, which is irrational since oy, is irrational. We are now in the
situation already handled in the first part of the proof, and thus, we have

3 e(z ah<gy+s>h)‘—o.

yeG s heH1

li L
11m —
M—o0 qM

Then it follows from (5.3) that

lim —
N—oo qN

zeGn

We again note that for any m € F,[t] \ {0}, this relation remains valid with f replaced
by mf, and thus Theorem 2.8 shows the sequence (f()).er,[; to be equidistributed in T.
This confirms the inductive step, and thus the proof of the theorem is complete. [l

By an observation similar to the one made following the proof of Theorem 4.1, one can
apply the method of the proof of Theorem 1.4 to obtain the following result. Here, once
again, we recall the definition (2.5) of the set of exponents K.

Proposition 5.2. Fiz q and a finite set K C Z*. Let f(u) = >orekufo} ru” be a

polynomial with coefficients in Ko. Suppose that oy is irrational for some k € KC. Then
the sequence (f(z))zer, [ is equidistributed in T.

Of notable significance in this conclusion is the situation in which (k,p) = 1 for all
k € K, for then we have K =K. Using the latter observation, we now show that the above
proposition implies Conjecture 1.3 in the special case ¢ = p. For the rest of this section,
we assume that ¢ = p.

Let T': Koo — T be the map defined in (1.1). Using the fact that a” = a for any a € F),
one can show that for any x € [F,[¢], one has

e(axP) =e(T(a)x).
Therefore, for any x € F,[t] and v € Z* U {0}, we have
e (azf") = e(T"(a)x), (5.5)
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where T is the v-fold composition of T'. Let
flu) = Z a,ru” € Kooul,
reKu{0}
and let
Z={keZ": (k,p)=1and p’k € K for some v € Z" U {0}}. (5.6)
For each k € Z, define
Sk(f) = D T"(apnn)- (57)

v>0
pUkeK

Then it follows from (5.5) that for any = € [F,[t], one has
() = e[ XSt + o). (5:5)
kel

Since (k,p) = 1 for any k € T, we have Z = Z. Let m € F,[t] \ {0}. Then Proposition 5.2
shows that whenever there exists k € Z such that Si(mf) is irrational, one has

> e(z Si(mf)zr + mao) ‘ =0. (5.9)

€GN kel

5 ctmf)| = fim

N—o0 qN

Therefore, on making use of Theorem 2.8, we may conclude as follows.

Corollary 5.3. Fiz ¢ = p and a finite set K C ZT. Let f(u) = > orekufo} Qru” be a
polynomial with coefficients in Ky,. Suppose that the polynomial f satisfies the property
that for some k € I, we have

Si(mf) is irrational for any m € F,y[t] \ {0}. (5.10)

Then the sequence (f(x))qer, [ is equidistributed in T.

We remark that since the map T does not commute with multiplication by m, the
condition (5.10) may not be described in simpler terms. This condition might also be
unnecessary for the equidistribution of (f(z))ser,[j- Regardless of these observations,
suppose that k € K and p’k € K for any v € Z*. Then Si(f) = oy and Sk(mf) = may
for any m € F,[t] \ {0}. Therefore, should aj, be irrational, then the condition (5.10) is
satisfied. This simple observation establishes Conjecture 1.3 in the special case ¢ = p. We
can formulate this conclusion more precisely in the following corollary.

Corollary 5.4. Fiz ¢ = p and a finite set K C Z*. Let f(u) = ZTGKU{O} au” be a
polynomial with coefficients in K. Suppose that oy, is irrational for some k € K satisfying
p 1 k and furthermore p’k & K for any v € Z*. Then the sequence (f(2))eer, s
equidistributed in T.
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6. VAN DER CORPUT AND INTERSECTIVE SETS IN F,t]

6.1. Background and statement of results. We define the upper density d(A) of a set
A C ZT by means of the relation
- card(AN{l,...,N})

d(A) = limsu
( ) N~>oop N

We say that A is dense if d(A) > 0. A set H C Z7 is called intersective if, for any dense
subset A C ZT, there exist a,a’ € A such that a —a’ € H. Thus, the set H is intersective
if for any dense subset A of positive integers, one has H N (A — A) # 0. In the late 1970s,
Sarkézy [30] and Furstenberg [11] proved independently that the set {n?: n € Z*} is
intersective. Their proofs make use of the circle method and ergodic theory, respectively.
Sarkozy went on to prove that the sets {n?—1:n € ZT\{1}} and {p—1: p € Z is prime}
are also intersective (see [31]). We refer the reader to a survey paper of the first author
[21] for results and open problems regarding intersective sets.

