
Abstraction Refinement-Guided Program Synthesis for Robot

Learning from Demonstrations

GUOFENG CUI, Rutgers University, USA

YUNING WANG, Rutgers University, USA

WENSEN MAO, Rutgers University, USA

YUANLIN DUAN, Rutgers University, USA

HE ZHU, Rutgers University, USA

Over the past decade, deep reinforcement learning (RL) techniques have signi�cantly advanced robotic

systems. However, due to the complex architectures of neural network models, ensuring their trustworthiness

is a considerable challenge. Programmatic reinforcement learning has surfaced as a promising approach.

Nonetheless, synthesizing robot-control programs remains challenging. Existing methods rely on domain-

speci�c languages (DSLs) populated with user-de�ned state abstraction predicates and a library of low-level

controllers as abstract actions to boot synthesis, which is impractical in unknown environments that lack such

prede�ned components. To address this limitation, we introduce RoboScribe, a novel abstraction re�nement-

guided program synthesis framework that automatically derives robot state and action abstractions from raw,

unsegmented task demonstrations in high-dimensional, continuous spaces. It iteratively enriches and re�nes

an initially coarse abstraction until it generates a task-solving program over the abstracted robot environment.

RoboScribe is e�ective in synthesizing iterative programs by inferring recurring subroutines directly from

the robot’s raw, continuous state and action spaces, without needing prede�ned abstractions. Experimental

results show that RoboScribe programs inductively generalize to long-horizon robot tasks involving arbitrary

numbers of objects, outperforming baseline methods in terms of both interpretability and e�ciency.

CCS Concepts: • Software and its engineering→ Automatic programming.

Additional Key Words and Phrases: Program Synthesis, Abstraction Re�nement, Reinforcement Learning

ACM Reference Format:

Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu. 2025. Abstraction Re�nement-Guided

Program Synthesis for Robot Learning fromDemonstrations. Proc. ACMProgram. Lang. 9, OOPSLA2, Article 292

(October 2025), 29 pages. https://doi.org/10.1145/3763070

1 Introduction

(a) Pick&place (b) Push (c) Tower

Fig. 1. Robot environments for various tasks.

In the robotics domain, deep reinforcement learning

(RL) techniques have shown promise in developing

intelligent agents for robot control, o�ering robust al-

ternatives to analytical models in adaptive control sys-

tems. However, ensuring the trustworthiness of deep

RL systems is challenging due to the intricate nature

of neural network structures. To address this, program-

matic reinforcement learning has emerged, focusing

Authors’ Contact Information: Guofeng Cui, gc669@cs.rutgers.edu, Rutgers University, USA; Yuning Wang, yw895@rutgers.

edu, Rutgers University, USA; Wensen Mao, wm300@rutgers.edu, Rutgers University, USA; Yuanlin Duan, yuanlin.duan@

rutgers.edu, Rutgers University, USA; He Zhu, hz375@cs.rutgers.edu, Rutgers University, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART292

https://doi.org/10.1145/3763070

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

292:2 Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu

on synthesizing domain-speci�c programs as RL model representations to enhance interpretabil-

ity [6, 26, 28, 47, 53, 60, 62, 63, 65, 66]. For example, a recent work, ReGuS (reward-guided syn-

thesis) [14], generates robot-control programs directly from reward signals and demonstrates

that synthesizing programs with rich control-�ow constructs (e.g., loops) can e�ectively tackle

long-horizon and sparse-reward tasks that often confound deep RL techniques.

State and Action Abstraction. Prior work scaling program synthesis to high-dimensional

robotics environments with continuous states and actions often introduces a DSL with state

abstraction predicates and abstract control actions. To illustrate the need for abstraction, consider

the Pick&Place robot task shown in Fig. 1a, where a manipulator must pick up a block (green)

from a table and place it in a target position (sphere) in mid-air. The robot used is a 7-DoF Fetch

Mobile Manipulator with a two-�ngered parallel gripper. The robot’s state space includes kinematic

information of the block and the end e�ector including the Cartesian coordinates of the desired

�nal block position. Its action space represents the Cartesian displacement of the end e�ector to

set to and the positional displacement of each �nger of the gripper. Directly generating programs

in a high-dimensional continuous space poses signi�cant challenges to synthesis techniques.

while(not At(1, 6)):
if (Above(1)):
if (Near(1)):
if (Holding(1)):
move(6)
else:

closeGripp()

else:

openGripp()

if(not Near(1)):
moveDown()

else:

move(1)

Fig. 2. Synthesized pro-

gram for pick&place by

ReGuS [14].

State abstraction predicates [2, 19] construct a high-level represen-

tation of the robot’s environment based on observed sensor data. This

high-level representation can then be reasoned about using standard

language constructs, such as loops and conditionals, to trigger suitable

actions from a current state. Abstract actions are applications of low-

level robot skills. These skills can be derived from either robot APIs or

pre-trained neural network controllers. Conceptually, skills are modular

and reusable, and can be likened to building blocks or subroutines that

contribute to the overall control policy of the robot in diverse contexts.

For example, for Pick&Place, ReGuS [14] involves state abstraction

predicates Near (indicates if the gripper is close to the block 1), Holding

(indicates if the gripper is holding 1), Above (indicates if the gripper is

above 1), and At (indicates if 1 is in the goal region 6 ∈ R
3) into the

DSL used to search a program to address this task. The DSL also in-

cludes a set of abstract actions to operate the robot in the continues environment for openGripp(),

closeGripp(), moveUp(), moveDown(), move(6) that moves the gripper to a goal region 6. ReGuS

synthesizes a program, as shown in Fig. 2, that guides the robotic gripper to move above the block

1 in the environment, lower to grab it, and then transport the block to the designated goal area 6.

Challenges Faced by Existing Approaches. Several challenges remain in advancing robot-

control program synthesis in real-world scenarios.

• (i) A crucial bottleneck in existing synthesis techniques is the reliance on manually designed

state abstraction predicates and action abstraction in a DSL to bootstrap synthesis. High-quality

abstractions often require signi�cant human e�ort and domain knowledge to customize e�ectively.

For example, the state and action abstractions for the Pick&place task described above cannot

be applied to a robot with a push-only gripper as visualized in the Push task in Fig. 1b. This type

of gripper is designed to apply force to reposition objects on a surface, but it cannot grasp or lift

them. Automatically learning state and action abstractions has been a key area of research in task

and motion planning for robot control [7, 23, 29, 43]. Existing techniques often have signi�cant

limitations, as they either learn predicates from demonstrations while assuming that low-level

controllers are already available [15, 36, 55], or learn low-level controllers from demonstrations

while assuming that the necessary predicates are prede�ned [1, 17, 54]. Simultaneous discovery of

both state abstraction predicates and abstract actions remains a signi�cant challenge [34, 54, 55].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

Abstraction Refinement-Guided Program Synthesis for Robot Learning from Demonstrations 292:3

• (ii) Existing approaches encounter di�culties when synthesizing programs that generalize to tasks

involving repeated subroutines or arbitrary numbers of objects, such as directing a robot arm to

stack scattered objects into a pyramid. These tasks often require complex control-�ow structures

like state-conditioned loops. When a domain-speci�c language (DSL) with prede�ned state

abstraction and low-level controllers is available, as in existing work, this complexity is reduced.

For example, PROLEX [44] learns robot-control programs from task demonstrations, but assumes

demonstrations are represented as sequences of calls to user-de�ned low-level controllers rather

than continuous, raw actions in the robot’s operational space. This representation enables it to

deduce when and how these controllers are employed repeatedly or conditionally. Consequently,

it can extract high-level control structures, such as loops and conditional statements, from

observed tasks. Synthesizing loop programs for robot control in high-dimensional, continuous

state and action spaces without prede�ned abstractions is still a major hurdle.

Fig. 3. Overview of the RoboScribe framework.

This Paper. To make program syn-

thesis feasible for high-dimensional,

continuous state and action spaces

in robotic environments, our main

idea is to develop abstraction re-

�nement techniques that automati-

cally generates appropriate state and

action abstractions as part of the syn-

thesis process. To this end, we de-

velop RoboScribe, a novel abstrac-

tion re�nement-guided program syn-

thesis framework. RoboScribe is visualized in Fig. 3 and is based on the following two key ideas:

(1) Comparative Abstraction Re�nement: To overcome challenge (i), RoboScribe iteratively

re�nes an initially coarse abstraction of the robot environment until a valid program capable

of solving the task is synthesized from the abstract environment. The initial coarse abstraction

di�erentiates only between states that havemet the (unknown) goal conditionk' in the environment

and those that have not:

True { k'

under the assumption that a single low-level controller as the target program can be learned to transi-

tion all possible initial states (True) to the goal condition (k'). In the context of pick&place, the ini-

tial abstraction only identi�es goal states where the block is successfully placed at the target position.

Task Demonstration

Failed Execution

Fig. 4. Zoomed-in view of the task demonstration

and program execution in Fig. 3.

If this assumption fails, RoboScribe incrementally

learns state abstraction predicates that capture crit-

ical intermediate states toward task completion. For

example, in the pick&place task, the robot must

move its gripper close to the block, grasp it, and

lift it to a designated position. By learning state ab-

straction predicates that identify such key subgoal

states and abstract actions grounded as low-level

RL controllers that transition the agent across these

subgoals, RoboScribe accurately captures the task’s

hierarchical structure.We posit that state abstraction

predicates can be learned if demonstrations show-

ing task completion are provided to the synthesizer.

Systematically comparing states within these demonstrations to those observed during failed robot

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

292:4 Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu

behaviors which are learned in the real environment allows RoboScribe to discern necessary inter-

mediate states in the demonstrations pivotal for the task’s success. For pick&place, a low-level

controller trained to ful�ll k' may struggle with grasping the block �rst, as exempli�ed in the

program execution behavior shown in Fig. 4. Leveraging insights gained from successful demon-

strations, RoboScribe re�nes the abstraction with a predicate i that captures the states where the

robot’s gripper is positioned close to the block:

True { i { k'

The re�ned abstraction adds a crucial step that bridges the initial and goal states, breaking down

the complex task into manageable subtasks. The intermediate subgoal i supplies reward signals

for e�cient RL training of the subtask controllers. This process is recursively conducted, enabling

the task to be eventually solved through a series of progressively re�ned subtasks that lead tok' .

(2) Iterative-Program Learning: To address challenge (ii), RoboScribe leverages state abstraction

predicates learned on-the-�y to identify repeating subroutines within demonstrations. For instance,

consider the Tower task of manipulating a robot arm to stack blocks into a tower visualized in Fig. 1c.

Key state abstraction predicates for subgoals like grasping a block and lifting it to a speci�c position,

learned for handling one block, recur throughout the demonstration for handling other blocks.

RoboScribe exploits repeated subgoal predicates in demonstrations to construct the loop body that

guides the agent through transitions between the subgoals vian abstract actions in the form of

low-level controllers. However, the order in which recurring objects are addressed across loop

iterations remains unspeci�ed. This ordering is crucial in tasks like Tower, where placing a block

in the goal position before positioning the underlying blocks leads to failed outcomes. RoboScribe

synthesizes a predicate that identi�es the correct object order by analyzing the rationale behind

the demonstrations, explaining why certain objects are handled before others. In a nutshell, to

synthesizing programs that generalize to tasks involving arbitrary numbers of objects, RoboScribe

�rst constructs a loop program skeleton, then �lls in an object ordering predicate as the loop guard

to determine the sequence for handling objects, and �nally optimizes action abstractions to ensure

robust generalization across all loop iterations.

Evaluation. We implemented RoboScribe and evaluated it using a benchmark suite of complex

robot object manipulation tasks. Experimental results demonstrate that RoboScribe programs can

inductively generalize to long-horizon tasks involving arbitrary numbers of objects, outperforming

baseline methods in both interpretability and e�ciency. For example, the programmatic agent

synthesized by RoboScribe can e�ciently use a robot arm to stack multiple blocks on a cluttered

tabletop into a tower, a task known for its complexity in RL due to the need to handle long-horizon

planning and precise manipulation [32, 41]. The agent can generalize to unseen con�gurations,

such as placing blocks into multiple towers with zero-shot success.

Contributions. To summarize, this paper makes the following key contributions:

• We propose RoboScribe, a novel abstraction re�nement technique that automatically derives robot

state and action abstractions from raw, unsegmented task demonstrations to enable robot-control

program synthesis in high-dimensional, continuous spaces.

• We develop an e�ective loop program synthesis algorithm that scales RoboScribe to long-horizon

tasks involving unbounded environment objects. The algorithm excels in inferring repeating

subroutines directly from demonstrations in the robot’s raw, continuous state and action spaces.

• We evaluate RoboScribe in complex robot manipulation tasks, highlighting its e�ectiveness in

learning and generalizing control strategies.

