### AICHE TOURNAL

#### BIOMOLECULAR ENGINEERING, BIOENGINEERING. BIOCHEMICALS, BIOFUELS, AND FOOD

### Kinetic analysis of cellular internalization and expulsion of unstructured D-chirality cell penetrating peptides

Manibarathi Vaithiyanathan | Hannah C. Hymel | Nora Safa | Olivia M. Sanchez<sup>1</sup> | Jacob H. Pettigrew<sup>1</sup> | Cole S. Kirkpatrick<sup>1</sup> | Ted J. Gauthier<sup>2</sup> | Adam T. Melvin<sup>1</sup>

#### Correspondence

Adam T. Melvin, Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803. Email: melvin@lsu.edu

#### **Funding information**

Division of Chemical, Bioengineering, Environmental, and Transport Systems, Grant/ Award Numbers: 1509713, 1846900; Louisiana Board of Regents, Grant/Award Number: LEQSF(2018-23)-GF; National Institute of Biomedical Imaging and Bioengineering, Grant/Award Number: EB02935

#### **Abstract**

Most cell penetrating peptides (CPPs) are unstructured and susceptible to proteolytic degradation. One alternative is to incorporate D-chirality amino acids into unstructured CPPs to allow for enhanced uptake and intracellular stability. This work investigates CPP internalization using a series of time, concentration, temperature, and energy dependent studies, resulting in a three-fold increase in uptake and 50-fold increase in stability of D-chirality peptides over L-chirality counterparts. CPP internalization occurred via a combination of direct penetration and endocytosis, with a percentage of internalized CPP expelling from cells in a time-dependent manner. Mechanistic studies identified that cells exported the intact internalized D-chirality CPPs via an exocytosis independent pathway, analogous to a direct penetration method out of the cells. These findings highlight the potential of a D-chirality CPP as bio-vector in therapeutic and biosensing applications, but also identify a new expulsion method suggesting a relationship between uptake kinetics, intracellular stability, and export kinetics.

#### KEYWORDS

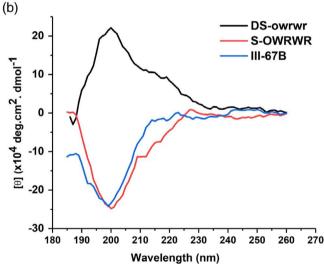
cell penetrating peptide, chirality, direct penetration, export kinetics, intracellular stability

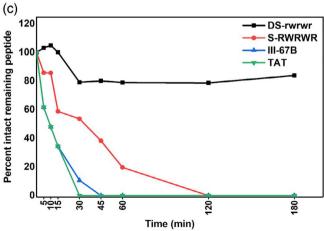
#### INTRODUCTION

Cell-penetrating peptides (CPPs) are a class of short peptides (<30 amino acids) that penetrate intact biological membranes without compromising or rupturing them. In recent years, CPPs have become an important tool for the delivery of macromolecular cargoes inside cells. These sequences have found applications in targeted drug delivery and biosensing via conjugation with biomaterials, intracellular probes, anti-cancer therapeutics, small molecule inhibitors, and antimicrobial drugs. 1-3 Established CPPs like TAT (TAT-JBD20) and penetratin (PRX002) are currently being tested in preclinical and clinical trials. Novel CPPs like AZX100 (Capstone Therapeutics), RT001 (ReVance Therapeutics) and KAI-9803 (KAI Pharmaceuticals) are currently in clinical trials for keloid scarring and myocardial infarction.<sup>4</sup>

CPPs have also found an important role in the development of novel therapeutic compounds called PROTACs (proteolysis targeting chimeras). PROTACs harness the naturally occurring ubiquitination machinery inside of the cells to target "undruggable" proteins such as ErbB3, FKBP12, and the Tau protein to the proteasome for degradation.<sup>5-7</sup> Besides therapeutics, CPPs have also been extensively exploited in the fields of biosensing and bioimaging. Gui and colleagues employed CPPs, particularly cyclic polyarginine (cR10), to deliver an activity-based deubiquitinating (DUB) reporter into cells which facilitated DUB profiling in intact HeLa cells.8 Similarly, Safa et al. developed a β-hairpin CPP-based fluorescent bioreporter to screen for DUB activity in intact cancer cells.9 The need for incorporating CPPs into biosensors has increased recently due to novel single cell analysis techniques. These high-throughput screening approaches

<sup>&</sup>lt;sup>1</sup>Cain Department of Chemical Engineering. Louisiana State University, Louisiana


<sup>&</sup>lt;sup>2</sup>LSU AgCenter Biotechnology Lab, Louisiana State University, Louisiana


have relied on electroporation and microinjection to introduce peptide-based reporters into single intact cells. <sup>9-11</sup> In addition to their application as inert vectors for intracellular delivery, an emerging dual-acting CPP technique is being studied which can function as both a membrane permeating component and a bioactive agent. <sup>12</sup>

Despite the vast potential of CPPs, one significant limitation is their rapid degradation in the presence of extracellular and intracellular enzymes. Most CPPs are unstructured sequences that are rapidly degraded by intracellular proteases and peptidases, which consequently render these compounds less effective for in vivo or in vitro applications. 13-15 Several strategies have been employed to increase CPP stability such as the incorporation of non-natural amino acids, a pronounced secondary structure, or an increase backbone rigidity through macrocyclization. 16,17 Recent work by Safa et al. investigated the role of β-hairpin protectides as potential CPPs with enhanced intracellular stability. 18 Results from this study suggested that despite exhibiting lower cellular permeability than their unstructured versions, the β-hairpin CPPs had a ~ 15-fold increase in intracellular stability. One challenge associated with these strategies is that to increase intracellular peptide stability, uptake efficiency was compromised identifying a trade-off between peptide internalization efficiency and enhanced intracellular stability. To overcome this disadvantage, a chemical modification strategy was used in this work where a simple L-to-D chirality amino acid conversion was performed on previously characterized unstructured CPPs. D-chirality amino acids are nonnatural and have been shown to be protease resistant.<sup>19</sup> Recent studies suggest that cellular uptake of CPPs is independent of backbone chirality, thus providing a possibility to preserve the permeability efficiency of previously described unstructured L-chirality CPPs. 18,20 This approach has been applied to other unstructured CPPs including TAT. R9, penetratin, hLF, pVEC, and sweet arrow peptide.<sup>20-22</sup> The extended in vivo half-lives of D-chirality CPPs over L-chirality CPPs have contributed to the successful development of the D-chirality polyarginine (R9) CPP as cancer contrast agents.<sup>22</sup> While new Dchirality CPPs are being synthesized and characterized, none have found success in the clinic due to the fact that the uptake mechanism has not been elucidated. In the case of unstructured, L-chirality CPPs, uptake is known to occur via two major pathways: direct penetration or endocytosis (or a combination of both). While several intrinsic factors such as charge, hydrophobicity, structural composition, and cellular composition regulate CPP uptake, the role of chirality in uptake efficiency is still unclear.<sup>23</sup> The effect of chirality on endocytosis has been reported for the CPPs R9, penetratin, and hLF by Verdurmen et al.<sup>24</sup> Preferential uptake of L-chirality CPPs over D-chirality CPPs was observed, suggesting that chirality is important for the interactions between these compounds and cell-surface partners that induce endocytosis. Conversely, recent work by Najjar et al. showed that an L-to D-chirality conversion of dfTAT did not affect its cellular uptake mechanism or efficiency.<sup>21</sup> Together, these studies reveal conflicting results in predicting how L- to D-chirality amino acid substitutions affect to CPP-cellular interactions.

