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Over the past decade, deep reinforcement learning (RL) techniques have significantly advanced robotic
systems. However, due to the complex architectures of neural network models, ensuring their trustworthiness
is a considerable challenge. Programmatic reinforcement learning has surfaced as a promising approach.
Nonetheless, synthesizing robot-control programs remains challenging. Existing methods rely on domain-
specific languages (DSLs) populated with user-defined state abstraction predicates and a library of low-level
controllers as abstract actions to boot synthesis, which is impractical in unknown environments that lack such
predefined components. To address this limitation, we introduce RoboScribe, a novel abstraction refinement-
guided program synthesis framework that automatically derives robot state and action abstractions from raw,
unsegmented task demonstrations in high-dimensional, continuous spaces. It iteratively enriches and refines
an initially coarse abstraction until it generates a task-solving program over the abstracted robot environment.
RoboScribe is effective in synthesizing iterative programs by inferring recurring subroutines directly from
the robot’s raw, continuous state and action spaces, without needing predefined abstractions. Experimental
results show that RoboScribe programs inductively generalize to long-horizon robot tasks involving arbitrary
numbers of objects, outperforming baseline methods in terms of both interpretability and efficiency.

CCS Concepts: » Software and its engineering — Automatic programming.
Additional Key Words and Phrases: Program Synthesis, Abstraction Refinement, Reinforcement Learning

ACM Reference Format:

Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu. 2025. Abstraction Refinement-Guided
Program Synthesis for Robot Learning from Demonstrations. Proc. ACM Program. Lang. 9, OOPSLA2, Article 292
(October 2025), 29 pages. https://doi.org/10.1145/3763070

1 Introduction

In the robotics domain, deep reinforcement learning
(RL) techniques have shown promise in developing |
intelligent agents for robot control, offering robust al- |
ternatives to analytical models in adaptive control sys-
tems. However, ensuring the trustworthiness of deep
RL systems is challenging due to the intricate nature
of neural network structures. To address this, program-
matic reinforcement learning has emerged, focusing
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Fig. 1. Robot environments for various tasks.
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on synthesizing domain-specific programs as RL model representations to enhance interpretabil-
ity [6, 26, 28, 47, 53, 60, 62, 63, 65, 66]. For example, a recent work, ReGuS (reward-guided syn-
thesis) [14], generates robot-control programs directly from reward signals and demonstrates
that synthesizing programs with rich control-flow constructs (e.g., loops) can effectively tackle
long-horizon and sparse-reward tasks that often confound deep RL techniques.

State and Action Abstraction. Prior work scaling program synthesis to high-dimensional
robotics environments with continuous states and actions often introduces a DSL with state
abstraction predicates and abstract control actions. To illustrate the need for abstraction, consider
the Pick&Place robot task shown in Fig. 1a, where a manipulator must pick up a block (green)
from a table and place it in a target position (sphere) in mid-air. The robot used is a 7-DoF Fetch
Mobile Manipulator with a two-fingered parallel gripper. The robot’s state space includes kinematic
information of the block and the end effector including the Cartesian coordinates of the desired
final block position. Its action space represents the Cartesian displacement of the end effector to
set to and the positional displacement of each finger of the gripper. Directly generating programs
in a high-dimensional continuous space poses significant challenges to synthesis techniques.

State abstraction predicates [2, 19] construct a high-level represen- while(not At(h, 9)):
tation of the robot’s environment based on observed sensor data. This if (Above(b)):
high-level representation can then be reasoned about using standard 1;('::25511’3;( byy:
language constructs, such as loops and conditionals, to trigger suitable move (g)
actions from a current state. Abstract actions are applications of low- eiig;eGripp o
level robot skills. These skills can be derived from either robot APIs or else:
pre-trained neural network controllers. Conceptually, skills are modular ‘:‘;‘E:i;lzz;)r )
and reusable, and can be likened to building blocks or subroutines that moveDown ()
contribute to the overall control policy of the robot in diverse contexts. e;zse >

For example, for Pick&Place, ReGuS [14] involves state abstraction
predicates Near (indicates if the gripper is close to the block b), Holding .
(indicates if the gripper is holding b), Above (indicates if the gripper is Fig. 2. Sythes;zed pro-
e . o . N gram for pick&place by
above b), and At (indicates if b is in the goal region g € R°) into the p 5 < [14].
DSL used to search a program to address this task. The DSL also in-
cludes a set of abstract actions to operate the robot in the continues environment for openGripp(),
closeGripp(), moveUp(), moveDown(), move(g) that moves the gripper to a goal region g. ReGuS
synthesizes a program, as shown in Fig. 2, that guides the robotic gripper to move above the block
b in the environment, lower to grab it, and then transport the block to the designated goal area g.
Challenges Faced by Existing Approaches. Several challenges remain in advancing robot-
control program synthesis in real-world scenarios.

e (i) A crucial bottleneck in existing synthesis techniques is the reliance on manually designed
state abstraction predicates and action abstraction in a DSL to bootstrap synthesis. High-quality
abstractions often require significant human effort and domain knowledge to customize effectively.
For example, the state and action abstractions for the Pick&place task described above cannot
be applied to a robot with a push-only gripper as visualized in the Push task in Fig. 1b. This type
of gripper is designed to apply force to reposition objects on a surface, but it cannot grasp or lift
them. Automatically learning state and action abstractions has been a key area of research in task
and motion planning for robot control [7, 23, 29, 43]. Existing techniques often have significant
limitations, as they either learn predicates from demonstrations while assuming that low-level
controllers are already available [15, 36, 55], or learn low-level controllers from demonstrations
while assuming that the necessary predicates are predefined [1, 17, 54]. Simultaneous discovery of
both state abstraction predicates and abstract actions remains a significant challenge [34, 54, 55].
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o (ii) Existing approaches encounter difficulties when synthesizing programs that generalize to tasks
involving repeated subroutines or arbitrary numbers of objects, such as directing a robot arm to
stack scattered objects into a pyramid. These tasks often require complex control-flow structures
like state-conditioned loops. When a domain-specific language (DSL) with predefined state
abstraction and low-level controllers is available, as in existing work, this complexity is reduced.
For example, PROLEX [44] learns robot-control programs from task demonstrations, but assumes
demonstrations are represented as sequences of calls to user-defined low-level controllers rather
than continuous, raw actions in the robot’s operational space. This representation enables it to
deduce when and how these controllers are employed repeatedly or conditionally. Consequently,
it can extract high-level control structures, such as loops and conditional statements, from
observed tasks. Synthesizing loop programs for robot control in high-dimensional, continuous
state and action spaces without predefined abstractions is still a major hurdle.

This Paper. To make program syn-
. . . _A; . Comparative Abstraction Iterative-Program
thesis feasible for high-dimensional, S i

continuous state and action spaces i) o7 5
in robotic environments, our main

Abstract Environment l

ﬁask Environment

idea is to develop abstraction re- || evrdiuncton
finement techniques that automati- St / T Cobatcontrl Promam
cally generates appropriate state and AL rogiam Bxecttions Blackbox z ’
action abstractions as part of the syn- \& e C e ‘ﬂ € Samnling ﬁ <=
thesis process. To this end, we de-
velop RoboScribe, a novel abstrac-
tion refinement-guided program syn-
thesis framework. RoboScribe is visualized in Fig. 3 and is based on the following two key ideas:
(1) Comparative Abstraction Refinement: To overcome challenge (i), RoboScribe iteratively
refines an initially coarse abstraction of the robot environment until a valid program capable
of solving the task is synthesized from the abstract environment. The initial coarse abstraction
differentiates only between states that have met the (unknown) goal condition iz in the environment
and those that have not:

Fig. 3. Overview of the RoboScribe framework.

True ~ Yg
under the assumption that a single low-level controller as the target program can be learned to transi-
tion all possible initial states (True) to the goal condition (). In the context of pick&place, the ini-
tial abstraction only identifies goal states where the block is successfully placed at the target position.
If this assumption fails, RoboScribe incrementally  Task Demonstration
learns state abstraction predicates that capture crit-
ical intermediate states toward task completion. For
example, in the pick&place task, the robot must
move its gripper close to the block, grasp it, and

lift it to a designated position. By learning state ab- _Failed Execution
straction predicates that identify such key subgoal |

states and abstract actions grounded as low-level ?" ?‘f'
RL controllers that transition the agent across these V

subgoals, RoboScribe accurately captures the task’s
hierarchical structure. We posit that state abstraction
predicates can be learned if demonstrations show-
ing task completion are provided to the synthesizer.
Systematically comparing states within these demonstrations to those observed during failed robot

Fig. 4. Zoomed-in view of the task demonstration
and program execution in Fig. 3.
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behaviors which are learned in the real environment allows RoboScribe to discern necessary inter-
mediate states in the demonstrations pivotal for the task’s success. For pick&place, a low-level
controller trained to fulfill g may struggle with grasping the block first, as exemplified in the
program execution behavior shown in Fig. 4. Leveraging insights gained from successful demon-
strations, RoboScribe refines the abstraction with a predicate ¢ that captures the states where the
robot’s gripper is positioned close to the block:
True ~ ¢ ~ g

The refined abstraction adds a crucial step that bridges the initial and goal states, breaking down
the complex task into manageable subtasks. The intermediate subgoal ¢ supplies reward signals
for efficient RL training of the subtask controllers. This process is recursively conducted, enabling
the task to be eventually solved through a series of progressively refined subtasks that lead to yz.
(2) Iterative-Program Learning: To address challenge (ii), RoboScribe leverages state abstraction
predicates learned on-the-fly to identify repeating subroutines within demonstrations. For instance,
consider the Tower task of manipulating a robot arm to stack blocks into a tower visualized in Fig. 1c.
Key state abstraction predicates for subgoals like grasping a block and lifting it to a specific position,
learned for handling one block, recur throughout the demonstration for handling other blocks.
RoboScribe exploits repeated subgoal predicates in demonstrations to construct the loop body that
guides the agent through transitions between the subgoals vian abstract actions in the form of
low-level controllers. However, the order in which recurring objects are addressed across loop
iterations remains unspecified. This ordering is crucial in tasks like Tower, where placing a block
in the goal position before positioning the underlying blocks leads to failed outcomes. RoboScribe
synthesizes a predicate that identifies the correct object order by analyzing the rationale behind
the demonstrations, explaining why certain objects are handled before others. In a nutshell, to
synthesizing programs that generalize to tasks involving arbitrary numbers of objects, RoboScribe
first constructs a loop program skeleton, then fills in an object ordering predicate as the loop guard
to determine the sequence for handling objects, and finally optimizes action abstractions to ensure
robust generalization across all loop iterations.

