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ABSTRACT1

Car-following model is fundamental in transportation engineering and traffic flow theory, pro-2

viding critical insights into vehicle-level dynamics and interactions. Traditional models typically3

assume idealized weather conditions and often neglect the impacts of adverse weather on driv-4

ing behaviors, leading to inaccurate modeling under varied environmental conditions. To address5

these shortcomings, this study extends the classical Intelligent Driver Model (IDM) by integrat-6

ing a novel term, namely the Conservative Intelligent Driver Model (CIDM), to further capture7

drivers’ conservative behaviors on slippery roads during snowy and rainy days. This enhancement8

adjusts the desired following distance, allowing the model to reflect real-world driver reactions to9

reduced visibility and decreased road friction more accurately. Comprehensive stability analysis10

and criteria derivation confirm the model’s robustness and the CIDM’s efficacy is evaluated using11

real-world vehicle trajectory data under both rainy and snowy conditions. The results demonstrate12

that the developed CIDM not only enhances the robustness of parameter estimates under critical13

conditions but also maintains accuracy, significantly improving the reliability of the model in di-14

verse environmental settings. This study highlights the CIDM’s potential as a superior alternative15

to traditional car-following models, enhancing traffic safety and efficiency through more accurate16

and reliable behavior prediction models, especially in adverse weather scenarios.17

Keywords: Car-following model, Microscopic simulation18
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INTRODUCTION1

Car-following models, integral components in the domain of transportation engineering and traf-2

fic flow theory, warrant a comprehensive understanding to address complex traffic dynamics (1).3

Serving as microscopic representations of traffic interactions, these models illuminate the driver’s4

responses when following a preceding vehicle within the same lane. Grounded in the fundamental5

principles of motion, car-following models usually posit a correlation between a vehicle’s acceler-6

ation and various attributes, including its current speed, the gap with the preceding vehicle, and the7

relative speed difference. The key to car-following theory lies in the stimulus-response framework8

((2); (3)), which suggests that a driver’s response (acceleration) is influenced by the immediate9

driving environment (stimulus) and their personal sensitivity. Various models have adopted differ-10

ent factors, both external and internal, to serve as stimuli in order to simulate the responses that11

determine acceleration patterns. These models generally rely on a generic equation that connects12

key factors of vehicle behavior, as illustrated below:13

dvn(t) = f (vn,sn(t),∆vn(t), ...)dt (1)14

Here, the nth vehicle’s acceleration at time step t is related to its current state of speed v,15

space gap s and speed difference ∆v with its leading vehicle, and so on. Utilizing car-following16

models facilitates the analysis of traffic flow dynamics at the individual vehicle level, offering a17

comprehensive overview of various influencing factors and conditions. Additionally, these models18

act as a crucial bridge between individual behaviors and macroscopic analysis. By transforming19

micro-level behaviors into macro-level outcomes, these models empower researchers and traffic20

management authorities to comprehend better, anticipate, and manage traffic flow, thereby enhanc-21

ing transportation systems.22

A significant assumption within classical car-following models is the premise of ideal en-23

vironmental conditions, specifically, consistently ideal weather. Such assumptions may lead to24

undesirable performance when the ambient driving environment changes, given that car-following25

behavior inherently involves the integration of the driver, vehicle, and environment ((4)). On the26

other hand, employing data-driven methods to investigate car-following behavior under adverse27

weather conditions (especially rain and snow) appears unfeasible. This is because, to the best28

knowledge of the authors, currently available open-source vehicle trajectory data are mainly col-29

lected under good weather conditions. Additionally, the presence of rain and snow may complicate30

video recording (for example, snow may cover the camera) and trajectory extraction, making the31

collection of a large dataset unfeasible. Recognizing the impact the adverse weather, numerous32

studies have been conducted to investigate the impacts of weather changes. The most significant33

influences are the reduction in visibility and the decrease in road adhesion. (5) assessed the impact34

of fog on stable driving, acceleration, and deceleration stages, respectively. Through question-35

naires, (6) found that drivers tend to adopt more conservative driving behaviors when visibility is36

low. (7) developed a modified FVDM to describe drivers’ car-following behavior under varying37

levels of visibility. In addition to reduced visibility, adverse weather conditions can also lead to38

decreased road adhesion. (8) calibrated the Wiedemann car-following model using field data, sug-39

gesting that drivers tend to maintain lower acceleration rates and velocities while keeping a larger40

vehicle headway under snowy conditions. (9) calibrated the Van Aerde car-following model using41

field data collected from icy roads in Hokkaido, highlighting significant statistical differences in42

response time, desired velocity, velocity, road capacity, and congestion density.43