In a seemingly unrelated context, motivated by van der Corput’s difference theorem,
Kamae and Mendes France [16] made the following definition. A set H C Z* is said to be
van der Corput if the sequence (ay)22; is equidistributed (mod 1) whenever the sequence
(@nt+n — an)p2y is equidistributed (mod1) for each h € H. Therefore, it follows from van
der Corput’s difference theorem that Z* is van der Corput. However, there are sparser
sets which are van der Corput. In [16], Kamae and Mendés France proved that any van der
Corput set is intersective. Their result gives another approach to intersective sets. The
converse of their theorem is not true. In [6], Bourgain constructed a set that is intersective
but not van der Corput.

Let ®(u) € Z[u] and consider the set {®(n): n € Z}NZ*. We note that for any g € Z*,
the set of all multiples of g is dense. Therefore, if the set {®(n): n € Z} NZ" is van
der Corput (and hence intersective), then g divides ®(n) for some n € Z. The following
result of Kamae and Mendes France [16] shows that the divisibility condition is not only
necessary, but also sufficient.

Proposition 6.1. Let ®(u) € Z[u] \ {0}, and suppose that ® has a root (mod g) for any
g € Z*. Then the set {®(n): n € Z} NZ*' is van der Corput (and hence intersective)
whenever it is infinite.

Notice that these notions of intersective and van der Corput sets, and the concommitant
conclusions, extend readily to the situation that A C Z and H C Z \ {0}. Given the
similarity of Z and F,[t], it is natural to study analogous notions in F,[t]. We define the
upper density d(A) of a set A C Fy[t] by means of the relation

d(A) = limsup —card(ANﬂ Cn) .
N—o0 q
We say a set A is dense if d(A) > 0. A set H C F,[t] \ {0} is called intersective if,
for any dense subset A C Fg[t], we have H N (A — A) # 0. A set H C Fylt] \ {0} is
said to be van der Corput if the sequence (az),cr, [y is equidistributed in T whenever the
sequence (agz4h — az)zer, [ 18 equidistributed in T for each h € H. Many characterizations
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of intersective and van der Corput sets carry over from Z to Fy[t], and we refer the reader
to the Ph.D. thesis of the first author [22, Chapter 2] for an exposition. In particular, in
[22, Theorem 2.3.5], it was proved that any van der Corput set in [Fy[t] is intersective. It
is an interesting problem to construct a set in F,[t] that is intersective but not van der
Corput (Bourgain’s construction in Z is very specific to the real numbers).

We now consider explicit examples of intersective and van der Corput sets in [F,[t] that
are of arithmetic interest, similar to the results of Sarkozy and Furstenberg. In the work
of the first two authors [24], intersectivity is obtained, in a quantitative sense, for the set
{#%: z € F,4[t]} \ {0}. Furthermore, in joint work of the first author with Spencer [25],
intersectivity, in a quantitative sense, is also established for the set

{l +r: 1 €F,yt], with [ monic and irreducible},

for any fixed r € F, \ {0}. Motivated by Proposition 6.1, we formulate the following
conjecture.

Conjecture 6.2. For ®(u) € Fy[t,u] \ {0}, suppose that
for all g € Fy[t], there exists x € Fy[t] such that ®(x) =0 (mod g). (6.1)
Then the set {®(x): x € F[t]} \ {0} is van der Corput (and hence intersective).