2 Overview

In this section, we motivate the problem and provide an overview of our approach.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

Abstraction Refinement-Guided Program Synthesis for Robot Learning from Demonstrations 292:5

Type g ::= {EE, block, handle,mug, faucet, . . .} Variable + ::= `, E

Expression U ::= ` | E | 6(E) | U ³G,~,I | U ³G,~ | U ³G | U ³~ | U ³I | U − U | ∥U ∥ | arctan2(U)

Predicate % ::= U < U | U < q | U > q | U ≠ =D;; | true | ¬% | % ' % | % (% | ∃E . %

Action 2 ::= c\1 (`, {E}, 6({E
′})) | c\2 (`, {E}, 6({E

′})) | . . . c\ğ ∈ ΠNN

Statement (::= while (%) {(} | if (%) (1 else (2 | (1; (2 | E := get(_E : g . %) | 2

Program ::= def P (` : EE) : (

Fig. 5. The Context-free grammar for the RoboScribe DSL L, where EE refers to the robot’s end e�ector.

2.1 Key Assumptions

Object-centric Views. Following common practice in robotics [27, 33, 52, 57, 58, 68], RoboScribe

assumes that the robot receives an object-centric view {-, e1, . . . , eĊ } at each timestep (de�ned

in Sec. 3). This view segments the world into discrete objects and classi�es them into categories

based on sensor data, where - represents the robot’s end e�ector and eğ denotes an entity in the

environment. Each object - or eğ is associated with attributes such as its class and 3D position.

Such views can be constructed using e.g. object detection [37, 38, 50] or discovery [18, 35] methods.

Goal-Directed Robot Tasks. We consider goal-directed robotic tasks where a goal function g

maps entities 48 to their target regions. For each control task, g may be randomly generated. For

example, in the Pick&Place task (Fig. 1a), the goal region (green sphere) can be randomly placed

within the robot’s workspace. The robot’s objective is de�ned by a predicate >Ď , which is true

when a designated subset of entities has reached their �nal target poses and false otherwise—e.g.,

an entity is considered to have reached its goal if its distance to the target is below a threshold. In

RoboScribe, the agent does not require the analytical form of >Ď but can query it to verify whether

a state B satis�es 7Ď . We assume that entities belonging to the same type can be handled uniformly

by a shared manipulation strategy for goal reaching.

Demonstrations. We assume that we can utilize supervision of a limited amount of task

demonstrations for robot-control program synthesis. RoboScribe assumes unsegmented task demon-

strations as sequences of states (B0, B1, . . . , B�) where B0 is an initial state and each state B8 at timestep

8 presents an object-centric view of the system (i.e., a collection of objects in the scene and their

attributes). For each demonstration, we assume thatk' (B�) holds. We further assume that demon-

strations re�ect a consistent underlying intent, meaning that they all correspond to the same

conceptual goal. Although the speci�c goal regions (e.g., target positions) may di�er across demon-

strations, they must consistently apply to the same subset of entities. For example, if the task is to

place mugs in their respective goal regions, then all demonstrations should specify goal regions

for mugs—not some for mugs and others for di�erent objects like drawers. If demonstrations are

ambiguous or inconsistent—i.e., if the goal regions involve di�erent subsets of entities across demon-

strations—RoboScribe may fail to synthesize a coherent control program, as the goal condition is

not well de�ned1.

2.2 Program and Domain-Specific Language

RoboScribe synthesizes robot-control programs using a generic DSL L in Fig. 5. In a program, the

variable ` binds to the robot’s end e�ector and a variable E binds to an object 48 in the robot’s

object-centric view, with its type g determined by the object it references. Each object has attributes,

such as its 3D pose estimated from sensors, denoted E ³G,~,I , where ³ extracts attribute values from

1In practice, RoboScribe can be augmented with a simple form of automatic goal inference: entities that remain unmoved

throughout a demonstration can be interpreted as having their initial positions serve as implicit goal regions. This enables

RoboScribe to function even when goal speci�cations are only partially speci�ed.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

292:6 Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu

the object referenced by E . In Fig. 5, we enumerate attributes related to position in R
3, but the DSL

can be extended to include full attributes, including orientation, such as quaternions. As discussed

in Sec. 2.1, leveraging the goal function 6, 6(E) represents the goal region of the object referenced

by E , and ∥·∥ represents the Euclidean norm.

State abstraction predicates % in L enable the robot to locate relevant objects, constructing a

higher-level representation of its environment. The parameter q in our predicates is a constant

(vector) that must be learned. Our DSL supports existential quanti�ers ∃E in predicates % to identify

objects meeting speci�c criteria, such as blocks below a certain height. Predicates can be used to

de�ne spatial relationships (e.g., using ∥·∥) and physical orientations (e.g., using arctan2) among

environment objects, including the robot itself. For instance, arctan2 can be used to encode

alignment constraints between the end e�ector, a block, and its goal region for direct pushing.

Abstract actions 2 represent low-level controllers that encode the robot’s capabilities in contin-

uous environments. Each abstract action 2 ∈ ΠNN is a deep neural network policy c\ with trainable

parameters \ . The policy c\ is goal-conditioned. It takes as input the attribute values of the end

e�ector ` and some objects referenced by {E}, as well as the goal regions of some objects referenced

by {E ′}, producing a control action suitable for execution in the raw environment.

Our DSL L also includes state-conditioned loops and conditional statements. The assignment

statement E := get(_E : g . %) binds variable E to an object 48 of type g in the robot’s object-centirc

view such that % [48/E] holds. A RoboScribe program P is a function that takes a binding to the

robot’s end e�ector as input and executes a de�ned statement as its body.

It is important to highlight that the RoboScribe DSL L does not include prede�ned low-level

controllers. The set of low-level controllers ΠNN starts out empty. The synthesis process

inherently involves learning appropriate state abstraction predicates % and constructing abstract

control actions ΠNN as a fundamental component.

2.3 Demonstration-Directed Robot Environment Abstraction Refinement

Key Insight. Our key idea is to systematically compare states within successful task demonstrations

with those from failed robot behaviors learned in the real environment, aiming to identify key

subgoal states that are essential for task success.

Comparative Abstraction Re�nement. We de�ne a robot task T as T : True { k' with the

expected behavior of directing the robot to transition from arbitrary initial states True (underlying

some unknown initial environment state distribution) to states that satisfy the goal conditionk' .

The initial abstraction True { k' is coarse, distinguishing only between successful states that meet

the goal conditionk' and those that have not yet reached it, and assumes that a single low-level

controller ckĎ
can fully solve the task. RoboScribe attempts to learn ckĎ

using an o�-the-shelf deep

RL algorithm driven by a task reward function that assigns a reward of 1.0 to any state B where

k' (B) is true and 0 otherwise. In this sparse reward setting, trajectories induced by ckĎ
often fail to

encounter any positive feedback, resulting in learning failure. RoboScribe compares the successful

behavior given in a set of demonstrations D with that of the learned controller to identify key

di�erences that are essential for enabling task success.

Fig. 6. Pick&place Demonstration.

For example, in the pick&place

demonstration shown in Fig. 6, The

end e�ector (referred to as the robot

` for simplicity) �rst holds the block

and then places it on the target. How-

ever, the learned ckĎ
struggles with

grasping the block due to the absence

of an explicit learning signal for this action. We extract states preceding successful task completion

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

Abstraction Refinement-Guided Program Synthesis for Robot Learning from Demonstrations 292:7

from demonstrations, forming a set %B = {BC | BC ̸ |= k' ' BC+1 |= k'}, and compare them with states

#B collected from the learned controller’s trajectories. RoboScribe synthesizes a state abstraction

predicate to distinguish %B and #B to learn what prerequisite conditions are necessary for reaching

k' . We learn state abstraction predicates % derivable from the grammar in our DSL L in Fig. 5

based on Decision Tree (DT) learning. A DT is a binary tree that represents a Boolean formula.

Each leaf of the tree is labeled either positive or negative for a subset of the samples in %B ∪ #B .

Each inner node is labeled by a decision of the form U f q where U is a feature and q is a (learned)

threshold. In our context, U is an expression derivable from the production rules for U in L. We

formalize the learning algorithm in Sec. 4.2.1. In this example, RoboScribe may learn a predicate

hold(`, 1) ≡

` ³G,~,I −1 ³G,~,I

< q1 that de�nes states where a block 1 is being grasped by the

robot gripper `. Here, 1 references to the block in the environment. Using this learned predicate,

we re�ne the initial abstraction as:

True { hold(`, 1) { k' (1)

which e�ectively decomposes the task into subtasks: (1) T1 : True { hold(`, 1) for reaching states

where the block is grasped, and (2) T2 : hold(`, 1) { k' for achieving the goal condition after

grasping the block. This process is recursively conducted until the task can be solved through a

series of progressively re�ned subtasks tok' . For example, for T2, RoboScribe may further learn a

predicate at(1,6(1)) ≡

1 ³G,~,I −6(1) ³G,~,I

< q2 capturing states where the block is at the goal

region, along with two subtasks: T21 : hold(`, 1) { at(1,6(1)) for moving the block towards its

goal region, and T22 : at(1,6(1)) { k' for maintaining the block in the target position of the task,

resulting in the following re�ned abstraction:

True { hold(`, 1) { at(1,6(1)) { k' (2)

Abstract Subtask Tree. RoboScribe structures environment abstractions as abstract subtask

trees, formalized in Sec. 4. Each tree node i ork encodes a state abstraction predicate that de�nes a

subgoal condition. Each (inverted) tree edgei { k represents an abstract action, to be grounded as a

low-level controller in the real environment, that ful�lls the subtask of transitioning any state within

i to a subgoal state ink , guiding the agent toward the completion of its overall task goal condition

k' at the root of the tree. Tree representations e�ectively capture the structure of multi-goal tasks

involving multiple objects, providing a clear framework for task decomposition and execution.

To satisfy a subgoal k , the agent must complete all the subgoals of its predecessors i such that

i { k . Each subgoal i in the predecessors ofk corresponds to the manipulation of a distinct object.

k'

align(ℎ,6(1))

latch(`, ℎ)

near(`, ℎ)

True

{
{

{

{

at(1,6(1))

hold(`, 1)

True

{
{

{

Fig. 7. Abstract Subtask Tree for PlaceCubeDrawer.

Consider the PlaceCubeDrawer task de-

picted in Fig. 7 left. The goal of the

Sawyer robot in this task is to pick up

a cube 1 from the desk of a cabinet and

place it inside the drawer below. The ab-

stract subtask tree for this task is shown

in Fig. 7 (right). The agent must complete

the following subtasks: �rst moving the

gripper ` near the cabinet door handle

ℎ, latching the handle, pulling it to align

with the goal position 6(1) for the cube

1, and then holding 1 before placing it

inside the drawer at 6(1).

Program Learning. From an abstract environment de�ned by an abstract subtask tree) , Robo-

Scribe synthesizes a robot-control program P. First, we note that P can be derived by recursively

traversing) and chaining the subtasks. Each abstract action is grounded as a neural network

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

292:8 Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu

Fig. 9. Demonstration and partition for the Tower task.

controller c that uses the attributes of the involved objects as input to generate low-level robot

actions. In P, each controller c runs until its corresponding subgoal condition is met. We depict

the synthesized program for pick&place in Fig. 8 where the shorthand notations in the program

represent loops:

c (`, {E}, {6(E)}) [i] ≡ while not(i)
{
c (`, {E}, {6(E)})

}

def PPick&place (` : EE):

1 := get(_1 : block. true);

cĝĨėĩĦ (`,1)
[
ℎ>;3 (`,1)

]
;

cĦĥĩğĪğĥĤ (`,1, 6 (1))
[
0C (1,6 (1))

]

Fig. 8. Synthesized program for

pick&place by RoboScribe.

Second, to learn each low-level controller ci in P for reaching

states that satisfy its subgoal condition i , we iteratively execute

P and store trajectories from ci in a replay bu�er �i . During

gradient updates, RoboScribe trains ci by sampling from �i and

optimizing it with an o�-the-shelf o�-policy RL algorithm. Par-

ticularly, we use learned state abstraction predicates to provide

dense reward signals for training low-level controllers. Dense

reward functions are shaped systematically from predicates com-

bined in arbitrary Boolean forms. For example, in Fig. 6, to train a controller for the subtask

T21 : hold(6,1) { at(1,6(1)), a dense reward function can be derived from the norm learned for

at(1,6(1)), encouraging the robot to move its end e�ector closer to 6(1) with higher rewards for

proximity.

2.4 Synthesizing Iterative Robot-Control Programs

While the synthesis strategy described in Sec.2.3 is applicable to multi-object tasks, it does not

generalize well when scaling up to handle long-horizon tasks with varying numbers of objects.

The abstraction method lacks the �exibility to capture the relationships and dependencies between

an inde�nite number of objects, particularly when coordination and sequencing are required. For

example, in the Tower task shown in Fig.9, the goal is to synthesize a program P for a robot arm to

stack a variable number of scattered blocks into a tower. Such tasks demand programs that can

iteratively manage multiple instances of subtasks.

Key Challenge. Synthesizing iterative programs is challenging because it requires e�ective

strategies for discovering repetitive subroutines and handling the complex dependencies between

them. Unlike prior work (e.g. PROLEX [44] and Tabula [46]), RoboScribe does not assume prede�ned

state and action abstraction and must be able to extract repetitive structures from demonstration

trajectories within the robot’s high-dimensional, continuous state and action spaces.