To enhance the understanding of car-following behavior under inclement weather condi-44

tions, simple calibration of classical car-following models may not suffice, as these models typi-45
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cally overlook the influence of weather in their formulations. Furthermore, existing research has1

predominantly explored the effects of reduced visibility and compromised tire-road adhesion in2

isolation. Therefore, the development of a modified classical car-following model, informed by3

real-world datasets gathered under adverse weather conditions, presents a promising avenue. The4

objective of this study is to propose a model that is not only able to accurately simulate drivers’5

behaviors but also provides insights into the adjustments necessitated by such conditions. In light6

of the gaps identified and the goals of this research, this study leverages the Intelligent Drive7

Model(IDM) as the base model due to its accurate simulation capabilities and clear explanation of8

each parameter (10). This paper first seeks to examine the limitations of the IDM under adverse9

weather conditions, followed by proposing a modified version of the IDM to rectify the issue. Sub-10

sequently, real-world data collected under both rainy and snowy weather conditions are adopted to11

investigate the performance of the proposed model.12

The remainder of the paper is organized as follows: Section 2 introduces the proposed13

methodology; Section 3 demonstrates the performance of the proposed model using real-world14

data collected under rainy and snowy weather conditions; and finally, Section 4 concludes with a15

discussion on the proposed model and suggestions for future work.16

METHODOLOGY17

Review of the Intelligent Driver Model18

The original IDM can be expressed as follows:19

dvn

dt
= a[1− (

vn

v0
)δ − (

s∗(vn,∆vn)

sn

)2] (2)20

The free accelerating term a[1− ( vn

v0
)δ ], governs the acceleration of the vehicle. Here, a represents21

the maximum acceleration, and v0 denotes the vehicle’s desired speed. Given an unobstructed path22

for a stationary vehicle, the vehicle would first accelerate at the rate of a, and the acceleration23

gradually decreases as the speed increases. Such reduction is controlled by the exponent term24

δ , and the vehicle would not exceed its desired speed. In accordance with the IDM author’s25

recommendation (11), this paper assigns the value of 4 to δ .26

s∗(vn,∆vn) = s0 +max(vnT +
vn∆vn

2
√

ab
,0) (3)27

28

∆vn = vn − vn−1 (4)29

30

Sn = xn−1 − ln−1 − xn (5)31

On the other hand, the vehicle’s decelerating process is regulated by the braking term32

( s∗(vn,∆vn)
sn

)2, where s∗(vn,∆vn) represents vehicle’s desired gap and sn is the actual gap as shown by33

Equations 3 - 5. The term s0 + vnT denotes the vehicle’s desired following distance at the steady34

state. Here, the minimum gap, s0, represents the space gap between the standstill vehicles, T is the35

time gap that the driver aims to maintain while in motion. The dynamic term vn∆vn

2
√

ab
, symbolizes36

the driver’s response to the speed difference ∆vn based on its own comfortable deceleration b. One37

of the merits of IDM is its flexibility in representing various driving styles by altering parameter38

values.39

When weather conditions shift from normal to adverse, the two most evident changes in-40

volve the reduction in visibility and the decrease in road adhesion. The reduction in visibility41

may increase the driver’s estimation error and reaction time, leading to changes in driving behav-42
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iors. However, research has shown that such impacts could be compensated for by the driver’s1

spatial and temporal anticipation. Additionally, classical car-following models have demonstrated2

good performance even without accounting for these specific human errors (12). Although adverse3

weather conditions can constrain the maximum acceleration and deceleration capabilities, drivers4

rarely utilize these full capacities in actual driving scenarios. Incorporating terms directly related5

to such environmental changes can be challenging due to the difficulty in precisely measuring and6

quantifying factors such as visibility and tire-road friction. Moreover, the IDM effectively cap-7

tures driver characteristics, with each parameter representing a distinct driver trait rather than a8

physical-world feature. Therefore, developing a modified IDM by introducing a parameter that9

denotes changes in a driver’s level of caution in response to decreased visibility and road adhesion10

during adverse weather conditions appears more reasonable.11

The IDM employs distinct terms to represent acceleration and deceleration patterns, re-12

flecting the different actions a driver may take during different following patterns. This study first13

investigates the IDM’s capacity to represent acceleration and deceleration independently. During14

adverse weather conditions, drivers typically adopt more cautious behavior, maintaining slower15

speeds, reducing acceleration rates, and preferring to keep larger distances from the vehicle ahead16

