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Abstract

Graph Neural Networks (GNNs) often struggle in

preserving high-frequency components of nodal

signals when dealing with directed graphs. Such

components are crucial for modeling flow dynam-

ics, without which a traditional GNN tends to treat

a graph with forward and reverse topologies equal.

To make GNNs sensitive to those high-frequency

components thereby being capable to capture de-

tailed topological differences, this paper proposes

a novel framework that combines 1) explicit dif-

ference matrices that model directional gradients

and 2) implicit physical constraints that enforce

messages passing within GNNs to be consistent

with natural laws. Evaluations on two real-world

directed graph data, namely, water flux network

and urban traffic flow network, demonstrate the

effectiveness of our proposal. The code for this

paper is available at https://github.com/

HaoyangJiang-WM/PhysicsNFP.

1. Introduction

Directed graphs are frequently used to model various phys-

ical and engineering systems, due to their strength in cap-

turing spatial dependencies and complex interactions be-

tween components. Graph Neural Networks (GNNs) have

emerged as powerful tools for modeling such graphs, partic-

ularly in applications like water flux prediction and traffic

flow analysis (Kratzert et al., 2021; Jin et al., 2023). How-

ever, recent studies (Kirschstein & Sun, 2024) have revealed

a critical limitation, that GNNs often struggle in modeling

physics-based flow dynamics due to their insensitivity to

edge directions.

In real systems, flow dynamics follow strict physical laws,

where local and rapid changes, e.g., turbulent eddies, sharp

1Department of Data Science, William & Mary, Williamsburg,
VA, USA 2College of Engineering & Computer Science, Florida
Atlantic University, Boca Raton, FL, USA. Correspondence to: Dr.
Yi He <yihe@wm.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

flow transitions, or abrupt flux variations, only propagate in

specific directions (Sagaut, 2005; LeVeque, 2002; Canuto,

2007). Yet, GNNs typically yield similar performance

whether the original edge directions are maintained, re-

versed, or randomly perturbed. This directional insensi-

tivity mainly results from the message-passing mechanism

in GNNs, which implicitly acts as a low-pass filter (Kesting

& Treiber, 2013; Sagaut, 2005). While this filtering enables

GNNs to capture low-frequency patterns, such as seasonal

trends in river networks, it suppresses high-frequency varia-

tions that arise from rapid or local changes (Sun et al., 2022;

Bo et al., 2021; Hoang et al., 2021).

In this paper, we mainly explore two key research questions:

i) why are GNNs insensitive to edge directions and ii) how

can their directional awareness be improved.

We hypothesize that the low-pass filtering nature of message

passing is the main cause of this limitation. To validate this,

we formulate an inverse problem for flux prediction in river

networks, where the task is to infer upstream fluxes based on

downstream observations. This ill-posed setup leads to in-

stability by amplifying high-frequency components (Fisher

et al., 2020; Ferrari et al., 2018), where small numerical er-

rors can result in significant variations in inferred upstream

conditions, making the problem highly sensitive to local flux

changes. Yet, standard GNNs fail to capture these amplified

high-frequency signals, resulting in poor performance when

modeling directional dependencies.

To overcome these challenges, we propose a novel physics-

guided neural flux prediction (PhyNFP) framework that

integrates physical laws into GNN training, preserving high-

frequency components for better flow dynamics modeling.

Our framework has two main components: 1) At local level,

PhyNFP replaces traditional adjacency matrices with dis-

cretized difference matrices, which encode local variations

and directional dependencies between nodes. These matri-

ces capture directional gradients, allowing the GNN to retain

high-frequency information and distinguish flow directions.

2) At global level, PhyNFP incorporates physical equations

that describe flow dynamics, e.g., conservation of momen-

tum, directly in GNN training. This physics-guided regu-

larization ensures that predictions remain consistent with

underlying physical principles. Note, our PhyNFP frame-

work is generalizable in the sense that different physical
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equations can be adopted for various types of flow networks.

We evaluate PhyNFP on two real-world datasets, imple-

menting the Saint-Venant equations for river networks and

the Aw-Rascle equations for traffic networks. Experimental

results demonstrate that PhyNFP enhances GNN perfor-

mance by improving sensitivity to directional dependencies

and high-frequency dynamics. Furthermore, we validate

our hypothesis regarding the inverse problem nature of the

reversed topology by examining the model’s behavior under

perturbation in this setting.

Specific contributions in this paper include:

1. This is the first study to guide training of GNNs with

physics information for flux prediction, in order to

enhance their sensitivity to high-frequency components

and edge directions.

2. An inverse problem is formulated to validate the low-

pass filtering nature of GNNs, substantiating their in-

capability in capturing high-frequency components in

nodal features hence insensitive to edge directions.

3. Empirical evaluations on two different directed net-

works demonstrate the effectiveness of our framework,

which i) Outperforms its GNN competitors by 31.6%

in the river dataset and 4.9% in the traffic dataset on

average in flux prediction. ii) Uplifts the GNN sensi-

tivity to edge directions by 96.5% in the river dataset

and 79.9% in the traffic dataset.

2. Preliminaries

Problem Statement. Consider a directed graph G(A) =
(V,E) representing a flow network, where A is the graph

adjacency matrix and A ̸= A¦ in general. V = {vi} is the

set of nodes, with each node vi associated with a vector xi ∈
R

t×p that encodes the quantities of p variables (e.g., flux

volume, density, and velocity) over t time steps. We have

X = [x1, . . . ,x|V |]
¦ to denote the nodal feature matrix of

G. Let E ¦ V × V be the edge set, and eij = (vi, vj) ∈ E
represents an edge pointing from vi to vj , associated with

a vector eij ∈ R
q that encodes physical quantities such as

level difference or distance between nodes.

In this paper, we follow the prior study (Kirschstein & Sun,

2024) to frame the flux prediction task in supervised node

regression. Specifically, our goal is to predict the lead time

hours in the future, i.e., predicting the flux volume at t+ n
step for all nodes, where n is a configurable prediction

horizon. The ground-truth of all nodes is denoted by y ∈
R

|V |. Our objective takes the form:

min
θ

1

|V |

∑

vi∈V

ℓ (yi, f(xi, eij , A; ¹)) ,

where ℓ denotes the loss function (e.g., MSE or RMSE), f
denotes the GNN model parameterized by ¹, yi ∈ y is the

true flux volume of node i at step t+ n.