Key Insight. Our key idea is to leverage abstraction predicates learned on-the-�y to discover

repetitive subroutines in demonstrations. During comparative abstraction re�nement, when classify-

ing states from task demonstrations and robot trajectories to learn new state abstraction predicates,

RoboScribe identi�es opportunities to reuse previously discovered predicates and their correspond-

ing low-level controllers, as a means to uncover abstract repetitions within demonstrations.

Discovering Repetitive Subtasks. As shown in the learned abstraction for the Pick&place task

in Eq. 2, RoboScribe can identify a state abstraction predicate 0C (1,6(1)) as a subgoal for placing

one block 1 at its target and develop a routine of low-level controllers to achieve it. However, the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

Abstraction Refinement-Guided Program Synthesis for Robot Learning from Demonstrations 292:9

task remains incomplete as additional blocks must still be placed. Using a single low-level controller

for this would be insu�cient as illustrated in Sec. 2.3. RoboScribe identi�es that the predicate

0C (1,6(1)), interpreted with 1 as implicitly existentially quanti�ed, can be reused to distinguish

demonstration states where blocks are near their targets from unsuccessful single-policy attempts

to complete the full task. It re�nes the abstraction in Eq.2 by de�ning a circular abstract subtask

tree node to indicate this repetition:

True { hold(`, 1) { 0C (1,6(1)) { k' (3)

This implies that the control strategy for achieving ∃1. 0C (1,6(1)) for some block1 can be iteratively

applied to handle remaining objects of the same type in the environment that have yet to meet this

subgoal condition.

Learning Iterative Programs. RoboScribe synthesizes a loop structure for each circular abstract

subtask tree node. This leads to an iterative Tower program PTower shown in Fig. 10, which intends

to stack all the blocks on a table in a sequence, generated from the task abstraction in Eq. 3. However,

determining the order in which blocks should be addressed within the sequence (among the loop

iterations) remains unspeci�ed. This ordering is particularly signi�cant as placing a block in its

goal position without �rst positioning the underlying blocks leads to failed outcomes. RoboScribe

places a missing hole ??? in the loop condition designated to specify an e�ective handling sequence

in Fig. 10.

def PTower (` : EE):

while
((
1 := get

(
_1 : block. ??Ħ

))

≠ =D;;
)
:

cĝĨėĩĦ (`,1)
[
ℎ>;3 (`,1)

]

cĦĥĩğĪğĥĤ (1,6 (1))
[
0C (1,6 (1))

]

Fig. 10. Iterative program PTower
for Tower with a missing hole for

the loop condition.

def PPick&place (` : EE):

while
((
1 := get

(
_1 : block. ¬0C (1,6 (1))'

¬∃1′ .6 (1′) ³İ< 6 (1) ³İ '¬0C (1
′, 6 (1′))

))

≠ =D;;
)
:

cĝĨėĩĦ (`,1)
[
ℎ>;3 (`,1)

]

cĦĥĩğĪğĥĤ (1,6 (1))
[
0C (1,6 (1))

]

Fig. 11. Synthesized iterative program

PTower for Tower.

Loop Condition Syn-

thesis. Conceptually, we

can enumerate candidates

to �ll in the missing

predicate ??? based on

the predicate production

rules % de�ned in our

DSL L (Fig. 5) and exe-

cute PTower in the real en-

vironment to empirically determine which predicate maximizes task performance, such as higher

success rates. However, this approach is computationally prohibitive due to the extensive predicate

search space of the DSL and the long-horizon nature of robot tasks that involve recurring objects.

Additionally, training the low-level neural controllers in PTower depends on executing the program

to obtain training data, resulting in a mutual dependency problem where loop condition synthesis

and controller learning are interdependent. Our strategy circumvents these limitations by inferring

the ordering predicate ??? directly from demonstrations, avoiding the need for executing PTower
in the real environment. Speci�cally, RoboScribe synthesizes an ordering predicate for ??? that

determines the correct sequence of object handling by analyzing the rationale in the demonstrations,

explaining why certain objects are handled before others, such as why the red block is placed after

the green and yellow blocks in Fig. 9. From demonstrations, RoboScribe learns such a predicate

by enumerating predicates derivable from the production rules for % in the DSL L (see Fig. 5). In

this process, we augment % with learned state abstraction predicates from abstract subtask trees

as these predicates provide additional task-relevant constraints. We defer the formalization of the

synthesis algorithm to Sec. 4.2.1. For Tower, RoboScribe synthesizes the following predicate for an

e�ective handling sequence :

¬0C (1,6(1)) ' ¬∃1′ .6(1′) ³I< 6(1) ³I '¬0C (1
′, 6(1′)) (4)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

292:10 Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu

which speci�es that any block with a lower goal position must be placed before the current block.

The termination condition ensures that once all blocks are in their goal positions, there are no

further blocks to handle. The full program synthesized is given in Fig. 11.

3 Problem Setup

We study a learning paradigm where the agent can interact with many entities (objects) in an

environment. The task for the agent is speci�ed in the form of goals for the entities. We formalize

it using the Entity-Factored Markov Decision Process (EFMDP) [67].

Throughout the paper, we use {E} to denote a list. For a function 5 , we de�ne element-wise

application as 5 ({E}) = {5 (E1), . . . , 5 (E=)}.

Entity-Factored Markov Decision Process. An EFMDP with # entities is described by the

tuple:M := ïΛ,O = {`, 41, . . . , 4# },S,G,A, P, [ð. Here, Λ is a �nite set of object types, e.g., cube

and mug, and O is a �nite set of objects, where ` and {41, . . . , 4# } are the agent (robot) and the

entities, respectively. Each entity in O has a type drawn from Λ. Each object in O has an associated

set of attributes drawn from a �nite set F = {51, 52, . . . , 5" }, for example, spatial coordinates

{G,~, I} in the 3D space. A state B in the state space S is a function B : O → D where D is the space

of object descriptors, formally de�ned as D = (F → R). This means that each object > ∈ O is

mapped to a function that assigns a real value to each attribute. For an object > ∈ O, B (>) retrieves

the object descriptor of > , i.e., B (>) : F → R, and B (>, {5 }) extracts the real values of the attributes

{5 } ¦ F , i.e., B (>, {5 }) = (B (>)) ({5 }). We use dom(B) to retrieve the set of objects within a state B .

We sometimes abuse notation for convenience to use B (>) to refer to the full set of attribute values

for > , i.e., the image of B (>) under F .

The goal space of an EFMDPM is denoted as G. A goal command6 ∈ G is a function (introduced

in Sec. 2.1) 6 : O → D that de�nes the goal region for entities {41, . . . , 4# }. Typically, 6(48) only

maps a subset of 48 ’s attributes to a real value, specifying its desired placement. For instance, in

Fig. 1, the goal regions (spheres) indicate the target positions for each block within the 3D space.

In an EFMDPM, A is the robot’s action space. The system dynamics ofM is described by a

probabilistic state transition function P(B′ |B, 0) for B, B′ ∈ S and 0 ∈ A, i.e., the robot’s action can

update the object states in its environment. The set of the initial states of an EFMDP is speci�ed

by [: S → Rg0 (i.e., [(B) is the probability density of the initial state being B). A trajectory of an

EFMDP Z ∈ / is a sequence Z = B0
00
−→ B1

01
−→ · · · , where B8 ∈ S and 08 ∈ A, where B8+1 ∼ P(· | B8 , 08).

EFMDPs can model several applications, including tabletop manipulation and scene recon�guration.

At the same time, the EFMDP contains more structure and symmetry compared to the standard

MDP model, which can enable more e�cient learning and better generalization [67].

Task Speci�cation. We de�ne predicatesk used for robot task speci�cations of an EFMDP, as

shown in Fig. 12, over the set of objects O = {`, 41, . . . , 4# } within. The operator ³ extracts attribute

values from > ∈ O. The semantics of the predicates JkK are given in Fig. 13. Given a state B , we de�ne
i (B) as JiK(B), representing the truth value of the predicate i in state B . We say that a trajectory

Z = B0
00
−→ B1

01
−→ · · · , B� satis�es a task speci�cation T : i { k , denoted as Z |= T : i { k , if

k (B�) holds when i (B0) holds. A task speci�cation T : True { k' for an EFMDPM de�nes the

intended behavior in the MDP. Starting from any possible initial EFMDP state B0 ∼ [(·), the agent is

expected to reach a state B that satis�esk' (B). For example, for the Tower task in Fig. 1c involving

the end e�ector ` and four blocks O = {`, 11, 12, 13, 14}, its speci�cation can be de�ned as:

TTower : True {

4∧

8=1

18 ³G,~,I − 6(18)

< q ' 14 ³I< ` ³I

This speci�es that all blocks must be placed in their goal regions, and the end e�ector must leave the

top block. In this paper, we usek' to denote the predicate encoding the task’s �nal goal region, while

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

Abstraction Refinement-Guided Program Synthesis for Robot Learning from Demonstrations 292:11

U ::= ` | 48 | 6(48) | U ³G,~,I | U ³G,~ | U ³G | U ³~ | U ³I | U − U | ∥U ∥ | arctan2(U)

k ::= U < U | U < q | U > q | ¬k | k ' k | k (k | ∃>. k

Fig. 12. Task Specifications of EFMDPs over objects O = {`, 41, . . . , 4# }.

Expressions Predicates

JUK(B) = JkK(B) =



B (`), if U = `

B (48), if U = 48

6(48), if U = 6(48)

B (JU1K(B), {G,~, I}), if U = U1 ³G,~,I

JU1K(B) − JU2K(B), if U = U1 − U2

∥JU1K(B)∥, if U = ∥U1∥

arctan2(JU1K(B)), if U = arctan2(U1)




JU1K(B) < JU2K(B), ifk = U1 < U2

JUK(B) < q, ifk = U < q

JUK(B) > q, ifk = U > q

¬Jk1K(B), ifk = ¬k1

Jk1K(B) ' Jk2K(B), ifk = k1 'k2

Jk1K(B) (Jk2K(B), ifk = k1 (k2∨
8Jk1 [> ↦→ 48]K(B), ifk = ∃>.k1

Fig. 13. Semantics of task specifications of EFMDPs over objects O = {`, 41, . . . , 4# }.

ï(1, d, Bð ó (d
′, B′)

ï(2, d
′, B′ð ó (d′′, B′′)

ï(1; (2, d, Bð ó (d
′′, B′′)

ï%, d, Bð ó true

ï(1, d, Bð ó (d
′, B′)

ïif(%) (1 else (2, d, Bð ó (d
′, B′)

ï%, d, Bð ó false

ï(2, d, Bð ó (d
′, B′)

ïif(%) (1 else (2, d, Bð ó (d
′, B′)

ï%, d, Bð ó true ï(, d, Bð ó (d′, B′) ïwhile(%) {(}, d′, B′ð ó (d′′, B′′)

ïwhile(%) {(}, d, Bð ó (d′′, B′′)

ï%, d, Bð ó false

ïwhile(%) {(}, d, Bð ó (d, B)

> : g ∈ dom(B) ï%, d [E ↦→ >], Bð ó true

ïE := get(_E : g . %), d, Bð ó (d [E ↦→ >], B)

∀> : g ∈ dom(B) . ï%, d [E ↦→ >], Bð ó false

ïE := get(_E : g . %), d, Bð ó (d [E ↦→ =D;;], B)

0 ∼ c\
(
B (d (`)), B (d ({E})), 6(d ({E ′}))

)
B′ ∼ P(·| B, 0)

ïc\ (`, {E}, 6({E
′})), d, Bð ó (d, B′)

ïU, d, Bð ó D

ïU < q, d, Bð ó D < q

ïU, d, Bð ó D

ïU ≠ =D;;, d, Bð ó D ≠ =D;;

ï%1, d, Bð ó 11 ï%2, d, Bð ó 12

ï%1 ' %2, d, Bð ó 11 ' 12

ï%, d, Bð ó 1

ï¬%, d, Bð ó ¬1

> : g ∈ dom(B) ï%, d [E ↦→ >], Bð ó true

ï∃E : g . %, d, Bð ó true

∀> : g ∈ dom(B). ï%, d [E ↦→ >], Bð ó false

ï∃E : g . %, d, Bð ó false

d (E) ∈ dom(s)

ïE, d, Bð ó d (E)

d (E) ∈ dom(s)

ï6(E), d, Bð ó 6(d (E))

ïU, d, Bð ó > > ∈ dom(B)

ïU ³G,~,I , d, Bð ó B (>, {G,~, I})

ïU1, d, Bð ó D1 ïU2, d, Bð ó D2

ïU1 − U2, d, Bð ó D1 − D2

Fig. 14. The DSL L operational semantics in RoboScribe.

k and i typically represent intermediate subgoal conditions inferred by our algorithm. Predicates

k de�ned over EFMDP objects O align with predicates % in the DSL L, which are de�ned over

program variables + binding EFMDP objects. This alignment allows inferred subgoal conditions to

be lifted into program predicates. Thus, we usek and % interchangeably to refer to state abstraction

predicates, based on the context.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

292:12 Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu

Program Synthesis for Policy Learning. Given an EFMDPM with unknown state transition

probabilities and task speci�cation T : True { k , RoboScribe synthesizes a program P∗ as a

controller in the DSL L in Fig. 5 to ful�ll T . We outline the DSL operational semantics ï(, d, Bð ó

(d ′, B′) in Fig. 14. Formally, (is a program statement in Fig. 5, d : + → O is an environment

mapping that binds program variables + to objects in O. For a program variable E ∈ + , at a given

state B , B (d (E)) extracts the attribute values for the object referenced by E in B . De�ne Exec(M, P)

an interpreter that evaluates P in the EFMDPM based on the operational semantics and returns

the EFMDP trajectory starting from a randomly sampled initial state B0 ∼ [(·). Exec terminates as

soon as a speci�cation-satisfying state is encountered. The learning objective is to synthesize P∗:

P∗ = argmax
P∈L

Pr
Z∼Exec(M,P)

[Z |= T : True { k'] (5)

In practice, to evaluate task success, we de�ne P∗ |=M,n True { k' meaning that �nite-length

trajectories sampled from Exec(M, P) empirically satisfy the goal conditionk' with a probability

of at least 1 − n . The values for the maximum trajectory length and n are user-con�gurable.