Again, the divisibility condition is easily seen to be necessary. Quite surprisingly, this
conjecture remains an open problem when the degree of ® is greater than or equal to
p. When ®(0) = 0, it follows from the polynomial Szemerédi theorem for modules over
countable integral domains, proved by Bergelson, Leibman and McCutcheon [4], that
the set {®(z): z € Fy[t]} \ {0} is intersective. Recently, using the polynomial method of
Croot, Lev and Pach [9], it was shown by Green [14] that this conjecture holds in a strong
quantitative sense, under the condition that ®(u) € F4[u] and the number of roots of ®(u)
in [F, is coprime to g. The latter constraint was recently removed by Li and Sauermann
[26] (see also [5] for a simpler argument). We note that the condition (6.1) is weaker than
demanding that ®(u) has a root in F,[t]. Indeed, by analogy with well-known examples
over the rational integers, we observe that when p > 2 and a and b are distinct irreducible
polynomials of even degree in F,[t] with b a quadratic residue modulo a (and hence also
a a quadratic residue modulo b), the polynomial ®(u) = (u? — a)(u? — b)(u? — ab) fails
to have roots in [F,[t], yet nonetheless possesses solutions modulo g, for all g € Fp[t]. We
direct the reader to Li [27, Example 1] and Yamagishi [38, Appendix A] for examples of
polynomials ® satisfying (6.1) but not having roots in F,[t].

Equipped now with our equidistribution theorem, we make some progress in this section
towards Conjecture 6.2. In Section 6.3 we prove the following conclusion, which is slightly
stronger than Theorem 1.9. Here, we recall the definition (2.4) of the set of exponents IC*.

Theorem 6.3. Let K be a finite set of positive integers, suppose that a, € Fy[t] for
r € KU{0}, and define

Suppose that © satisfies the condition (6.1). Suppose further that ay, # 0 for some k € K*.
Then the set {®(x): x € Fy[t]} \ {0} is van der Corput (and hence intersective).
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We remark that, as a direct consequence of Theorem 6.3, one finds that Conjecture 6.2
holds whenever the degree of ® is coprime to p. Moreover, in view of Proposition 5.2, the
condition in the theorem requiring ay # 0 for some k € K* can be relaxed to one requiring
only that aj # 0 for some k € IC, where K is defined as in (2.5).

By assuming the stronger conditions ¢ = p and ®(0) = 0, we obtain the following result
in Section 6.3.

Theorem 6.4. Let ®(u) € Fplt,u] \ {0}, and suppose that ®(0) = 0. Then the set
{®(x): z € Fy[t]} \ {0} is van der Corput (and hence intersective).

We remark here that the conclusion of Theorem 4.1 can be applied to prove intersectivity
of the set {®(x): z € F,[t]} \ {0} in Theorem 6.3 in a quantitative sense, in a manner
similar to that employed in the proof of [24, Theorem 3|. However, we opt to make use of
Theorem 1.4 since the deduction is quicker, and the van der Corput property is a stronger
notion than intersectivity.

6.2. Comparison with Bergelson-Leibman’s result. Bergelson and Leibman [3] also
applied their equidistribution result to study intersective sets in [Fy[t]. As such, our results
in this section overlap with the conclusion of their Theorem 9.5, though they are not iden-
tical. Before proceeding with the proofs of Theorems 6.3 and 6.4, we make a comparison
between these theorems and [3, Theorem 9.5], which we rephrase below.

Theorem (Bergelson-Leibman). Let ®(u) € Fy[t,u] \ {0}, and suppose that ®(0) = 0.
Then the set {®(z): z € Fy[t]} \ {0} is intersective. Furthermore, the same conclusion
holds provided that ® satisfies the condition®3 that

for all subgroups A of finite index in (Fy[t], +), there exists x € Fy[t] such that ®(x) € A.
(6.2)

Bergelson and Leibman proved this theorem following the proof by Furstenberg [11]
of Sarkozy’s theorem in Z (and in fact they proved a Khintchine-type theorem for single
recurrence). On the other hand, our proofs of Theorems 6.3 and 6.4 follow the treatment
of Kamae and Mendes France of van der Corput sets in Z. Since in F,[t], van der Corput
sets and intersective sets are (conjecturally) two distinct notions, our own results and
those of Bergelson and Leibman [3, Theorem 9.5] do not imply each other.

The condition (6.2) is clearly necessary in order that the set {®(z): x € F[t]} \ {0} be
intersective. It is also easy to see that the condition (6.2) (an algebraic condition) implies
(6.1) (an arithmetic condition). We note, however, that there are plenty of subgroups of
finite index in the additive group F,[t] which are not of the shape gFF,[t] for any g € F]t].
For each irrational o € Ko, an example of such a subgroup is the Bohr set consisting

2See the remark in [3, p. 949], though there is a misprint in the definition of intersectivity therein.