Evaluation. We implemented RoboScribe and evaluated it using a benchmark suite of complex
robot object manipulation tasks. Experimental results demonstrate that RoboScribe programs can
inductively generalize to long-horizon tasks involving arbitrary numbers of objects, outperforming
baseline methods in both interpretability and efficiency. For example, the programmatic agent
synthesized by RoboScribe can efficiently use a robot arm to stack multiple blocks on a cluttered
tabletop into a tower, a task known for its complexity in RL due to the need to handle long-horizon
planning and precise manipulation [32, 41]. The agent can generalize to unseen configurations,
such as placing blocks into multiple towers with zero-shot success.

Contributions. To summarize, this paper makes the following key contributions:

o We propose RoboScribe, a novel abstraction refinement technique that automatically derives robot
state and action abstractions from raw, unsegmented task demonstrations to enable robot-control
program synthesis in high-dimensional, continuous spaces.

e We develop an effective loop program synthesis algorithm that scales RoboScribe to long-horizon
tasks involving unbounded environment objects. The algorithm excels in inferring repeating
subroutines directly from demonstrations in the robot’s raw, continuous state and action spaces.

o We evaluate RoboScribe in complex robot manipulation tasks, highlighting its effectiveness in
learning and generalizing control strategies.

2 Overview

In this section, we motivate the problem and provide an overview of our approach.
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Type r ::= {EE, block, handle, mug, faucet, . . .} Variable V ::= p,0

Expression a =t | 0| g(0) | @ Loye 1@ by | lelalylals |@ - a| llall | arctan2()
Predicate P :=a <a|a<¢|a>¢|a # null |true|-P|P A P|P vV P|3v.P

Action ¢ = 7, (1, {0}, g({0' ) | 7, (1 {0}, (/D) | ... 75, € T
Statement S ::= while (P) {S} | if (P) S; else S; | S1;S2 | v :=get(Av: 7. P) | c
Program :=def® (y:EE):S
Fig. 5. The Context-free grammar for the RoboScribe DSL L, where EE refers to the robot’s end effector.
2.1 Key Assumptions

Object-centric Views. Following common practice in robotics [27, 33, 52, 57, 58, 68], RoboScribe
assumes that the robot receives an object-centric view {p, ey, . .., en} at each timestep (defined
in Sec. 3). This view segments the world into discrete objects and classifies them into categories
based on sensor data, where u represents the robot’s end effector and e; denotes an entity in the
environment. Each object u or e; is associated with attributes such as its class and 3D position.
Such views can be constructed using e.g. object detection [37, 38, 50] or discovery [18, 35] methods.

Goal-Directed Robot Tasks. We consider goal-directed robotic tasks where a goal function g
maps entities e; to their target regions. For each control task, g may be randomly generated. For
example, in the Pick&Place task (Fig. 1a), the goal region (green sphere) can be randomly placed
within the robot’s workspace. The robot’s objective is defined by a predicate @g, which is true
when a designated subset of entities has reached their final target poses and false otherwise—e.g.,
an entity is considered to have reached its goal if its distance to the target is below a threshold. In
RoboScribe, the agent does not require the analytical form of @g but can query it to verify whether
a state s satisfies grr. We assume that entities belonging to the same type can be handled uniformly
by a shared manipulation strategy for goal reaching.

Demonstrations. We assume that we can utilize supervision of a limited amount of task
demonstrations for robot-control program synthesis. RoboScribe assumes unsegmented task demon-
strations as sequences of states (sg, sy, . . ., Sg) Where s is an initial state and each state s; at timestep
i presents an object-centric view of the system (i.e., a collection of objects in the scene and their
attributes). For each demonstration, we assume that /g (sg) holds. We further assume that demon-
strations reflect a consistent underlying intent, meaning that they all correspond to the same
conceptual goal. Although the specific goal regions (e.g., target positions) may differ across demon-
strations, they must consistently apply to the same subset of entities. For example, if the task is to
place mugs in their respective goal regions, then all demonstrations should specify goal regions
for mugs—not some for mugs and others for different objects like drawers. If demonstrations are
ambiguous or inconsistent—i.e., if the goal regions involve different subsets of entities across demon-
strations—RoboScribe may fail to synthesize a coherent control program, as the goal condition is
not well defined’.

2.2 Program and Domain-Specific Language

RoboScribe synthesizes robot-control programs using a generic DSL £ in Fig. 5. In a program, the
variable p binds to the robot’s end effector and a variable v binds to an object e; in the robot’s
object-centric view, with its type 7 determined by the object it references. Each object has attributes,
such as its 3D pose estimated from sensors, denoted v |, ., where | extracts attribute values from

n practice, RoboScribe can be augmented with a simple form of automatic goal inference: entities that remain unmoved

throughout a demonstration can be interpreted as having their initial positions serve as implicit goal regions. This enables
RoboScribe to function even when goal specifications are only partially specified.
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the object referenced by v. In Fig. 5, we enumerate attributes related to position in R®, but the DSL
can be extended to include full attributes, including orientation, such as quaternions. As discussed
in Sec. 2.1, leveraging the goal function g, g(v) represents the goal region of the object referenced
by v, and ||-|| represents the Euclidean norm.

State abstraction predicates P in L enable the robot to locate relevant objects, constructing a
higher-level representation of its environment. The parameter ¢ in our predicates is a constant
(vector) that must be learned. Our DSL supports existential quantifiers Jo in predicates P to identify
objects meeting specific criteria, such as blocks below a certain height. Predicates can be used to
define spatial relationships (e.g., using ||-||) and physical orientations (e.g., using arctan2) among
environment objects, including the robot itself. For instance, arctan2 can be used to encode
alignment constraints between the end effector, a block, and its goal region for direct pushing.

Abstract actions c represent low-level controllers that encode the robot’s capabilities in contin-
uous environments. Each abstract action ¢ € Ilyy is a deep neural network policy xy with trainable
parameters 6. The policy 7y is goal-conditioned. It takes as input the attribute values of the end
effector p and some objects referenced by {v}, as well as the goal regions of some objects referenced
by {v’}, producing a control action suitable for execution in the raw environment.

Our DSL £ also includes state-conditioned loops and conditional statements. The assignment
statement v := get(Av : 7. P) binds variable v to an object e; of type 7 in the robot’s object-centirc
view such that P[e;/v] holds. A RoboScribe program ¥ is a function that takes a binding to the
robot’s end effector as input and executes a defined statement as its body.

It is important to highlight that the RoboScribe DSL £ does not include predefined low-level
controllers. The set of low-level controllers IIyy starts out empty. The synthesis process
inherently involves learning appropriate state abstraction predicates P and constructing abstract
control actions Ilyy as a fundamental component.

2.3 Demonstration-Directed Robot Environment Abstraction Refinement

Key Insight. Our key idea is to systematically compare states within successful task demonstrations
with those from failed robot behaviors learned in the real environment, aiming to identify key
subgoal states that are essential for task success.

Comparative Abstraction Refinement. We define a robot task 7~ as 7~ : True ~»> g with the
expected behavior of directing the robot to transition from arbitrary initial states True (underlying
some unknown initial environment state distribution) to states that satisfy the goal condition y/g.
The initial abstraction True ~» ¥ is coarse, distinguishing only between successful states that meet
the goal condition g and those that have not yet reached it, and assumes that a single low-level
controller 7y, can fully solve the task. RoboScribe attempts to learn 7y, using an off-the-shelf deep
RL algorithm driven by a task reward function that assigns a reward of 1.0 to any state s where
YRr(s) is true and 0 otherwise. In this sparse reward setting, trajectories induced by 7, often fail to
encounter any positive feedback, resulting in learning failure. RoboScribe compares the successful
behavior given in a set of demonstrations O with that of the learned controller to identify key

differences that are essential for enabling task success.
For example, in the pick&place
i -
hold(u, 5) .90

demonstration shown in Fig. 6, The
end effector (referred to as the robot
u for simplicity) first holds the block
and then places it on the target. How-
ever, the learned 7y, struggles with
grasping the block due to the absence
of an explicit learning signal for this action. We extract states preceding successful task completion

Fig. 6. Pick&place Demonstration.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 292. Publication date: October 2025.