Figure 1. Left: Trends of temporal gradients w.r.t. the increasing

number of message-passing layers. Right: MSE Trends of GCN in

the original (Forward), inverse (Reverse), and undirected network

settings w.r.t. the increasing number of message-passing layers.

Technical Challenges

GNNs leverage neighborhood aggregation to yield node

embeddings that harmonize information from both nodal

features and graph topology. Denoted by hl+1
i the embed-

ding vector of node vi resulted from the (l + 1)-th message-

passing layer, it is computed in a recursive form as follows.

hl+1
i = Ul

(

hl
i,

∑

vj∈Nin[vi]

Ml(h
l
i,h

l
j , eji)

)

, h0
i = xi (1)

where Nin[vi] denotes the incoming neighbors of vi in G,

i.e., vj is upstream of vi. Ul and Ml denote the update and

aggregation functions of the l-th layer, respectively.

This message-passing process leads to the smoothing effect

because it inherently acts as a low-pass filter, which encour-

ages similar embeddings of neighboring nodes and attenu-

ates high-frequency components (Sun et al., 2022; Bo et al.,

2021). Denoted by ∆xi = (1/t)
∑t

s=1(xi[s]−E(xi))
2 the

temporal gradient of each node vi, which represents the rate

of change of p variables between consecutive time steps.

Figure 1 (left) illustrates the temporal gradients of all nodes

in the river dataset (details in Sec. 4), and how they change

w.r.t GNN layers. We observe that the differences among

the temporal gradients of these nodes and their embeddings

diminish with more message-passing layers, validating that

high-frequency components, as rapid variations of input

node features, cannot be captured in their embeddings.

We further validate that GNNs are insensitive to edge di-

rections due to their incapability to capture these high-

frequency components. To wit, we set up an inverse problem

of our prediction task. Specifically, in our original problem,

information propagates downstream in both space and time,

where each node embedding hi depends on features from

upstream nodes vj , as indicated in Eq. (1). In its inverse

problem, the edge directions are reversed, making A¦ the

graph adjacency. The task becomes ill-posed because it

requires inferring upstream from downstream conditions,

which incurs two issues. First, the upstream boundary condi-

tions are lacking (Fisher et al., 2020),as downstream nodes

do not contain sufficient information of upstream flow condi-
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tions, making the mapping potentially one-to-many. Second,

small numerical errors in the inference process can propa-

gate and be amplified, leading to instability and sensitivity

in the reconstructed upstream conditions. As a result, the

solutions are non-unique with high-frequency noises am-

plified during inverse problem. This instability introduces

high-frequency errors, causing small perturbations to result

in drastically different inferred solutions.

Figure 2 (right) demonstrates the trends of prediction loss

w.r.t. different numbers of forward (original), reverse, and

undirected message-passing layers. Similar loss trends

across all configurations indicate that while high-frequency

attenuation increases GNN robustness by suppressing noise

inherent in inverse problems, it simultaneously reduces the

GNN sensitivity to changes in flow direction. This attenua-

tion effect limits GNNs to capture complex flow dynamics,

particularly in cases where distinguishing between forward

and reverse flow directions is critical. More detailed analysis

of the technical challenges are deferred to the supplementary

material due to page limits.

3. Proposed Approach

To improve the directional awareness of GNNs, we pro-

pose PhyNFP that integrates explicit and implicit physical

constraints. In this section, we first introduce discretized

difference matrices, as explicit constraints, that model local

gradient changes in Sec. 3.1. Next, we present how these

difference matrices are integrated with physical conserva-

tion laws, as implicit constraints, to ensure global consis-

tency in flow dynamics in Sec. 3.2. Finally, we propose a

new message-passing equation that incorporates these con-

straints, demonstrating its capability to capture complex

flow dynamics in Sec. 3.3.

3.1. Discretized Difference Matrices for Explicit Local

Directionality Encoding

Discretized difference matrices encode directional sensi-

tivity by approximating spatial gradients in discrete form,

providing a framework for modeling local variations and

directional dependencies in flow dynamics. Inspired by re-

cent numerical methods (LeVeque, 2002), the discretized

difference update process can be interpreted as a multi-layer

GNN with specific adjacency matrices.

To see this, we start from its general format. A time-space

discretized physics process can be described as:

µ
t+1 = µ

t +∆t
∂µt

∂x
, (2)

where µ
t ∈ R

|V | is a row vector of nodal feature matrix

X, representing the state of a variable (i.e., flux volume) in

the graph G at time t. ∆t is the time step that defines the

temporal resolution. ∂µt/∂x represents the spatial gradient

of µ along the x-direction (i.e., the edge direction), which

captures local directional variations. µ
t+1 is the updated

state of this variable after incorporating temporal and spatial

changes. Approximating the gradient ∂µt/∂x in Eq. (2)

using a discretized difference scheme, we have:

µ
t+1 = µ

t + ³D̂µ
t = (I + ³D̂)µt, (3)

where D̂ is the discretized difference matrix, I is the identity

matrix, and ³ = ∆t/∆x is a scalar balancing the time step

∆t and the spatial step ∆x. Eq. (3) links the discrete update

process to the graph adjacency operator (I+³D̂), encoding

both the original topology and local variations.

To capture directionality in regions with rapid transitions

and local changes, we leverage the the upwind scheme that

allows for modeling directional dependencies in dynamic

systems (Bermudez & Vazquez, 1994), further ensuring

numerical stability in our framework. The upwind scheme

approximates gradients as ∂µ/∂x ≈ (µi − µj)/∆x, where

µi and µj are the i-th and j-th entries of µt, representing the

physical quantities of nodes vi and vj at time t, respectively.

∆x represents the spatial step between nodes vi and vj ,

with vj being the upstream neighbor of vi. This equation

prioritizes upstream information, aligning with the physical

reality of flows propagating downstream.

As such, we can construct the discretized difference matrix

D̂ based on the graph structure, where the nodes represent

spatial locations and the edges encode directional depen-

dencies. For a node vi and its upstream neighbor vj , the

(i, j)-th entry of D̂ can be defined as:

D̂ij =







1, if i = j,

−1, if j is the upstream node of i,

0, otherwise.