3Just prior to the submission of this paper, Ackelsberg and Bergelson uploaded a paper [1] to the arXiv
in which some correction and clarification concerning their notion of intersectivity over Fq[t] is made (see
the first footnote on page 2 of [1] and the accompanying discussion). Nonetheless, at this time we remain
unable to identify a source in the literature for a proof of Conjecture 6.2, and it seems fair to describe the
current status of the notion of intersectivity associated with this perspective as being in a state of flux.
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of all poynomials x € F[t] satisfying the condition ord {ax} < —1. We cannot help but
wonder if the conditions (6.2) and (6.1) are in fact the same condition. (This issue does
not arise in Z, since all subgroups of finite index of Z are of the form aZ for some a # 0.)

Question 1. Does the condition (6.1) imply (6.2)? In other words, as far as polynomials
in Fyt] are concerned, does “meeting all subgroups of arithmetic nature” imply “meeting
all subgroups of finite index”?

6.3. The proofs of Theorems 6.3 and 6.4. Among the many characterizations of van
der Corput sets in FFy[t], we will apply the following one found in [22, Theorem 2.4.5
(2)]. Let u be a finite non-negative measure on T. We say that p is continuous at 0 if
p({0}) = 0. For any h € F,[t], the Fourier transform of y1 is denoted by fi and defined by

i) = [ e(=ah) dufe).
We say that i vanishes on a set H C Fy[t] if fi(h) = 0 for all h € H.

Theorem 6.5 (Kamae & Mendes France, Ruzsa). A set H C Fy[t]\ {0} is van der Corput
if and only if any finite measure p on T, with @ vanishing on H, is continuous at 0.

We are now equipped to prove Theorems 6.3 and 6.4.

Proof of Theorem 6.3. Suppose that ®(u) = >jcxcuqoy art” € Fyt, u] has a root (modg)
for any g € Fy[t] \ {0}. Suppose further that aj # 0 for some k € K*. Let

H = {®(z): x € F ]} \ {0}. (6.3)

Also, let o« € T be irrational, and consider s € F,[t] and monic g € F4[t]. By the
orthogonality relation (2.2), we have

iN > 6(04‘1>(90))=(;\, Ze(o@(gﬁ))i 3 6<y(96—8)>

ol G2, g

1 1 y(z — s)
SN e<a<p<x>+>.
9 yGGordg q zeGn 9

We observe that the coefficient of 2* in the polynomial a®(z) + y(x — s)/g is either aay
or aag + y/g, according to whether £ # 1 or k = 1, and in either case this coefficient is
irrational. Therefore, it follows from Theorem 1.4 that for any y € Ggrq 4, we have

Z e<a<I>(a:) + y(xg—s))‘ =0,

zeGn

lim —
N—o0 qN

whence

1 1
lim — g —
N

N—oo |g] v, 4

> e<a<1>(x) + M)' =0.

zeGn
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Combining these relations, we infer that for any irrational a € T, and for all s € F,[t] and
monic g € Fy[t], one has

1
lim — g e(o@(gm—i—s))’ lg] hm ‘ e(a®(x))| =0. (6.4)
zeGy
z=s (mod g)

For any M € Z™, let gp; be the product of all of the monic polynomials in Gy;. We
consider a root sy € F,[t] of ® (mod gpr), the existence of which is guaranteed by our
hypotheses concerning ®. For a € T, let

TMN N Z a<1> ng’ + SM)) (6.5)

zeGy

It is useful also to define the associated Fourier coefficients

——

Ty,n(h) :/TTM,N(Q)G(—CW) da.

Then
TM N Z TM N Oéh)
heFy[t]

We now analyze the quantity Ths n(cv), dividing our discussion into cases according to
whether « is rational or irrational.

Case 1. Suppose that o € T is irrational. In this case, we find from (6.4) that for any
M € Z* and any irrational a € T, we have
lim Ty n(a) = 0.