4 Abstraction Refinement-Guided Robot Control Program Synthesis

We present the core algorithms for the abstraction re�nement-guided synthesis strategy in Robo-

Scribe. We �rst provide the top-level synthesis algorithm, and then describe its key components.

4.1 Top-Level Algorithm

Algorithm 1 The RoboScribe Procedure

1: procedure RoboScribe(M, L, D, True { k')

2:) ← (# = {DTrue, DkĎ
}, � = {DTrue → DkĎ

}, k')

3: P∗,) ∗ ← synthesize(M, L, D,) ,k')

4: return P∗

The top-level RoboScribe algorithm

is presented in Algorithm 1. It

takes as input an EFMDP M =

{Λ,O,S,G,A, P, [}, the DSL L (de-

�ned in Fig. 5), a set of task demon-

strations D, and a task speci�cation

True { k' . The DSL L does not

prede�ne useful state and action abstractions, which are yet to be learned as part of the

synthesis process. The objective is to synthesize a program P∗ in L that satis�es the speci�cation

True { k' (Eq. 5). As in conventional RL settings, the goal conditionk' is unknown to RoboScribe.

However, the agent can usek' as a black box to query whether any state encountered B satis�esk' .

Abstract Subtask Trees. During its synthesis procedure, RoboScribe maintains state and action

abstraction of a robot environment as an abstract subtask tree)—a hierarchical representation that

encodes the sequence and relationships among subtasks for reaching the task’s goal states.

De�nition 4.1 (Abstract Subtask Tree). An Abstract Subtask Tree) = (#, �,k') is a tuple:

• # is a set of nodes, each representing a state abstraction predicate, denoted by i or k , which

de�nes a subset of the EFMDP state space. Throughout the paper, we use the terms predicate i

and tree node Di interchangeably.

• � ¦ # × # is a set of directed edges between nodes, with each edge Di → Dk ∈ � representing a

subtask i { k of the overall task, which transitions the agent from states characterized by i to

states ink , In the following, we also use edge Di → Dk and subtask i { k interchangeably.

• k' ∈ # is the root node, encapsulating the goal states of the overall task.

In an abstract subtask tree, state abstraction predicates on the tree nodes serve as decomposition

of a complex robotic task. Tree edges represent abstract actions to transition between key subgoals.

A tree path (True { i1 { i2 { . . . { k') in) , leading toward the goal states at the root, is

a sequence of subtasks, guiding the agent from one subtask to the next until the whole task is

complete. The tree is inverted, for any node with multiple predecessors, the agent is directed to

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

Abstraction Refinement-Guided Program Synthesis for Robot Learning from Demonstrations 292:13

Policy

M,D,) ² P P |=M,n True { k

M,L,D,) ¢ (P,)) : k

Refinement

M,D,) ² P P ̸|=M,n True { k %B ← {BC | BC ̸ |= k ' BC+1 |= k ' {BC , BC+1} ∈ D}
#B ← {Z ∼ Exec(M,P)} i ∈ L ' i (B) = 1 for B ∈ %B ' i (B) = 0 for B ∈ #B

M,L,D,) [True
i
{ k] ¢ (P′,) ′) : i M,L,D,) ′ ¢ (P′′,) ′′) : k

M,L,D,) ¢ (P′′,) ′′) : k

Fig. 15. The RoboScribe Synthesis Procedure

execute subtasks associated with each predecessor node, recursively. Fig. 7 displays the abstract

subtask tree for a multi-object environment.

Initial Environment Abstraction. In Algorithm 1, at line 2, RoboScribe creates the initial

environment abstraction as an abstract subtask tree) with two nodes DTrue and DkĎ
corresponding

to the set of all possible initial states and environment states that satisfy the unknown goal condition.

The edge DTrue → DkĎ
represents a controller that satis�es the task speci�cation True { k' . At

line 3, Algorithm 1 invokes the Synthesize procedure (detailed in Algorithm 2) to iteratively

re�nes the coarse initial abstraction by need into a hierarchy of subtasks, continuing until a valid

task-solving program is obtained within the abstracted environment.

4.2 The Main Synthesis Procedure

Synthesis Rules.We describe the Synthesize procedure using the synthesis rules of the following

shape:

M,L,D,) ¢ (P∗,) ∗) : k

whereM, L, D are the task EFMDP, our DSL (Fig. 5), and the task demonstrations respectively.)

is an initial abstract subtask tree. The rule speci�es the re�nement of) into a valid abstraction

) ∗, which can then be converted into a program P∗ whose execution ful�lls the goal conditionk .

Fig. 15 depicts the synthesis rules. Both rules rely on a procedureM,D,) ² P that synthesizes a

program P from the abstracted environment) and ground the abstract actions in P as low-level

neural controllers in the real environmentM. We defer the discussion of this procedure to Sec. 4.3.

The Policy rule applies when the program P derived from the abstract subtask tree) can directly

satisfy the speci�cation, i.e., P |=M,n True { k (we set 1 − n as a lower bound for the probability

of task success). In this case, the rule directly outputs (P,)) as the synthesized solution. The

Refinement rule, on the other hand, addresses cases where the program P generated from) does

not fully solve the task. Here, our key idea is to systematically compare states within successful

task demonstrations with those from failed behaviors by the program P executed in the real

environment, aiming to identify pivotal states that are essential for enabling task success. As stated

in the Refinement rule, RoboScribe extracts states just before task success from demonstrations,

forming a set %B = {BC | BC ̸ |= k ' BC+1 |= k }, and compares them with states #B from the learned

controller’s trajectories to learn what prerequisite conditions are necessary. RoboScribe synthesizes

a state abstraction predicate i ′ to distinguish between %B and #B , re�ning the abstraction) by

breaking down the task True { k , which results in a new abstract subtask tree) [True
i
{ k]

that adds i as an intermediate subgoal fork in) (formalized in Sec. 4.2.2). We hypothesize that

having learned how to achieve i by the synthesized program P′ from i , it is an easier task

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

292:14 Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu

Algorithm 2M, L, D,) ¢ (P′′,) ′′) : k The Main Synthesis Procedure

1: procedure Synthesize(M, L, D,) ,k)

2: P ← GenProgram(M, D,))

3: if P |=M,n True { k then

4: return P,)

5: else

6: %B ← {BC | BC ̸ |= k ' BC+1 |= k ' {BC , BC+1} ∈ D}

7: #B ← {Z ∼ Exec(M,P)}

8: i ← LearnClassifier(%B , #B , L,) ,k)

9:) ← UpdateTree() , [True
i
{ k])

10: if ¬ Validate() , D) then

11: return FAIL

12: P′,) ′ ← Synthesize(M, L, D,) , i)

13: P′′,) ′′ ← Synthesize(M, L, D,) ′,k)

14: return P′′,) ′′

Algorithm 3 i ∈ L s.t. i (B) = 1 for B ∈ %B , i (B) = 0 for B ∈ #B : Learn a classi�er for %B and #B

1: procedure LearnClassifier(%B , #B , L,) ,k)

2: if ∃i. i { k ∈)
∧
∀B ∈ %B . ExistQuant(i) (B)

∧
∀B ∈ #B . ¬(ExistQuant(i)) (B) then

3: return i

4: else

5: ExpU ← L(U)

6: i ← LearnDecisionTree(ExpU , %B , #B)

7: return i

for the agent to learn a program P′′ based on P′ to achieve the goal condition k . Notably, the

Refinement rule embodies a recursive task decomposition process to repeatedly re�ne an initially

coarse abstraction until a valid task-solving program can be obtained. Algorithm 2 operationalizes

the synthesis rules in a recursive function Synthesize. We defer the discussion of termination,

including the Validate procedure at line 10, to Sec. 4.4. At line 8 and line 9, the Synthesize function

invokes LearnClassifier and UpdateTree for state abstraction re�nement. We formalize these

two procedures below, starting with key notations.

Given a predicatek over EFMDP objects O = {`, 41, . . . , 4# } (de�ned in Fig. 12), let Entities(k) ¦

{41, . . . , 4# } denote the set of entity variables that appear free ink . We de�ne the transformation:

ExistQuant(k) := ∃4 ∈ Entities(k). k

which lifts entity variables 41, . . . , 4# appearing ink free existentially quanti�ed.

4.2.1 Learning State Abstraction Predicates. We illustrate the state abstraction predicate learning

procedure LearnClassifier in Algorithm 3. It takes as input %B the set of states prior to the states

that satisfy a goal or subgoal conditionk in the demonstration D, #B the set of states along the

agent’s behavior that failed to reach k , the DSL L, the abstract subtask tree) representing the

current environment abstraction, and k , aiming to learn a state abstraction predicate capturing

what should have been achieved by the agent in order to enable reaching states ink . At line 2, the

algorithm checks whether the state abstraction predicate i from any existing predecessor ofk can

be reused to distinguish %B and #B through ExQuant(k). For example, in the Tower task described

in Sec. 2.4, once the state abstraction predicate 0C (1,6(1)) is identi�ed as a subgoal for placing

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

Abstraction Refinement-Guided Program Synthesis for Robot Learning from Demonstrations 292:15

Algorithm 4) [True
i
{ k]: Update an abstract subtask tree) = (#, �,k')

1: procedure UpdateTree() , [True
i
{ k])

2: if ∃i ′ . i ′ { k ∈) ' i ′ ≡ i then

3: i ′ ← ExistQuant(i ′)

4: Di ′ ← i ′

5: else if ∃i ′ . i ′ { k ∈)' Entities(i ′) = Entities(i) then

6: #, � ← # ∪ {Di }, � \ {Di ′ → Dk } ∪ {Di ′ → Di , Di → Dk }

7: else

8: #, � ← # ∪ {Di }, � ∪ {DTrue → Di , Di → Dk }

a block 1 at its target and a corresponding subroutine of controllers is learned, the task remains

incomplete as additional blocks still require positioning. The existentially quanti�ed predicate

∃1. 0C (1,6(1)) helps distinguish demonstration states where blocks are correctly positioned near

their targets from failed attempts by a single controller struggling to complete the task.

If reusing an existing predicate is not possible, in Algorithm 3, LearnClassifier synthesizes

a decision tree (DT) at line 6 to separate %B and #B using features from expressions U derived

from the production rules in our task speci�cation language in Fig. 12. The hypothesis set of

LearnDecisionTree consists of Boolean combinations of predicates of the form U f q , with q

being a constant threshold, which are learned during training. Standard DT learning algorithms

begin with an empty tree, greedily selecting features that maximize information gain, and continue

until all leaves are labeled with a single class. Finally, the learned DT is converted to a predicate i .

4.2.2 Refining Abstract Subtask Trees. With the learned classi�er i as a prerequisite for achieving

k in a task True { k , UpdateTree re�nes the abstract subtask tree) by using i as a subgoal

to decompose the task. We specify this re�nement procedure) [True
i
{ k] in Algorithm 4. At

line 2, if the newly identi�ed subtask goal predicate i matches an existing subtask goal i ′ that

precedesk in) (i.e., the LearnClassifier procedure has opted to reuse i ′), a repeating subroutine

is e�ectively recognized. This means that the controllers designed to achieve i ′ for manipulating

some objects can be repurposed to solve the subtask to reach i for a di�erent set of objects of the

same type. The algorithm marks Di ′ as a circular node i ′ at line 4 to indicate this repetition - the

control strategy used to reach i ′ should then be executed iteratively to address recurring objects

in the environment that have not yet satis�ed i ′. For this purpose, we have made i ′ existentially

quanti�ed.