Several questions related to the effect of chirality on CPP uptake remain unanswered. In particular, how chirality impacts internalization and endosomal escape during the cell penetration process and how an unnatural D-chirality CPP alters cell physiology once inside a cell. The issue of endosomal escape is important because this step is critical for the successful delivery of molecules of interest into a cell via endocytosis. The goal of this work was to provide new insight into these questions by testing D-chirality versions (DS-rwrwr, DS-rwowr, D

| (a) |          |                                                                 |
|-----|----------|-----------------------------------------------------------------|
| (ω) | Name     | Sequence                                                        |
|     | DS-rwrwr | Ac- <b>r</b> wv <b>r</b> wiO(FAM)qv <b>r</b> pg-NH <sub>2</sub> |
|     | DS-rwowr | Ac- <b>r</b> wv <b>o</b> wiO(FAM)qv <b>r</b> pg-NH <sub>2</sub> |
|     | DS-owrwr | Ac- <b>o</b> wv <b>r</b> wiO(FAM)qv <b>r</b> pg-NH <sub>2</sub> |
|     | S-RWRWR  | Ac- <b>R</b> WV <b>R</b> WIO(FAM)QV <b>R</b> pG-NH <sub>2</sub> |
|     | S-RWOWR  | Ac- <b>R</b> WV <b>O</b> WIO(FAM)QV <b>R</b> pG-NH <sub>2</sub> |
|     | S-OWRWR  | Ac- <b>O</b> WV <b>R</b> WIO(FAM)QV <b>R</b> pG-NH <sub>2</sub> |
|     | III-67B  | FAM-GGAYAAPFKKKA-NH <sub>2</sub>                                |
|     | TAT      | (5-FAM)-YGRKKRRQRRR-OH                                          |
|     | ARG      | (5-FAM)-RRRRRRRRR-OH                                            |





**FIGURE 1** Stability of D-chirality peptides in HeLa cells [Color figure can be viewed at wileyonlinelibrary.com]

owrwr, Figure 1a) of previously reported unstructured, L-chirality CPP (S-RWRWR, S-RWOWR, S-OWRWR).<sup>18</sup> Degradation studies demonstrated a ~ 50-fold increase in half-life of DS-rwrwr against S-RWRWR in HeLa lysates. Time-dependent uptake studies revealed prominent cellular permeability of DS-rwrwr (~3-fold and ~ 100-fold increases compared to S-RWRWR and the commercial CPP polyarginine ARG, respectively) without negatively affecting cellular viability. These findings indicate that charge, hydrophobicity and chirality all regulate CPP uptake. While the majority of CPP uptake occurred primarily via direct penetration, energy-dependent studies found that internalization was regulated by endocytosis to some extent. Interestingly, time-dependent degradation and export studies of DS-rwrwr found that despite negligible degradation, the amount of intact peptide diminished suggesting that it was exported out of cells through a direct penetration-like method instead of via exocytosis. A mathematical model suggested a maximum intracellular CPP concentration of 7.86 µM after 13.3 min of incubation which slowly decreased over time until a pseudo steady state of  $5.45 \mu M$  was observed after 24 hr. CPP internalization was accompanied by an export out of cells with an approximate extracellular CPP concentration of 3.14 µM after 24 hr. These empirical and theoretical results establish the positive effect of an L-to D-chirality amino acid substitution in increased CPP permeability efficiency, intracellular stability, and cytosolic entry while elucidating a new finding on peptide export via an alternate route other than exocytosis.

#### 2 | MATERIALS AND METHODS

#### 2.1 | Chemicals and reagents

The chemicals and reagents used in this work are explained in detail in in Supplementary Informations.

#### 2.2 | Peptide synthesis and purification

The steps involved in the synthesis and purification of L- and D-chirality peptides are explained in detail in Supplementary Information. Representative data for the HPLC purification and mass spectrometry validation of the DS-rwrwr peptide are presented in Supporting Information, Figure S1.

#### 2.3 | Cell culture and lysate generation

HeLa cells (LSU AgCenter Tissue Culture Facility) were maintained in Dulbecco's modified eagle medium (DMEM, Corning) supplemented with 10% v/v HyClone Cosmic Calf Serum (VWR Life Sciences Seradigm). HeLa lysates were generated by harvesting  $1\times10^6$  cells/ml, followed by washing  $2\times$  and pelleting in  $1\times$  phosphate buffered saline, PBS (137 mM NaCl, 10 mM Na<sub>2</sub>HPO<sub>4</sub>, 27 mM KCl, and 1.75 mM KH<sub>2</sub>PO<sub>4</sub> at pH 7.4). The cell pellet was then resuspended in

an approximately equivalent volume of M-PER mammalian protein extraction reagent (ThermoFisher Scientific, Carlsbad, CA) to the volume of the cell pellet (~1,000–2000  $\mu$ l) then vortexed for 10 min at 900 rcf at room temperature. Following this, the mixture was centrifuged at 14,000 rcf for 15 min at 4°C and the supernatant transferred to a centrifuge tube and stored on ice until use. Total protein concentration was estimated by near-UV absorbance  $A_{280}$  using a NanoDrop spectrophotometer (Thermo Scientific, Madison, WI) with M-PER mammalian protein extract reagent as background control.

#### 2.4 | Circular dichroism

The steps involved in collecting circular dichroism (CD) Spectroscopy data for the peptides are explained in detail in Supplementary Information.

Peptide degradation assay. Briefly, 30  $\mu M$  of respective peptide was incubated in HeLa lysates diluted to a total protein concentration of 2 mg/ml in an assay buffer (10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.6) at 37°C in the dark. Aliquots of the reaction mixture were removed at set intervals, at which point further peptidase activity was quenched by heating the aliquots at 90°C for 5 min followed by immediately freezing in liquid nitrogen and then storage at -20°C until analysis by HPLC. The zero-minute time point measurements were made using lysates that were heat killed immediately after peptide incubation. HPLC analysis was performed with a Waters 616 pump, Waters 2,707 Autosampler, and 996 Photodiode Assay Detector, which are controlled by Waters Empower 2 software. The separation was performed on an Agilent Zorbax 300SB-C18 (5 µm, 4.6 × 250 mm) with an Agilent guard column Zorbax 300SB-C18 (5  $\mu$ m, 4.6  $\times$  12.5 mm). Elution was done with a linear 5%–85% gradient of solvent B (0.1% TFA in acetonitrile) into A (0.1% TFA in water) over 40 min at 40 µl injection volume and a 1 ml/min flow rate with UV detection at 445 nm. Sample chromatograms for DS-rwrwr and S-RWRWR can be seen in Supporting Information, Figure S2 and in the previous work.<sup>18</sup> Peak areas were calculated by the Waters Empower 2 software by integration of peaks identified using a peak width of 30.00 and a peak threshold of 50.00. Percent intact peptide remaining was calculated by dividing the area of the parent peptide peak at each time point divided by the area of the parent peptide peak at the zero-minute time point. The identity of the parent peptide peak was confirmed using the parent peptide alone and verified with the t = 0-min chromatogram. Experiments were performed twice to ensure reproducibility.

#### 2.5 | Quantification of cellular peptide uptake

Three days prior to the experiment, HeLa cells were seeded in 12-well plates (Corning) at a density of  $1\times10^4$  cells/ml with 1 ml in each well. On the day of experiment, peptides were diluted to the desired final concentrations in extracellular buffer, ECB (5.036 mM HEPES pH 7.4, 136.89 mM NaCl, 2.68 mM KCl, 2.066 mM MgCl<sub>2</sub>•6H<sub>2</sub>O, 1.8 mM

CaCl<sub>2</sub>•2H<sub>2</sub>O, and 5.55 mM glucose). The cells were washed 1x with 1X PBS (1 ml/well) followed by peptide incubation (500  $\mu$ l/well) for desired time points or under different conditions. The different conditions were based on time-, concentration-, temperature- and energydependent characterization. For time dependent studies, 10 µM of peptide solutions in ECB were incubated with HeLa cells for different incubation times (10, 20, 40, 60, 100, and 120 min) over a span of 2 hr at 37°C. For concentration dependent studies, four different concentrations (5, 10, 20, and 30  $\mu$ M) of peptide solutions in ECB were incubated with HeLa cells for 60 min at 37°C. For temperature dependent studies, cellular uptake at 37°C was compared with uptake at 4°C. Similarly, the effects of 5% serum and endocytosis inhibitors (10 mM sodium azide +5 mM 2-deoxyglucose, Sigma Aldrich) on peptide uptake were evaluated in case of energy dependent studies. For these temperature and energy-sensitive experiments, the cells were pretreated for 2 hr before experimentation and constantly exposed to these conditions throughout experimentation (e.g., wash steps and peptide incubation) to maintain experimental consistency.