In the first row of D̂, we enforce directionality from v1 to v0,

allowing v0 to receive information without explicit initial

conditions while preserving correct flow dependencies.

Using edge vector eij , we define two enhanced difference

matrices D1 and D2 as follows.

D1 =
1

∆x
D̂, D2 =

∆z

∆x
D̂, (4)

where ∆x = ϕ1(eij) and ∆z = ϕ2(eij), and ϕ1 and ϕ2 are

learnable mappings such as multi-layer perceptrons (MLPs).

The intuition behind Eq. (4) is that, ∆x represents the spatial

distance, governing the propagation rate, while ∆z reflects

elevation differences, encoding gravitational effects. These

specific matrices arise naturally from the chosen PDEs, but

the underlying approach of using difference operators de-

rived from graph topology (e.g., spatial adjacency or func-

tional relationships) is generalizable (Grady & Polimeni,
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2010). Incorporating D1 and D2 into the GNN framework

enhances its ability to model directional dependencies, align-

ing with natural flow dynamics while maintaining stability.

3.2. Incorporating Physical Equations as Implicit GNN

Training Regularizers

Physical equations provide implicit constraints by enforcing

global conservation laws, while difference matrices encode

directional sensitivity at the local level. In fact, our tai-

lored difference matrices can be applied to a wide range

of flow models and are particularly suited for integration

with physical equations. This allows for the incorporation

of problem-specific constraints to address particular appli-

cations. In this study, we demonstrate that the difference

matrices allow for the incorporation of problem-specific

constraints to address two different applications.

CASE 1: S-V EQUATION FOR RIVER NETWORKS

In river flow modeling, the Saint-Venant (S-V) equations

are widely used to describe water flow dynamics (Wu, 2007;

Vreugdenhil, 2013). These equations establish the conser-

vation of mass and momentum as the fundamental physical

principles governing river water movement.

Conservation of Momentum. The momentum conser-

vation equation accounts for the forces influencing water

movement, including gravity and friction. Q = h · u repre-

sents discharge, where h is water depth and u is velocity. g
is gravitational acceleration, and z(x) is bed elevation. The

momentum conservation equation is given by:

∂Q

∂t
+

∂

∂x

(

Q2

h
+

1

2
gh2

)

= −gh
∂z

∂x
− f, (5)

where f = gn2Q|Q|/h4/3 denotes the friction term, with n
being the Manning coefficient.

Eq. (5) inherently captures the directionality of river flow.

The term −gh ∂z
∂x ensures downhill water movement by

aligning with the steepest descent, while the inertial term
∂
∂x

(

Q2

h + 1
2gh

2
)

maintains consistency in flow dynamics.

By integrating difference matrices with these terms, the solu-

tion space is constrained to adhere to fundamental physical

laws while ensuring stability and directionality.

In implementation, we further simplify Eq. (5) by neglecting

water depth and friction effects, which yields:

∂u

∂t
+ u ·

∂u

∂x
= −g

∂z

∂x
, (6)

where u ∈ R
|V| is the vector of fluid velocity of all nodes

at time t, and z denotes elevation.

Discretization. Eq. (6) can be discretized in both time and

space to facilitate numerical implementation. Using dis-

cretized difference matrices and rearranging terms leads to

the update rule for velocity at each node i:

ut+1
i = ut

i −∆t

(

ut
i

ut
i+1 − ut

i

∆x
+ g

zi+1 − zi
∆x

)

, (7)

where ut
i is the scalar velocity at node i and time step t, and

zi is the scalar elevation at node i.

Integration with Difference Matrices. To enhance GNNs

for modeling spatial variations and flow directions, we ini-

tially replace the adjacency matrix with a generalized differ-

ence matrix in Eq.(3). This general framework provides a

foundation for directional sensitivity and spatial variation

modeling in GNNs. To further align with physical princi-

ples, the generalized difference matrix Eq.(3) is adapted

to the governing PDE by incorporating specific physical

properties. For example, in the momentum equation, Eq.(3)

is replaced with a PDE-specific difference matrix, which

encodes elevation-based gradients and flow transport. The

updated velocity at node i is then computed as:

ut+1
i = ut

i − ³
(

ut
i(D̂ut)i + g(D̂z)i

)

, (8)

where (D̂ut)i represents velocity differences, and (D̂z)i
encodes elevation-driven effects. Parameter ³ controls the

influence of the difference matrix in the overall update rule.

CASE 2: A-R EQUATION FOR TRAFFIC NETWORKS

In traffic flow modeling, the Aw-Rascle (A-R) equations

are widely used to describe vehicle dynamics by extending

classical traffic flow models. These equations provide a

hyperbolic system of conservation laws to model traffic

behavior. (Aw & Rascle, 2000).

Conservation of Mass. The mass conservation equation

governs the evolution of vehicle density Ä(x, t) over time

and space. Representing Ä as the vehicle density and u(x, t)
as the velocity, the conservation of mass is expressed as:

∂Ä

∂t
+

∂(Äu)

∂x
= 0. (9)

This equation ensures that the total number of vehicles is

conserved across the traffic network, where Äu represents

the traffic flux. The coupling of vehicle density Ä(x, t) and

velocity u(x, t) in Äu captures the effects of local density

variations and their influence on traffic movement. This

formulation allows the AR model to effectively represent

traffic dynamics in real-world scenarios.

Discretization. The mass conservation equation for traffic

networks can be discretized in both time and space to facili-

tate numerical implementation. Using discretized difference

schemes and rearranging terms, we derive the update rule

4



Topology-aware Neural Flux Prediction Guided by Physics

for density at each node:

Ät+1
i = Äti −∆t

(

ut
i

Äti+1 − Äti
∆x

+ Äti
ut
i+1 − ut

i

∆x

)

, (10)

where Äti is the scalar density at node i and time step t, and

ut
i is the scalar velocity at node i. Eq. (10) accounts for both

the spatial variation of density and the effect of velocity

gradients, ensuring consistency with total traffic mass.

Integration with Difference Matrices. The updated traffic

density at node i is then computed as:

Ät+1
i = Äti − ³

(

ut
i(D̂Ät)i + Äti(D̂ut)i

)

, (11)

where (D̂ut)i represents velocity differences, and (D̂Ät)i
encodes density-driven effects. ³ is a balancing factor.