N—oo

Case 2. Suppose that o € T is rational. In this case, we observe that a trivial esti-
mate supplies the bound [T n ()| < 1, so that the sequence (Ths,n(@)) yez+ 18 bounded
uniformly in M and «. Thus, since the set

{(a, M): a € T is rational and M € Z*}

is countable, it follows from a diagonalization process that we can extract a subsequence
(N;)$2, of the natural numbers having the property that, for any M € Z* and any rational
a € T, the limit

lim Ty N, (a)
71— 00

exists. We observe next that sps is a root of ® (mod gps), and hence ®(gprx + spr) is
divisible by gas. Consequently, whenever M is large enough that gyra € Fy[t], we have

Ty n(a) =1

Combining the analyses of the above two cases, we discern that

lim lim T p, (a) = {07 when « is irrational,

M =00 i—00 1, when « is rational.
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Now let i be a finite non-negative measure on T. By applying the dominated convergence
theorem twice, we see that

lim lim TMyNi(a)du(a)—/ lim lim Ty, (o) dp(e) = Z u({a}),

M—o0i—00 JT M —00 i—00 s
(6%

« rational

whence
lim lim [ Tan,(a)dp(a) > p({0}). (6.6)

M—o0i—00 JT

Suppose next that i vanishes on H. We note that, on recalling the definition (6.3) of H,
the definition of Th y implies that we have Thn(h) # 0 only if h € H U {0}. Therefore,

we have
/ Tv,n () =Y Tarv(0)i(@)| =
T z€F[t]

On recalling (6.5), we find that

I Tar,n (0)7(0)] = [Tar,n (0)|(T).

deg(®)
N o

By working harder, one can confirm that this upper bound deg(®)/¢" may be replaced by
1/¢™ whenever M is large enough in terms of the coefficients of ®(u). Hence, we deduce

that
deg(®)
qN

_— 1
TN (0)| = qwcard{x € Gn: ®(gyz +sy) =0} <

u(T). (6.7)

[ T @) du(e)]| <
T

Combining the two inequalities (6.6) and (6.7), we find that u({0}) = 0 for any finite
non-negative measure g on T with & vanishing on H. Therefore, we deduce from Theorem
6.5 that H is van der Corput. O

Proof of Theorem 6.4. Suppose that ¢ = p and ®(u) = >,y a,u” € Fp[t,u]. Let
H={P(z): z € Fplt]} \ {0}.
Also, let 7 and Si(®) (k € Z) be defined as in (5.6) and (5.7), respectively. We have seen

n (5.8) that
x))=¢e Sp(a®)z” ).
(3 steer)

For any M € Z™, let gy be the product of all of the monic polynomials in Gj;. Then,
when o € T, we put

Ty n(a) = ;V Z e(a®(gypz)) = ;\/ Z e(Z Sk(aé)(gM@k).

zeGn zeGy kel

If we now define
Q ={a € T: Sg(a®) is irrational for some k € T},
then we see from (5.9) that for any a € Q, we have

lim T =0.
Ngnoo M7N(a)
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On the other hand, when a ¢ Q, then Si(a®) is rational for all £k € Z. Since the rational
elements a € T are countable, the set of all polynomials of the form

Y Su(a@)yt (o g Q)

kel

is countable. It is worth noting at this point that the set T \ Q itself need not be count-
able. Since |Th,n(c)| < 1, it follows via a diagonalization process that we can extract a
subsequence (N;)$2, of natural numbers having the property that, for any M € Z* and
any o € Q, the limit

lim T n, ()

1—00

exists. Also, by following an argument similar to that applied in Case 2 of the proof of
Theorem 6.3, we find that for M sufficiently large, one has Ty n(c) = 1 for any o ¢ Q.
It follows that

0, when a € Q,

1, when a & Q.
We may now argue as in the proof of Theorem 6.3, mutatis mutandis, to confirm that

1 ({0}) = 0 for any finite non-negative measure p on T satisfying the property that i
vanishes on H. Therefore, we deduce from Theorem 6.5 that H is van der Corput. U