An invariant we maintain for an abstract subtask tree) is that for each tree node k , for any

predecessors i { k and i ′ { k , i and i ′ are subgoal conditions for unique sets of objects, and

hence requiring di�erent control strategies (i.e. unique tree paths towards i and i ′) and otherwise

they should be collapsed into a circular node. For example, consider the PlaceCubeDrawer task

depicted in Fig.7, which has an abstract subtask tree consisting of two main paths: one for opening

the drawer and the other for placing the cube inside it. During the re�nement of) [True
i
{ k],

if a newly identi�ed subgoal i targets the same set of entities as an existing predecessor i ′ ofk

(i.e. Entities(i) = Entities(i ′)), the UpdateTree procedure in Algorithm4 inserts a new node Di ′

between Di and Dk at line 6, establishing i ′ as an intermediate subgoal for i { k . For example, in

the tree re�nement illustrated by Equation 2, the predicate at(1,6(1)), which signi�es that block 1

is at its goal, is added between the predicate hold(`, 1)—indicating the robot is gripping 1—andk' ,

the overall task’s goal condition. If i involves di�erent set of entities from any existing predecessor

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

292:16 Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu

Algorithm 5M,D,) ² P: Synthesize a program P from an abstract subtask tree) = (#, �,k')

1: procedure GenProgram(M, D,))

2: P ← Tree2Program(k' , D,))

3: for all > ∈ FreeVars(P) : do

4: P ← {E := get(_E : Λ(>) . True)}; P
��
> ↦→E

² E fresh

5: P∗ ← TrainProgram(M, P)

6: return P∗

7:

8: procedure Tree2Program(Di , D,))

9: PDą ← {}

10: for all edge (4 ≡ Di ′ → Di) ∈) sorted by 8 (D, i ′) do

11: PDą′ ← Tree2Program(Di ′ , D,))

12: PDą ← PDą ; PDą′

13: if Di ≡ ∃>. i then ² Di induces an iterative procedure

14: E ← FreshVar()

15: ? ← PredicateSynthesis(D, E, ∃>. i) ² Loop Condition Synthesis

16: PDą ← while(E := get(_E. ?)) {(PDą ; ci [i])
��
> ↦→E
};

17: else

18: PDą ← PDą ; ci [i]

19: return PDą

i ′ ofk , a distinct tree path from Di to Dk is created at line 8, representing distinct objects to control,

as exempli�ed in the unique two paths in the abstract subtask tree for PlaceCubeDrawer in Fig. 7.

4.3 Synthesizing Robot-Control Programs from Abstract Subtask Trees

An important step in RoboScribe is synthesizing an executable program P from an abstract subtask

tree) . We formalize this procedure asM,D,) ² P, implemented in a procedure GenProgram

described in Algorithm 5. Our main synthesis procedure Synthesize invokes GenProgram in

Algorithm 2 (line 2) to generate a candidate program and does so repeatedly for each re�ned abstract

subtask tree until a speci�cation-satisfying program can be synthesized.

The GenProgram procedureM,D,) ² P accomplishes three main objectives as formalized

in Algorithm 5: (1) it constructs the "skeleton" of P based on the hierarchical structure of) via

the Tree2Program procedure at line 2. (2) Tree2Program also infers loops within P to handle

varying numbers of objects by detecting repeated patterns in the demonstration D. (3) It grounds

the abstract actions in P as low-level controllers that can solve the subtasks within) through the

TrainProgram procedure at line 5. These low-level controllers are neural network policies that

operate directly in the robot environment to control robot actions.

4.3.1 Program Generation. The Tree2Program procedure (Line 8 of Algorithm 5) traverses an

abstract subtask tree) rooted at Di . It generates a program %Dą from) for solving the task of

reaching states satisfying i . Here we assume that in a multi-object setting, task demonstrations

implicitly indicate the order in which multiple objects of di�erent types should be handled (we

relax this assumption in Sec. 4.5). For example, in the PlaceCubeDrawer task shown in Fig. 7, the

agent must �rst pull the drawer open using its handle before placing the cubes inside. De�ne

8 (D, i ′) as the position in the demonstration where i ′ holds. Tree2Program enumerates the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

Abstraction Refinement-Guided Program Synthesis for Robot Learning from Demonstrations 292:17

Algorithm 6 Learning Loop Conditions from Demonstrations

1: procedure PredicateSynthesis(D, E, ∃>. i)

2: Sample a demonstration rollout 3 ∼ D

3: Let 41, . . . , 4# be the objects sorted by their order of satisfying i [> ↦→ 48] in 3 and

4: (8 be the segment of 3 during which 48 is manipulated

5: for 1 f 8 f # do

6: %8 , #8 ← {}, {}

7: for all 48 do

8: %8 ← %8 ∪ {(BC , 48) | BC ∈ (8 }

9: for all (9 s.t. 9 < 8 do

10: #8 ← #8 ∪ {(BC , 48) | BC ∈ (9 }

11: for all (9 s.t. 9 > 8 do

12: #8 ← #8 ∪ {(BC , 48) | BC ∈ (9 }

13: % ← True

14: for 1 f 8 f # do

15: k ← TopdownEnum(%8 , #8)

16: % ← % ' k [48 ↦→ E]

17: return %

incoming edges Di ′ → Di of Di (line 10) in the order of 8 (D, i ′), recursively applying itself to

Di ′ (line 11), and appending the resulting program %Dą′ to %Dą (line 12). At line 18, the algorithm

appends a low-level controller ci = c\ (`, {>}, {6(>
′)}), a neural network policy with trainable

weights \ , to the program %Dą . This controller guides the agent from states satisfying the subgoals

in the predecessors of Di (namely {i ′}) to states that satisfy i in Di . Here, {>} = Entities(i)

denotes the set of entities involved in i , while {6(> ′)} represents the goal conditions in i for these

entities, with > ′ potentially being a subset of > . The controller ci needs to manage the entities

in > to achieve the subgoal condition i . If Di is designated as a circular node, as constructed in

Sec. 4.2.2, the subroutine synthesized in PDi is designed for repeated execution to handle recurring

objects of the same types to achieve i in a loop. To simplify the presentation, we assume a single

existential quanti�er for the subgoal condition related to Di , though the algorithm trivially extends

to multiple quanti�ers. We introduce a fresh program variable E to bind recurring objects within

the loop. At line 16, Tree2Program constructs a loop with (PDi ;ci
��
> ↦→E
) as its body, replacing >

in the program with E to track recurring objects bound in each iteration, analogous to existential

quanti�er instantiation. Fig. 10 illustrates this process for the Tower task. We note that at Line 4

of Algorithm 5, for any remaining object identi�er > in a synthesized program P, we similarly

project > to a fresh variable E and prepend E := get(_E : Λ(>).True) to P. This allows the program

to generalize across environments by retrieving the appropriate entity, removing dependencies on

speci�c object identi�ers (see Fig. 8 as an example).

So far, the algorithm does not specify the order in which objects are addressed in the loop

iterations, which is crucial for tasks with dependencies, such as Tower (Fig. 9) where placing a

block in its goal position before positioning the underlying blocks can result in failure. To this

end, Tree2Program invokes PredicateSynthesis in Algorithm 6 to specify an e�ective handling

sequence for the loop structure. We outline this procedure as follows.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

292:18 Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu

Fig. 16. Positive and negative examples for learning the predicate for when to handle the red block in Tower.

In the demonstration, the agent stacks green, yellow, red and blue blocks in order.

4.3.2 Loop Inference. Our key approach to identifying the potential order for an e�ective handling

sequence for recurring objects is analyzing the underlying rationale in task demonstrations to

understand why certain objects must be handled before others.

Given the set of demonstrations D and a circular tree node i in an abstract subtask tree) , the

PredicateSynthesis procedure in Algorithm 6 formalizes the generation of loop conditions for

synthesized iterative programs. As we assume demonstrations in � are consistent (Sec. 2.1), at

line 3, we randomly sample a rollout 3 from � to infer the handling sequence for recurring objects.

We sort objects 41, 42, . . . of the desired types in 3 according to their order of satisfying i in 3 and

partition 3 according to this order. Each segment (8 corresponds to the subtask period in which

48 is manipulated within the demonstration. For example, for the abstraction of Tower in Eq. 3,

given the demonstration in Fig. 9, we instantiate the existential quanti�ers 1 in the circular node

∃1. 0C (1,6(1)) with the colored blocks respectively. The agent stacks the green, yellow, red, and

blue blocks sequentially from bottom to top, resulting in partitions (1, (2, (3 and (4 in Fig. 9.

For each 48 , RoboScribe maintains positive examples (BC , 48) for all states BC in (8 where 48 is

handled at line 8, and negative examples (BC , 48) for all states BC in prior ((0, . . . , (8−1) and subsequent

((8+1, . . .) partitions to illustrate why 48 should not be handled earlier at line 10 or does not need to be

handled afterwards at line 12 in these negative states. For instance, in Fig. 16, RoboScribe shows why

the red block is placed after the green and yellow blocks. In the top row, where the green and yellow

blocks are already positioned, any state involving the placement of the red block is considered a

positive example. In the bottom row, where the green and yellow blocks are not yet in their goal

positions, the placement of the red block is marked as a negative example (it should not be handled),

and any subsequent states after the red block is positioned are also negative examples (since its

handling is already complete). Given the positive and negative examples {(BC , 48)}
+, {(BC , 48)}

− , any

classi�er that de�nes the relationship between 48 and other objects in BC (abstracted as existential

variables) and e�ectively separates the examples, provides both an ordering and a termination

constraint for handling 48 during manipulation.

At line 14, RoboScribe uses top-down synthesis to generate a classi�er predicate for each 48 ,

following the production rules for predicates k in our task speci�cation language (see Fig. 12).

In this process, we augment k with learned state abstraction predicates from abstract subtask

trees as these predicates provide additional task-relevant constraints. The learned predicates for all

48 are combined to �ll in the loop condition in the synthesized program. Here we use top-down

enumeration instead of decision tree (DT) learning because loop conditions for handling sequences

typically require existential quanti�ers to manage unbounded entities with dependencies, which

are not well-suited for DTs. If the synthesis algorithm does not �nd a classi�er predicate for an

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

Abstraction Refinement-Guided Program Synthesis for Robot Learning from Demonstrations 292:19

object 48 within a reasonable search budget, RoboScribe interprets this as the absence of an ordering

constraint for that 48 — the agent can select 48 for manipulation without restrictions, and it then

returns true in this case. Given the examples in Fig.16, RoboScribe synthesizes the ordering predicate

in Eq.4 for Tower. This predicate ensures that any block with a lower goal position must be placed

before the current block.

We note that a synthesized ordering predicate naturally encodes loop termination, even in envi-

ronments without explicit total or partial order constraints. For example, consider a scenario where

a robot arm must push several objects from a table into a drawer in arbitrary order. Algorithm 6

learns a termination condition in the form of a classi�er, which identi�es why an object that has

already been placed in the drawer is no longer manipulated thereafter.

4.3.3 Reinforcement Program Learning. Given a program P inferred from an abstract subtask tree

) re�ecting the current abstraction of the real robot environmentM, the TrainProgram procedure

called at line 5 in Algorithm 5 grounds P inM by learning the low-level neural controllers invoked

by P to ful�ll the subtasks within) . We maintain separate bu�ers �i to store trajectories associated

with each low-level controller ci within P. Program trajectories Z are sampled by executing P in

the real environment Z ∼ Exec(M,P). Each sub-trajectory of Z generated by a speci�c controller

ci is stored only in the corresponding bu�er �i . During each gradient update step, TrainProgram

updates each policy ci by sampling from its bu�er �i and optimizes it using any o�-the-shelf

o�-policy RL algorithm (e.g. Soft Actor-Critic), aiming to maximize the expected reward for ci :

ci = argmax
cą

EZ=B0,00,B1,· · · ,BĈ,0Ĉ∼�ą

[
!∑

8=0

WC'i (B8 , 08)

]

where 'i denotes the reward function used to train ci , ! is the sampled trajectory length, and W is

the discount factor.

For each subtask to learn ci , our training procedure aims to construct the reward function 'i
that provides feedback based on the satisfaction of these predicates throughout a policy trajectory.

Instead of only using i to provide a binary signal indicating whether a subgoal state has been

achieved, 'i quanti�es a continuous measure of state proximity between the current state B and

the satisfaction of i to enables smoother policy optimization. This approach allows for a more

granular assessment of progress, guiding the agent incrementally towards the subgoal states in i .

Formally, we de�ne the reward function 'i recursively based on the structure of the predicate i :

'i (B) =





'(i1 ' i2) = min('i1
(B), 'i2

(B)) if i = i1 ' i2,

'(i1 (i2) = max('i1
(B), 'i2

(B)) if i = i1 (i2,

'(U > q) = U (B) − q if i = U > q,

'(U < q) = q − U (B) if i = U < q.