(13). As previously mentioned, the IDM portrays accelerating behavior as a smooth and con-17

tinuously decreasing action as speed increases, well defined by the parameters v0 and a. This18

cautionary behavior during acceleration can be symbolized by reducing these parameters’ values.19

Simultaneously, increasing the values of T and s0 could depict the desire for a greater following20

distance at a steady state. One instinctive method to illustrate an increase in caution as the follow-21

ing vehicle approaches the leading one (i.e., when ∆vn > 0) is to change the value of b. However,22

unlike a, merely changing the value of b does not necessarily lead to good performance in decel-23

eration. As a result, such modification may not accurately reflect the cautious behavior and might24

even negatively impact the model’s performance. The physical interpretation of the parameter b is25

"comfortable deceleration", and the magnitude of b determines not only the deceleration rate but26

also significantly influence the driver’s braking strategy. Generally, a driver with a lower b value27

tends to accept a lower deceleration rate when feeling safe and might even engage in more abrupt28

braking compared to a driver with a higher comfortable deceleration rate during critical scenarios29

(14). To illustrate, consider a situation where a vehicle is in a driving condition with a following30

distance sn = s0 + vnT , and the leading vehicle suddenly reduces its speed to zero.31

The braking term calculates the deceleration rate is shown as follows:32

−a(
sn +

v2
n

2
√

ab

sn

)2 =−
v2

n

√
ab

bsn

−a−
v4

n

ans2
n

(6)33

With the kinematic deceleration rate:34

bkin =
v2

n

2sn

(7)35

36

−a(
sn +

v2
n

2
√

ab

sn

)2 =−
2bkin

√
ab

b
−a−

b2
kin

b
(8)37

As articulated in Equation 8, when ∆vn > 0, the driver’s deceleration behavior is directly38

related to the relationship between bkin and b. If bkin ≥ b, the driver interprets this as a critical39

condition, thereby opting for a larger deceleration than deemed necessary. Conversely, if bkin < b,40

the driver would perceive the scenario as non-critical and thereby opt for a deceleration less than b41

and will brake harder and harder as bkin increases.42
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To illustrate this behavior, a simulation was conducted, maintaining all the other parameters1

at their recommended values. Drivers operating vehicles at a speed of 54km/h, but possessing dif-2

ferent values of b, would exhibit significantly different maneuvers under the same circumstances.3

As depicted in Figure 1, at the start of the simulation, a driver with b = 1m/s2, perceives the sce-4

nario as critical and thus applies a deceleration much greater than the comfortable deceleration rate.5

Conversely, a driver with b = 2.5m/s2 perceives the situation as safe and initially applies only a6

minor deceleration, subsequently braking more intensively until the comfortable deceleration rate7

is reached. While the driver with b = 1.5m/s2 exhibits a braking behavior that falls between that of8

the drivers with b = 1m/s2 and b = 2.5m/s2, reaching the maximum deceleration rate at a similar9

time to the driver with b = 1m/s2 and achieving a maximum deceleration rate comparable to that10

of the driver with b = 2.5m/s2. Generally, the maximum value of b should not be greater than11

the acceleration due to gravity. By keeping all other parameters constant, an extremely conserva-12

tive driver with b = 0.6m/s2 could generate a similar deceleration rate to an extremely aggressive13

driver with b = 9.8m/s2. The primary difference is when they reach the maximum deceleration14

rate. Neither an extremely small nor a large value of b is desirable for conducting simulation as15

they may both generate an unreasonably large deceleration rate.

0 2 4 6 8 10 12
Time (s)

8

6

4

2

0

2

Pr
ed

ic
te

d 
A

cc
el

er
at

io
n 

(m
/s
2 )

)

b = 0.6 m/s2

b = 1 m/s2

b = 1.5 m/s2

b = 2.5 m/s2

b = 9.8 m/s2

FIGURE 1: Illustration of the variations in braking behaviors among drivers with different b

values

16
Further elucidation is provided in Figure 2, which display the predicted acceleration rates17

when following a vehicle traveling at a constant speed of 80km/h. These figures depict how drivers18

with differing values of sn and ∆vn would respond. Notably, the red and the dashed lines represent19

the contour lines of predicted acceleration equal to 0m/s2 and −7m/s2, respectively, the region20

with predicted acceleration smaller than −7m/s2 is regarded as unrealistic in reality considering21

the reduction of the road tire adhesion due to the inclement weather conditions. It can be shown22

that a driver with a smaller comfortable deceleration rate is more sensitive than those with a larger23

comfortable deceleration rate. This phenomenon can be directly observed by examining the dy-24

namic term (vn∆vn)/(2
√

ab). Under the same circumstances, a smaller b can lead to a larger25

desired gap, thus causing harder braking.26
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(a) feasible deceleration regions for b = 1m/s2 (b) feasible deceleration regions for b = 2.5m/s2