During peptide incubation, all plates were wrapped in aluminum foil to avoid deactivating the FAM tag on the peptide. Following the incubation, the peptide solution was removed, and the cells were washed 2× with ECB (1 ml/well) to remove any membrane-bound peptide debris. The cells were trypsinized (200 µl/well) for 10 min at room temperature to detach the cells from the wells and remove any remaining peptide adhered to the extracellular surface. The cells were then re-suspended in ECB (1 ml/well), thoroughly mixed, and transferred to microcentrifuge tubes. The samples were centrifuged (1800) rcf, 2.5 min, at room temperature) to isolate the cells. Following centrifugation, the supernatant was discarded, and the pellet was lysed with 0.1 M NaOH (250 ul/tube). While the fluorescence intensity of FAM has been demonstrated to be dependent on pH, it was confirmed by Safa et al. that the 0.1 M NaOH had negligible effects on the intensity profile of CPPs at both 10  $\mu M$  and 30  $\mu M$  concentrations. 18 Each sample was then transferred to a 96-well plate and quantified by fluorometry (Perkin Elmer [Waltham, MA] Wallac 1,420 VICTOR2 multilabel HTS counter). The FAM tag was quantified using an excitation filter of 490 nm and an emission filter of 535 nm. During every experiment, a no peptide control was performed (e.g., cells incubated with ECB only). To measure the background signal of each peptide, the peptide solutions used in each experiment were analyzed by fluorometry to normalize the observed fluorescent signal for each sample. This allowed for an unbiased comparison between different peptides used in this study. The fluorescent signal measured by the plate reader was normalized using Equation (1):

Normalized Fluorescence = 
$$1000 \times \frac{(F-C)}{(P-B)}$$
. (1)

where F denotes the fluorescent signal of cells incubated with peptide, C denotes the fluorescent signal of cells incubated with no peptide, P denotes the average fluorescent signal of the peptide in suspension, and B denotes the average fluorescent signal of the ECB. Data reported for each peptide are the average of triplicate samples.

Standard deviations were calculated based on the triplicate samples to obtain the error bars and perform analysis of variance. Each experiment was repeated twice to ensure reproducibility. All time-, concentration-, temperature- and energy-dependent uptake characterization experiments were performed in serum-free media unless otherwise noted.

#### 2.6 | Characterization of cellular peptide export

A modified version of the experimental protocol was performed to study peptide export from cells after internalization. To accomplish this. 10 µM of peptide solution was incubated with intact HeLa cells seeded on 12-well plates for 10 min at 37°C in the dark. After this 10-min incubation period, the peptide solution was removed, and the cells were washed 2x with ECB. Fresh ECB was added to the cells which were further incubated in the dark for indicated incubation times (0, 10, 20, 40, 60, 100, 120, 150 min) to study peptide export rates. After the indicated timepoints, the cells were trypsinized, lysed, and transferred to a 96-well plate for fluorescence measurements using the steps as previously described. Samples that were lysed immediately after peptide removal were marked as the zero-min time point in terms of peptide export. Cellular peptide export was evaluated under three different energy-dependent conditions: presence and absence of 5% serum and exocvtosis inhibitor. Exo-1 (Sigma Aldrich) at 37°C. For this, the cells were pretreated for 2 hr before experimentation and the cells were constantly exposed to these conditions during the 10-min peptide incubation, wash steps and ECB incubation in order to maintain consistency. All experimentation conditions were performed in triplicate with every experiment performed twice to ensure reproducibility. All export characterization experiments were performed in serum-free media unless otherwise noted.

#### 2.7 | Fluorescence microscopy and image analysis

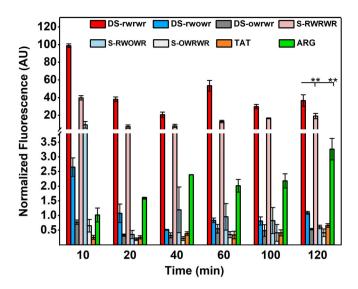
Two days prior to the experiment, HeLa cells were seeded in 8-chambered Falcon Culture Slides (Corning) at a density of 1x10<sup>4</sup> cells/ml with 500 µl in each chamber. On the day of experimentation, the culture media was removed, and the cells were then washed 1x with 1X PBS. A total of 500 µl of peptide solution in ECB was incubated with HeLa cells for different time periods at different conditions in the dark. After the incubation period, the peptide solution was removed, and the cells were washed 2x with ECB to remove excess, unbound peptides. Cells were then fixed with 4% paraformaldehyde (PFA) in 1X PBS for 10 min. Post fixing, the cells were incubated with 8 µM Hoechst 3342 nuclei acid stain for 30 min. This fixation condition was compared to the control non-fixation (ECB) condition to confirm that incubation with fixatives did not have an impact on cellular distribution of CPPs (Figure S3). To test viability, the cells were incubated with 10  $\mu M$  and 30  $\mu M$  DS-rwrwr in ECB for 5 h in the dark followed by washing 2x with ECB and staining with 4 µM EthD-1 for 30 min at 37°C in the dark before fluorescence microscopy imaging.

For imaging, cellular fluorescence was visualized using a Leica DMi8 inverted microscope outfitted with a fluorescein isothiocyanate (FITC:  $\lambda_{ex}$ : 440–520 nm and  $\lambda_{em}$  = 497–557 nm) filter cube, 10x and 20x objectives (Leica HC PL FLL, 0.4x correction), and phase contrast and brightfield applications. Cellular viability and nucleic acid staining were observed with Rhodamine ( $\lambda_{ex}$  536–556 nm and  $\lambda_{em}$  545–625 nm) and DAPI ( $\lambda_{ex}$  335–385 nm and  $\lambda_{em}$  405–465 nm) filters. Digital images were acquired using the Flash 4.0 high speed camera (Hamamatsu) with a fixed exposure time of 500 ms for FITC, 40 ms for DAPI, and 200 ms for Rhodamine filters, and 30 ms for brightfield. Image acquisition was controlled using the Leica Application Suite software. All images were recorded using the same parameters. All data visualization and interpretation were performed using Origin Pro (OriginLab, Northampton, MA) while statistical analyses of experimental data were carried out using SAS 9.4 (SAS Solutions).

#### 2.8 | Mathematical modeling

Data obtained from time-dependent uptake, degradation and export experiments executed with DS-rwrwr were used to determine the rate constants using MATLAB, R2017a. The steps involved in modeling rate kinetics for each step using non-linear curve fitting and regression analyses are explained in detail in Supplementary Information.