Abstraction Refinement-Guided Program Synthesis for Robot Learning from Demonstrations 292:7

from demonstrations, forming a set Ps = {s; | s; I ¥r A St41 E Yr}, and compare them with states
N; collected from the learned controller’s trajectories. RoboScribe synthesizes a state abstraction
predicate to distinguish Ps; and N to learn what prerequisite conditions are necessary for reaching
Yr. We learn state abstraction predicates P derivable from the grammar in our DSL £ in Fig. 5
based on Decision Tree (DT) learning. A DT is a binary tree that represents a Boolean formula.
Each leaf of the tree is labeled either positive or negative for a subset of the samples in Ps U N;.
Each inner node is labeled by a decision of the form & < ¢ where « is a feature and ¢ is a (learned)
threshold. In our context, « is an expression derivable from the production rules for « in L. We
formalize the learning algorithm in Sec. 4.2.1. In this example, RoboScribe may learn a predicate
hold(y, b) = H,U lxyz —b lx,y,ZH < ¢, that defines states where a block b is being grasped by the
robot gripper . Here, b references to the block in the environment. Using this learned predicate,
we refine the initial abstraction as:

True ~ hold(y b) ~ yYr (1)
which effectively decomposes the task into subtasks: (1) 71 : True ~» hold(y, b) for reaching states
where the block is grasped, and (2) 7; : hold(y, b) ~> Y for achieving the goal condition after
grasping the block. This process is recursively conducted until the task can be solved through a
series of progressively refined subtasks to /g. For example, for 75, RoboScribe may further learn a
predicate at(b, g(b)) = ||b Lx,yz —9(b) ,Lx,y,ZH < ¢, capturing states where the block is at the goal
region, along with two subtasks: 7z, : hold(y, b) ~ at(b, g(b)) for moving the block towards its
goal region, and 73, : at(b, g(b)) ~» g for maintaining the block in the target position of the task,
resulting in the following refined abstraction:

True ~> hold(y, b) ~ at(b,g(b)) ~ yr (2)
Abstract Subtask Tree. RoboScribe structures environment abstractions as abstract subtask
trees, formalized in Sec. 4. Each tree node ¢ or i encodes a state abstraction predicate that defines a
subgoal condition. Each (inverted) tree edge ¢ ~» i represents an abstract action, to be grounded as a
low-level controller in the real environment, that fulfills the subtask of transitioning any state within
¢ to a subgoal state in ¢, guiding the agent toward the completion of its overall task goal condition
YR at the root of the tree. Tree representations effectively capture the structure of multi-goal tasks
involving multiple objects, providing a clear framework for task decomposition and execution.
To satisfy a subgoal i/, the agent must complete all the subgoals of its predecessors ¢ such that
¢ ~ . Each subgoal ¢ in the predecessors of / corresponds to the manipulation of a distinct object.
Consider the PlaceCubeDrawer task de-

picted in Fig. 7 left. The goal of the yr

Sawyer robot in this task is to pick up ] "J n

a cube b from the desk of a cabinet and align(h,g(b)) at(b,g(b))
place it inside the drawer below. The ab- ? ?
stract subtask tree for this task is shown latch(p, h)  hold(p, b)
in Fig. 7 (right). The agent must complete ? ?

the following subtasks: first moving the near(u, h) True
gripper p near the cabinet door handle 3

h, latching the handle, pulling it to align True

with the goal position g(b) for the cube
b, and then holding b before placing it Fig. 7. Abstract Subtask Tree for PlaceCubeDrawer.
inside the drawer at g(b).

Program Learning. From an abstract environment defined by an abstract subtask tree T, Robo-
Scribe synthesizes a robot-control program %. First, we note that $ can be derived by recursively
traversing T and chaining the subtasks. Each abstract action is grounded as a neural network
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Fig. 9. Demonstration and partition for the Tower task.

controller 7 that uses the attributes of the involved objects as input to generate low-level robot
actions. In P, each controller 7 runs until its corresponding subgoal condition is met. We depict
the synthesized program for pick&place in Fig. 8 where the shorthand notations in the program
represent loops:

m(p, {v},{g(v)})[¢] = while not(¢p) { z(p, {v}, {g(@)}) }

Second, to learn each low-level controller 7, in # for reaching
. . oy . . def PPick&place (p:EE):
states that satisfy its subgoal condition ¢, we iteratively execute b i= get(Ab : block. true);
P and store trajectories from 7, in a replay buffer B,. During grasp (1) [hold (1, b)];
gradient updates, RoboScribe trains 7, by sampling from B, and Tposition (1 b,9(b)) [at(b,g(b))]

optimizing it with an off-the-shelf off-policy RL algorithm. Par-

ticularly, we use learned state abstraction predicates to provide Fig. 8. Synthesized program for
dense reward signals for training low-level controllers. Dense pick&place by RoboScribe.
reward functions are shaped systematically from predicates com-

bined in arbitrary Boolean forms. For example, in Fig. 6, to train a controller for the subtask
Tz, : hold(g, b) ~» at(b,g(b)), a dense reward function can be derived from the norm learned for
at(b,g(b)), encouraging the robot to move its end effector closer to g(b) with higher rewards for
proximity.

2.4 Synthesizing Iterative Robot-Control Programs

While the synthesis strategy described in Sec.2.3 is applicable to multi-object tasks, it does not
generalize well when scaling up to handle long-horizon tasks with varying numbers of objects.
The abstraction method lacks the flexibility to capture the relationships and dependencies between
an indefinite number of objects, particularly when coordination and sequencing are required. For
example, in the Tower task shown in Fig.9, the goal is to synthesize a program % for a robot arm to
stack a variable number of scattered blocks into a tower. Such tasks demand programs that can
iteratively manage multiple instances of subtasks.

Key Challenge. Synthesizing iterative programs is challenging because it requires effective
strategies for discovering repetitive subroutines and handling the complex dependencies between
them. Unlike prior work (e.g. PROLEX [44] and Tabula [46]), RoboScribe does not assume predefined
state and action abstraction and must be able to extract repetitive structures from demonstration
trajectories within the robot’s high-dimensional, continuous state and action spaces.

Key Insight. Our key idea is to leverage abstraction predicates learned on-the-fly to discover
repetitive subroutines in demonstrations. During comparative abstraction refinement, when classify-
ing states from task demonstrations and robot trajectories to learn new state abstraction predicates,
RoboScribe identifies opportunities to reuse previously discovered predicates and their correspond-
ing low-level controllers, as a means to uncover abstract repetitions within demonstrations.

Discovering Repetitive Subtasks. As shown in the learned abstraction for the Pick&place task
in Eq. 2, RoboScribe can identify a state abstraction predicate at(b, g(b)) as a subgoal for placing
one block b at its target and develop a routine of low-level controllers to achieve it. However, the
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task remains incomplete as additional blocks must still be placed. Using a single low-level controller
for this would be insufficient as illustrated in Sec. 2.3. RoboScribe identifies that the predicate
at(b, g(b)), interpreted with b as implicitly existentially quantified, can be reused to distinguish
demonstration states where blocks are near their targets from unsuccessful single-policy attempts
to complete the full task. It refines the abstraction in Eq.2 by defining a circular abstract subtask
tree node to indicate this repetition:

True ~» hold(y, b) ~» (at(b, g(b))]| ~ Yr 3)

This implies that the control strategy for achieving 3b. at (b, g(b)) for some block b can be iteratively
applied to handle remaining objects of the same type in the environment that have yet to meet this
subgoal condition.

Learning Iterative Programs. RoboScribe synthesizes a loop structure for each circular abstract
subtask tree node. This leads to an iterative Tower program Proyer shown in Fig. 10, which intends
to stack all the blocks on a table in a sequence, generated from the task abstraction in Eq. 3. However,
determining the order in which blocks should be addressed within the sequence (among the loop
iterations) remains unspecified. This ordering is particularly significant as placing a block in its
goal position without first positioning the underlying blocks leads to failed outcomes. RoboScribe
places a missing hole ??,, in the loop condition designated to specify an effective handling sequence
in Fig. 10.

Loop Condition Syn-
hesis. C tuall def Prower (41 : EE): def Ppickaplace (1 : EE):
thesis. Conceptually, we while ((b:=get(Ab : block. ??,)) while ((b = get(Ab : block. ~at (b, g(b))A
can enumerate candidates # null): S3V g(b) La< g(b) Lo A-at(b.g(b'))))
to fill in the missing Tgrasp (i, b) [hold (u,b)] # null)
predicate ??p based on ”position(b,g(b)) [at(b,g(b))] ”grusp(/l,b) [hold(p,b)]
i i Tposition (D, g(D)) [at(b,g(b))]

the predicate production

rules P defined in our Fig. 10. lterative program Prower
DSL L (Flg 5) and exe- for Tower with a missing hole for Flg 11. Synthesized iterative program

cute Proyer in the real en- the loop condition. Prower for Tower.

vironment to empirically determine which predicate maximizes task performance, such as higher
success rates. However, this approach is computationally prohibitive due to the extensive predicate
search space of the DSL and the long-horizon nature of robot tasks that involve recurring objects.
Additionally, training the low-level neural controllers in Proyer depends on executing the program
to obtain training data, resulting in a mutual dependency problem where loop condition synthesis
and controller learning are interdependent. Our strategy circumvents these limitations by inferring
the ordering predicate ??, directly from demonstrations, avoiding the need for executing Prower
in the real environment. Specifically, RoboScribe synthesizes an ordering predicate for ??, that
determines the correct sequence of object handling by analyzing the rationale in the demonstrations,
explaining why certain objects are handled before others, such as why the red block is placed after
the green and yellow blocks in Fig. 9. From demonstrations, RoboScribe learns such a predicate
by enumerating predicates derivable from the production rules for P in the DSL £ (see Fig. 5). In
this process, we augment P with learned state abstraction predicates from abstract subtask trees
as these predicates provide additional task-relevant constraints. We defer the formalization of the
synthesis algorithm to Sec. 4.2.1. For Tower, RoboScribe synthesizes the following predicate for an
effective handling sequence :

—at(b,g(b)) A =3b".g(b") l-< g(b) |z A-at(b',g(b")) ©
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which specifies that any block with a lower goal position must be placed before the current block.
The termination condition ensures that once all blocks are in their goal positions, there are no
further blocks to handle. The full program synthesized is given in Fig. 11.

3 Problem Setup

We study a learning paradigm where the agent can interact with many entities (objects) in an
environment. The task for the agent is specified in the form of goals for the entities. We formalize
it using the Entity-Factored Markov Decision Process (EFMDP) [67].

Throughout the paper, we use {v} to denote a list. For a function f, we define element-wise
application as f({v}) = {f(0v1),..., f(vn)}.