FIGURE 2: Illustration of the feasible deceleration regions for drivers with different b values

Conservative Intelligent Driver Model under adverse weather condition1

As previously mentioned, the magnitude of b plays a crucial role in influencing driver behavior,2

especially in response to the leading vehicle decelerating. This parameter not only dictates the3

maximum deceleration rate achievable but also the timing at which this maximum rate is attained.4

Drivers characterized by a lower b value exhibit more conservative driving patterns under perceived5

safe conditions yet may tend to overreact in critical conditions. Conversely, individuals with a6

higher b value display greater resilience in critical scenarios but tend to behave more aggressively.7

Therefore, solely adjusting the magnitude of b cannot accurately capture such conservative behav-8

ior under adverse weather conditions. Therefore, introducing a parameter representing the driver’s9

conservative level due to the inclement weather conditions seems promising. In this study, "con-10

servative" refers to the driver’s increased tolerance for a larger following distance to the leading11

vehicle and heightened sensitivity to a decrease in this distance under adverse weather conditions,12

as compared to normal weather. This approach assumes that, despite reduced visibility, drivers can13

still detect deceleration in the leading vehicle through brake lights, and acknowledge that it will14

take a larger distance to brake due to reduced tire-road friction in adverse conditions. Conversely,15

the delayed recognition of the leading vehicle’s acceleration by the following vehicle may result16

from reduced visibility, a more cautious driving approach, or diminished vehicular acceleration17

performance on slippery roads. Regarding the sensitivity of a driver’s braking behavior as it re-18

lates to the value of b, and to make the proposed model as parsimonious as possible, this study19

introduces an additional term into the desired gap equation. This term directly accommodates the20

driver’s response to the speed difference in adverse weather conditions, as expressed in Equation21

9:22

s∗(vn,∆vn) = s0 +max(vnT +
R2

2
log(1+(

max(∆vn,−k)

R
)2)+

vn∆vn

2
√

ab
,0) (9)23

Preserving the original definitions of the parameters in accordance with the IDM, this study24

introduces an additional parameter, denoted as R. R is a positive parameter representing the in-25

crease in the desired gap under adverse weather conditions compared to normal conditions. Rather26

than attributing such conservative behavior solely to changes in the parameter b during the ap-27
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proach phase, this study considers such behavior as an increase in the desired following distance,1

reflecting a heightened level of driver caution. The newly added R2

2
log(1+(max(∆vn,−k)

R
)2) is en-2

lightened by an adaptive robust kernel function (15), which ensures that the driver will initiate a3

more substantial deceleration when the product of vn∆vn is relatively small (i.e., safe condition).4

However, when this product is sufficiently large, vn∆vn

2
√

ab
will dominate the desired gap, prompting5

the driver to decelerate at a rate similar to that observed in the original IDM. It’s important to6

note that the newly introduced term also assumes a positive value, offsetting the negative vn∆vn,7

to reflect the driver’s tolerance for an increased following distance or reduced friction resulting8

in a slower acceleration rate. Additionally, the term max(∆vn,−k) ensures that, when the leading9

vehicle significantly outpaces the following one, the following vehicle will still adopt the maxi-10

mum acceleration rate as the negative impact of vn∆vn becoming greater than the compensatory11

added term, in this study, k is set to -4 m/s. Such benefits are illustrated in Figure 3. Given the12

same ∆vn = 3m/s, drivers exhibit distinct behaviors depending on the value of vn. The proposed13

model, named the Conservative Intelligent Driver Model (CIDM) shows that drivers brake more14

forcefully when vn∆vn is low and perform in a manner similar to the predicted behavior predicted15

by the original IDM with a b value of 1.4 as vn∆vn increases.