#### 3 | RESULTS AND DISCUSSION


## 3.1 | D-chirality amino acid substitutions in a CPP enhance peptide Proteolytic stability

Chemical modification by incorporating D-chirality amino acids have been performed on CPPs to improve their stability against intracellular enzymes or serum. 22,25,26 To explore and understand the contribution of such a modification, a library of D-chirality, unstructured CPPs were synthesized (Figure 1a) by changing the chirality of three unstructured, scrambled sequences previously published by Safa et al. 18 Three D-chirality variants (DS-rwrwr, DS-rwowr, and DSowrwr) were obtained by substituting D-ornithine for D-arginine at positions 1, 4 and 11. Arginine was used for its cationic property and ornithine for greater stability. Tryptophan and valine were incorporated in these sequences for their increased hydrophobicity. CD was used to confirm the intrinsic structures of the synthesized D-chirality and L-chirality CPPs compared to an unstructured negative control, III-67B peptide - a reference control sequence that was previously determined to be impermeable to intact cells by Safa et al. 18 The CD spectra of the S-OWRWR and III-67B confirmed that they were unstructured with L-chirality based on a minimum near 198 nm (Figure 1b, red and blue lines) while the DS-owrwr exhibited a maximum near 200 nm (Figure 1b, black line). The spectra show an exact mirror image when modified with opposite chirality and displays the well-known Cotton effect. This trend is consistent with the CD spectrum of previously published CPPs D-Phe-OEt, MoS2/D-Penicillamine, and D-SAP, which have been well characterized using both NMR and CD for their D-chirality sequences. <sup>22,27,28</sup>

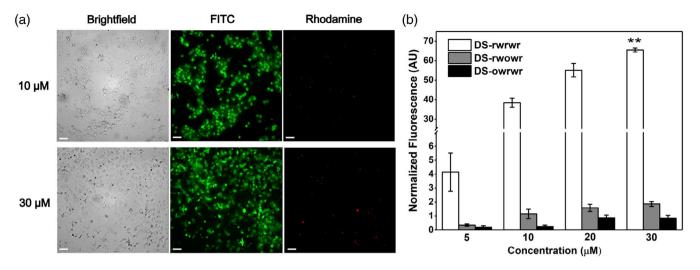
The stability of the synthesized peptides was investigated through a degradation assay. Select peptides were incubated with HeLa lysates to mimic the intracellular environment. The data points for percentage intact parent peptide over time was fit into a firstorder exponential decay curve to determine half-lives of the intact peptides. As expected, the DS-rwrwr peptide was resistant to degradation in HeLa lysates (Figure 1c, black squares) with ~80% peptide remaining after 180 min and yielding a half-life of 1,550 min. Conversely, the S-RWRWR peptide was mostly degraded within 120 min (Figure 1c, red circles) with a calculated half-life of 28 min. Thus, the chemical substitution of L-to D-chirality amino acids in DS-rwrwr resulted in an increase in stability with a ~ 50-fold increase in CPP half-life. A comparison with the well-known L-chirality TAT CPP found a mostly degraded peptide within 30 min (Figure 1c, inverted green triangles) with a calculated half-life of 10 min. The stability of these three CPPs was compared to a non-permeable, negative control peptide (III-67B) which was previously demonstrated to rapidly degrade under cytosolic conditions exhibiting a half-life of 9.5 min (Figure 1c, blue triangles). The results obtained here for S-RWRWR, TAT and III-67B matched the previous study by Safa et al. while also revealing a ~ 3.5-fold increase in the half-life of the DS-rwrwr when compared to the β-hairpin RWRWR (423 min) under cytosolic conditions. 18 These findings indicate that an L-to D-chirality amino acid substitution in a CPP increases its stability under cytosolic conditions. They are also consistent with the previous observations for stable CPPs using D-amino acids, cyclic and secondary structures. 16,20

### 3.2 | L- to D-chirality amino acid substitution in an unstructured CPP enhance cellular uptake

Modifying a CPP sequence to enhance intracellular stability can significantly alter its cellular uptake. This was previously seen with the ~5-fold decrease in the uptake of S-RWRWR when a secondary  $\beta$ -hairpin structure was incorporated to its sequence. <sup>18</sup> Previous works by Verdurmen et al., Najjar et al., and Pujals et al. have reported an increase in the cellular uptake of L-TAT and L-SAP peptides upon altering the chirality of their amino acids. <sup>21,22,24</sup> To further investigate the relationship between chirality and cellular uptake, the internalization of six unstructured CPPs (three D-chirality: DS-rwrwr, DS-rwowr, DS-owrwr and three L-chirality: S-RWRWR, S-RWOWR, S-OWRWR) was assessed in intact HeLa cells in a time-dependent manner (Figure 2a). Statistical t-tests and ANOVA F-tests were performed at each time point to illustrate the significance of observed intracellular fluorescent signals. The resultant data from Figure 2a,f-statistics from Supporting Information, Table S1 demonstrate a significant timedependent uptake for all six peptides with maximum internalization occurring at 10 min coupled with a sharp decrease at 20 min followed by a steady internalization for the subsequent 100 min. The observed oscillatory uptake kinetics for the D-chirality CPPs was attributed to



**FIGURE 2** Time-dependent internalization of D-chirality peptides in HeLa cells [Color figure can be viewed at wileyonlinelibrary.com]


the cells' tendency to equilibrate between a constant peptide source and export from cells when saturated with a maximum intracellular concentration. Cellular saturation was observed for L- chirality CPPs within the first 10 min followed by a gradual decrease in intracellular fluorescence due to their poor half-lives and intracellular degradation over time (Figure 1c). Contrary to this, a slow time-dependent increase in peptide internalization was observed for the two commercial CPPs (TAT: FAM-YGRKKRRQRRR and ARG: FAM-RRRRRRRR) with maximum uptake only at 120 min.

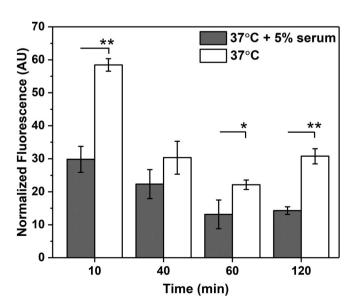
To understand the performance of the D-chirality peptides, their cellular uptake was compared against their unstructured L-chirality counterparts, commercial peptides, and a non-permeable negative control III-67B at a single incubation time. Quantification of intracellular fluorescent signals at 10 min (Figure S4) revealed that DS-rwrwr demonstrated the highest permeability followed by DS-rwowr (40-fold lower signal) and DS-owrwr (100-fold lower signal). This sequence-based ranking was observed within the L-chirality counterparts as well (S-RWRWR being the highest followed by S-RWOWR and S-OWRWR), highlighting the role of charge and amino acid position in peptide uptake. The additional arginine residue in DS-rwrwr/S-RWRWR (net total of three) and the position of the ornithine residue in DS-rwowr/S-RWOWR favors each of their uptake when compared to DS-owrwr/S-OWRWR. At the 10-min time point, DS-rwrwr demonstrated a ~ 3-fold increase in peptide uptake against S-RWRWR (p < .05), clearly emphasizing the effect of L-to-D-chirality amino acid substitution on peptide uptake. Interestingly, the other two D-chirality CPPs demonstrated similar intracellular uptake levels as that of their L-chirality counterparts suggesting that the charge and position of select amino acid residues are just as important as chirality on CPP uptake. The DS-rwrwr peptide exhibited a ~ 100- and ~ 1,000-fold increase against ARG (p < .001) and III-67B (p < .0001) respectively. Despite being highly cationic in nature and unstructured like the Lchirality and D-chirality CPPs, the visibly slower and diminished uptake of ARG can attributed to its lower hydrophobicity. At 120 min, during an approximate steady state of peptide internalization, DS-rwrwr remained the best performer with a ~ 2- and ~ 10-fold increase against S-RWRWR (p < .005) and ARG (p < .001). These findings provide strong evidence for increased peptide internalization through an L-to D-chirality amino acid substitution in addition to the effect of charge, position and hydrophobicity in cellular uptake. The rapid and pronounced uptake of DS-rwrwr leading towards steady-state internalization coupled with greater intracellular stability signifies its utility as a replacement for existing commercial CPPs in designing therapeutics.