Entity-Factored Markov Decision Process. An EFMDP with N entities is described by the
tuple: M := (A, O ={p,e1,...,en}, S, G, A, P, n). Here, A is a finite set of object types, e.g., cube
and mug, and O is a finite set of objects, where p and {ey, ..., en} are the agent (robot) and the
entities, respectively. Each entity in O has a type drawn from A. Each object in O has an associated
set of attributes drawn from a finite set ¥ = {fi, f2,..., fu}, for example, spatial coordinates
{x,y, z} in the 3D space. A state s in the state space S is a function s : O — D where D is the space
of object descriptors, formally defined as D = (¥ — R). This means that each object 0 € O is
mapped to a function that assigns a real value to each attribute. For an object o € O, s(0) retrieves
the object descriptor of o, i.e., s(0) : ¥ — R, and s(o, {f}) extracts the real values of the attributes
{f} € F,ie,s(o,{f}) = (s(0))({f}). We use dom(s) to retrieve the set of objects within a state s.
We sometimes abuse notation for convenience to use s(0) to refer to the full set of attribute values
for o, i.e., the image of s(0) under F.

The goal space of an EFMDP M is denoted as G. A goal command g € G is a function (introduced
in Sec. 2.1) g : O — D that defines the goal region for entities {es, ..., ex}. Typically, g(e;) only
maps a subset of e;’s attributes to a real value, specifying its desired placement. For instance, in
Fig. 1, the goal regions (spheres) indicate the target positions for each block within the 3D space.

In an EFMDP M, A is the robot’s action space. The system dynamics of M is described by a
probabilistic state transition function P(s’|s, a) for s,s” € S and a € A, i.e., the robot’s action can
update the object states in its environment. The set of the initial states of an EFMDP is specified
by n:S — Ry (i-e., 7(s) is the probability density of the initial state being s). A trajectory of an
EFMDP { € Z is a sequence { = s Ly 512 . wheres; € Sanda; € A, where sy ~ P(- | 51, a1).
EFMDPs can model several applications, including tabletop manipulation and scene reconfiguration.
At the same time, the EFMDP contains more structure and symmetry compared to the standard
MDP model, which can enable more efficient learning and better generalization [67].

Task Specification. We define predicates { used for robot task specifications of an EFMDP, as
shown in Fig. 12, over the set of objects O = {y, ey, . .., e } within. The operator | extracts attribute
values from o € O. The semantics of the predicates [i/] are given in Fig. 13. Given a state s, we define
¢(s) as [@] (s), representing the truth value of the predicate ¢ in state s. We say that a trajectory

ay

{=sp 2 51 2 .. sy satisfies a task specification 7 : ¢ ~ ¢y, denotedas { E T : ¢ ~ ¢, if
Y (sgr) holds when ¢(sp) holds. A task specification 7~ : True ~» ¢ for an EFMDP M defines the
intended behavior in the MDP. Starting from any possible initial EFMDP state sy ~ 7(-), the agent is
expected to reach a state s that satisfies /g (s). For example, for the Tower task in Fig. 1c involving
the end effector p and four blocks O = {y, by, b, b3, b4}, its specification can be defined as:

4
7:ld"owelr : True ~ /\ ||bl »Lx,y,z - g(bl)” < ¢ A b4 lz< H lz
i=1
This specifies that all blocks must be placed in their goal regions, and the end effector must leave the
top block. In this paper, we use g to denote the predicate encoding the task’s final goal region, while
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au=plelgled | alays laloy lalelalylal la - al lall | arctan2(a)

youma<ala<gla>¢| ¢y Ayly v y[Ioy

Fig. 12. Task Specifications of EFMDPs over objects O = {p, e1,...,en}.

Expressions Predicates

la](s) = [yl(s) =
s(p), ifa=pu [e1](s) < [az](s), ¢y =a1 <az
s(e;), ifa=e¢; [e](s) < ¢, ify=a<¢
g(ei), if & = g(ei) [e](s) > ¢, ify=a>¢
s([ar] (), {x, 9, 2}), ifa=a lx,y,z =[] (s), ify =-ys
[ea](s) = [e2](s),  ifa=a1-a2 [il(s) A Y2l (s),  if =g A
Ifea] ()1, ifa=lall [yal(s) v [y2l(s),  ify =91 Ve
arctan2([ai1](s)), ifa =arctan2(a) Villvalo - eil](s), if ¢y =Fo.vn

Fig. 13. Semantics of task specifications of EFMDPs over objects O = {y, e1,...,en}

Supsy L (p's") (P, p,s) | true (P, p,s) || false
(Sa.p",s"y U (p”,s” S1.p.sy U (p'.s") (Sa.p.sy U (p'. s

(81582, p,5) U (p”,s”)  (if(P) Sy else Sz, p,s) U (p’,s")  (if(P) Sy else Sz, p,s) U (p’,s")

(P,p,s) Utrue  (S,p,s) U (p',s")  (while(P) {S},p",s") | (p”,s") (P, p,s) || false
(while(P) (S}, p.s) I (p”.s") (while(P) (S}, p,s) | (p.s)
0 : 7 € dom(s) (P, p[v + o],s) || true VYo : r € dom(s). (P, p[v - o], s) || false
(v :=get(Av : 7. P), p,s) | (p[v > o],s) (v :=get(Av : 7. P), p,s) | (p[v > null],s)

a~my(s(p(). s(p({o}), g(p({e'})))  s' ~P(|s,a)
(mo(p. {o}, g({o"H). p.5) L (p.s")

(@ p,s) L u (@ p,5) u (Pr.p.s) Ubr (Paps) bz (Popsylb
(a<d,psylu<¢d (a#nullp,s)| u+null (P1 APy, p,s)y L b1 Aby (=P, p,s) | =b

0 : 7 € dom(s) (P,plv—o],s) | true Vo:redom(s). (P, p[v+ o],s) | false p(v) € dom(s)

(Fu:7.Pp,s) | true (Fo:1.P,p,s) | false (v, p,s) | p(v)
p(v) € dom(s) (a,p,s) Lo o€ dom(s) (an,ps) bur Loz, p,5) Luz
{g(v), p,s) | g(p(v)) (a lxyzps) U s(o{x,y,z}) (a1 —az, p,s) | ur —uz

Fig. 14. The DSL L operational semantics in RoboScribe.

¥ and ¢ typically represent intermediate subgoal conditions inferred by our algorithm. Predicates
 defined over EFMDP objects O align with predicates P in the DSL £, which are defined over
program variables V binding EFMDP objects. This alignment allows inferred subgoal conditions to
be lifted into program predicates. Thus, we use { and P interchangeably to refer to state abstraction
predicates, based on the context.
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Program Synthesis for Policy Learning. Given an EFMDP M with unknown state transition
probabilities and task specification 7~ : True ~» ¢, RoboScribe synthesizes a program P* as a
controller in the DSL £ in Fig. 5 to fulfill 7. We outline the DSL operational semantics (S, p,s) |
(p’,s’) in Fig. 14. Formally, S is a program statement in Fig. 5, p : V — O is an environment
mapping that binds program variables V to objects in O. For a program variable v € V, at a given
state s, s(p(v)) extracts the attribute values for the object referenced by v in s. Define Exec(M, P)
an interpreter that evaluates # in the EFMDP M based on the operational semantics and returns
the EFMDP trajectory starting from a randomly sampled initial state sy ~ 1(-). Exec terminates as
soon as a specification-satisfying state is encountered. The learning objective is to synthesize P*:

P* = P = T . T 5
R gkl (¢ F 7 7 TTee N

In practice, to evaluate task success, we define P* |Ep( True ~ g meaning that finite-length
trajectories sampled from Exec(M, P) empirically satisfy the goal condition /g with a probability
of at least 1 — €. The values for the maximum trajectory length and € are user-configurable.

4 Abstraction Refinement-Guided Robot Control Program Synthesis

We present the core algorithms for the abstraction refinement-guided synthesis strategy in Robo-
Scribe. We first provide the top-level synthesis algorithm, and then describe its key components.

4.1 Top-Level Algorithm

The top-level RoboScribe algorithm
is presented in Algorithm 1. It
takes as input an EFMDP M =  1: procedure ROBOSCRIBE(M, L, D, True ~> yp)
{A,0,8,G,A,P,p}, the DSL L (de- 2 T < (N = {utrve; uy }» E = {urrue — uyg}, ¥r)
fined in Fig. 5), a set of task demon- 3 P, T* « syNTHESIZEM, L, D, T, Yr)
strations D, and a task specification 4 return P*
True ~» yYr. The DSL L does not
predefine useful state and action abstractions, which are yet to be learned as part of the
synthesis process. The objective is to synthesize a program £* in L that satisfies the specification
True ~ Y (Eq. 5). As in conventional RL settings, the goal condition i is unknown to RoboScribe.
However, the agent can use /g as a black box to query whether any state encountered s satisfies .
Abstract Subtask Trees. During its synthesis procedure, RoboScribe maintains state and action
abstraction of a robot environment as an abstract subtask tree T—a hierarchical representation that
encodes the sequence and relationships among subtasks for reaching the task’s goal states.

Algorithm 1 The RoboScribe Procedure

Definition 4.1 (Abstract Subtask Tree). An Abstract Subtask Tree T = (N, E, yr) is a tuple:

e N is a set of nodes, each representing a state abstraction predicate, denoted by ¢ or ¢, which
defines a subset of the EFMDP state space. Throughout the paper, we use the terms predicate ¢
and tree node u, interchangeably.

e E C N x N is a set of directed edges between nodes, with each edge u, — uy € E representing a
subtask ¢ ~» ¢ of the overall task, which transitions the agent from states characterized by ¢ to
states in 1, In the following, we also use edge u, — uy and subtask ¢ ~» ¢ interchangeably.

e g € N is the root node, encapsulating the goal states of the overall task.