FIGURE 3: Comparison of predicted deceleration by IDM and CIDM

16
It should be noted that the newly introduced term affects the desired following distance only17

in the presence of a speed difference, indicating that the vehicle’s free acceleration and behavior18

at equilibrium would remain consistent with the original IDM. However, when there is a nonzero19

speed difference, a limitation of the added term is that R cannot take a value of zero, ensuring20

that this term remains positive whenever a speed difference is present. The purpose of introducing21

this term is to enable the modeling of potential conservative driving behavior. If this behavior22

can be accurately calibrated from field data, the modified model’s performance should be at least23

equivalent to that of the original IDM. In other words, the addition of this term is not intended24

to compromise the IDM’s performance, nor is it assumed that conservative behavior is always25

present.26

To evaluate whether the added term might detrimentally affect model performance, a sim-27

ulation was conducted, the results of which are displayed in Figure 4. When R is set to 0.1, even if28

the speed difference reaches 120km/h, the impact of the newly added term to the desired following29
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distance is negligible. Therefore, it is suggested that during calibration, if the value of R is cali-1

brated to be 0.1 or less, the modified model can be considered equivalent to the original IDM in2

terms of performance. This conclusion is further supported by experimental findings.
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FIGURE 4: Illustration of the impact of speed difference to the desired following distance when

R = 0.1

3

EXPERIMENTAL STUDY4

Case setup and data collection5

Several key questions require resolution: (1) What constitutes an effective calibration method for6

the proposed model? (2) Will the CIDM yield parameters akin to those of the IDM? (3) Under7

what circumstances does CIDM become the same as the IDM? To evaluate the proposed model’s8

efficacy and address these questions, this study used two real-world vehicle trajectory datasets9

collected separately under rainy and snowy weather conditions. The rainy dataset is provided by10

the CitySim dataset (16). CitySim is a cutting-edge vehicle trajectory dataset that extracts vehicle11

trajectory data from high-resolution videos recorded by drones at various locations. As shown in12

Figure 5, this study uses the Expressway-A dataset collected from a weaving segment located in13

Asia. The snowy dataset was collected by the author at the I-695 highway segment in Baltimore,14

Maryland, United States on 01/15/2024 using a drone, in total 50 minutes video was collected and15

transformed into the vehicle’s trajectory. The car-following pairs were identified based on each16

vehicle’s coordinates at the same time step.17

(a) Stretch of rainy weather dataset segment (b) Stretch of snowy weather dataset segment

FIGURE 5: Illustration of target road segments
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To address the influence of lane-changing behavior on car-following behavior, and consid-1

ering the variation in individual driving styles, this study aims to evaluate the performance of the2

CIDM and IDM using individual vehicle trajectories. The calibration objective is to identify an op-3

timal parameter set that minimizes the discrepancy between the car-following behaviors predicted4

by the model and those observed in reality. Calibration of a car-following model involves choosing5

an appropriate optimization algorithm, a goodness-of-fit (GoF) function, and a measure of perfor-6

mance (MoP). In this study, the Genetic Algorithm (GA) is chosen for parameter calibration due7

to the complexity of the models. GA, a heuristic nonlinear optimization algorithm inspired by8

biological evolution, has proven to be an effective and reasonable method for calibrating various9

car-following models ((17), (14), (18), (19)). Furthermore, the combination of MoP and GoF can10

significantly influence the effectiveness of the calibration process. As shown by Equations 10 – 11,11

this study investigates the two most commonly used combinations for calibration: the root mean12

square error (RMSE) of speed ((20), (21), (22)), and RMSE of spacing ((23), (24), (25)). A lower13

GoF value indicates a more precise simulation.14

RMSE(v) =

√
1

T

T

∑
t=1

[vi(t)− ṽi(t)]2 (10)15

16

RMSE(s) =

√
1

T

T

∑
t=1

[si(t)− s̃i(t)]2 (11)17

18

vn(t +∆t) = vn +an(t) ·∆t (12)19

20

xn(t +∆t) = xn(t)+
vn(t)+ vn(t +∆t)

2
·∆t (13)21

where vi(t) and si(t) represent the observed speed and spacing of the ith vehicle at time t, respec-22

tively, and ṽi(t) and s̃i(t) correspond to the simulated speed and spacing.23

To ensure that the calibrated parameters of the CIDM and IDM remain within a realistic24

range, their boundaries are defined as follows: The time gap T is set between [0.1, 3] seconds25

and the minimum spacing s0 is limited to [1, 5] meters. The maximum acceleration is restricted26

to [0.1, 4] m/s2, which correlates with a maximum acceleration rate of 4 m/s2 (equivalent to 0-27