M—o0 i—00

lim lim Ty N, (o) = {

7. GLASNER SETS IN Fy[t]

7.1. Background and statement of results. We first introduce some notation and
nomenclature relevant for the discussion of Glasner sets in F,[t]. A subset Y C R/Z is
called e-dense in R/Z if it intersects every interval of length 2¢ in R/Z. A dilation of Y
is a set of the form nY = {ny: y € Y} C R/Z for some n € Z. In 1979, Glasner [13]
proved that for any infinite subset Y of R/Z and any € > 0, there exists n € Z having the
property that the dilation nY is e-dense in R/Z. It transpires that the same conclusion
can be obtained when one restricts n to be an element of a relatively sparse subset of
the integers. Motivated by Glasner’s theorem, we say that a set H C Z is Glasner if for
any infinite subset Y of R/Z and any € > 0, there exists n € H having the property that
nY is e-dense in R/Z. In their paper [2], Alon and Peres showed that the set of primes
is Glasner. They also proved that if ®(u) € Z[u] is a non-constant polynomial, then
the set {®(n): n € Z} is Glasner. By using harmonic analysis, Alon and Peres obtained
quantitative versions of their results. Thus, for each of the above two Glasner sets H
and any € > 0, there exists an e-dense dilation nY of Y with n € H, provided that the
cardinality |Y| of Y is sufficiently large in terms of € and H. The method and results of
Alon and Peres were generalized to multi-dimensional tori in [17] and [7].

One can define an analog of the notion of a Glasner set in F,[t]. For M € Z*, a subset
Y C Tis called g~ ™-dense in T if it intersects every cylinder set C of radius ¢~ in T. We
call a set H C F,[t] Glasner if for any infinite subset Y C T and any M € Z*, there exists
x € H having the property that the dilation 2Y is ¢~ -dense in T. In view of the result
of Alon and Peres, one may ask if the set of values of a polynomial with coefficients in
[F,[t] is Glasner. However, the following examples show that an exact analog of the result
of Alon and Peres is not true in general.



EQUIDISTRIBUTION OF POLYNOMIAL SEQUENCES IN FUNCTION FIELDS 31

Example 7.1. Let Y be the set of all « € T with T'(a)) = 0, where T is the map defined in
(1.1). Then Y is infinite (and indeed uncountable). We have seen in Example 1.2 that for
any x € Fy[t] and a € Y, we have res(zPa) = 0. This shows that the set {z”: z € F,[t]}
is not Glasner, since for any z € F,[t], the set zPY fails to be ¢~ !-dense.

Example 7.2. Let us assume that ¢ = p. Let Y be the set of all &« € T with T'(«) + o = 0.
One sees again that Y is infinite (and indeed uncountable). Then for any = € F,[t], we
have res((z? + x)a) = res((T'(a) + o)x) = 0. This shows that the set {aP + x: z € Fy[t]}
is not Glasner, since for any = € F[t], the set (27 4+ z)Y fails to be ¢~ !-dense.

One could formulate a conjecture similar to Conjecture 1.3 asserting that Examples 7.1
and 7.2 encapsulate all the obstructions preventing a polynomial sequence in F,[t] from
being Glasner. We have some preliminary ideas that might establish such a conjecture,
and this is a subject to which we intend to return on a future occasion. For now we note
that such a conjecture would follow from Conjecture 1.3. Moreover, partial progress is
made possible by making use of Theorem 1.4. Here, once again, we recall the definition
(2.4) of the set of exponents K*.

Theorem 7.3. Let K be a finite set of positive integers, suppose that a, € Fy[t] for
r € KU{0}, and define

Suppose further that ar, # 0 for some k € K* with k > 1. Then the set {®(x): z € F[t]}
s Glasner.

By adapting the harmonic-analytic approach of Alon and Peres described in [2], we
prove the following quantitative version of Theorem 1.11 analogous to the bound of Alon
and Peres obtained in [2, Theorem 6.3].

Theorem 7.4. Let K be a finite set of positive integers, suppose that a, € Fgt] for
r € KU{0}, and define

Suppose further that ar # 0 for some k € K* with k > 1. Then there exists a positive
constant C, depending on ®, such that whenever M > 0 and |Y| > ¢M, there is a dilation
of the form ®(x)Y of Y that is ¢~ -dense.

We remark that, as a direct consequence of Theorem 1.11, the set of values of ® is
Glasner whenever deg® > 1 and (deg®,p) = 1. Also, in view of Proposition 5.2, the
condition ay # 0 for some k € K* can be relaxed to the constraint that aj # 0 for some
k € K, where K is defined as in (2.5).