In an abstract subtask tree, state abstraction predicates on the tree nodes serve as decomposition
of a complex robotic task. Tree edges represent abstract actions to transition between key subgoals.
A tree path (True ~ @1 ~ @3 ~ ... ~ yp) in T, leading toward the goal states at the root, is
a sequence of subtasks, guiding the agent from one subtask to the next until the whole task is
complete. The tree is inverted, for any node with multiple predecessors, the agent is directed to
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PoLricy
M, D, T> P P Eme True ~ ¢

MLD,Tr (P.T):y

REFINEMENT
M, D, T> P P Epme True ~ ¢ Ps — {st | st EFU A ser1 EY A {st,8041} € D}
N « {{ ~ Exec(M,P)} pe LNop(s)=1forsePs A ¢p(s) =0fors e N

M, LD, T[True S ¢+ (PLT) 9 MLDT + (P T"): ¢
MLD,Tr (P, T"): ¢

Fig. 15. The RoboScribe Synthesis Procedure

execute subtasks associated with each predecessor node, recursively. Fig. 7 displays the abstract
subtask tree for a multi-object environment.

Initial Environment Abstraction. In Algorithm 1, at line 2, RoboScribe creates the initial
environment abstraction as an abstract subtask tree T with two nodes urrye and uy, corresponding
to the set of all possible initial states and environment states that satisfy the unknown goal condition.
The edge urrue — Uy, represents a controller that satisfies the task specification True ~» yr. At
line 3, Algorithm 1 invokes the SYNTHESIZE procedure (detailed in Algorithm 2) to iteratively
refines the coarse initial abstraction by need into a hierarchy of subtasks, continuing until a valid
task-solving program is obtained within the abstracted environment.

4.2 The Main Synthesis Procedure

Synthesis Rules. We describe the SYNTHESIZE procedure using the synthesis rules of the following
shape:
MLD.Tr(P.T) ¢

where M, L, D are the task EFMDP, our DSL (Fig. 5), and the task demonstrations respectively. T
is an initial abstract subtask tree. The rule specifies the refinement of T into a valid abstraction
T*, which can then be converted into a program #* whose execution fulfills the goal condition ¢.
Fig. 15 depicts the synthesis rules. Both rules rely on a procedure M, D, T » P that synthesizes a
program P from the abstracted environment T and ground the abstract actions in P as low-level
neural controllers in the real environment M. We defer the discussion of this procedure to Sec. 4.3.

The PoLicy rule applies when the program % derived from the abstract subtask tree T can directly
satisfy the specification, i.e., P |Epe True ~> ¢ (we set 1 — € as a lower bound for the probability
of task success). In this case, the rule directly outputs (P, T) as the synthesized solution. The
REFINEMENT rule, on the other hand, addresses cases where the program ¥ generated from T does
not fully solve the task. Here, our key idea is to systematically compare states within successful
task demonstrations with those from failed behaviors by the program # executed in the real
environment, aiming to identify pivotal states that are essential for enabling task success. As stated
in the REFINEMENT rule, RoboScribe extracts states just before task success from demonstrations,
forming a set Ps = {s; | s; £ ¥ A s;41 E ¥}, and compares them with states N; from the learned
controller’s trajectories to learn what prerequisite conditions are necessary. RoboScribe synthesizes
a state abstraction predicate ¢’ to distinguish between Ps and Nj, refining the abstraction T by

breaking down the task True ~» i/, which results in a new abstract subtask tree T[True A V]
that adds ¢ as an intermediate subgoal for ¢/ in T (formalized in Sec. 4.2.2). We hypothesize that
having learned how to achieve ¢ by the synthesized program #’ from ¢, it is an easier task
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Algorithm 2 M, L, D, T+ (P”,T”) : y The Main Synthesis Procedure

1: procedure SYNTHESIZE(M, L, D, T, )

2 P « GENPrROGRAM(M, D, T)

3 if P Epme True ~ ¢ then

4 return P, T

5; else

6 Py {si st o Asit ¥ A fsisen} € D)
7 N; — {{ ~ Exec(M,P)}

8 ¢ < LEARNCLASSIFIER(Ps, N, L, T, /)
9: T <« UpDATETREE(T, [True A )
10: if = VALIDATE(T, D) then
11: return FAIL
12: P, T" « SYNTHESIZEM, L, D, T, ¢)
13: P, T" « SYyNTHESIZEM, L, D, T', )
14: return P, T

Algorithm 3 ¢ € Ls.t. ¢(s) =1fors € P, ¢(s) =0 for s € N;: Learn a classifier for P; and N

1: procedure LEARNCLASSIFIER(Ps, N, L, T, )

2 if p. o ~ Y € T A\ Vs € P;. ExistQuant(¢)(s) A Vs € N;. =(ExistQuant(¢))(s) then
3 return ¢

4: else

5 Exp, <« L(a)

6 ¢ < LeEaRNDECISIONTREE(Exp,, Ps, Nj)

7 return ¢

for the agent to learn a program $” based on #’ to achieve the goal condition . Notably, the
REFINEMENT rule embodies a recursive task decomposition process to repeatedly refine an initially
coarse abstraction until a valid task-solving program can be obtained. Algorithm 2 operationalizes
the synthesis rules in a recursive function SYNTHESIZE. We defer the discussion of termination,
including the VALIDATE procedure at line 10, to Sec. 4.4. At line 8 and line 9, the SYNTHESIZE function
invokes LEARNCLASSIFIER and UPDATETREE for state abstraction refinement. We formalize these
two procedures below, starting with key notations.

Given a predicate iy over EFMDP objects O = {, ey, . .., en} (defined in Fig. 12), let Entities(¢/) C

{e1,...,en} denote the set of entity variables that appear free in ). We define the transformation:
ExistQuant (i) := Je € Entities(¢). ¥
which lifts entity variables ey, . .., ey appearing in i free existentially quantified.

4.2.1 Learning State Abstraction Predicates. We illustrate the state abstraction predicate learning
procedure LEARNCLASSIFIER in Algorithm 3. It takes as input P the set of states prior to the states
that satisfy a goal or subgoal condition ¢ in the demonstration D, N; the set of states along the
agent’s behavior that failed to reach ¢, the DSL L, the abstract subtask tree T representing the
current environment abstraction, and ¢, aiming to learn a state abstraction predicate capturing
what should have been achieved by the agent in order to enable reaching states in 1. At line 2, the
algorithm checks whether the state abstraction predicate ¢ from any existing predecessor of ¢ can
be reused to distinguish P; and N through ExQuant(y/). For example, in the Tower task described
in Sec. 2.4, once the state abstraction predicate at(b, g(b)) is identified as a subgoal for placing
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Algorithm 4 T[True A /]: Update an abstract subtask tree T = (N, E, Yr)

procedure UpDATETREE(T, [True A 4]

1:

2 if p’. 9" ~ Yy €T A @' = ¢ then

3 ¢’ « ExistQuant(¢”)

4 Uy —

5: else if J¢’. ¢’ ~ ¢y € TA ENTITIES(p’) = ENTITIES(p) then

6 N, E « N U {uy}, E\ {uy — uy} U {uy — uy, uy, — uy}
7 else

8 N, E « N U {uy}, E U {urrue — tp, Uy — uy}

a block b at its target and a corresponding subroutine of controllers is learned, the task remains
incomplete as additional blocks still require positioning. The existentially quantified predicate
3b. at(b, g(b)) helps distinguish demonstration states where blocks are correctly positioned near
their targets from failed attempts by a single controller struggling to complete the task.

If reusing an existing predicate is not possible, in Algorithm 3, LEARNCLASSIFIER synthesizes
a decision tree (DT) at line 6 to separate P; and N; using features from expressions «a derived
from the production rules in our task specification language in Fig. 12. The hypothesis set of
LEARNDECISIONTREE consists of Boolean combinations of predicates of the form o < ¢, with ¢
being a constant threshold, which are learned during training. Standard DT learning algorithms
begin with an empty tree, greedily selecting features that maximize information gain, and continue
until all leaves are labeled with a single class. Finally, the learned DT is converted to a predicate ¢.

4.2.2  Refining Abstract Subtask Trees. With the learned classifier ¢ as a prerequisite for achieving
¥ in a task True ~» 1/, UPDATETREE refines the abstract subtask tree T by using ¢ as a subgoal

to decompose the task. We specify this refinement procedure T[True N ¥] in Algorithm 4. At
line 2, if the newly identified subtask goal predicate ¢ matches an existing subtask goal ¢’ that
precedes ¢ in T (i.e., the LEARNCLASSIFIER procedure has opted to reuse ¢’), a repeating subroutine
is effectively recognized. This means that the controllers designed to achieve ¢’ for manipulating
some objects can be repurposed to solve the subtask to reach ¢ for a different set of objects of the
same type. The algorithm marks u, as a circular node at line 4 to indicate this repetition - the
control strategy used to reach ¢’ should then be executed iteratively to address recurring objects
in the environment that have not yet satisfied ¢’. For this purpose, we have made ¢’ existentially
quantified.

An invariant we maintain for an abstract subtask tree T is that for each tree node ¢, for any
predecessors ¢ ~ ¥ and ¢’ ~ 1, ¢ and ¢’ are subgoal conditions for unique sets of objects, and
hence requiring different control strategies (i.e. unique tree paths towards ¢ and ¢’) and otherwise
they should be collapsed into a circular node. For example, consider the PlaceCubeDrawer task
depicted in Fig.7, which has an abstract subtask tree consisting of two main paths: one for opening

the drawer and the other for placing the cube inside it. During the refinement of T[True A vl,
if a newly identified subgoal ¢ targets the same set of entities as an existing predecessor ¢’ of i/
(i.e. Entities(¢) = Entities(¢")), the UPDATETREE procedure in Algorithm4 inserts a new node u,
between u, and uy at line 6, establishing ¢ as an intermediate subgoal for ¢ ~» 1. For example, in
the tree refinement illustrated by Equation 2, the predicate at (b, g(b)), which signifies that block b
is at its goal, is added between the predicate hold(y, b)—indicating the robot is gripping b—and yx,
the overall task’s goal condition. If ¢ involves different set of entities from any existing predecessor
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Algorithm 5 M, D, T » P: Synthesize a program P from an abstract subtask tree T = (N, E, Yg)

1: procedure GENPrROGRAM(M, D, T)
2 P « TREE2PROGRAM(YR, D, T)
3: for all o € FreeVars(P) : do

4 P — {v:=get(Av : A(0). True)}; SDLHU > o0 fresh
5 P* « TRAINPROGRAM(M, P)

6: return P*

7:

8: procedure TREE2ZPROGRAM(uy,, D, T)

9: Pu(p «— {}

10: for all edge (e = u, — u,) € T sorted by i(D, ¢”) do

11: Pu(p, «— TREEZPROGRAM(Uy, D, T)

12: Pu, — Pu,; Pu,

13: if u, = then > u, induces an iterative procedure
14: v « FreshVar()

15: p < PREDICATESYNTHESIS(D, v, Jo. ¢) > Loop Condition Synthesis
16: Pu, < while(v := get(lo. p)) {(Py,; 7, [(p])\OHU};

17: else

18: Pu, — Pu,; mple]

19: return £,

¢’ of , a distinct tree path from u,, to Uy is created at line 8, representing distinct objects to control,
as exemplified in the unique two paths in the abstract subtask tree for PlaceCubeDrawer in Fig. 7.