100km/h in 6 seconds), while the comfortable deceleration boundary is set at [0.1, 9] m/s2. The28

parameter R is bounded within [0.01, 15]. The upper limit of the desired velocity v0 is set to29

33.6 m/s (120km/h). Regarding the lower limit, it should be noted that this limit must exceed the30

highest velocity value observed in the dataset, a detail often overlooked in other studies. This is a31

critical consideration because if the actual velocity exceeds v0, the power of 4 applied in the ( vn

v0
)432

can induce an excessively large deceleration. It is important to remember that v0 in the IDM is33

primarily designed for modeling acceleration and is not intended to handle deceleration scenarios34

(11). In this study, the parameters for executing the GA for calibration are as follows: the GA will35

run for a maximum of 500 generations, with each generation consisting of a population of 200.36

The mutation rate is set to 0.05. Additionally, this study employs a ballistic integration scheme, as37

detailed in Equations 12 and 13. This scheme utilizes an integration time step, ∆t, of 0.2 seconds,38

which is used for the periodic updating of vehicle speed and position. For the sake of computing39

intensity, the sampling rate employed in this study is 0.2s for both datasets, which has been deemed40

sufficient for calibrating the car-following model (26).41

In addition, it should be noted that aside from calibration settings, the quality of data can42

significantly impact the calibration results when a single trajectory is used to emulate driving be-43
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haviors. The effectiveness of a training dataset depends more on its quality than on its sheer1

volume (26). A trajectory that includes only a stop-and-go scenario is insufficient for calibrat-2

ing the desired speed, as it lacks the corresponding condition. Therefore, verifying the dataset’s3

completeness is a crucial step before calibration. Considering that the proposed model primarily4

focuses on investigating driver’s behavior to the speed difference under rainy and snowy weather5

conditions, trajectories from seven vehicles, all containing deceleration regimes, are selected for6

calibration. These are calibrated using RMSE(s) and RMSE(v) as separate objective functions.7

Results discussions8

Case study 1: rainy weather conditions9

TABLE 1: Calibration Results of IDM and CIDM with RMSE(s) of rainy dataset

Vehicle v0 T s0 a b R RMSE(s) RMSE(v)

358 (IDM) 11.02 m/s 1.54 s 3.27 m 3.98 m/s2 1.28 m/s2 NA 0.733 0.332

358 (CIDM) 11.72 m/s 1.53s 3.25 m 3.93 m/s2 2.50 m/s2 1.16 0.726 0.331

730 (IDM) 27.16 m/s 0.95 s 2.25 m 0.87 m/s2 0.18 m/s2 NA 0.507 0.400

730 (CIDM) 15.24 m/s 1.54 s 2.03 m 2.47 m/s2 6.13 m/s2 10.87 0.417 0.409

1340 (IDM) 7.50 m/s 1.15 s 2.41 m 2.55 m/s2 8.82 m/s2 NA 0.858 0.437

1340 (CIDM) 7.50 m/s 1.13 s 2.42 m 2.58 m/s2 8.84 m/s2 0.08 0.854 0.440

1814 (IDM) 9.93 m/s 0.50 s 2.63 m 3.97 m/s2 0.10 m/s2 NA 0.482 0.306

1814 (CIDM) 9.93 m/s 0.50 s 2.56 m 3.93 m/s2 0.10 m/s2 3.39 0.477 0.300

4231 (IDM) 13.26 m/s 1.17 s 2.73 m 2.43 m/s2 0.73 m/s2 NA 0.625 0.483

4231 (CIDM) 14.18 m/s 1.18 s 2.71 m 2.53 m/s2 0.87 m/s2 0.04 0.625 0.479

5283 (IDM) 19.76 m/s 1.29 s 3.95 m 0.68 m/s2 0.59 m/s2 NA 0.431 0.475

5283 (CIDM) 18.33 m/s 1.06 s 3.92 m 0.72 m/s2 1.01 m/s2 2.91 0.421 0.474

TABLE 2: Calibration Results of IDM and CIDM with RMSE(v) of rainy dataset

Vehicle v0 T s0 a b R RMSE(s) RMSE(v)