# 3.3 | Initial peptide concentration demonstrates a significant effect on the permeability efficiency of the D-CPP without negatively affecting cellular viability

An important trait of any CPP is to avoid cytotoxicity, which can be problematic with non-natural amino acids and their possibility for intracellular accumulation. A minimal toxic effect could potentially cause cell damage at the beginning of the treatment but would continue to exert this toxic effect until the peptide is eliminated. To investigate this possibility with the D-chirality CPPs, concentrationdependent cellular uptake of DS-rwrwr and its effect on cellular viability were studied using fluorometry and fluorescence microscopy. Live cell microscopy results (Figure 3a and Supporting Information, Figure S5) show uniform intracellular peptide distribution in intact cells while preserving cellular morphology. A homogeneous intracellular distribution in the cytoplasm and nucleus was observed for all D-chirality CPPs without any membrane bound peptide debris. A negative control was performed by incubating the cells with only ECB (no peptide) to confirm the intracellular fluorescence was due to the CPPs (Supporting Information, Figure S5). The presence of few dead cells (~30 out of 210 cells) for both DS-rwrwr incubation (Figure 3a, Rhodamine) and no peptide incubation (Supporting Information Figure S5, Rhodamine) confirmed the viability of cells after peptide incubation at concentrations as high as 30 µM. It was suspected that the loss of viability in a small percentage of cells in both peptidecontaining and peptide-free solutions was due to an extended incubation in ECB in the absence of serum. A positive control for EthD-1 indication of dead cells (Supporting Information, Figure S5) was done to validate the experiment protocol, where heat-shocked cells stained positive in the Rhodamine filter confirming dead cells.

The effect of initial concentration on CPP uptake was assessed upon confirming the viability of cells at relative concentrations. As shown in Figure 3b, there was a marked increase in peptide uptake for all three D-chirality CPPs when incubated with higher initial concentrations (>5  $\mu$ M) compared to cells incubated with lower concentrations (5  $\mu$ M). Statistical analysis of peptide uptake found that initial concentration does have a significant effect on the permeability efficiency, though to variable extents across the different CPPs (Supporting Information, Table S2). The effect of concentration was dramatic for DS-rwrwr which contains three arginine residues,




**FIGURE 3** Concentration dependent internalization of D-chirality peptides and its effect on HeLa cells [Color figure can be viewed at wileyonlinelibrary.com]

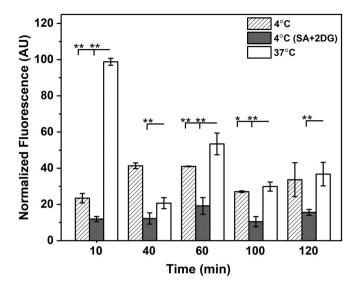
exhibiting a significant increase in cellular uptake for increasing peptide concentrations (p < .001, Supporting Information Table S2). The linear dependence of DS-rwrwr with initial concentration reveals information about the mode of peptide entry. Studies have shown that cellular uptake of arginine rich CPPs at concentrations  $<10 \mu M$ occurs via endocytosis and direct penetration while transduction becomes a dominating uptake mode at concentrations >10 µM, resulting in greater internalized concentrations.<sup>29</sup> This trend was observed for arginine rich peptides like S-RWRWR, TAT, and ARG as described in the previous work.<sup>18</sup> The effect of peptide concentration on the permeability efficiency was found to be weak and statistically insignificant for the DS-rwowr and DS-owrwr CPPs (p > .05, Supporting Information Table S2) within the experimental concentration range of 10-30 µM. Thus, it was concluded that the uptake of DS-rwowr and DS-owrwr peptide did not change significantly by increasing the incubation concentration above 10 µM. This suggested that the substitution of an ornithine residue in place of the third arginine residue, irrespective of its position (at positions 1 or 4), affected the concentration-dependent uptake within the experimental range. Since incubation with a 10 µM peptide solution was experimentally sufficient to generate a statistically significant result, this concentration was used for the subsequent studies investigating DS-rwrwr uptake.

## 3.4 | D-Chirality CPP exhibits diminished cellular uptake in the presence of serum

CPPs have been successfully utilized for several in vitro and in vivo diagnostic applications like molecular imaging and targeted therapeutics. <sup>30,31</sup> In order to explore the utility of the D-chirality CPPs in in vivo applications, the effects of serum on time-dependent CPP uptake was studied. Intact HeLa cells were pretreated with media containing 5% calf serum for 2 hr to mimic in vivo conditions, while a

control population was pretreated with serum free media (SFM). Time-dependent fluorometric measurements revealed that the presence of serum diminished the time-dependent uptake of DS-rwrwr in HeLa cells in a statistically significant manner (Figure 4 and Supporting Information, Table S3). The reduced initial cellular uptake in the presence of serum at 10 min, which was earlier shown to be the incubation time required for maximum internalization (Figure 2), suggests that serum inhibits peptide uptake. Cellular uptake in the presence of serum remained significantly lower than that of the serum-free condition throughout the 120-min incubation period (p < .001, Supporting Information, Tables S3, S4). However, in the presence of serum, peptide internalization followed a similar oscillatory trend as was observed for D-chirality CPP uptake under serum-free conditions




**FIGURE 4** Effect of serum on peptide internalization in HeLa cells

(Figure 2). Peptide uptake was observed to reach a pseudo steady state after a 40 min incubation time. This suggested that while the presence of serum decreased overall CPP uptake, it did not alter the uptake mechanism but only reduced overall CPP permeability. One possible explanation is the formation of a protein corona around CPPs reducing their membrane adsorption and limiting their interaction with the membrane diminishing cellular entry. Another possible explanation can be that serum components can decrease the zeta potential of positively charged CPPs. Previous study by Smith et al. revealed the reduced zeta potential of polystyrene nanoparticles in the presence of serum.<sup>32</sup> However, it is interesting to note that despite an observed reduction in permeability, DS-rwrwr uptake at 120 min in the presence of serum was still ~10-fold and ~ 3-fold higher than that of TAT and ARG (Figure 2).

### 3.5 | The limiting mechanism for the uptake of D-chirality CPP follows the direct penetration model

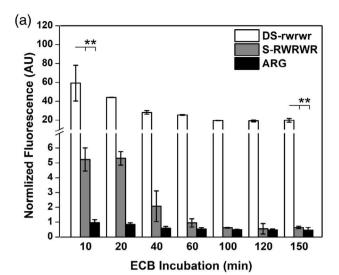
Different mechanisms have been suggested for the cellular entry of CPPs depending upon the particular cell line used and/or the physiochemical characteristics of the specific peptides being tested (e.g., size, composition, concentration). 15,33 High molecular weight cargos (larger than 30,000 Da) including nanocarriers or proteins conjugated to CPPs are delivered intracellularly through phagocytosis.34 However, the entry mechanism of small, low molecular weight CPPs (fewer than 50 amino acids) is controversial topic since it has the potential to involve different cellular pathways.<sup>35</sup> Preliminary studies by Holm et al. ~10 years ago found that Antp, R9, and TAT peptides simultaneously used three endocytic pathways: macropinocytosis. clathrin-mediated endocytosis, and caveolae/lipid raft-mediated endocytosis.<sup>36</sup> In contrast, recent work by Patel et al. on sequence dependent CPP uptake showed that cationic peptides like TAT and R9 shared commonalities of both endocytic as well as direct mechanisms of uptake.<sup>37</sup> Additionally, several recent studies have been published stating that internalization strongly depends on the peptide concentration with the direct penetration model being the most probable at high CPP concentrations (>5  $\mu$ M). <sup>14,15,33,38</sup> Therefore, it was important to empirically determine which uptake mechanism might be involved in the entry of the cationic, ~3.5 nm-sized DS-rwrwr peptide at an external concentration of 10  $\mu M$  in HeLa cells.