4.3 Synthesizing Robot-Control Programs from Abstract Subtask Trees

An important step in RoboScribe is synthesizing an executable program # from an abstract subtask
tree T. We formalize this procedure as M, D, T > P, implemented in a procedure GENPROGRAM
described in Algorithm 5. Our main synthesis procedure SYNTHESIZE invokes GENPROGRAM in
Algorithm 2 (line 2) to generate a candidate program and does so repeatedly for each refined abstract
subtask tree until a specification-satisfying program can be synthesized.

The GENPrROGRAM procedure M, D, T > P accomplishes three main objectives as formalized
in Algorithm 5: (1) it constructs the "skeleton" of $ based on the hierarchical structure of T via
the TREE2PROGRAM procedure at line 2. (2) TREE2ZPROGRAM also infers loops within # to handle
varying numbers of objects by detecting repeated patterns in the demonstration D. (3) It grounds
the abstract actions in # as low-level controllers that can solve the subtasks within T through the
TRAINPROGRAM procedure at line 5. These low-level controllers are neural network policies that
operate directly in the robot environment to control robot actions.

4.3.1 Program Generation. The TREE2PROGRAM procedure (Line 8 of Algorithm 5) traverses an
abstract subtask tree T rooted at u,,. It generates a program P,,, from T for solving the task of
reaching states satisfying ¢. Here we assume that in a multi-object setting, task demonstrations
implicitly indicate the order in which multiple objects of different types should be handled (we
relax this assumption in Sec. 4.5). For example, in the PlaceCubeDrawer task shown in Fig. 7, the
agent must first pull the drawer open using its handle before placing the cubes inside. Define
i(D, ¢’) as the position in the demonstration where ¢’ holds. TREE2PROGRAM enumerates the
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Algorithm 6 Learning Loop Conditions from Demonstrations

1: procedure PREDICATESYNTHESIS(D, v, Jo. ¢)

2 Sample a demonstration rollout d ~ D

3 Let e, ..., en be the objects sorted by their order of satisfying ¢[o + e;] in d and
4 Si be the segment of d during which e; is manipulated
5 for1 <i<Ndo

6 P N; — {},{}

7 for all ¢; do

8 P; — P;U{(ss,€;) | s € Si}

9: for all S; s.t. j <ido
10: Ni «— N;U{(s,ei) | ss €S}
11: for all S; s.t. j > ido
12: Ni < N; U {(s,ei) | ss €S}
13: P« True
14: for1 <i<Ndo
15: Y < TorpOWNENUM(P;, N;)
16: P—P A yle — 0]
17: return P

incoming edges u, — u, of u, (line 10) in the order of i(D, ¢’), recursively applying itself to
u, (line 11), and appending the resulting program P, , to Py, (line 12). At line 18, the algorithm
appends a low-level controller 7, = mg(y, {0}, {g(0")}), a neural network policy with trainable
weights 0, to the program P,,,. This controller guides the agent from states satisfying the subgoals
in the predecessors of u, (namely {¢’}) to states that satisfy ¢ in u,. Here, {0} = Entities(¢p)
denotes the set of entities involved in ¢, while {g(0”)} represents the goal conditions in ¢ for these
entities, with o’ potentially being a subset of 0. The controller 7, needs to manage the entities
in o to achieve the subgoal condition ¢. If u,, is designated as a circular node, as constructed in
Sec. 4.2.2, the subroutine synthesized in $u, is designed for repeated execution to handle recurring
objects of the same types to achieve ¢ in a loop. To simplify the presentation, we assume a single
existential quantifier for the subgoal condition related to u,, though the algorithm trivially extends
to multiple quantifiers. We introduce a fresh program variable v to bind recurring objects within
the loop. At line 16, TREE2PROGRAM constructs a loop with (Pu,; 714,|m_w) as its body, replacing o
in the program with o to track recurring objects bound in each iteration, analogous to existential
quantifier instantiation. Fig. 10 illustrates this process for the Tower task. We note that at Line 4
of Algorithm 5, for any remaining object identifier o in a synthesized program P, we similarly
project o to a fresh variable v and prepend v := get(Av : A(0).True) to P. This allows the program
to generalize across environments by retrieving the appropriate entity, removing dependencies on
specific object identifiers (see Fig. 8 as an example).

So far, the algorithm does not specify the order in which objects are addressed in the loop
iterations, which is crucial for tasks with dependencies, such as Tower (Fig. 9) where placing a
block in its goal position before positioning the underlying blocks can result in failure. To this
end, TREE2PROGRAM invokes PREDICATESYNTHESIS in Algorithm 6 to specify an effective handling
sequence for the loop structure. We outline this procedure as follows.
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Fig. 16. Positive and negative examples for learning the predicate for when to handle the red block in Tower.
In the demonstration, the agent stacks green, yellow, red and blue blocks in order.

4.3.2 Loop Inference. Our key approach to identifying the potential order for an effective handling
sequence for recurring objects is analyzing the underlying rationale in task demonstrations to
understand why certain objects must be handled before others.

Given the set of demonstrations 9 and a circular tree node ¢ in an abstract subtask tree T, the
PREDICATESYNTHESIS procedure in Algorithm 6 formalizes the generation of loop conditions for
synthesized iterative programs. As we assume demonstrations in D are consistent (Sec. 2.1), at
line 3, we randomly sample a rollout d from D to infer the handling sequence for recurring objects.
We sort objects ey, ey, . . . of the desired types in d according to their order of satisfying ¢ in d and
partition d according to this order. Each segment S; corresponds to the subtask period in which
e; is manipulated within the demonstration. For example, for the abstraction of Tower in Eq. 3,
given the demonstration in Fig. 9, we instantiate the existential quantifiers b in the circular node
3b. at(b, g(b)) with the colored blocks respectively. The agent stacks the green, yellow, red, and
blue blocks sequentially from bottom to top, resulting in partitions S, Sz, S3 and S; in Fig. 9.

For each e;, RoboScribe maintains positive examples (s, e;) for all states s; in S; where e; is
handled at line 8, and negative examples (s;, e;) for all states s; in prior (Sp, . . ., Si—1) and subsequent
(Sit1, - - -) partitions to illustrate why e; should not be handled earlier at line 10 or does not need to be
handled afterwards at line 12 in these negative states. For instance, in Fig. 16, RoboScribe shows why
the red block is placed after the green and yellow blocks. In the top row, where the green and yellow
blocks are already positioned, any state involving the placement of the red block is considered a
positive example. In the bottom row, where the green and yellow blocks are not yet in their goal
positions, the placement of the red block is marked as a negative example (it should not be handled),
and any subsequent states after the red block is positioned are also negative examples (since its
handling is already complete). Given the positive and negative examples {(s;, €;)}*, {(s:, €;)} ~, any
classifier that defines the relationship between e; and other objects in s; (abstracted as existential
variables) and effectively separates the examples, provides both an ordering and a termination
constraint for handling e; during manipulation.

At line 14, RoboScribe uses top-down synthesis to generate a classifier predicate for each e;,
following the production rules for predicates i in our task specification language (see Fig. 12).
In this process, we augment i with learned state abstraction predicates from abstract subtask
trees as these predicates provide additional task-relevant constraints. The learned predicates for all
e; are combined to fill in the loop condition in the synthesized program. Here we use top-down
enumeration instead of decision tree (DT) learning because loop conditions for handling sequences
typically require existential quantifiers to manage unbounded entities with dependencies, which
are not well-suited for DTs. If the synthesis algorithm does not find a classifier predicate for an
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object e; within a reasonable search budget, RoboScribe interprets this as the absence of an ordering
constraint for that e; — the agent can select e; for manipulation without restrictions, and it then
returns true in this case. Given the examples in Fig.16, RoboScribe synthesizes the ordering predicate
in Eq.4 for Tower. This predicate ensures that any block with a lower goal position must be placed
before the current block.

We note that a synthesized ordering predicate naturally encodes loop termination, even in envi-
ronments without explicit total or partial order constraints. For example, consider a scenario where
a robot arm must push several objects from a table into a drawer in arbitrary order. Algorithm 6
learns a termination condition in the form of a classifier, which identifies why an object that has
already been placed in the drawer is no longer manipulated thereafter.

4.3.3 Reinforcement Program Learning. Given a program % inferred from an abstract subtask tree
T reflecting the current abstraction of the real robot environment M, the TRAINPROGRAM procedure
called at line 5 in Algorithm 5 grounds # in M by learning the low-level neural controllers invoked
by P to fulfill the subtasks within T. We maintain separate buffers B,, to store trajectories associated
with each low-level controller 7, within #. Program trajectories { are sampled by executing # in
the real environment { ~ Exec(M, P). Each sub-trajectory of { generated by a specific controller
7, is stored only in the corresponding buffer B,,. During each gradient update step, TRAINPROGRAM
updates each policy 7, by sampling from its buffer B, and optimizes it using any off-the-shelf
off-policy RL algorithm (e.g. Soft Actor-Critic), aiming to maximize the expected reward for 7,,:

i=0
where R, denotes the reward function used to train 7, L is the sampled trajectory length, and y is
the discount factor.