These terms approximate the spatial derivatives of velocity

and density, respectively, using a difference operator D̂.

3.3. Unifying Difference Matrices and PDEs in

Message-Passing Layers

We integrate physical knowledge into the GNN training pro-

cess by unifying difference matrices and PDEs to enhance

modeling for flood and traffic flow dynamics.

CASE 1: MESSAGE-PASSING FOR FLOOD PREDICTION

We extrapolate the message-passing function indicated in

Eq. (1) by explicitly distinguishing the roles of D̂ in captur-

ing both local gradients and elevation-driven effects, based

on Eq. (8). Specifically, we follow Eq. (4) to decompose

D̂ into D1 and D2. The message-passing process in our

PhyNFP framework for river network can be formulated as:

h
l+1 = h

l
−∆t

(

h
l
» (D1h

l
W1) + ĝ · (D2h

l
W2)

)

, (12)

where hl ∈ R
|V |×d represents the node embedding matrix

at layer l, initialized as h0 = X ∈ R
|V |×(t·p). As deeper

message-passing layers enables information exchange be-

tween a node and its topologically more faraway neighbors,

simulating longer-term system dynamics, we use the update

from l to the (l+1)-th layer to surrogate the accumulation of

changes over two consecutive time steps in PDEs. The dif-

ference matrices D1 ∈ R
|V |×|V | captures local spatial gra-

dients and D2 ∈ R
|V |×|V | incorporates elevation-driven dy-

namics influenced by graph topology. W1 and W2 ∈ R
d×d

are learnable parameters that learn node embeddings within

the same dimension, allowing for the element-wise multipli-

cation ». ∆t and ĝ are learnable scalars that modulating the

influence of spatial and elevation-driven terms and scales

the contribution of elevation-driven dynamics, respectively.

In our tailored message-passing Eq. (12), the term D1h
l

captures local spatial derivatives, reinforcing directional

information, and D2h
l integrates elevation variations that

influence flow propagation. The learnable weights W1 and

W2 further refine these representations, ensuring consis-

tency across layers. Using learnable ∆t and g allows for

additional flexibility, making GNNs adaptive to based on

training data while preserving the underlying physical prin-

ciples. Leveraging Eq. (12), our PhyNFP empowers GNNs

to model rapid spatial and directional variations, improving

performance in predicting flux volumes of river networks.

CASE 2: MESSAGE-PASSING FOR TRAFFIC FLOW

To enhance directional sensitivity in traffic networks, we re-

formulate the traffic flow conservation Eq. (9) by regulating

the contributions of traffic density and velocity variations:

h
l+1 = h

l
−∆t

(

h
l
» (D1v

l
W1) + v

l
» (D1h

l
W2)

)

, (13)

where the node embedding matrix at layer l remains hl ∈
R

|V |×p, but initialized as h0 = MLPh(X) ∈ R
|V |×d. De-

noted by vl ∈ R
|V |×p an embedding matrix, initialized as

v0 = MLPv(X) ∈ R
|V |×d that extracts velocity property

from raw nodal features. Here, we only use D1 ∈ R
|V |×|V |

that encodes spatial variations in both traffic density and

velocity, reflecting how traffic propagates through the net-

work. W1 and W2 ∈ R
d×d are learnable weights, and ∆t

is a learnable scalar used to balance local traffic variations

and temporal propagation. In the message-passing Eq. (13)

tailored for traffic network, D1v
l captures velocity gradi-

ents that drive traffic movement, while D1h
l accounts for

density variations that influence traffic congestion. There-

fore, although both terms share the same difference matrix

D1, their physical interpretations differ. Namely, D1v
l

determines velocity-induced flow adjustments, and D1h
l

regulates density-based congestion propagation. The learn-

able matrices W1 and W2 refine these interactions, enabling

GNNs to adapt to free-flow and congested conditions. By

making ∆t learnable, GNNs can adjust their sensitivity to

real-time traffic conditions, providing a physics-aware ap-

proach to traffic prediction.

4. Experiments

Datasets. Two datasets collected from real-world directed

graphs are used. 1) River, preprocessed from LamaH-CE2

(Klingler et al., 2021), which documents historical discharge

and meteorological measurements with hourly resolution in

the Danube river network. It consists of 358 nodes and 357
edges. Five nodal features include discharge, surface pres-

sure, precipitation, temperature, and soil moisture. Three

edge features include length, slope, and distance. 2) Traffic,

preprocessed from PEMS-04 (Yu et al., 2018), that com-

prises traffic flow records collected from roadside sensor

stations. It consists of 307 nodes and 340 edges. Three

nodal features include flow, occupy and speed. Edge fea-
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Table 1. Comparative results in two datasets, with prediction horizon n = 6 and MSE measured on the volume rescaled by normal score.

Datasets River Network Traffic Network

Forward (F) Reverse (R) DS RDS Forward (F) Reverse (R) DS RDS

PhyNFP (Ours) 0.0801 0.0906 +0.0105 - 0.0696 0.0724 +0.0028 -

PhyNFPDM (ablation) 0.0898 0.0961 +0.0063 -40.0% 0.0721 0.0738 +0.0017 -39.3%

GWN 0.1101 0.1132 +0.0031 -70.5% 0.0709 0.0706 -0.0003 -110.7%

MP PDE Solver 0.1126 0.1082 -0.0044 -141.9% 0.0700 0.0711 +0.0011 -60.7%

MPNN 0.1170 0.1182 +0.0012 -88.6% 0.0713 0.0720 +0.0007 -75.0%

GraphSAGE 0.1224 0.1149 -0.0075 -171.4% 0.0724 0.0712 -0.0012 -142.9%

GAT 0.1233 0.1265 +0.0032 -69.5% 0.0768 0.0776 +0.0008 -71.4%

GNO 0.1247 0.1265 +0.0018 -82.9% 0.0757 0.0765 +0.0008 -71.4%

GCN 0.1365 0.1357 -0.0008 -107.6% 0.0769 0.0778 +0.0009 -67.9%

ture is the distance between nodes. Input features over W
hours are concatenated along the feature dimension before

being fed into the models. The ground-true flux volumes

Y ∈ R
|V | are available for all nodes in both datasets. We

normalize all physical variables including the nodal features

and output volume to the same scale in an element-wise

fashion using standard score (LeCun et al., 2002).