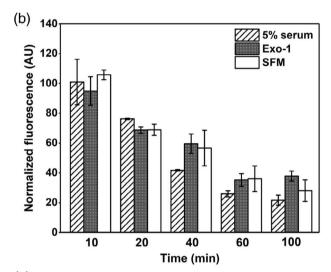
The transport of DS-rwrwr into cells was measured at either  $37^{\circ}\text{C}$  or  $4^{\circ}\text{C}$  to investigate if peptide uptake was energy independent (direct penetration) or energy dependent (endocytosis). A clear reduction of intracellular accumulation of DS-rwrwr was found after a 10 min incubation at  $4^{\circ}\text{C}$  when compared to experiments performed at  $37^{\circ}\text{C}$  (Figure 5). A similar decrease in peptide uptake was observed across the population of cells pretreated with two endocytosis inhibitors at  $4^{\circ}\text{C}$ : 10 mM sodium azide (SA) + 5 mM 2-deoxyglucose (2DG). SA and 2DG inhibit respiration and the glycolytic pathway, depleting the cells of ATP. Statistical analysis revealed that the peptide uptake at  $4^{\circ}\text{C}$  after a 10 min incubation in the presence of metabolic inhibitors was ~5-fold lower to that of cells incubated at  $37^{\circ}\text{C}$  (p < .001,

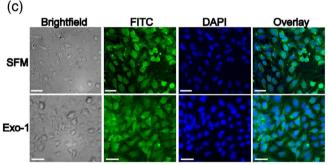


**FIGURE 5** Characterization of D-chirality CPP uptake mechanism in HeLa cells. CPP, cell penetrating peptides

Supporting Information, Tables S3, S4). This suggested that cellular uptake of DS-rwrwr is energy dependent to some extent. As previously discussed for cells incubated with CPPs at 37°C, a saturation can occur with respect to peptide internalization within 10 min which slowly reached a pseudo steady state for uptake after 60 min. However, for the endocytosis-inhibited condition at 4°C, there was a lag of ~30 min in attaining a saturated concentration with an observed pseudo steady state occurring after 60 min. It is interesting to note that despite a ~ 2.5-fold decrease in maximum cellular concentration at 4°C, the steady state internalization time was same as cells incubated with D-chirality CPPs at 37°C. This indicated that cellular uptake occurred via multiple mechanisms where inhibition of one uptake pathway resulted in peptide uptake via another mechanism. In the case of DS-rwrwr, peptide uptake occurred via direct penetration upon inhibition of endocytosis. This trend was similar in the presence of metabolic inhibitors; however, with a ~ 50 min lag time observed in attaining a saturated concentration. This led to an eventual pseudo steady state with a ~ 5-fold decrease in peptide uptake when compared to cells incubated with CPPs at 37°C. Fluorescence microscopy experiments were performed to further understand this mechanism of peptide uptake at 4°C in the presence of metabolic inhibitors (Supporting Information, Figure S6a). A punctate intracellular peptide distribution was observed in intact HeLa cells incubated with DSrwrwr at 37°C after 10 min. This distribution was otherwise absent upon cellular inhibition of endocytosis. These small, distinct regions found in cells incubated at 37°C depict the intracellular trafficking occurring during endocytosis. CPPs taken in via endocytosis can get entrapped in early endosome vesicles leading to the formation of late endosomes and finally transported to lysosomes. The results from the microscopy studies clearly show that D-chirality CPP uptake is energy dependent; however, a heterogeneous cytosolic and nucleic distribution of DS-rwrwr was observed in cells incubated at 37°C alongside the punctate distribution. This suggested that D-chirality CPP uptake


was energy dependent only to a certain degree and was not an absolute requirement for successful internalization. As expected, a uniform cytosolic distribution was observed under endocytosis inhibition demonstrating a possible direct diffusion of CPPs into cells. This trend was observed at incubation times up to 120 min (Supporting Information, Figure S6b), proving that direct penetration is the limiting mechanism for D-chirality CPP uptake.


# 3.6 | Peptide export occurs via an exocytosis independent manner with measurable CPP level maintained within the cytosol


Until this point, D-chirality CPP uptake was measured by experimentation using a constant, exogenous peptide concentration. Results from these experiments suggested that a saturated intracellular concentration occurred within 10 min after which a pseudo steady state was attained for peptide internalization. An oscillatory trend was observed for cells incubated at longer time periods; however, it was unclear what caused this increase and decrease of total peptide inside of cells since the data indicated that the D-chirality CPPs were highly stable under intracellular conditions (Figure 1c). To address this question, additional experiments were performed to investigate the possibility of CPP expulsion via exocytosis. HeLa cells were incubated with DS-rwrwr for 10 min then followed by the removal of the exogenous peptide solution and its replacement with ECB. A time-dependent analysis showed a decrease in internalized CPP levels until 100 min that reached a constant value after 120 min (Figure 6a). Statistical analysis comparing the intracellular fluorescence at different time points proved that there was a significant decrease in intracellular fluorescence between 10 min and 100 min. While considering the stability of DS-rwrwr and the minimal degradation in the presence of proteases (Figure 1c), these results suggested that a proportion of intact CPP were expelled from cells thus leading to a decrease in intracellular fluorescence levels. Parallel analysis from Figure 6a revealed that despite a certain level of expulsion, DS-rwrwr was retained to a greater extent than S-RWRWR and ARG (~20-folds higher, p < .001).

Exocytosis was hypothesized to be the mode of peptide export since D-CPP uptake was, in part, controlled by endocytosis. Several recent works have highlighted that exocytosis was a.

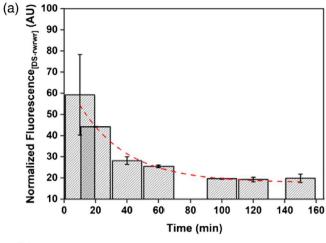
predominant export mechanism in cells with a significant endocytosis mode of entry. One such study by Chu et al. showed that clusters of silica NPs in lysosomes are more easily exocytosed compared to NPs that are in cytosol.<sup>39</sup> An exocytosis inhibition experiment was performed where a population of cells were treated with the exocytosis inhibitor Exo-1. Exo-1 is a well-known reversible inhibitor of vesicular trafficking between endoplasmic reticulum and the Golgi apparatus.<sup>40</sup> Blocking the exocytosis pathway with Exo-1 can help retain a significant amount of intracellular peptide within late endosomal vesicles. In parallel, a second population was treated with 5% serum since rate of exocytosis has been shown to increase in the presence of serum. These two populations were compared against a

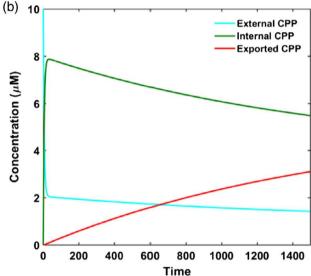






**FIGURE 6** Characterization of export mechanism of DS-rwrwr in HeLa cells upon maximum internalization [Color figure can be viewed at wileyonlinelibrary.com]


control population of cells that were exposed to the CPPs in SFM. Results from these experiments showed that neither Exo-1 nor serum affected cellular exocytosis (Figure 6b). Statistical analysis revealed that intracellular fluorescence in all three conditions (SFM, Exo-1, serum) remained identical but decreased over time (p > .05, Supporting Information, Table S4), suggesting that peptide export did not occur via exocytosis but through a direct escape similar in


behavior to direct translocation. To visually confirm this hypothesis, fluorescence microscopy experiments were performed in intact HeLa cells in both serum free and inhibited exocytosis conditions. Figure 6c shows a uniform cytosolic distribution of DS-rwrwr, but punctate fluorescence regions after 150 min in the presence and absence of Exo-1 highlighting that inhibition of exocytosis did not have any effect in the intracellular levels of peptide. These findings confirmed that both uptake and export of D-chirality CPPs occurred via an energy independent direct penetration in and out of the cells. Despite being expelled through direct penetration out of cells, a measurable cytosolic level of DS-rwrwr can be seen in Figure 6c.

### 3.7 | Characterization of D-chirality CPP uptake and export kinetics

Empirical uptake and export characterization results clearly show that D-chirality CPP uptake occurred via both direct penetration and endocytosis and once internalized, both degraded peptide fragments and intact peptide get exported out of cells with a measurable intracellular CPP level. Besides intrinsic properties of CPPs, uptake is also influenced by cell type and its membrane composition thus, making peptide internalization a complex multi-step process. Based on current results of this work and several postulated processes in literature. a kinetic scheme (Figure S7) was constructed consisting of equilibrated states (uptake and export) as well as non-equilibrated steps (degradation). 41-43 While the amount of internalized CPP can be easily determined empirically, it is extremely difficult to measure membrane bound CPP and the separate fractions that are free in cytosol and are bound inside organelles. Modeling the complete scheme required a large number of assumptions and approximations making it an extremely unreliable model. To simplify things, a reduced model (Supplementary Information, Mathematical Modeling, Equation [S5]) was used to approximate the uptake and export kinetics.