4.4 Termination Guarantee

The main synthesis procedure in RoboScribe (Algorithm 2) is guaranteed to terminate after �nitely

many re�nements. This follows from the bounded size of abstract subtask trees, which is constrained

by both the number of environment entities and the length of demonstrations. Given an EFMDP

M and demonstrations D: (1) each abstract subtask tree node can lead to only �nitely many

paths, bounded by the number of entities in M; and (2) each path has bounded length, since

every edge Di → Dk must be supported by contiguous segments in D, of which there are �nitely

many. Consequently, the number of re�nements is bounded. Algorithm 2 must terminate, either by

synthesizing a valid program or returning FAIL (Line 11) when the current abstract subtask tree

cannot be further re�ned.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

292:20 Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu

Speci�cally, in Algorithm 2, each re�nement of an abstract subtask tree) (Line 9, Algorithm2)

is followed by a Validate call at line 10, which scans) against demonstration D to determine

whether it can yield a task-solving program or if the underlying task is unsolvable under) . Given

demonstrations D = {(B0, B1, . . . , B�)} and a predicate i , if there exists 8 such that i (B8) holds, let

8B (D, i) denote the �rst timestep where i holds, and 8 5 (D, i) the last. For each edge Di → Dk
representing a subtask i { k in) , the Validate procedure checks whether 8B (D,k) f 8 5 (D, i)

when i is not True, or 8B (D,k) = 0. Quanti�ers in the predicates are instantiated by enumerating

all entities of the appropriate types present inD. If true, this indicates that the intermediate subgoal

k does not meaningfully advance the task from i , causing it to fail under the current abstraction.

What is the main cause for RoboScribe to return FAIL? It occurs when the RL algorithm

fails to learn a valid low-level controller even for some short-horizon subtasks, leading to repeated

re�nements and eventual task failure. This may stem from poor exploration, challenging environ-

ment dynamics, or instability in the learning algorithm; however, we have rarely observed this in

practice.

4.5 Extension: Conditional Statements

Fig. 17. A Pick&Place En-

vironment for a cube and

a peg.

The GenProgram procedure in Algorithm 5 operates under the assump-

tion that demonstrations implicitly suggest the order for handling multiple

objects in a multi-object task. However, this order may vary depending on

the goal conditions. For instance, consider a scenario with a peg (blue) and

a cube (red) in Fig. 17. If the peg’s goal region is above the cube’s goal, the

task must be completed by �rst moving the cube, then the peg—and vice

versa. Our implementation relaxes this assumption by repurposing the

PredicateSynthesis algorithm from Algorithm 6 (developed for sorting

objects represented by a circular abstract subtask tree node) to deter-

mine how to order the execution of the multiple predecessors of a tree

node corresponding to objects of di�erent types. This approach identi�es

the conditions under which each object should be processed and encodes these conditions into

conditional statements, thereby selecting the appropriate handling sequence.

5 Experiments

RoboScribe is implemented in Python. In the implementation, low-level neural policies are Multi-

layer Perception (MLP) containing two hidden layers with 256 neurons. We leverage Soft Actor-

Critic (SAC) [24] from Stable-Baseline3 [49] as the RL algorithm to train the policies.

Our experiments are designed to answer the following research questions:

• (RQ1) Is RoboScribe able to learn e�ective and interpretable programs?

• (RQ2) Does the iterative program learned by RoboScribe generalize to unseen environments

without further training?

Main Baselines. Throughout the evaluation, we consider the following baselines:

• BC: Behavior Cloning (BC) is a standard learning from demonstration baseline. It applies super-

vised learning to train a policy that replicates expert actions for given states in demonstrations.

• GAIL [25]: Generative Adversarial Imitation Learning (GAIL) works by alternating between

training two components: a discriminator and an agent. The discriminator is trained to distinguish

between states visited by the expert and those visited by the agent. The agent, in turn, is optimized

to visit states that make this distinctionmore di�cult, thereby encouraging it tomimic the expert’s

behavior. We select GAIL as a baseline because its discriminator serves a role similar to the

state-abstraction predicates we learn as classi�ers.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

Abstraction Refinement-Guided Program Synthesis for Robot Learning from Demonstrations 292:21

• goalGAIL [20]: GoalGAIL combines GAIL with Hindsight Experience Replay (HER) [3]. Unlike

GAIL, which only imitates expert state distributions without explicit task objectives, GoalGAIL

introduces goals by relabeling the agent’s trajectory with states that are actually achieved during

execution, allowing the agent to treat these states as successful outcomes and thereby receive

more frequent feedback, leading to faster convergence and improved sample e�ciency. We select

it as a baseline because it is a stronger variant of GAIL that accelerates learning and signi�cantly

improves sample e�ciency.

• DeepSet [67]: DeepSet embraces an entity-based compositional structure in its neural policy

representation based on Self-Attention [61] to leverage the symmetries and invariances in the

EFMDP. Like RoboScribe programs, its policy architectures decompose goal-conditioned tasks

into their constituent entities and subgoals.

For fair comparisons, we use the DeepSet architecture for the policy in BC and for both the

policy and discriminator in GAIL and goalGAIL. DeepSet’s ability to handle an arbitrary number of

input objects makes it well-suited for multi-object environments.

We exclude direct quantitative comparisons with existing programmatic RL methods

like PROLEX [44], Tabula [46], and ReGuS [14] because they rely on prede�ned DSLs with man-

ually crafted state and action abstractions, whereas RoboScribe autonomously discovers these

abstractions. This fundamental di�erence makes direct performance comparisons impractical.

(a) Pick&place-Multi (b) Push-Multi

(c) Meta-World (d) PlaceCubesDrawer

Fig. 18. Testing environments with multiple enti-

ties.

Benchmarks. We use a suite of challeng-

ing robot manipulation environments including

Pick&Place (Fig. 1a); Tower-5 (Fig. 1c) where

the goal is to assemble 5 scattered blocks into

a tower (88 state dimensions); Pick&Place-Cond

shown in Fig. 17 where the robot stacks a cube

and a peg based on their goal position order-

ing; Pick&Place-4 shown in Fig. 18a in the

Pick&place-Multi environment where the goal is

placing 4 blocks in their designated goal regions on

a surface, with the �nal block needing to be hung

by the gripper in the air at its goal position; Push-3

shown in Fig. 18b in the Push-Multi environment

where the goal is pushing 3 blocks to their re-

lated goal regions on a table surface; Meta-World

where a robot needs to be controlled to complete

3 tasks, including pushing the mug back, open-

ing the drawer and turning the faucet left; and

PlaceCubesDrawer visualized in Fig. 18d. In the

challenging PlaceCubesDrawer environment (134

state dimensions) from [39], the agent needs to open a drawer and iteratively places three cubes

into the drawer. We consider a sparse reward setting in which the agent receives reward 1.0 when

the entire task is completed successfully and 0 otherwise.

Demonstration Collection. For each environment, we provide a demonstration dataset consist-

ing of 50 successful trajectories, collected by manually controlling the end e�ector in a simulator

to manipulate the objects. We place no requirements on demonstration quality with respect to

path optimality or goal diversity. Since RoboScribe relies on demonstrations only to infer abstract

subtask trees, it remains e�ective even when demonstration trajectories contain unnecessarily

long control paths. Such demonstrations still reveal the underlying abstract task structure, which

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

292:22 Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu

Fig. 19. Rewards for all the tools throughout the training phase. The solid curve represents the mean across 5

random seeds. The shaded area indicates the standard deviation. In Meta-World, we report the success rates

for each subtask—pushing the mug back (t0), opening the drawer (t1), and turning the faucet le� (t2)—in the

order that RoboScribe discovers them.

Table 1. Average number of refinement steps for synthesized programs (over five random seeds).

Pick&Place-1 Pick&Place-4 Pick&Place-Cond Push-3 Tower-5 Meta-World PlaceCubesDrawer

2.2 2.2 5.4 4.4 4.4 5.6 4.6

RoboScribe leverages to learn e�cient low-level controllers via reward signals derived from the

state-abstraction predicates encoded in abstract subtask trees.

5.1 RQ1: Learning E�iciency and Interpretability

For each environment, we train RoboScribe and the baseline methods with 5 random seeds, report-

ing their evaluation success rates during training, as shown in Fig. 19. While RoboScribe initially

experiences a �at zero success rate early in training, it focuses on comparative abstraction re�ne-

ment to discover the abstract task structure and grounding abstract actions to reach automatically

discovered subgoal conditions, guiding the agent towards the overall goal progressively. Robo-

Scribe’s success rate increases rapidly once the program structure is fully developed, eventually

surpassing the performance of the baseline methods. For Tower-5, there is a sharp increase in

success rates around 1e7 steps. This is because the task requires the end e�ector to move its hand

away from the top block to a certain height to ensure stable tower construction. The �nal subgoal

of moving away the end e�ector is relatively easier to learn, and by this point, the agent has already

mastered stacking the blocks. As a result, the �nal task success rate improves signi�cantly after

this. Other than Pick&place and Push-3, the baselines struggle to achieve progress due to the

complexity of the observations involving multiple objects and the sparsity of the reward signals.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

Abstraction Refinement-Guided Program Synthesis for Robot Learning from Demonstrations 292:23

We report the average number of re�nement steps for our synthesized programs in Table 1. Even

the most challenging tasks such as Tower-5 and PlaceCubesDrawer require a modest number of

re�nements, demonstrating the e�ciency of RoboScribe’s synthesis procedure.

Demonstration Size. RoboScribe requires only a small number of demonstrations to infer

abstract subtask trees. We evaluated RoboScribe in the Pick&Place environment (Fig. 1a) across

10, 20, and 50 demonstrations and found that performance remains stable: converging to 99.8%

success with 2.28M environment steps, 99.0% with 1.68M, and 99.7% with 2.20M steps, respectively.

Interpretability. Programs synthesized by RoboScribe provide greater interpretability of the

control logic compared to black-box policies. Synthesized programs include loops conditioned on

explicit subgoals necessary for recurring interactions with multiple objects. This yields structured

policy representations that make the decision-making process transparent and easy to understand.

For example, in the Push-3 task, where the end e�ector ` must push a block 1 to a target position

6(1) on a table, one of the state abstraction predicates RoboScribe synthesizes is:

arctan2(` ³G,~ −1 ³G,~) − arctan2(6(1) ³G,~ −1 ³G,~) < q

This predicate captures a subgoal condition where the end e�ector, block, and goal region are

aligned for direct pushing. Occasionally, more complex predicates arise. In one of �ve Push-3 trials,

we observed the following predicate in the abstract subtask tree:

1 ³G,~,I −6(1) ³G,~,I

< q1 '

` ³G,~,I −1 ³G,~,I

< q2 '

arctan2(` ³G,~ −1 ³G,~) − arctan2(6(1) ³G,~ −1 ³G,~) < q3

This predicate is true when block 1 is near its goal region 6(1) and the end-e�ector ` is not only

close to 1, but also aligned with its goal direction. This complex predicate arises due to failure

execution trajectories containing two types of negative states: (1) the block remains far from its goal,

or (2) it is pushed somewhat close to the goal but not su�ciently, and the end-e�ector then moves

away unexpectedly. The latter case is caused by the imperfect behavior of the learned low-level

policy for direct pushing. Although RoboScribe can eventually succeed in such cases, the resulting

predicates often increase in complexity, requiring additional e�ort for interpretation.

5.2 RQ2: Generalization to New Environments

For the Tower and Push-Multi environments, the capability of handling arbitrary numbers of

objects is desired. We analyze the transferability of the synthesized iterative program to diverse

environment settings.

(a) Single Tower (b) Multi Towers (c) Pyramids

Fig. 20. Novel Tower environments.

Tower Environment. We synthe-

size the Tower program in a single

tower setting with 4 or 5 blocks and

evaluate its performance across di-

verse environments without further

training, as shown in Fig. 20. These

environments include a taller single

tower with 6 or 7 blocks, multiple

towers with 2 to 3 blocks per tower,

and a pyramid tower with 4 to 9 blocks. As the baselines discussed in Sec. 5.1 fail to solve the

Tower task, we turn to the curriculum learning-based approach ReNN [32], which progressively

learns to stack 2, 3, and ultimately 5 blocks. In contrast, RoboScribe learns to handle all 5 blocks

directly, without relying on an expert-designed curriculum, o�ering a more �exible and practical

solution. Fig. 21 presents the results for RoboScribe and ReNN [32]. In the single tower setting,

ReNN bene�ts from curriculum learning, achieving slightly better results when the training and

evaluation environments match (e.g., single towers with 4 and 5 blocks). However, RoboScribe

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

292:24 Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu

Fig. 21. Comparison between ReNN and RoboScribe on zero-shot generalization to new Tower environment

se�ings. Specifically, policies trained on single tower with 4 blocks or 5 blocks are evaluated on Single (but

taller) towers, multiple towers and pyramid configurations with varying numbers of blocks. Success rate is

reported as accuracy of completing a task averaged over 500 episodes.

demonstrates superior generalization. For instance, when transferring a policy trained on 4 blocks

to a taller single tower, ReNN achieves less than 5% success, while RoboScribe trained on 4 blocks

achieves 55% (±1%) success with 5 blocks and 15% (±1%) with 6 blocks. In both multi-tower and

pyramid settings, RoboScribe signi�cantly outperforms ReNN across block counts from 4 to 9.

Fig. 22. A constrained

Push-Multi environment.

Push-Multi Environment. To evaluate the iterative program learned

in the Push-Multi environment, we introduce a con�ned version,

Push-Multi Confined (Fig. 22), where goals are randomly arranged along

a line near the table’s upper edge. To achieve the goal condition, the robot

bene�ts from pushing the blocks in a certain order. For example, in Fig. 22,

the robot should push the blue block �rst, followed by green, then red.