Metrics. Following the prior art (Kirschstein & Sun,

2024), we benchmark the models in the regime of supervised

node regression. Given a certain amount of W (i.e., a win-

dow size) observations of flux volume of all nodes, our task

is to predict the volume n hours ahead, namely, the predic-

tion horizon is n. We set W = 24 for training and n = 6 for

the lead time prediction for applicability. The prediction dis-

crepancy is gauged by the mean squared error (MSE) aver-

aged over all nodes, namely, ℓ(Ŷ,Y) = (1/|V |)∥Y−Y∥22.

Direction Sensitivity. To substantiate the effectiveness

of distinguishing edge directions, we benchmark the ex-

periments in the original graph datasets (denoted as For-

ward) and their inverse counterparts, where the direction

on every edge is reversed (denoted as Reverse). We define

direction sensitivity of a certain model M as DS(M) =
ℓM (Reverse)−ℓM (Forward), where ℓM indicates the MSE

loss of M , and intuitively its performance in the Forward

setting should excel. Further, we can define the relative

direction sensitivity as RDS(M1,M2) = (DS(M2) −
DS(M1))/DS(M1) between two models M1 and M2.

Competitors. Eight models are identified for compara-

tive study, divided into three categories as follows. First,

the traditional GNNs including 1) Graph Convolutional

Network (GCN) (Wu et al., 2019) that propagates node

features in spectral domain, 2) Graph Attention Network

(GAT) (Veličković et al., 2018) that furthers GCN with at-

tention mechanism, 3) Message-Passing Neural Network

(MPNN) (Gilmer et al., 2020) that employs general feature

aggregation and update functions, 4) GraphSAGE (Hamil-

ton et al., 2017) for inductive representation learning, and

5) Graph Wavelet Network (GWN) (Xu et al., 2019) that

uses wavelet transforms to capture high-frequency compo-

nents. Compared with those traditional GNNs, the efficacy

of our PhyNFP performs in preserving directional sensitiv-

ity, capturing high-frequency components, and improving

flux predictive performance.

Second, the graph learning models for problem-solving in

physical systems. They include 6) Message-Passing PDE

Solver (MP-PDE Solver) (Brandstetter et al., 2022) that uses

message passing to approximate PDE solutions, capturing

spatial and temporal dynamics without enforcing physical

constraints, and 7) Graph Neural Operator (GNO) (Li et al.,

2020) that learns mappings between function spaces, so to

adapt to spatial and temporal dynamics without enforcing

physical constraints. Both MP-PDE Solver and GNO are

data-driven approaches that do not explicitly incorporate

physical laws. Comparing with them help evaluating how

well the proposed PhyNFP balances physical consistency

and data-driven modeling.

Third, for ablation study, we propose a variant reduced

from our proposed approach: 8) PhyNFPDM , which only

uses the basic adjacency information constructed from dis-

cretized difference matrices in Eq. (3) for message-passing.

This variant does not incorporate PDEs into its GNN train-

ing. A comparison with it will demonstrate the effectiveness

of incorporating specific PDEs as constraints for domain

problems as specified in Sec. 3.2.

Results and findings. Table 1 presents the MSE and direc-

tional sensitivity scores (DS and RDS) for different models

on river and traffic networks. We answer the following

research questions (RQs) based on the results.

RQ1 How does the proposed PhyNFP framework improve

flux prediction over the compared graph learners?

Our method achieves the best overall performance in both

datasets. To quantify these improvements, we compute

6
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Method Forward (F)

n 3 6 9

PhyNFP 0.0514 0.0801 0.1087

GAT 0.0617 0.1233 0.1433

GCN 0.0632 0.1365 0.1481

Table 2. Comparative results with baseline GNN models in river

network with varying prediction time horizon n.

the average Forward MSE, DS, and RDS across all base-

line models, including the ablation version of our method,

and compare them with our approach. Specifically, in the

river network, the compared methods on average achieve an

MSE in the Forward setting as 0.1170, whereas our method

achieves 0.0801, representing a 31.6% reduction in the MSE

prediction error. The DS score of PhyNFP is 0.0105, out-

performing the compared methods that on average arrive

at 0.0004, leading to 26× improvement in relative direc-

tional sensitivity (RDS). In the traffic network, the base-

line average Forward MSE is 0.0732, while our method

achieves 0.0696, reducing error by 4.9%. The baseline DS

is 0.0006, while our model achieves 0.0028, correspond-

ing to a 3.6× improvement in RDS. These results indicate

that traditional graph-based models, including GNNs and

graph-aware PDE solvers, struggle with directional sensitiv-

ity, while our method significantly enhances topology-aware

modeling, resulting in improvement in flux prediction.

RQ2 Does domain-specific physics information helpful in

graph-related flux prediction tasks?

To understand performance variations, we categorize mod-

els into two groups: physics-guided models (e.g., MP-PDE

Solver, GNO and PhyNFPDM (ablation)) and purely data-

driven models (e.g., GCN, GraphSAGE, GWN, GAT, and

MPNN). In the river network, physics-guided models have

an average Forward MSE of 0.1090, which is 26.5% higher

than our 0.0801, while their average DS is 0.0012 com-

pared to our 0.0105, resulting in a 88.3% lower RDS. Purely

data-driven models perform similarly, with an average For-

ward MSE of 0.1218 (34.3% higher than ours) and a DS

of -0.0002, leading to a 101.9% lower RDS. In the traffic

network, physics-guided models have an average Forward

MSE of 0.0726, which is 4.1% higher than our 0.0696, and

an average DS of 0.0012, making their RDS 57.1% lower.

Purely data-driven models show an average Forward MSE

of 0.0736 (5.4% higher than ours) and a DS of 0.0002, lead-

ing to a 92.8% lower RDS. Physics-guided models achieve

lower Forward MSE and better DS/RDS than purely data-

driven models, showing that incorporating physical knowl-

edge helps with directional flow modeling. However, those

physics-guided models perform worse than our method.

We observe weaker directional sensitivity (DS/RDS) in the

1

2

3

4

(a) Graph topology of the River dataset.