For each subtask to learn 7, our training procedure aims to construct the reward function R,
that provides feedback based on the satisfaction of these predicates throughout a policy trajectory.
Instead of only using ¢ to provide a binary signal indicating whether a subgoal state has been
achieved, R, quantifies a continuous measure of state proximity between the current state s and
the satisfaction of ¢ to enables smoother policy optimization. This approach allows for a more
granular assessment of progress, guiding the agent incrementally towards the subgoal states in ¢.
Formally, we define the reward function R, recursively based on the structure of the predicate ¢:

L
_ ¢
Ty = argmax Ei=spa0s1,- sp.a~By l E Y Ry (sis ai)l
@

R(1 A ¢2) = min(R,, (s), Ry, (s)) if @ = @1 A @2,
R(p1 V ¢2) = max(Ry, (s), Ry, (s)) if o =¢1V g2
R(a > ¢)=a(s)—¢ ifop=a>4¢,
Rla < ¢)=¢ —a(s) ifop=a<g.

Rtp(s) =

4.4 Termination Guarantee

The main synthesis procedure in RoboScribe (Algorithm 2) is guaranteed to terminate after finitely
many refinements. This follows from the bounded size of abstract subtask trees, which is constrained
by both the number of environment entities and the length of demonstrations. Given an EFMDP
M and demonstrations D: (1) each abstract subtask tree node can lead to only finitely many
paths, bounded by the number of entities in M; and (2) each path has bounded length, since
every edge u, — uy must be supported by contiguous segments in O, of which there are finitely
many. Consequently, the number of refinements is bounded. Algorithm 2 must terminate, either by
synthesizing a valid program or returning FAIL (Line 11) when the current abstract subtask tree
cannot be further refined.
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Specifically, in Algorithm 2, each refinement of an abstract subtask tree T (Line 9, Algorithm2)
is followed by a VALIDATE call at line 10, which scans T against demonstration D to determine
whether it can yield a task-solving program or if the underlying task is unsolvable under T. Given
demonstrations D = {(so, s1, ..., sy)} and a predicate ¢, if there exists i such that ¢(s;) holds, let
is(D, ¢) denote the first timestep where ¢ holds, and iy (D, ¢) the last. For each edge u, — uy
representing a subtask ¢ ~» ¢ in T, the VALIDATE procedure checks whether is(D, ) < if(D, ¢)
when ¢ is not True, or is(D, ) = 0. Quantifiers in the predicates are instantiated by enumerating
all entities of the appropriate types present in . If true, this indicates that the intermediate subgoal
Y does not meaningfully advance the task from ¢, causing it to fail under the current abstraction.

What is the main cause for RoboScribe to return FAIL? It occurs when the RL algorithm
fails to learn a valid low-level controller even for some short-horizon subtasks, leading to repeated
refinements and eventual task failure. This may stem from poor exploration, challenging environ-
ment dynamics, or instability in the learning algorithm; however, we have rarely observed this in
practice.

4.5 Extension: Conditional Statements

The GENPROGRAM procedure in Algorithm 5 operates under the assump-
tion that demonstrations implicitly suggest the order for handling multiple
objects in a multi-object task. However, this order may vary depending on
the goal conditions. For instance, consider a scenario with a peg (blue) and
a cube (red) in Fig. 17. If the peg’s goal region is above the cube’s goal, the
task must be completed by first moving the cube, then the peg—and vice
versa. Our implementation relaxes this assumption by repurposing the
PREDICATESYNTHESIS algorithm from Algorithm 6 (developed for sorting Fig. 17. A Pick&Place En-
objects represented by a circular abstract subtask tree node) to deter-
mine how to order the execution of the multiple predecessors of a tree
node corresponding to objects of different types. This approach identifies
the conditions under which each object should be processed and encodes these conditions into
conditional statements, thereby selecting the appropriate handling sequence.

vironment for a cube and
a peg.

5 Experiments

RoboScribe is implemented in Python. In the implementation, low-level neural policies are Multi-
layer Perception (MLP) containing two hidden layers with 256 neurons. We leverage Soft Actor-
Critic (SAC) [24] from Stable-Baseline3 [49] as the RL algorithm to train the policies.

Our experiments are designed to answer the following research questions:

e (RQ1) Is RoboScribe able to learn effective and interpretable programs?
e (RQ2) Does the iterative program learned by RoboScribe generalize to unseen environments
without further training?

Main Baselines. Throughout the evaluation, we consider the following baselines:

o BC: Behavior Cloning (BC) is a standard learning from demonstration baseline. It applies super-
vised learning to train a policy that replicates expert actions for given states in demonstrations.

e GAIL [25]: Generative Adversarial Imitation Learning (GAIL) works by alternating between
training two components: a discriminator and an agent. The discriminator is trained to distinguish
between states visited by the expert and those visited by the agent. The agent, in turn, is optimized
to visit states that make this distinction more difficult, thereby encouraging it to mimic the expert’s
behavior. We select GAIL as a baseline because its discriminator serves a role similar to the
state-abstraction predicates we learn as classifiers.
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o goalGAIL [20]: GoalGAIL combines GAIL with Hindsight Experience Replay (HER) [3]. Unlike
GAIL, which only imitates expert state distributions without explicit task objectives, Goal GAIL
introduces goals by relabeling the agent’s trajectory with states that are actually achieved during
execution, allowing the agent to treat these states as successful outcomes and thereby receive
more frequent feedback, leading to faster convergence and improved sample efficiency. We select
it as a baseline because it is a stronger variant of GAIL that accelerates learning and significantly
improves sample efficiency.

o DeepSet [67]: DeepSet embraces an entity-based compositional structure in its neural policy
representation based on Self-Attention [61] to leverage the symmetries and invariances in the
EFMDP. Like RoboScribe programs, its policy architectures decompose goal-conditioned tasks
into their constituent entities and subgoals.

For fair comparisons, we use the DeepSet architecture for the policy in BC and for both the
policy and discriminator in GAIL and goal GAIL. DeepSet’s ability to handle an arbitrary number of
input objects makes it well-suited for multi-object environments.

We exclude direct quantitative comparisons with existing programmatic RL methods
like PROLEX [44], Tabula [46], and ReGuS [14] because they rely on predefined DSLs with man-
ually crafted state and action abstractions, whereas RoboScribe autonomously discovers these
abstractions. This fundamental difference makes direct performance comparisons impractical.
Benchmarks. We use a suite of challeng-
ing robot manipulation environments including
Pick&Place (Fig. 1a); Tower-5 (Fig. 1c) where
the goal is to assemble 5 scattered blocks into
a tower (88 state dimensions); Pick&Place-Cond ® g
shown in Fig. 17 where the robot stacks a cube h
and a peg based on their goal position order- A
ing; Pick&Place-4 shown in Fig. 18a in the
Pick&place-Multi environment where the goal is ~ (2) Picképlace-Multi (b) Push-Multi
placing 4 blocks in their designated goal regions on -y .

a surface, with the final block needing to be hung T

by the gripper in the air at its goal position; Push-3

shown in Fig. 18b in the Push-Multi environment :
where the goal is pushing 3 blocks to their re-
lated goal regions on a table surface; Meta-World
where a robot needs to be controlled to complete (c) Meta-World
3 tasks, including pushing the mug back, open-

ing the drawer and turning the faucet left; and  Fig 18. Testing environments with multiple enti-
PlaceCubesDrawer visualized in Fig. 18d. In the tjes.

challenging PlaceCubesDrawer environment (134

state dimensions) from [39], the agent needs to open a drawer and iteratively places three cubes
into the drawer. We consider a sparse reward setting in which the agent receives reward 1.0 when
the entire task is completed successfully and 0 otherwise.

Demonstration Collection. For each environment, we provide a demonstration dataset consist-
ing of 50 successful trajectories, collected by manually controlling the end effector in a simulator
to manipulate the objects. We place no requirements on demonstration quality with respect to
path optimality or goal diversity. Since RoboScribe relies on demonstrations only to infer abstract
subtask trees, it remains effective even when demonstration trajectories contain unnecessarily
long control paths. Such demonstrations still reveal the underlying abstract task structure, which

(d) PlaceCubesDrawer
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Fig. 19. Rewards for all the tools throughout the training phase. The solid curve represents the mean across 5
random seeds. The shaded area indicates the standard deviation. In Meta-World, we report the success rates
for each subtask—pushing the mug back (t0), opening the drawer (t1), and turning the faucet left (t2)—in the
order that RoboScribe discovers them.

Table 1. Average number of refinement steps for synthesized programs (over five random seeds).

Pick&Place-1 Pick&Place-4 Pick&Place-Cond Push-3 Tower-5 Meta-World PlaceCubesDrawer
2.2 2.2 5.4 4.4 4.4 5.6 4.6

RoboScribe leverages to learn efficient low-level controllers via reward signals derived from the
state-abstraction predicates encoded in abstract subtask trees.

5.1 RAQT1: Learning Efficiency and Interpretability

For each environment, we train RoboScribe and the baseline methods with 5 random seeds, report-
ing their evaluation success rates during training, as shown in Fig. 19. While RoboScribe initially
experiences a flat zero success rate early in training, it focuses on comparative abstraction refine-
ment to discover the abstract task structure and grounding abstract actions to reach automatically
discovered subgoal conditions, guiding the agent towards the overall goal progressively. Robo-
Scribe’s success rate increases rapidly once the program structure is fully developed, eventually
surpassing the performance of the baseline methods. For Tower-5, there is a sharp increase in
success rates around 1e7 steps. This is because the task requires the end effector to move its hand
away from the top block to a certain height to ensure stable tower construction. The final subgoal
of moving away the end effector is relatively easier to learn, and by this point, the agent has already
mastered stacking the blocks. As a result, the final task success rate improves significantly after
this. Other than Pick&place and Push-3, the baselines struggle to achieve progress due to the
complexity of the observations involving multiple objects and the sparsity of the reward signals.
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We report the average number of refinement steps for our synthesized programs in Table 1. Even
the most challenging tasks such as Tower-5 and PlaceCubesDrawer require a modest number of
refinements, demonstrating the efficiency of RoboScribe’s synthesis procedure.