7.2. Proof of Theorem 7.4. We first derive the following cheap consequence of Theorem
4.1. It is analogous to Hua'’s classical bound on complete exponential sums with polynomial
argument over the integers, a version of which could certainly be derived in the setting
of IF,[t]. Whilst the latter would deliver stronger conclusions than those we obtain below,
the extra effort involved has no impact on the application that we have in mind.
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Lemma 7.5. Let K be a finite set of positive integers, suppose that a, € Fg[t] for r €
K U {0}, and define
D(u) = Z ayu”.

reku{o}
Suppose further that ai # 0 for some k € K* with k > 1. Then there exists a constant
C > 1, depending only on k, K and q, such that for any monic g € Fy[t] and any € > 0,

we have
Oz _ c
Z e(;))‘ Lperq (g, ar) [V Cr|g) 1/ te, (7.1)

€Gorq g

Proof. There is no loss of generality in supposing that a, # 0 for all » € K. Suppose first
that ag # 0 for no k € K* with £ > 1, and yet 1 € £* and a; # 0. Then whenever k£ € K
and p 1 k, we must have k = 1. If [p¥ € K for some v > 1 and | € ZT with (I,p) = 1,
meanwhile, then p¥ € S(K), and hence 1 ¢ K*. We are therefore forced to conclude in this
scenario that K = {1} and hence ®(u) = aju with a; # 0. The desired conclusion (7.1)
follows by orthogonality in this trivial situation.

We may assume henceforth that aj # 0 for some k € K* with k > 1. We fix the positive
constants ¢ and C}, depending at most on k, K and ¢, in accordance with the conclusion
of Theorem 4.1. Write N = ordg and M = ord (g, ax), and put

n = min{cy N, (1/Cy — )N — M /Cy}. (7.2)
On observing that the bound (7.1) is trivial when n < 0, we see that there is no loss of

generality in assuming henceforth that n > 0. We may also suppose that N is sufficiently
large in terms of K, € and ¢. Suppose, by way of deriving a contradiction, that

= ()

zeGn

Then we infer from Theorem 4.1 that there exist b € F[t] and monic h € Fy[t] such that

ord (hak - b> < —kN +eN +Cxn and ordh < eN + Cin. (7.3)
g

We see from (7.2) that M + Cin < (1 — Cre)N. It therefore follows from (7.3) that
ord (g,arh) < M +ordh < M+ eN + Cyn < (1 +€— Cre)N < N.

Since ord g = N, we deduce that g does not divide (g,axh). Consequently, the fraction
hay /g has a reduced form with denominator g/(g, arxh) having order at least 1. Thus, we
have
Q. 1 )
ord (hA— —b| >ord | ————= | =ord(g,axh) —ordg > M — N. 7.4
( g > (g/(g,akh) ( ) (74
Combining (7.3) and (7.4), we obtain the bound

M — N < —kN +€eN + Cyn < —kN + €N + (1 — Cre)N — M.

Since k > 1, we arrive at a contradiction. We are therefore forced to conclude that n <0,
a scenario in which the conclusion of the lemma follows, as we have already observed. [
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As we have already noted, one may prove the bound (7.1) by more classical methods.
Thus, with additional effort it would be possible to establish a version of Lemma 7.5
with Cy = deg(®). We also need an analog of 2, Proposition 1.3], the statement of which
requires that we introduce some additional notation. Consider aset Y = {y1,...,y} C T.
For each g € F,[t]\{0}, we denote by hy, = hy(Y") the number of pairs (4, j) with 1 < 1,5 < &
and ¢ # j satisfying g(y; — y;) € Fg[t]. Finally, we define H;, = Hr,(Y) by putting

H(Y) = Z hg(Y').
9€GL\{0}

Lemma 7.6. Let Y = {y1,...,yx} be a set of k distinct elements in T. Then for each
non-negative integer L, one has Hr(Y) < rg?".

Proof. For each index ¢ with 1 < i < k and g € G, \ {0}, the number of indices j for
which g(y; — y;) € Fy[t] is at most |g| < ¢&. Thus, we deduce that

HM < > Y ¢" <k,
1<i<r geG\{0}

and the proof of the lemma, is complete. O

Proof of Theorem 7.4. We prove Theorem 7.4 by establishing the contrapositive. Suppose
then that a set of k distinct elements Y = {y1,...,y.} C T has the property that ®(x)Y
is not ¢~M-dense for any x € F[t]. We seek to derive an upper bound for  of the shape
k < ¢“M with C a suitable positive constant depending on ®.