Index of Nodes 

Curve of GCN

1 2 3 4

(b) GCN

Index of Nodes 

1 2 3

Curve of ResGCN

4

(c) ResGCN

Curve of PhyNFP  

Index of Nodes 
1 2 3 4

(d) PhyNFP

Figure 2. Trends of prediction results in response to a local and

rapid flux change. (a) The change occurs in node v1 and propagates

to the downstream nodes v2, v3, and v4. The responsive prediction

errors (in MSE) across the four nodes from (b) GCN, (c) ResGCN,

and (d) our PhyNFP framework.

Traffic network compared to the River network, stemming

from two main factors. First, the governing physics dif-

fer: river flow modeling (momentum-based) enforces direc-

tion more strongly than traffic flow modeling (mass/density-

based). Second, their graph structures contrast: the River

network is largely tree-like, inherently supporting directed

information flow during message passing. The Traffic net-

work, however, contains many cycles, which allow message

passing routes that can counteract strict directionality, thus

blurring the distinction between the deliberately set forward

and reverse topologies. Both the physics and the cyclic struc-

ture therefore make achieving high directional sensitivity

more challenging in the traffic network.

RQ3 What is the impact of time horizon in prediction?

Table 2 presents the MSE for different methods under for-

ward flow in the river network as the prediction horizon n
increases. We observe that, as n increases from 3 to 9, all

models show increasing errors, reflecting the challenge of

long-horizon predictions. However, the error growth is sig-

nificantly slower for our method, increasing by only 0.0573
(from 0.0514 to 0.1087), whereas GAT and GCN experience

larger increases of 0.0816 and 0.0849, respectively. Mean-

while, our method consistently achieves lower MSE across

all horizons, demonstrating that our method maintains better

stability and robustness over longer horizons.

RQ4 How well is our proposed PhyNFP in capturing high-

frequency components and local and rapid changes?

7
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Figure 2 shows the topology of the river dataset and the

prediction results under perturbations (i.e., simulating high-

frequency components). The y-axis represents the differ-

ence between perturbed and unperturbed predictions. In

Figure 2(b), (c), and (d), the blue line indicates the mean

prediction over the test set, while the gray area represents

the 3Ã confidence interval.

In Figure 2(a), the topology of the river network is depicted

as a tree-like structure. A perturbation (+0.5) on v1 is

introduced at the final time step to observe its effect on

downstream nodes. This perturbation amount is consid-

erable given the data has been normalized. Figure 2(b)

shows that GCN fails to propagate the perturbation to down-

stream nodes, indicating that GCN struggles to capture high-

frequency components in nodal representations. Figure 2(c)

illustrates that, although ResGCN demonstrates propagation

at certain extend, it introduces more errors. For example, the

perturbation at v2 should increase the value; instead, Res-

GCN causes a decrease, showing that it lacks consistency

in flow modeling. In Figure 2(d), PhyNFP successfully

propagates the perturbation to multiple downstream nodes

without introducing error responses. This demonstrates that

our model effectively captures upstream-to-downstream de-

pendencies while maintaining physical consistency.

RQ5 How well is PhyNFP able to extract physics under-

lying PDE in solving the inverse problem?

To validate that PhyNFP truly incorporates the physical dy-

namics described by the PDEs, and to confirm our hypothe-

sis about the reverse task behaving as an ill-posed inverse

problem, we analyze its behavior in the reverse setting, par-

ticularly when subject to local perturbations. As established

in Section 2, solving hyperbolic PDEs upstream in space is

inherently unstable and sensitive to high-frequency perturba-

tions. A model that correctly captures these physics should

exhibit signs of this instability in the reverse setting, unlike

standard GNNs which tend to smooth out such effects.

Figure 4 in the Appendix illustrates the model responses to a

local perturbation injected at a node (v1) in the reverse river

network setting. For PhyNFP, the perturbation incorrectly

propagates upstream (to v2, v3, . . . ). While physically incor-

rect for forward flow, this behavior is the expected signature

of solving the PDE backward from downstream data. The

response of PhyNFP in this setting, which directly reflects

the ill-posed and potentially unstable nature of this inverse

problem, thus demonstrates its capture of the PDE-encoded

dynamics. In contrast, GCN and ResGCN show minimal

upstream response, suppressing the perturbation due to their

low-pass filtering property, which highlights their insensi-

tivity to such physical dynamics and direction reversal.

Further evidence comes from the learned time step param-

eter ∆t. As shown in Figure 3, ∆t stabilizes at a higher

Figure 3. Evolution of the learned time-step parameter ∆t over

training epochs for the forward and reverse settings in the river

network. The model starts with an initial ∆t = 0.7.

value in the forward setting, whereas in the reverse setting it

converges to a value approximately 21.58% smaller. This re-

flects the need for tighter step sizes to ensure stability when

solving ill-posed inverse problems (Baumeister, 1987).

These results demonstrate that PhyNFP effectively extracts

the physics embedded in the governing PDE. Its response

to upstream perturbations and the adaptive adjustment of

the learned time step ∆t reflect its ability to capture the

instability associated with solving the PDE in reverse.

5. Related Work

We identify three thrusts of related studies as follows.

Physics-based Flood Forecasting Traditional hydrody-

namic models, based on the Saint-Venant equations, are

widely used for flood forecasting due to their detailed physi-

cal representation of river flows. These models solve PDEs

to simulate key hydrological variables such as water flow,

velocity, and depth across spatial grids. Examples include

HEC-RAS (Hydrologic Engineering Center’s River Analy-

sis System)(Brunner, 2002), HL-RDHM (Hydrology Lab-

oratory Research Distributed Hydrologic Model)(Moreda

et al., 2006; Fares et al., 2014), and SWAT (Soil and Water

Assessment Tool) (RS & Williams, 1998), which approx-

imate water movement based on river topology, rainfall

intensity, and terrain features. Despite their accuracy, these

models demand extensive computational resources due to

fine-grained spatial and temporal discretization, making

real-time adaptation challenging.

Physics-based Traffic Flow Prediction. Traditional traf-

fic flow models are formulated as partial differential equa-

tions (PDEs) to capture the macroscopic dynamics of ve-

hicle movements. Classical models such as the Lighthill-

Whitham-Richards (LWR) model(Leclercq, 2007) describe

traffic density evolution using conservation laws, while the

Aw-Rascle-Zhang (ARZ) model(Aw & Rascle, 2000; Yu

8
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& Krstic, 2019) extends LWR by incorporating velocity-

dependent pressure terms to model traffic congestion more

accurately. Additionally, the second-order macroscopic

models, such as the Payne-Whitham model (Jin & Zhang,

2003), introduce momentum conservation to capture driver

reaction behaviors. These models provide interpretable the-

oretical frameworks but require detailed parameter calibra-

tion and struggle to adapt to dynamic traffic conditions.