358 (IDM) 32.95 m/s 1.97 s 1.66 m 0.66 m/s2 1.94 m/s2 NA 1.578 0.226

358 (CIDM) 29.10 m/s 1.95 s 1.68 m 0.65 m/s2 1.92 m/s2 0.07 1.582 0.226

730 (IDM) 30.34 m/s 1.28 s 2.70 m 0.83 m/s2 0.24 m/s2 NA 1.117 0.377

730 (CIDM) 31.41 m/s 1.87 s 1.88 m 2.00 m/s2 2.43 m/s2 8.30 0.764 0.363

1340 (IDM) 31.61 m/s 1.19 s 1.89 m 1.29 m/s2 9.00 m/s2 NA 1.212 0.319

1340 (CIDM) 31.04 m/s 1.17 s 1.75 m 1.35 m/s2 8.99 m/s2 0.56 1.277 0.316

1814 (IDM) 32.96 m/s 0.81 s 3.30 m 3.31 m/s2 8.99 m/s2 NA 1.366 0.229

1814 (CIDM) 30.36 m/s 0.78 s 3.43 m 3.58 m/s2 8.97 m/s2 0.75 1.422 0.221

4231 (IDM) 11.78 m/s 1.34 s 3.31 m 1.96 m/s2 7.19 m/s2 NA 1.854 0.323

4231 (CIDM) 12.01 m/s 1.34 s 3.30 m 2.00 m/s2 7.91 m/s2 0.02 1.848 0.323

5283 (IDM) 19.36 m/s 2.06 s 1.05 m 0.48 m/s2 8.96 m/s2 NA 2.648 0.355

5283 (CIDM) 25.51 m/s 1.71 s 1.76 m 0.41 m/s2 4.64 m/s2 0.85 1.988 0.341

The calibration results employing RMSE(s) and RMSE(v) as objective functions are sys-10

tematically presented in Table 1 and Table 2, respectively. These tables detail the calibrated pa-11
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rameters for each vehicle trajectory, along with the accompanying RMSE(s) and RMSE(v) values.1

Additionally, Figures 6 and 7 graphically compare the predicted speeds and gaps, respectively.2

A clear pattern emerges from both the tabular and graphical data: the performance in terms of3

RMSE(s) is lower when gap is used as the MoP, as opposed to when speed is used as MoP, and4

vice versa for RMSE(v). Notably, the magnitude of this discrepancy is significantly more pro-5

nounced when speed is employed as the MoP for calibration.6

This observed discrepancy can be attributed to the following factors: When speed is the7

primary MoP, discrepancies in the model’s predictions tend to accumulate over time and are further8

amplified. This is particularly evident in scenarios where the model’s focus on minimizing velocity9

error (RMSE(v)) leads to an oversight in the accuracy of vehicle positioning. In this context, the10

model exhibits a ’memoryless’ behavior with regard to spacing errors, suggesting a potential lack11

of adjustment in its parameters in response to spacing discrepancies over time. Conversely, when12

the calibration centers around minimizing RMSE(s), the model demonstrates increased sensitivity13

to vehicle positioning and spacing accuracy. This results in consistent adjustments of the model’s14

parameters to ensure that the predicted spacing closely aligns with the observed data. The trade-off15

here is a marginal increase in velocity error, but this contributes to a more accurate prediction of16

spacing over time. On the other hand, the braking term ( s∗(vn,∆vn)
sn

)2 is derived based on the current17

gap and the desired gap, which is insensitive to speed. Thus, using the gap as the MoP is preferable18

when calibrating. The subsequent analysis will be based on the results shown in Table 1.19

In this study, the calibrated value of v0 is not discussed because, the dataset does not contain20

the free flow scenario, and v0 is calibrated from the free flow regime. On the other hand, the21

magnitude of the v0 does not show a significant influence on predicting performance (26). Drawing22

a conclusion from the categorized analysis of the calibration results, it is reasonable to assert that23

the CIDM is generally a preferable choice over the IDM in various scenarios. This assertion is24

based on the following observations from the three categories:25

CIDM Outperforms IDM: In several instances (vehicles 358, 730, and 5283), CIDM demon-26

strated superior performance compared to IDM, as indicated by lower RMSE(s) values, indicating27

a more precise simulation of car-following dynamics. For vehicle 358, Both models estimated28

similar parameters for a, T , and s0. However, in the CIDM, a higher b value (2.50 m/s2 compared29

to 1.28 m/s2 in the IDM) and the incorporation of R = 1.16 correlated with a lower RMSE(s), sug-30

gesting that adjusting b alongside R potentially offers a more accurate reflection of driver behavior31

under certain conditions. This implies that the CIDM’s framework, which accounts for driver sen-32

sitivity variations through R, can more accurately capture the dynamics of car-following behavior.33