Numerical treatment of the experimental DS-rwrwr internalization (Figure 2a) and subsequent non-linear regression analysis (Supplementary Information, Figure S8a) determined a kint value of  $0.1546 \pm 0.09 \, \text{min}^{-1}$  with  $r^2 = 0.74$  and a half time of internalization value ( $t_{0.5}$ ) of 7.83 min. The lower  $r^2$  was due to the relative unsteady internalization behavior found in the experimental data. This can be verified by running the experiment at different initial peptide concentrations to confirm that the internalization reaction follows a first order. Similarly, non-linear curve fitting of the degradation data (Figure 1c) resulted in Supplementary Information, Figure S8b with a  $k_{deg}$  value of  $0.434 \pm 0.01 \times 10^{-3}$  min<sup>-1</sup> and  $r^2$  = 0.88. The low rate constant value suggested that peptide degradation occurs at very slow rate and is the nonlimiting reaction. Such a low degradation rate constant denotes that there was almost no intracellular degraded peptide fragments (CPP<sup>deg</sup><sub>in</sub> < < CPP<sub>intact</sub>) in CPP<sup>total</sup><sub>in</sub> = CPP<sub>intact</sub> + CPP<sup>deg</sup><sub>in</sub> and thus resulting in CPP<sup>total</sup> in = CPP<sub>intact</sub>. For the export kinetics, a  $(k_{out.1} + k_{out.2})$  value of  $0.0329 \pm 0.003 \,\mathrm{min}^{-1}$  was obtained with  $r^2 > 0.99$  (Figure 7a).  $k_{out,1}$  is the rate constant for the export of intact





**FIGURE 7** Kinetic model for DS-rwwr uptake and export in the reduced model (as shown in Equation S5) [Color figure can be viewed at wileyonlinelibrary.com]

cells while k<sub>out.2</sub> is the rate constant for export of peptide fragments. Since DS-rwrwr was stable and its rate of degradation intracellularly was very low, k<sub>out,2</sub> was assumed to be negligible. Thus, the export rate constant was driven by the export of just the intact peptide which simplifies to  $k_{out,1} = 0.0329 \pm 0.003 \text{ min}^{-1}$ . The equilibrium rate constant for intact peptide  $K_{intact} = k_{int}/k_{-out,1} = 3.7734$ , suggesting a faster intact CPP uptake of over export, while the equilibrium rate constant for the degraded peptide was negligible due to a lower degradation rate. The higher equilibrium constant for intact peptide can be validated by the fast internalization and cellular saturation occurring within 10 min followed by a slow export. The obtained rate constants (k<sub>int</sub>, k<sub>deg</sub>, k<sub>out,1</sub>, k<sub>-out, k</sup>-out, k<sub>-out,2</sub>) were all utilized by Equation (S5) to</sub> obtain a relationship between intracellular fluorescence and concentration by obtaining relevant concentration levels of [CPP<sup>total</sup><sub>in</sub>], which is the total internal CPP concentration and [CPPout], which is the total CPP exported out of cells in terms of µM (Figure 7b). A mathematical simulation was run for >1,500 min with initial condition, at time t = 0,  $[CPP_{ext}]$  = 10  $\mu M$ . This was the initial condition used to generate the

AIChE 11 of 12

experimental data. From Figure 7b, a maximum internal CPP concentration was found to be  $7.86\,\mu\text{M}$  seen at 13.3 min (in green) after which it slowly decreased over time at a very slow steady rate to reach an internal CPP concentration of  $5.45~\mu M$  at the end of 24~hr. This decrease in the internal CPP concentration was due to the intact CPP being exported as shown in red in Figure 7b. The concentration of exported CPP increased at a slow rate and reached 3.14 µM at the end of 24 hr. This highlights the ability of DS-rwrwr to be exported from cells in its intact form due to significant intracellular stability. The concentration of the external CPP (shown in blue in Figure 7b) decreased proportionally with the increased cellular uptake at 13.3 min and gradually decreased at a steady rate until it attained an equilibrium with the exported CPP. The model simulated that all the three values attained equilibrium at some point >24 hr suggesting that once rapid internalization, further CPP uptake and export is a very slow process. Such a mathematical representation serves as a base in understanding the intracellular interactions of DS-rwrwr and can further aid in utilizing this CPP by itself or with a cargo in any biosensing or therapeutic applications.

#### 4 | CONCLUSION

Results from previous studies with β-hairpin secondary structured CPPs revealed a decreased uptake efficiency despite enhanced intracellular stability. Thus, in order to address this trade-off, the previously reported L-chirality unstructured CPPs were used as model sequences here to explore the broader consequences of L-to-Dchirality stereochemical conversion in CPP performance through a series of time, concentration, temperature and energy dependent uptake and export studies. A ~ 3-fold increase in cellular uptake was observed with DS-rwrwr against its L-chirality counterpart, S-RWRWR with a slight alteration in the mode of entry. While majority of uptake happened via direct penetration, it was partially controlled by endocytosis followed by endosomal escape and cytosolic access. Moreover, this inversion of chirality provided increased protease resistance where the D-chirality CPP exhibited a  $t_{1/2}$  of ~1,550 min, a 50-fold increase in comparison to a  $t_{1/2}$  of ~28 min for its L-chirality counterpart. A series of exocytosis studies revealed that there was a notable export of the intact peptide through a direct penetration mode out of the cells. Additionally, even though the D-chirality peptide was found to be retained in the cytosol for several hours, it was found to be relatively innocuous to cells thus demonstrating its compatibility with cells under long exposure times. Finally, a theoretical uptake, reaction and export model was developed by numerically treating experimental data. The mathematical model predicted that for an initial 10 μM peptide solution concentration, maximum internalization of 7.86  $\mu M$  occurred at 13.3 min followed by a pseudo steady state decrease to 5.45  $\mu M$  after 24 hr. As the internal CPP concentration increased, the CPP export increased at a slow rate to  $3.14\,\mu M$ after 24 hr thus finally attaining equilibrium with internal CPP concentration at some point beyond 24 hr. Such predictive reaction models help in better kinetic characterization of these CPPs when designing therapeutics or when incorporated with cargoes. Altogether, the empirical results and theoretical models in this work establishes connections between chirality, cellular penetration, protease resistance, and intracellular activity that would be extremely useful for the development of future delivery agents with improved properties.

#### **ACKNOWLEDGMENT**

This work was supported by grants from the National Institute of Biomedical Imaging and Bioengineering, R03EB02935 (ATM), the National Science Foundation: CBET1509713 (ATM), and CBET1846900 (ATM), and the Louisiana Board of Regents, LEQSF (2018-23)-GF (HCH). The authors would like to thank Dong Liu (LSU AgCenter) for assistance with peptide synthesis, Joel T. Folse and Christopher Q. Ferrier (LSU Chemical Engineering) for some assistance with experiments.

#### **CONFLICT OF INTEREST**

The authors declare no conflict of interest.