Demonstration Size. RoboScribe requires only a small number of demonstrations to infer
abstract subtask trees. We evaluated RoboScribe in the Pick&Place environment (Fig. 1a) across
10, 20, and 50 demonstrations and found that performance remains stable: converging to 99.8%
success with 2.28M environment steps, 99.0% with 1.68M, and 99.7% with 2.20M steps, respectively.

Interpretability. Programs synthesized by RoboScribe provide greater interpretability of the
control logic compared to black-box policies. Synthesized programs include loops conditioned on
explicit subgoals necessary for recurring interactions with multiple objects. This yields structured
policy representations that make the decision-making process transparent and easy to understand.
For example, in the Push-3 task, where the end effector y must push a block b to a target position
g(b) on a table, one of the state abstraction predicates RoboScribe synthesizes is:

arctan2(p lxy —=b lxy) —arctan2(g(b) lxy —b lxy) < ¢
This predicate captures a subgoal condition where the end effector, block, and goal region are
aligned for direct pushing. Occasionally, more complex predicates arise. In one of five Push-3 trials,
we observed the following predicate in the abstract subtask tree:

I bz =9(0) Luyell < b1 A [l Lz =0 el < 62 A

arctan2(p lxy —b lxy) —arctan2(g(b) lxy —b lxy) < ¢3

This predicate is true when block b is near its goal region g(b) and the end-effector y is not only
close to b, but also aligned with its goal direction. This complex predicate arises due to failure
execution trajectories containing two types of negative states: (1) the block remains far from its goal,
or (2) it is pushed somewhat close to the goal but not sufficiently, and the end-effector then moves
away unexpectedly. The latter case is caused by the imperfect behavior of the learned low-level
policy for direct pushing. Although RoboScribe can eventually succeed in such cases, the resulting
predicates often increase in complexity, requiring additional effort for interpretation.

5.2 RQ2: Generalization to New Environments

For the Tower and Push-Multi environments, the capability of handling arbitrary numbers of
objects is desired. We analyze the transferability of the synthesized iterative program to diverse
environment settings.

Tower Environment. We synthe-
size the Tower program in a single
tower setting with 4 or 5 blocks and
evaluate its performance across di-
verse environments without further
training, as shown in Fig. 20. These

environments include a taller single (a) Single Tower  (b)Multi Towers (c) Pyramids
tower with 6 or 7 blocks, multiple
towers with 2 to 3 blocks per tower, Fig. 20. Novel Tower environments.

and a pyramid tower with 4 to 9 blocks. As the baselines discussed in Sec. 5.1 fail to solve the
Tower task, we turn to the curriculum learning-based approach ReNN [32], which progressively
learns to stack 2, 3, and ultimately 5 blocks. In contrast, RoboScribe learns to handle all 5 blocks
directly, without relying on an expert-designed curriculum, offering a more flexible and practical
solution. Fig. 21 presents the results for RoboScribe and ReNN [32]. In the single tower setting,
ReNN benefits from curriculum learning, achieving slightly better results when the training and
evaluation environments match (e.g., single towers with 4 and 5 blocks). However, RoboScribe
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Fig. 21. Comparison between ReNN and RoboScribe on zero-shot generalization to new Tower environment
settings. Specifically, policies trained on single tower with 4 blocks or 5 blocks are evaluated on Single (but
taller) towers, multiple towers and pyramid configurations with varying numbers of blocks. Success rate is
reported as accuracy of completing a task averaged over 500 episodes.

demonstrates superior generalization. For instance, when transferring a policy trained on 4 blocks
to a taller single tower, ReNN achieves less than 5% success, while RoboScribe trained on 4 blocks
achieves 55% (+1%) success with 5 blocks and 15% (+1%) with 6 blocks. In both multi-tower and
pyramid settings, RoboScribe significantly outperforms ReNN across block counts from 4 to 9.

Push-Multi Environment. To evaluate the iterative program learned
in the Push-Multi environment, we introduce a confined version,
Push-Multi Confined (Fig. 22), where goals are randomly arranged along
a line near the table’s upper edge. To achieve the goal condition, the robot
benefits from pushing the blocks in a certain order. For example, in Fig. 22,
the robot should push the blue block first, followed by green, then red.
Pushing blocks out of this order, such as green or red first, may obstruct the
blue block’s path to its goal. For RoboScribe, we reuse the learned iterative
program by providing demonstrations of the correct entity handling se-
quence, allowing it to update its loop condition without additional training.
In contrast, we continue training the baseline DeepSet [67] model on the
confined environment until convergence, as it cannot structurally update its model like RoboScribe.
RoboScribe correctly learns the entity handling order from the demonstration and updates the
loop condition accordingly. In comparison, DeepSet achieves a success rate of 81.3% (+4.0%), while
RoboScribe achieves 86.3% (+0.5%), averaged over 500 episodes. RoboScribe’s superior performance
demonstrates the generalization of learned policies and program structures. Additionally, with the
interpretability of its programmatic policy, RoboScribe offers greater flexibility in transferring the
synthesized program to different environment settings.

Fig. 22. A constrained
Push-Multi environment.

6 Related Work

Programmatic Reinforcement Learning. Our work is closely related to recent advance on
exploring domain-specific programs as an interpretable representation for RL. PIRL [62, 63] and
Viper [6] synthesize loop-free, stateless programs, which face limitations in complex robot tasks.
Inala et al. [28] improved on this by learning robot controllers as state machines, enabling general-
ization to tasks with repeating behaviors. These methods rely heavily on strong supervision from
oracles like pretrained RL controllers. The tasks they can solve are thus bounded by the capability
of the oracle. In contrast, program synthesis methods such as PROLEX [44] and Tabula [46] learn
robot control programs from task demonstrations. They generalize these demonstrations into regex-
based sketches or Mealy automata to bootstrap synthesis. They can synthesize programs with
control flow structures including loops and conditionals, allowing generalization from a specific
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sequence of actions to a general structure to solve unseen tasks. Their DSLs feature extensive library
functions for manipulating various objects and teleporting robots to different locations. LEAPS [60],
PRL [47], and ReGuS [14] eliminate the need for pretrained oracles and synthesizes robot-control
programs directly from reward signals. They demonstrate that utilizing rich control-flow constructs
(state-conditioned loops and procedure calls) can effectively tackle long-horizon and sparse-reward
tasks, which are beyond the capabilities of standard deep RL baselines. However, these existing
works rely on a manually designed library of state abstraction predicates and abstract actions to
bootstrap synthesis. RoboScribe addresses the primary challenge of automating the construction of
robot state and action abstractions.

Learning State and Action Abstraction. RoboScribe shares similarities with generalized
planning methods like [56, 59], which derive looped plans for solving unbounded problem instances.
However, planning techniques require a provided state transition model for each robot action within
the abstract state space. Component-based synthesis techniques with user-defined predicates, as
in [11, 22], have similar requirements. Automatically learning state and action abstractions has been
explored in task and motion planning for robot control [7, 23, 29, 43]. Existing techniques typically
learn either predicates from demonstrations assuming low-level controllers are given [15, 36, 55]
or learn controllers from demonstrations assuming known predicates [1, 17, 54]. RoboScribe
simultaneously learns state and action abstractions, removing such assumptions. There exist library
learning techniques [9, 10, 21] that use syntax abstraction to extract common structures from a
program corpus as reusable library functions. In contrast, RoboScribe performs state abstraction.
RoboScribe is broadly related to hierarchical RL and planning for robot learning [4, 30, 31, 40, 42, 45,
48, 56, 64]. However, such techniques often struggle with long-horizon tasks with sparse rewards.
Traditional controller synthesis algorithms, especially those using formal methods and temporal
logic, rely on automata-based approaches involving abstraction and discretization of continuous
state and action spaces [16, 51]. These methods face limitations in high-dimensional systems, where
discretization can lead to issues like state explosion.

Reward-guided Program Synthesis. Existing algorithms often design dense rewards to guide
program search directions. For example, PROBE [5] and SYNTIA [8] evaluate programs using input-
output examples, generating rich rewards based on output similarity. In [11], the feedback from a
deduction engine on the feasibility of partial programs is used to reward the synthesis algorithm,
guiding it toward promising search directions. FAERY [12] employs Monte Carlo estimation to
sample user queries for additional examples. However, in sparse-reward scenarios, synthesizing
complete programs with complex control flow through Monte Carlo methods is challenging due to
the low probability of discovering programs with nonzero rewards. RoboScribe addresses this by
using comparative abstraction refinement to learn state abstraction predicates that capture subgoal
conditions, effectively breaking down the learning process.

7 Conclusion

This paper introduces RoboScribe, a program synthesis framework guided by abstraction refinement
to address long-horizon, multi-object tasks in robotics. RoboScribe alternates between comparative
abstraction refinement and iterative program learning, using demonstrations and execution trajec-
tories from synthesized programs to iteratively refine environment abstractions until a task-solving
program can be generated. It identifies recurring subroutines from raw, continuous state-action
spaces without predefined abstractions. Experimental results show that RoboScribe generalizes
effectively to long-horizon tasks with varying object counts, outperforming baseline methods in
interpretability and efficiency. Currently, our language restricts predicates to use norm and arctan
functions. It remains an open question whether this expressiveness is sufficient for all tasks—for
example, whether additional trigonometric functions are needed, which we leave for future work.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 292. Publication date: October 2025.



292:26 Guofeng Cui, Yuning Wang, Wensen Mao, Yuanlin Duan, and He Zhu

Data-Availability Statement

The artifact for this work is an implementation of RoboScribe, a program synthesis framework
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programs and associated datasets used for training and evaluation. The artifact is available at [13].
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