Furthermore, alternative data-driven approaches, such as

multi-stream fuzzy learning or topology-based fuzzy net-

works, aim to address uncertainty and dynamic changes in

transportation systems (Yu et al., 2020; 2022).

Physics-Informed/Guided Graph Neural Networks.

The integration of physics with GNNs has proven effec-

tive for solving systems governed by PDEs. Graph Neural

Operators (GNOs) (Li et al., 2020) use graph kernels to

learn mappings between function spaces, enabling efficient

PDE solutions across varying domains. Graph Neural Diffu-

sion (GRAND) (Chamberlain et al., 2021) models diffusion

processes on graphs, capturing long-range dependencies and

incorporating physical principles. Graph Neural Ordinary

Differential Equations (GDEs) (Poli et al., 2019) describe

node feature evolution as continuous trajectories governed

by ODEs, offering adaptive computation for dynamic pro-

cesses. Message Passing Neural PDE Solvers (Brandstetter

et al., 2022) leverage graph structures to propagate infor-

mation and approximate PDE solutions. These approaches

illustrate the synergy between physics-based modeling and

GNNs in scientific and engineering tasks. In addition, PDE-

Net(Long et al., 2018) embed differential operators into

neural networks, enhancing interpretability and enforcing

physical constraints. Some studies further demonstrate how

to leverage difference matrices to encode physical laws (Liu

et al., 2024). Spatio-temporal graph neural networks (ST-

GNNs) have been shown to enhance predictions by integrat-

ing rainfall-runoff data with river topologies in complex net-

works for flood forecasting (Roudbari et al., 2024; Kazadi

et al., 2023; Farahmand et al., 2023) and traffic flow model-

ing (Bui et al., 2022; Guo et al., 2019). These approaches

enable scalable and consistent solutions for tasks like flood

prediction and urban traffic forecasting.

However, deep GNNs, including physics-informed ones,

often encounter the over-smoothing problem, where node

features tend to become overly similar with increasing net-

work depth. This limitation restricts their ability to capture

high-frequency components in flow dynamics. Some studies

have attempted to mitigate the over-smoothing with PDE.

For example, PDE-GCN constructs GCNs by discretizing

hyperbolic PDEs (Eliasof et al., 2021). Rusch et al. intro-

duce GraphCON, a framework based on coupled oscillators

(Rusch et al., 2022), and further propose Gradient Gating

(G2) to control information flow and address oversmoothing

(Rusch et al., 2023). Our proposed PhyNFP framework is

also grounded in PDEs. Its ability to operate effectively

with up to 19 layers as in (Kirschstein & Sun, 2024), in

contrast to standard GNNs, stems from the use of upwind

schemes in the difference matrices and the enforcement of

physical consistency. These mechanisms inherently stabi-

lize the message-passing process without relying on explicit

over-smoothing regularization.

6. Conclusion

This paper explored the limitation of GNNs in modeling

directed graph-based flow systems, where physical dynam-

ics are governed by directional dependencies. Our analysis

demonstrates that GNNs often exhibit directional insensi-

tivity due to their inherent low-pass filtering effect during

message passing. This limitation prevents them from effec-

tively capturing high-frequency variations in flow dynamics,

such as abrupt flux changes and sharp transitions. As such,

standard GNNs struggle with inverse problems, where accu-

rate representation of directional and localized changes is

crucial. In response, we proposed the PhyNFP framework,

which integrates physical principles into GNN training to

enhance directional sensitivity and improve performance in

flow dynamics modeling. PhyNFP consists of two main

components, namely 1) discretized difference matrices that

encode directional gradients and local variations, preserving

high-frequency information that traditional adjacency-based

GNNs filter out, and 2) physical law regularization, whereby

incorporating global physical equations such as momentum

conservation into the training process, PhyNFP ensures the

compliance between predictive results and the underlying

physics. Extensive experiments on real-world river and traf-

fic networks demonstrate that PhyNFP can better capture

both high-frequency and directional dependencies, leading

to significant improvements over baseline GNN models and

graph-aware PDE solvers in terms of prediction accuracy

and flow representation, substantiating the effectiveness and

promising modeling of integrating domain-specific physical

knowledge into graph learning regimes.

In future work, we aim to extend our framework to incorpo-

rate boundary and initial conditions of the governing PDEs,

which lend a more faithful representation of fluid dynamics.

Their explicit integration may further improve the physical

fidelity and predictive accuracy of our model.
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Overview. This supplementary material provides a results figure in reverse setting (in Appendix A) and additional analysis

to support our main paper in two key aspects. First, we evaluate the effectiveness of the proposed discretized difference

matrices using the Discrete-Time Fourier Transform (DTFT), demonstrating that these matrices enhance the model sensitivity

to high-frequency components, as detailed in Appendix B. Second, we formulate the flux prediction problem on a directed

graph with reversed edge directions as an inverse problem and provide a detailed rationale for this approach, which is

discussed in Appendix C.

A. Results under Perturbations in Reverse Setting

1

6

2

3

4

5

(a) Graph topology of the River dataset.

Index of Nodes

Curve of GCN

(b) GCN

Index of Nodes

Curve of ResGCN

(c) ResGCN

Index of Nodes

Curve of PhyNFP

(d) PhyNFP

Figure 4. Trends of prediction results in response to a local and rapid flux change. (a) The change occurs in node v1 and propagates to the

upstream nodes v2 through v6. The responsive prediction errors (in MSE) across the six nodes are shown for (b) GCN, (c) ResGCN, and

(d) our PhyNFP framework.

B. Difference Matrix and High-Frequency Sensitivity

B.1. Definition of the Difference Matrix

In signal processing, the difference operator is used to capture variations in a signal. For a 1D sequential signal, the forward

difference matrix D of size n× n is defined as

D =















1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · −1 1















.

12
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Applying D to a discrete-time signal x = [x1, x2, . . . , xn]
T gives

D x =















x1

x2 − x1

x3 − x2

...

xn − xn−1















,

which captures the differences between consecutive elements, making it sensitive to rapid changes in the signal.