Consider any element z € Fy[t]. We may suppose that ®(z)Y is not ¢~-dense in T,
and hence there exists £, € T having the property that all elements of ®(z)Y lie outside
of the cylinder set {&€ € T: € — &,| < ¢~M}. Thus, for all 1 <i < k, we have

ord {®(x)y; — &} > —M.
In view of (2.1), we see that for each « € IF,[t] and index ¢, one has

S ez @@y — &) = 0.

2€Gy

Consequently, isolating the term z = 0 in each sum, we deduce that for each positive
integer N one has the relation

Z Z Z e(z(®(x)y; — &) = —f@qN.

rzeGy i=1 ZEGIW\{U}

Interchanging the innermost summations and applying Cauchy’s inequality, we therefore
obtain the relation

H2q2N < qN+M Z Z

€GN 2€Gpr\{0}

="M YD e =@y )

2€C N 2€Gp\{0} i=1 j=1

K

Y ez (@@)yi — &)

=1

2
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Therefore, again interchanging orders of summation, we find that

P Y ZZ > el = 4)))

2€Gp\{0} =1 j= 1 zeGn

<gq max O(z; y; 7.5
B ZEGM\{O} zz; ]Z; 8~ v, (75)
where
1
O(z;u) = limsup|— Z e(z®(x)u)|. (7.6)
N—oo |4 z€Gy

We now analyse the limit ©(z;y; — y;) when z € Gy \ {0}, with the result depending
on whether or not y; — y; is rational.

Case 1. Suppose that i = j. Then we find from (7.6) that ©(z;y; —y;) = O(2;0) =1

Case 2. Suppose that y; —y; is irrational. In this scenario, when z € G/\{0}, we find that
z(y; — y;) is also irrational, and hence it follows from Theorem 1.4 that ©(z;y; —y;) = 0.

Case 3. Suppose that y; — y; is a non-zero rational. In these circumstances, we write
y; —y; = a/g as areduced fraction with a € F4[t] and monic g € Fy[t]. Given z € G\ {0},
we may in turn write z(y; — y;) = d’/¢’ as a reduced fraction with ¢’ = g/(z,9) and
a' = az/(z,9). In particular, therefore, we have |g'| > |g|/¢™. We now recall (7.6) and
appeal to Lemma 7.5. Thus, there exists a constant Cy > 1, depending only on k, K and
q, such that

'®
Z e(a g,(x)>‘ <<IC ‘g/|71/(20k)’(g/7a/ak)|1/ok.

1
9(2’;%‘ - yj) = m
zeG

ord g’

On noting that (¢’,a’) = 1, we deduce that

O(z;yi — yj) <k |g'| 7P |y | < ||~/ ORI GM, (7.7)

For each monic g € Fy[t] \ {0}, denote by h, the number of pairs (i, j) with 1 <4i,j <&
and i # j satisfying the condition that y; — y; may be written as a reduced fraction with
denominator g. Then it follows from (7.5) via (7.7) and the above analysis dividing into
three cases that we have the estimate

k2 <o /<cq2M+q3M Z ‘g‘_l/(QCk)zg. (7.8)

g€F,[t]
g monic

Next we estimate the right hand side of (7.8) using Lemma 7.6. For any L € Z*, let
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On noting that H; = 0, we find by partial summation that

S (g V@R, = 3 g ECO (Hy,y — Hy)

9€F 1] L=1
g monic
= S iy (/00 _ L0, (7.9)
L=2

For any non-negative integer L, we have the trivial estimate Hy, < k2. Meanwhile, as a

consequence of Lemma 7.6, we have Hy < Hy, < kq*F. Write Ly = L(logq n)/QJ. Then

Lo Lo
Z H (q*(Lfl)/(wk) _ q—L/(20k)) <k Z s (qf(Lfl)/(2Ck) _ qu/(gck))
L=2 —

< 2Hq1+L0(271/(20k))

and
Z Hi(q~(F-D/CC) _ ¢~ L/CC0) < 2 Z (q(E=D/@C) _ g=L/(200))
L=Lo+1 L=Lo+1

< K2q—Lo/2Ch)

On recalling that Lo = | (log, x)/2| and substituting these bounds into (7.9), we see that

S (g V00, < 32140k,

g€F[t]
g monic

Equipped with this estimate, the relation (7.8) now yields the bound

K2 < kM 4 PPMAL2-1/(CK)

and thus |Y] = k < ¢ CxBM+Y) Tn view of our opening discussion, this completes the
proof of Theorem 7.4. O
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