Pushing blocks out of this order, such as green or red �rst, may obstruct the

blue block’s path to its goal. For RoboScribe, we reuse the learned iterative

program by providing demonstrations of the correct entity handling se-

quence, allowing it to update its loop condition without additional training.

In contrast, we continue training the baseline DeepSet [67] model on the

con�ned environment until convergence, as it cannot structurally update its model like RoboScribe.

RoboScribe correctly learns the entity handling order from the demonstration and updates the

loop condition accordingly. In comparison, DeepSet achieves a success rate of 81.3% (±4.0%), while

RoboScribe achieves 86.3% (±0.5%), averaged over 500 episodes. RoboScribe’s superior performance

demonstrates the generalization of learned policies and program structures. Additionally, with the

interpretability of its programmatic policy, RoboScribe o�ers greater �exibility in transferring the

synthesized program to di�erent environment settings.

6 Related Work

Programmatic Reinforcement Learning. Our work is closely related to recent advance on

exploring domain-speci�c programs as an interpretable representation for RL. PIRL [62, 63] and

Viper [6] synthesize loop-free, stateless programs, which face limitations in complex robot tasks.

Inala et al. [28] improved on this by learning robot controllers as state machines, enabling general-

ization to tasks with repeating behaviors. These methods rely heavily on strong supervision from

oracles like pretrained RL controllers. The tasks they can solve are thus bounded by the capability

of the oracle. In contrast, program synthesis methods such as PROLEX [44] and Tabula [46] learn

robot control programs from task demonstrations. They generalize these demonstrations into regex-

based sketches or Mealy automata to bootstrap synthesis. They can synthesize programs with

control �ow structures including loops and conditionals, allowing generalization from a speci�c

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

Abstraction Refinement-Guided Program Synthesis for Robot Learning from Demonstrations 292:25

sequence of actions to a general structure to solve unseen tasks. Their DSLs feature extensive library

functions for manipulating various objects and teleporting robots to di�erent locations. LEAPS [60],

PRL [47], and ReGuS [14] eliminate the need for pretrained oracles and synthesizes robot-control

programs directly from reward signals. They demonstrate that utilizing rich control-�ow constructs

(state-conditioned loops and procedure calls) can e�ectively tackle long-horizon and sparse-reward

tasks, which are beyond the capabilities of standard deep RL baselines. However, these existing

works rely on a manually designed library of state abstraction predicates and abstract actions to

bootstrap synthesis. RoboScribe addresses the primary challenge of automating the construction of

robot state and action abstractions.

Learning State and Action Abstraction. RoboScribe shares similarities with generalized

planning methods like [56, 59], which derive looped plans for solving unbounded problem instances.

However, planning techniques require a provided state transition model for each robot action within

the abstract state space. Component-based synthesis techniques with user-de�ned predicates, as

in [11, 22], have similar requirements. Automatically learning state and action abstractions has been

explored in task and motion planning for robot control [7, 23, 29, 43]. Existing techniques typically

learn either predicates from demonstrations assuming low-level controllers are given [15, 36, 55]

or learn controllers from demonstrations assuming known predicates [1, 17, 54]. RoboScribe

simultaneously learns state and action abstractions, removing such assumptions. There exist library

learning techniques [9, 10, 21] that use syntax abstraction to extract common structures from a

program corpus as reusable library functions. In contrast, RoboScribe performs state abstraction.

RoboScribe is broadly related to hierarchical RL and planning for robot learning [4, 30, 31, 40, 42, 45,

48, 56, 64]. However, such techniques often struggle with long-horizon tasks with sparse rewards.

Traditional controller synthesis algorithms, especially those using formal methods and temporal

logic, rely on automata-based approaches involving abstraction and discretization of continuous

state and action spaces [16, 51]. These methods face limitations in high-dimensional systems, where

discretization can lead to issues like state explosion.

Reward-guided Program Synthesis. Existing algorithms often design dense rewards to guide

program search directions. For example, Probe [5] and Syntia [8] evaluate programs using input-

output examples, generating rich rewards based on output similarity. In [11], the feedback from a

deduction engine on the feasibility of partial programs is used to reward the synthesis algorithm,

guiding it toward promising search directions. Faery [12] employs Monte Carlo estimation to

sample user queries for additional examples. However, in sparse-reward scenarios, synthesizing

complete programs with complex control �ow through Monte Carlo methods is challenging due to

the low probability of discovering programs with nonzero rewards. RoboScribe addresses this by

using comparative abstraction re�nement to learn state abstraction predicates that capture subgoal

conditions, e�ectively breaking down the learning process.

7 Conclusion

This paper introduces RoboScribe, a program synthesis framework guided by abstraction re�nement

to address long-horizon, multi-object tasks in robotics. RoboScribe alternates between comparative

abstraction re�nement and iterative program learning, using demonstrations and execution trajec-

tories from synthesized programs to iteratively re�ne environment abstractions until a task-solving

program can be generated. It identi�es recurring subroutines from raw, continuous state-action

spaces without prede�ned abstractions. Experimental results show that RoboScribe generalizes

e�ectively to long-horizon tasks with varying object counts, outperforming baseline methods in

interpretability and e�ciency. Currently, our language restricts predicates to use norm and arctan

functions. It remains an open question whether this expressiveness is su�cient for all tasks—for

example, whether additional trigonometric functions are needed, which we leave for future work.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

292:26 Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu

Data-Availability Statement

The artifact for this work is an implementation of RoboScribe, a program synthesis framework

for robotic control tasks. The artifact includes both the codebase for synthesizing robot-control

programs and associated datasets used for training and evaluation. The artifact is available at [13].

Acknowledgments

We would like to thank the anonymous reviewers for their help and feedback on this paper. This

material is based upon work supported by the National Science Foundation under grant numbers

CCF-2124155 and CCF-2007799.

References

[1] Diego Aineto, Sergio Jiménez, and Eva Onaindia. 2022. A Comprehensive Framework for Learning Declarative Action

Models. J. Artif. Intell. Res. 74 (2022), 1091–1123. https://doi.org/10.1613/JAIR.1.13073

[2] David Andre and Stuart J. Russell. 2002. State Abstraction for Programmable Reinforcement Learning Agents. In

Proceedings of the Eighteenth National Conference on Arti�cial Intelligence and Fourteenth Conference on Innovative

Applications of Arti�cial Intelligence.

[3] Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh

Tobin, Pieter Abbeel, and Wojciech Zaremba. 2017. Hindsight Experience Replay. In Advances in Neural Information

Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long

Beach, CA, USA. 5048–5058.

[4] Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The Option-Critic Architecture. In Proceedings of the Thirty-First

AAAI Conference on Arti�cial Intelligence, February 4-9, 2017, San Francisco, California, USA.

[5] Shraddha Barke, Hila Peleg, and Nadia Polikarpova. 2020. Just-in-time learning for bottom-up enumerative synthesis.

Proc. ACM Program. Lang. OOPSLA (2020).

[6] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. 2018. Veri�able Reinforcement Learning via Policy Extraction.

In Advances in Neural Information Processing Systems, NeurIPS 2018.

[7] Pascal Bercher, Ron Alford, and Daniel Höller. 2019. A Survey on Hierarchical Planning - One Abstract Idea, Many

Concrete Realizations. In Proceedings of the Twenty-Eighth International Joint Conference on Arti�cial Intelligence, IJCAI

2019, Macao, China, August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org, 6267–6275. https://doi.org/10.24963/IJCAI.2019/875

[8] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017. Syntia: Synthesizing the Semantics of

Obfuscated Code. In 26th USENIX Security Symposium, USENIX Security 2017.

[9] Matthew Bowers, Theo X. Olausson, Lionel Wong, Gabriel Grand, Joshua B. Tenenbaum, Kevin Ellis, and Armando

Solar-Lezama. 2023. Top-Down Synthesis for Library Learning. Proc. ACM Program. Lang. 7, POPL (2023), 1182–1213.

https://doi.org/10.1145/3571234

[10] David Cao, Rose Kunkel, Chandrakana Nandi, Max Willsey, Zachary Tatlock, and Nadia Polikarpova. 2023. babble:

Learning Better Abstractions with E-Graphs and Anti-uni�cation. Proc. ACM Program. Lang. 7, POPL (2023), 396–424.

https://doi.org/10.1145/3571207

[11] Yanju Chen, Chenglong Wang, Osbert Bastani, Isil Dillig, and Yu Feng. 2020. Program Synthesis Using Deduction-

Guided Reinforcement Learning. In Computer Aided Veri�cation - 32nd International Conference, CAV 2020.

[12] Yanju Chen, Chenglong Wang, Xinyu Wang, Osbert Bastani, and Yu Feng. 2023. Fast and Reliable Program Synthesis

via User Interaction. In 38th IEEE/ACM International Conference on Automated Software Engineering, ASE 2023.

[13] Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu. 2025. Abstraction Re�nement-Guided Program

Synthesis for Robot Learning from Demonstrations (Artifact). Zenodo. https://doi.org/10.5281/zenodo.16929200

[14] Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu. 2024. Reward-Guided Synthesis of Intelligent Agents with

Control Structures. Proc. ACM Program. Lang. 8, PLDI (2024), 1730–1754. https://doi.org/10.1145/3656447

[15] Aidan Curtis, Tom Silver, Joshua B. Tenenbaum, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. 2022. Discovering

State and Action Abstractions for Generalized Task and Motion Planning. In Thirty-Sixth AAAI Conference on Arti�cial

Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Arti�cial Intelligence, IAAI 2022, The

Twelveth Symposium on Educational Advances in Arti�cial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1,

2022. AAAI Press, 5377–5384. https://doi.org/10.1609/AAAI.V36I5.20475

[16] Mehdi Dadvar, Rashmeet Kaur Nayyar, and Siddharth Srivastava. 2023. Conditional Abstraction Trees for Sample-

E�cient Reinforcement Learning. In The 39th Conference on Uncertainty in Arti�cial Intelligence. https://openreview.

net/forum?id=tQP094M0j8G

[17] Joaquim Ortiz de Haro, Jung-Su Ha, Danny Driess, and Marc Toussaint. 2021. Structured deep generative models for

sampling on constraint manifolds in sequential manipulation. In Conference on Robot Learning, 8-11 November 2021,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

Abstraction Refinement-Guided Program Synthesis for Robot Learning from Demonstrations 292:27

London, UK (Proceedings of Machine Learning Research, Vol. 164), Aleksandra Faust, David Hsu, and Gerhard Neumann

(Eds.). PMLR, 213–223. https://proceedings.mlr.press/v164/ortiz-haro22a.html

[18] Quentin Delfosse, Wolfgang Stammer, Thomas Rothenbacher, Dwarak Vittal, and Kristian Kersting. 2023. Boosting

Object Representation Learning via Motion and Object Continuity. In Machine Learning and Knowledge Discovery in

Databases: Research Track - European Conference, ECML PKDD 2023.

[19] Thomas G. Dietterich. 2000. Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition. J.

Artif. Intell. Res. (2000).

[20] Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. 2019. Goal-conditioned Imitation Learning. In

Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,

NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,

Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.). 15298–15309. https://proceedings.neurips.cc/paper/

2019/hash/c8d3a760ebab631565f8509d84b3b3f1-Abstract.html

[21] Kevin Ellis, Catherine Wong, Maxwell I. Nye, Mathias Sablé-Meyer, Lucas Morales, Luke B. Hewitt, Luc Cary, Armando

Solar-Lezama, and Joshua B. Tenenbaum. [n. d.]. DreamCoder: bootstrapping inductive program synthesis with

wake-sleep library learning. In 42nd ACM SIGPLAN International Conference on Programming Language Design and

Implementation, PLDI 2021. 835–850.

[22] Yu Feng, Ruben Martins, Jacob Van Ge�en, Isil Dillig, and Swarat Chaudhuri. 2017. Component-based synthesis of

table consolidation and transformation tasks from examples. In Proceedings of the 38th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI 2017.

[23] Caelan Reed Garrett, Rohan Chitnis, Rachel M. Holladay, Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling, and Tomás

Lozano-Pérez. 2021. Integrated Task and Motion Planning. Annu. Rev. Control. Robotics Auton. Syst. 4 (2021), 265–293.

https://doi.org/10.1146/ANNUREV-CONTROL-091420-084139

[24] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft actor-critic: O�-policy maximum entropy

deep reinforcement learning with a stochastic actor. In International conference on machine learning. PMLR, 1861–1870.

[25] Jonathan Ho and Stefano Ermon. 2016. Generative Adversarial Imitation Learning. In Advances in Neural Information

Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,

Spain, Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett (Eds.). 4565–4573.

https://proceedings.neurips.cc/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html

[26] Jarrett Holtz, Arjun Guha, and Joydeep Biswas. 2020. Robot Action Selection Learning via Layered Dimension Informed

Program Synthesis. In 4th Conference on Robot Learning, CoRL 2020, 16-18 November 2020, Virtual Event / Cambridge,

MA, USA (Proceedings of Machine Learning Research, Vol. 155), Jens Kober, Fabio Ramos, and Claire J. Tomlin (Eds.).