#### ORCID

Adam T. Melvin https://orcid.org/0000-0003-0484-5871

#### **REFERENCES**

- Langel Ü. CPP, Cell-Penetrating Peptides. 12. Singapore: Springer; 2019:470.
- Böhmová E, Machova D, Pechar M, et al. Cell-penetrating peptides: a useful tool for the delivery of various cargoes into cells. *Physiol Res*. 2018:67:S267-S279.
- Copolovici DM, Langel K, Eriste E, Langel U. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano. 2014;8(3):1972-1994.
- 4. Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. *Drug Discov Today*. 2012;17(15–16):850-860.
- 5. Zou Y, Ma D, Wang Y. The PROTAC technology in drug development. *Cell Biochem Funct*. 2019;37(1):21-30.
- Jiang Y, Deng Q, Zhao H, et al. Development of stabilized peptidebased PROTACs against estrogen receptor α. ACS Chem Biol. 2017;13 (3):628-635.
- Lu M, Liu T, Jiao Q, et al. Discovery of a Keap1-dependent peptide PROTAC to knockdown tau by ubiquitination-proteasome degradation pathway. Eur J Med Chem. 2018;146:251-259.
- Gui W, Ott CA, Yang K, Chung JS, Shen S, Zhuang Z. Cell-permeable activity-based ubiquitin probes enable intracellular profiling of human deubiquitinases. J Am Chem Soc. 2018;140(39):12424-12433.
- Safa N, Pettigrew JH, Gauthier TJ, Melvin AT. Direct measurement of deubiquitinating enzyme activity in intact cells using a protease-resistant, cell-permeable, peptide-based reporter. *Biochem Eng J.* 2019; 151:107320.
- Ying L, Wang Q. Microfluidic chip-based technologies: emerging platforms for cancer diagnosis. BMC Biotechnol. 2013;13(1):76.
- Safa N, Vaithiyanathan M, Sombolestani S, Charles S, Melvin AT. Population-based analysis of cell-penetrating peptide uptake using a microfluidic droplet trapping array. *Analytical Bioanalytical Chem*. 2019;411(12):2729-2741. https://doi.org/10.1007/s00216-019-01713-5.
- Zhang H, Curreli F, Waheed AA, et al. Dual-acting stapled peptides target both HIV-1 entry and assembly. *Retrovirology*. 2013;10 (1):136.
- 13. Palm C, Jayamanne M, Kjellander M, Hällbrink M. Peptide degradation is a critical determinant for cell-penetrating peptide uptake.

- Biochimica et Biophysica Acta (BBA)-Biomembranes. 2007;1768(7): 1769-1776.
- Skwarczynski M, Toth I. Cell-penetrating peptides in vaccine delivery: facts, challenges and perspectives. Future Sci. 2019;10(8):465–467.
- Keller A-A, Mussbach F, Breitling R, et al. Relationships between cargo, cell penetrating peptides and cell type for uptake of noncovalent complexes into live cells. *Pharmaceuticals*. 2013;6(2): 184-203.
- Song J, Qian Z, Sahni A, Chen K, Pei D. Cyclic cell-penetrating peptides with single hydrophobic groups. Chembiochem: a European J Chem Biol. 2019;20(16):2085-2088.
- Borrelli A, Tornesello AL, Tornesello ML, Buonaguro FM. Cell penetrating peptides as molecular carriers for anti-cancer agents. *Molecules*. 2018;23(2):295.
- Safa N, Anderson JC, Vaithiyanathan M. CP Protectides: Rapid uptake of well-folded β-hairpin peptides with enhanced resistance to intracellular degradation. *Peptide Science*. 2019;111(2):e24092.
- Agyei D, Danquah MK. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. *Biotechnol Adv.* 2011;29(3): 272-277.
- Traboulsi H, Larkin H, Bonin M-A, Volkov L, Lavoie CL, Marsault E. Macrocyclic cell penetrating peptides: a study of structurepenetration properties. *Bioconjug Chem.* 2015;26(3):405-411.
- Najjar K, Erazo-Oliveras A, Brock DJ, Wang T-Y, Pellois J-P. An I-to d-amino acid conversion in an endosomolytic analog of the cell-penetrating peptide TAT influences proteolytic stability, endocytic uptake, and endosomal escape. *J Biol Chem.* 2017;292 (3):847-861.
- Pujals S, Fernández-Carneado J, Ludevid MD, Giralt E. D-SAP: a new, noncytotoxic, and fully protease resistant cell-penetrating peptide. ChemMedChem: Chem Enabling Drug Discovery. 2008;3(2):296-301.
- Ramaker K, Henkel M, Krause T, Röckendorf N, Frey A. Cell penetrating peptides: a comparative transport analysis for 474 sequence motifs. *Drug Deliv*. 2018;25(1):928-937.
- Verdurmen WP, Bovee-Geurts PH, Wadhwani P, et al. Preferential uptake of L-versus D-amino acid cell-penetrating peptides in a cell type-dependent manner. Chem Biol. 2011;18(8):1000-1010.
- 25. Elmquist A, Hansen M, Langel Ü. Structure–activity relationship study of the cell-penetrating peptide pVEC. *Biochimica et Biophysica Acta* (BBA)-Biomembranes. 2006;1758(6):721-729.
- Nakase I, Konishi Y, Ueda M, Saji H, Futaki S. Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. J Control Release. 2012;159(2): 181-188.
- Tamamura H, Kobayakawa T, Ohashi N. Mid-size Drugs Based On Peptides And Peptidomimetics: A New Drug Category. Singapore: Springer; 2018.
- Ngamdee K, Chaiendoo K, Saiyasombat C, et al. Highly selective circular dichroism sensor based on d-penicillamine/cysteamine-cadmium sulfide quantum dots for copper (II) ion detection. Spectrochim Acta A Mol Biomol Spectrosc. 2019;211:313-321.
- 29. Brock R. The uptake of arginine-rich cell-penetrating peptides: putting the puzzle together. *Bioconjug Chem.* 2014;25(5):863-868.

- Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system. *Nature*. 2007;448 (7149):39-43.
- Li Y, Zheng X, Cao Z, Xu W, Zhang J, Gong M. Self-assembled peptide (CADY-1) improved the clinical application of doxorubicin. Int J Pharm. 2012;434(1-2):209-214.
- 32. Smith PJ, Giroud M, Wiggins HL, et al. Cellular entry of nanoparticles via serum sensitive clathrin-mediated endocytosis, and plasma membrane permeabilization. *Int J Nanomedicine*. 2012;7:2045.
- 33. Ruseska I, Zimmer A. Internalization mechanisms of cell-penetrating peptides. *Beilstein J Nanotechnol.* 2020;11(1):101-123.
- 34. Badkas A, Frank E, Zhou Z, et al. Modulation of in vitro phagocytic uptake and immunogenicity potential of modified Herceptin®-conjugated PLGA-PEG nanoparticles for drug delivery. *Colloids Surf B Biointerfaces*. 2018;162:271-278.
- Mosquera J, García I, Liz-Marzán LM. Cellular uptake of nanoparticles versus small molecules: a matter of size. Acc Chem Res. 2018;51(9): 2305-2313.
- 36. Holm T, Andaloussi SE, Langel Ü. Comparison of CPP uptake methods. *Cell-Penetrating Peptides*. 2011;683:207-217.
- Patel SG, Sayers EJ, He L, et al. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Sci Rep. 2019;9(1):6298.
- 38. Yu W, Zhan Y, Xue B, et al. Highly efficient cellular uptake of a cell-penetrating peptide (CPP) derived from the capsid protein of porcine circovirus type 2. *J Biol Chem.* 2018;293(39):15221-15232.
- Chu Z, Huang Y, Tao Q, Li Q. Cellular uptake, evolution, and excretion of silica nanoparticles in human cells. *Nanoscale*. 2011;3(8):3291-3299
- von Kleist L, Haucke V. At the crossroads of chemistry and cell biology: inhibiting membrane traffic by small molecules. *Traffic*. 2012;13 (4):495-504.
- 41. Gao X, Hong S, Liu Z, Yue T, Dobnikar J, Zhang X. Membrane potential drives direct translocation of cell-penetrating peptides. *Nanoscale*. 2019;11(4):1949-1958.
- 42. Bechara C, Sagan S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett. 2013;587(12):1693-1702.
- 43. Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: from basic research to clinics. *Trends Pharmacol Sci.* 2017;38(4):406-424.

#### SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Vaithiyanathan M, Hymel HC, Safa N, et al. Kinetic analysis of cellular internalization and expulsion of unstructured D-chirality cell penetrating peptides. *AIChE J*. 2021;67:e17087. https://doi.org/10.1002/aic.17087