B.2. DTFT of the Difference Matrix

To analyze the effect of D in the frequency domain, we use the Discrete-Time Fourier Transform (DTFT). The DTFT of a

discrete-time signal x(n) is

X(ejω) =

∞
∑

n=−∞

x(n) e−jωn.

Consider the difference equation

y(n) = x(n)− x(n− 1).

Taking its DTFT:

Y (ejω) =

∞
∑

n=−∞

[

x(n)− x(n− 1)
]

e−jωn.

Using the time-shift property F [x(n− k)] = e−jωk X(ejω), we have

F [x(n− 1)] = e−jω X(ejω).

Thus,

Y (ejω) = X(ejω)− e−jω X(ejω) =
(

1− e−jω
)

X(ejω).

Hence, the frequency response of the difference operator is

D(ejω) = 1− e−jω.

B.3. Magnitude Response of the Difference Operator

Writing e−jω = cosÉ − j sinÉ,

D(ejω) = (1− cosÉ) + j sinÉ.

Its magnitude is

|D(ejω)| =
√

(1− cosÉ)2 + sin2 É.

Using 1− cosÉ = 2 sin2(É/2), we get

|D(ejω)| = 2
∣

∣sin(É/2)
∣

∣.

For É → 0, |D(ejω)| → 0, so low-frequency components are suppressed. For É → Ã, |D(ejπ)| = 2, so high-frequency

components are amplified. Thus, D acts like a high-pass filter.

B.4. Composite Operator I + ³D

Since I is the identity operator (preserving all frequencies) and D is a high-pass filter, their combination

Hcombined = I + ³D

balances the global structure (I) with local variations (D).

13



Topology-aware Neural Flux Prediction Guided by Physics

B.4.1. FREQUENCY RESPONSE OF I + ³D

Taking the DTFT of Hcombined:

Hcombined(e
jω) = 1 + ³

(

1− e−jω
)

= 1 + ³− ³ e−jω.

Using e−jω = cosÉ − j sinÉ,

Hcombined(e
jω) = (1 + ³)− ³ cosÉ + j ³ sinÉ.

B.4.2. MAGNITUDE RESPONSE

The magnitude is

|Hcombined(e
jω)| =

√

(

1 + ³− ³ cosÉ
)2

+
(

³ sinÉ
)2
.

B.4.3. SPECIAL CASES

For É = 0:

|Hcombined(e
j0)|2 = 1,

so low-frequency components are unchanged.

For É = Ã:

|Hcombined(e
jπ)|2 = (1 + 2³)2,

hence

|Hcombined(e
jπ)| = | 1 + 2³ |,

allowing control of high-frequency amplification by adjusting ³.

Remark. The operator I + ³D can be tuned to preserve smooth trends while selectively enhancing or reducing sharp

transitions, making it highly adaptable in various discrete signal and graph processing tasks.

C. Hyperbolic PDEs and Reverse Characteristic Tracing

C.1. General Form of Hyperbolic PDEs

A hyperbolic partial differential equation can often be written as

∂u

∂t
+

∂f(u)

∂x
= 0, (14)

where u(x, t) depends on time t and space x, and f(u) is the flux function. If f(u) = c u with a positive constant c, then

ut + c ux = 0,

indicating that information propagates at speed c. If f(u) = u2

2 , then

ut + uux = 0,

where f ′(u) = u depends on the solution itself, leading to wave speeds that can vary in space and time.

C.2. Forward and Reverse Characteristic Tracing

C.2.1. CHARACTERISTIC EQUATIONS AND FORWARD TRACING

From (14), one derives the characteristic form:

d

dt
u
(

x(t), t
)

= ut +
dx

dt
ux = ut + f ′(u)ux = 0. (15)

14
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This implies
du

dt
= 0 =⇒ u

(

x(t), t
)

= constant,

and
dx

dt
= f ′(u).

In the linear case f ′(u) = c, characteristics are straight lines x(t) = x0+ c t. If f ′(u) depends on u, different characteristics

may cross or diverge. For forward tracing, the solution evolves from an initial condition at t = 0 along these characteristic

lines.

C.2.2. REVERSE TRACING AND FLOW DIRECTION REVERSAL

To reconstruct the state at t = 0 from known data at t = T , one must trace characteristics backward. In the simpler linear

case ut + c ux = 0, suppose

u(x, t) =

∫

∞

−∞

û(É, t) e i ω x dÉ,

then

û(É, t) = û(É, 0) e− i c ω t.

If only noisy observations ûobs(É, T ) are available at t = T , the inverse solution at t = 0 retains high-frequency noise, often

leading to large oscillations in the physical domain.

In a river network or directed graph, reversing edges from downstream to upstream has an analogous meaning: instead

of following the natural (forward) downstream flow, one essentially attempts to trace information upstream. From a PDE

perspective, this parallels reversing the direction of characteristics. While valuable for estimating upstream fluxes or initial

states, such a reversed approach can suffer from noise amplification and multivalued solutions when no dissipation is present.

C.3. Effects of Nonlinearity and Multivalued Solutions

When f ′(u) depends on u, characteristic speeds vary with the solution. Different characteristic curves may converge (forming

shocks) or diverge (forming rarefactions), sometimes creating multiple values of the solution in the same region. Nonlinearity

also causes spectral broadening, so different frequency components can interact and generate new high-frequency terms.

Consequently, reverse reconstruction is more sensitive to noise and can become numerically unstable.

C.4. Regularization and Stability

Typical techniques to stabilize reverse problems include:

1. Adding a small viscous term,

ut + f(u)x = ¿ uxx, ¿ > 0,

to provide smoothing and suppress high-frequency oscillations.

2. Introducing constraints or penalties in the inverse problem,

min
u

∥A(u)− b∥2 + ¼∥u∥2, ¼ > 0,

to tame large oscillations in the reconstructed solution.

3. Applying smoothing to boundary or initial data to mitigate discontinuities and avoid severe multivalued paths.

Remark. Reversing edges from downstream to upstream in a graph to predict flux is essentially a reverse characteristic

approach akin to hyperbolic PDE theory. While it enables upstream inference, it also highlights the need for regularization

or dissipative mechanisms to control noise amplification and potential multivalued solutions.
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