PMLR, 1471–1480. https://proceedings.mlr.press/v155/holtz21a.html

[27] Baichuan Huang, Abdeslam Boularias, and Jingjin Yu. 2022. Parallel Monte Carlo Tree Search with Batched Rigid-body

Simulations for Speeding up Long-Horizon Episodic Robot Planning. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, IROS 2022, Kyoto, Japan, October 23-27, 2022. IEEE, 1153–1160. https://doi.org/10.1109/IROS47612.

2022.9981962

[28] Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. 2020. Synthesizing Programmatic

Policies that Inductively Generalize. In 8th International Conference on Learning Representations, ICLR 2020.

[29] George Dimitri Konidaris, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. 2018. From Skills to Symbols: Learning

Symbolic Representations for Abstract High-Level Planning. J. Artif. Intell. Res. 61 (2018), 215–289. https://doi.org/10.

1613/JAIR.5575

[30] Youngwoon Lee, Shao-Hua Sun, Sriram Somasundaram, Edward S. Hu, and Joseph J. Lim. 2019. Composing Complex

Skills by Learning Transition Policies. In 7th International Conference on Learning Representations, ICLR 2019.

[31] Youngwoon Lee, Jingyun Yang, and Joseph J. Lim. 2020. Learning to Coordinate Manipulation Skills via Skill Behavior

Diversi�cation. In 8th International Conference on Learning Representations, ICLR 2020.

[32] Richard Li, Allan Jabri, Trevor Darrell, and Pulkit Agrawal. 2020. Towards Practical Multi-Object Manipulation using

Relational Reinforcement Learning. In 2020 IEEE International Conference on Robotics and Automation, ICRA 2020, Paris,

France, May 31 - August 31, 2020. IEEE, 4051–4058. https://doi.org/10.1109/ICRA40945.2020.9197468

[33] Junchi Liang and Abdeslam Boularias. 2023. Learning Category-Level Manipulation Tasks from Point Clouds with

Dynamic Graph CNNs. In Proceedings of the 2023 International Conference on Robotics and Automation (ICRA).

[34] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and Andy Zeng. 2023.

Code as Policies: Language Model Programs for Embodied Control. In IEEE International Conference on Robotics and

Automation, ICRA 2023, London, UK, May 29 - June 2, 2023. IEEE, 9493–9500. https://doi.org/10.1109/ICRA48891.2023.

10160591

[35] Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong Jiang, and Sungjin

Ahn. 2020. SPACE: Unsupervised Object-Oriented Scene Representation via Spatial Attention and Decomposition. In

8th International Conference on Learning Representations, ICLR 2020.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

292:28 Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu

[36] João Loula, Kelsey R. Allen, Tom Silver, and Josh Tenenbaum. 2020. Learning constraint-based planning models from

demonstrations. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020, Las Vegas, NV, USA,

October 24, 2020 - January 24, 2021. IEEE, 5410–5416. https://doi.org/10.1109/IROS45743.2020.9341535

[37] Chaitanya Mitash, Kostas E. Bekris, and Abdeslam Boularias. 2017. A self-supervised learning system for object

detection using physics simulation and multi-view pose estimation. In 2017 IEEE/RSJ International Conference on

Intelligent Robots and Systems, IROS 2017.

[38] Chaitanya Mitash, Abdeslam Boularias, and Kostas E. Bekris. 2018. Robust 6D Object Pose Estimation with Stochastic

Congruent Sets. In British Machine Vision Conference 2018, BMVC 2018.

[39] Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xuanlin Li, Stone Tao, Zhiao Huang, Zhiwei Jia, and Hao Su. 2021.

ManiSkill: Generalizable Manipulation Skill Benchmark with Large-Scale Demonstrations. In Proceedings of the Neural

Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December

2021, virtual, Joaquin Vanschoren and Sai-Kit Yeung (Eds.). https://datasets-benchmarks-proceedings.neurips.cc/

paper/2021/hash/eda80a3d5b344bc40f3bc04f65b7a357-Abstract-round2.html

[40] O�r Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. 2018. Data-E�cient Hierarchical Reinforcement Learning.

In Annual Conference on Neural Information Processing Systems, NeurIPS 2018.

[41] Ashvin Nair, BobMcGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. 2017. Overcoming Exploration

in Reinforcement Learning with Demonstrations. CoRR abs/1709.10089 (2017). arXiv:1709.10089 http://arxiv.org/abs/

1709.10089

[42] Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. 2019. Planning with Goal-Conditioned Policies. In

Annual Conference on Neural Information Processing Systems, NeurIPS 2019.

[43] Hanna M. Pasula, Luke S. Zettlemoyer, and Leslie Pack Kaelbling. 2007. Learning Symbolic Models of Stochastic

Domains. J. Artif. Intell. Res. 29 (2007), 309–352. https://doi.org/10.1613/JAIR.2113

[44] Noah Patton, Kia Rahmani, Meghana Missula, Joydeep Biswas, and Isil Dillig. 2024. Programming-by-Demonstration

for Long-Horizon Robot Tasks. Proc. ACM Program. Lang. 8, POPL (2024), 512–545. https://doi.org/10.1145/3632860

[45] Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. 2019. MCP: Learning Composable

Hierarchical Control with Multiplicative Compositional Policies. In Annual Conference on Neural Information Processing

Systems, NeurIPS 2019.

[46] David Por�rio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu. 2023. Sketching

Robot Programs On the Fly. In Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction,

HRI 2023, Stockholm, Sweden, March 13-16, 2023, Ginevra Castellano, Laurel D. Riek, Maya Cakmak, and Iolanda Leite

(Eds.). ACM, 584–593. https://doi.org/10.1145/3568162.3576991

[47] Wenjie Qiu and He Zhu. 2022. Programmatic Reinforcement Learning without Oracles. In 10th International Conference

on Learning Representations, ICLR 2022.

[48] Ahmed Hussain Qureshi, Jacob J. Johnson, Yuzhe Qin, Taylor Henderson, Byron Boots, and Michael C. Yip. 2020.

Composing Task-Agnostic Policies with Deep Reinforcement Learning. In 8th International Conference on Learning

Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.

[49] Antonin Ra�n, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann. 2021. Stable-

Baselines3: Reliable Reinforcement Learning Implementations. Journal of Machine Learning Research 22, 268 (2021),

1–8. http://jmlr.org/papers/v22/20-1364.html

[50] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. 2016. You Only Look Once: Uni�ed,

Real-Time Object Detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016. 779–788.

[51] Wei Ren, Raphaël M. Jungers, and Dimos V. Dimarogonas. 2024. Zonotope-Based Symbolic Controller Synthesis for

Linear Temporal Logic Speci�cations. IEEE Trans. Autom. Control. 69, 11 (2024), 7630–7645. https://doi.org/10.1109/

TAC.2024.3394313

[52] Rahul Shome, Wei N. Tang, Changkyu Song, Chaitanya Mitash, Hristiyan Kourtev, Jingjin Yu, Abdeslam Boularias,

and Kostas E. Bekris. 2019. Towards Robust Product Packing with a Minimalistic End-E�ector. In International

Conference on Robotics and Automation, ICRA 2019, Montreal, QC, Canada, May 20-24, 2019. IEEE, 9007–9013. https:

//doi.org/10.1109/ICRA.2019.8793966

[53] Tom Silver, Kelsey R. Allen, Alex K. Lew, Leslie Pack Kaelbling, and Josh Tenenbaum. 2020. Few-Shot Bayesian

Imitation Learning with Logical Program Policies. In The Thirty-Fourth AAAI Conference on Arti�cial Intelligence, AAAI

2020.

[54] Tom Silver, Ashay Athalye, Joshua B. Tenenbaum, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. 2022. Learning

Neuro-Symbolic Skills for Bilevel Planning. In Conference on Robot Learning, CoRL 2022, 14-18 December 2022, Auckland,

New Zealand (Proceedings of Machine Learning Research, Vol. 205), Karen Liu, Dana Kulic, and Je�rey Ichnowski (Eds.).

PMLR, 701–714. https://proceedings.mlr.press/v205/silver23a.html

[55] Tom Silver, Rohan Chitnis, Nishanth Kumar,Willie McClinton, Tomás Lozano-Pérez, Leslie Pack Kaelbling, and Joshua B.

Tenenbaum. 2023. Predicate Invention for Bilevel Planning. In Thirty-Seventh AAAI Conference on Arti�cial Intelligence,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

Abstraction Refinement-Guided Program Synthesis for Robot Learning from Demonstrations 292:29

AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Arti�cial Intelligence, IAAI 2023, Thirteenth Symposium

on Educational Advances in Arti�cial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, Brian Williams,

Yiling Chen, and Jennifer Neville (Eds.). AAAI Press, 12120–12129. https://doi.org/10.1609/AAAI.V37I10.26429

[56] Tom Silver, Rohan Chitnis, Joshua B. Tenenbaum, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. 2021. Learning

Symbolic Operators for Task and Motion Planning. In IEEE/RSJ International Conference on Intelligent Robots and

Systems, IROS 2021.

[57] Avishai Sintov, Andrew S. Morgan, Andrew Kimmel, Aaron M. Dollar, Kostas E. Bekris, and Abdeslam Boularias.

2019. Learning a State Transition Model of an Underactuated Adaptive Hand. IEEE Robotics Autom. Lett. 4, 2 (2019),

1287–1294. https://doi.org/10.1109/LRA.2019.2894875

[58] Changkyu Song and Abdeslam Boularias. 2019. Object Rearrangement with Nested Nonprehensile Manipulation

Actions. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019, Macau, SAR, China,

November 3-8, 2019. IEEE, 6578–6585. https://doi.org/10.1109/IROS40897.2019.8967548

[59] Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein. 2011. A new representation and associated algorithms

for generalized planning. Artif. Intell. (2011).

[60] Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. 2021. Learning to Synthesize Programs as Interpretable

and Generalizable Policies. In Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021.

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia

Polosukhin. 2017. Attention Is All You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762 http://arxiv.org/abs/1706.

03762

[62] Abhinav Verma, Hoang Minh Le, Yisong Yue, and Swarat Chaudhuri. 2019. Imitation-Projected Programmatic

Reinforcement Learning. In Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019.

[63] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri. 2018. Programmati-

cally Interpretable Reinforcement Learning. In Proceedings of the 35th International Conference on Machine Learning,

ICML 2018.

[64] Alexander Vezhnevets, Volodymyr Mnih, Simon Osindero, Alex Graves, Oriol Vinyals, John P. Agapiou, and Koray

Kavukcuoglu. 2016. Strategic AttentiveWriter for LearningMacro-Actions. InAdvances in Neural Information Processing

Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain.

[65] Jimmy Xin, Linus Zheng, Kia Rahmani, Jiayi Wei, Jarrett Holtz, Isil Dillig, and Joydeep Biswas. 2024. Programmatic

Imitation Learning From Unlabeled and Noisy Demonstrations. IEEE Robotics Autom. Lett. 9, 6 (2024), 4894–4901.

https://doi.org/10.1109/LRA.2024.3385691

[66] Yichen Yang, Jeevana Priya Inala, Osbert Bastani, Yewen Pu, Armando Solar-Lezama, and Martin Rinard. 2021. Program

Synthesis Guided Reinforcement Learning for Partially Observed Environments. In Annual Conference on Neural

Information Processing Systems 2021, NeurIPS 2021.

[67] Allan Zhou, Vikash Kumar, Chelsea Finn, and Aravind Rajeswaran. 2024. Policy Architectures for Compositional

Generalization in Control. In Proceedings of the 1st Reinforcement Learning Conference, RLC 2024, Amherst, MA, USA,

August 9-12, 2024, Philip S. Thomas, Feryal M. P. Behbahani, Glen Berseth, Scott M. Jordan, Scott Niekum, Andrew

Patterson, Eugene Vinitsky, Adam White, Martha White, and Amy Zhang (Eds.). University of Massachusetts Amherst,

MA, USA, 2264–2283.

[68] Shaojun Zhu, Andrew Kimmel, Kostas E. Bekris, and Abdeslam Boularias. 2018. Fast Model Identi�cation via Physics

Engines for Data-E�cient Policy Search. In Proceedings of the Twenty-Seventh International Joint Conference on

Arti�cial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, Jérôme Lang (Ed.). ijcai.org, 3249–3256. https:

//doi.org/10.24963/ijcai.2018/451

Received 2025-03-26; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 292. Publication date: October 2025.

	Abstract
	1 Introduction
	2 Overview
	2.1 Key Assumptions
	2.2 Program and Domain-Specific Language
	2.3 Demonstration-Directed Robot Environment Abstraction Refinement
	2.4 Synthesizing Iterative Robot-Control Programs

	3 Problem Setup
	4 Abstraction Refinement-Guided Robot Control Program Synthesis
	4.1 Top-Level Algorithm
	4.2 The Main Synthesis Procedure
	4.3 Synthesizing Robot-Control Programs from Abstract Subtask Trees
	4.4 Termination Guarantee
	4.5 Extension: Conditional Statements

	5 Experiments
	5.1 RQ1: Learning Efficiency and Interpretability
	5.2 RQ2: Generalization to New Environments

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