For vehicle 730, all the estimated parameters in CIDM differ from those in IDM, with b increas-34

ing substantially to 6.13 m/s2 from 0.18 m/s2. The introduction of a high R value significantly35

reduces RMSE(s).For vehicle 5283, the CIDM’s moderate adjustments in b and the introduction36

of R = 2.91 also resulted in a better model performance. These instances illustrate that the CIDM,37

with its additional parameter R, provides a valuable extension to the traditional IDM framework,38

enabling a more nuanced and flexible adaptation to varying driver sensitivities and behaviors.39
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FIGURE 6: Comparison of estimated speed of IDM and CIDM using RMSE(s) and RMSE(v)

Similar Performance Between CIDM and IDM: In the case of vehicle 4231, CIDM and1

IDM exhibit nearly identical performance. In the CIDM, the estimated value of R is less than 0.1,2

suggesting that the conservative behavior typically enhanced by this parameter is not pronounced.3

Consequently, the other parameters estimated under the CIDM closely align with those derived4

from the IDM. This similarity implies that in scenarios where conservative driving behavior is5

minimally detected from the dataset, the CIDM adapts by mirroring the original IDM’s parameters6

and performance. The fact that the CIDM neither underperformed nor significantly outperformed7

the IDM in this instance further validates its reliability and applicability in conditions similar to8

those modeled by traditional methods. This scenario underscores the CIDM’s capability to operate9

equivalently to the IDM when the additional complexity introduced by R does not influence the10

driving behavior captured in the dataset.11

Limitations Arising from Data Constraints: The calibration challenges encountered with12

vehicles 1340 and 1814, where both models hit the predefined limits of the b parameter, high-13

light significant data constraints rather than deficiencies within the models themselves. For vehicle14

1814, although the CIDM estimates an R value of 3.39, resulting in a lower RMSE(s), the b values15

hit the lower threshold. Such calibration outcomes are deemed unsuccessful because a b value of16

0.1 m/s2 suggests extreme driver sensitivity, resulting in an unrealistic deceleration rate that is im-17

practical for reliable simulations. Similarly, for vehicle 1340, the estimated b values in both models18

approach the upper limit of comfortable deceleration. As previously mentioned, neither exceed-19

ingly high nor low b values are appropriate for realistic simulations. Consequently, these instances20

of calibration are regarded as failures within this study, underscoring the challenges posed by in-21

sufficient data in accurately determining the comfortable deceleration term. This analysis suggests22

that the observed calibration failures stem not from inherent model flaws but from the limitations23

imposed by the available data.24

In light of these findings, it can be concluded that CIDM is a viable and often superior25

alternative to IDM in various driving scenarios. Its ability to either outperform or match the per-26

formance of IDM, combined with the fact that the observed limitations are primarily due to data27

constraints, suggests that CIDM can be confidently utilized in diverse circumstances where ac-28

curate car-following behavior modeling is required. However, it is crucial to acknowledge that29

the effectiveness of CIDM, like any model, is contingent upon the availability and quality of the30

calibration data.31
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FIGURE 7: Comparison of estimated gap of IDM and CIDM using RMSE(s) and RMSE(v)

Case study 2: snowy weather conditions1

The efficacy of the proposed model was further evaluated using a dataset collected under snowy2

weather conditions. Leveraging the approach established in the previous section, the combined3

MoP and GoF is determined using RMSE(s). The parameters for the GA execution remain con-4

sistent with the previous calibration process. Moreover, the boundary for the parameter b in both5

car-following models was the only adjustment made to accommodate the snowy weather condi-6

tions. Considering the increased severity of these conditions, it’s unrealistic to expect drivers to7

adopt an aggressive braking strategy. Therefore, the boundary for b was specifically set at [0.1, 4]8

m/s2, while the boundaries for all other parameters remained unchanged from the calibration for9

rainy weather conditions. The results of this calibration adjustment are documented in Table 3, and10

Figure 8 illustrates the simulation outcomes with these newly calibrated parameters.11

The calibration results for various vehicles reveal insights into the performance of the12

CIDM compared to the traditional IDM. These findings can be categorized into three distinct13

groups, similar to patterns observed with datasets under rainy conditions. In the analysis of vehi-14

cles 269, 462, 659, and 727, the CIDM consistently outperformed the IDM, as indicated by lower15

RMSE(s) values across these cases. Specifically, for vehicle 269, the CIDM reduced RMSE(s)16

from 0.241 to 0.167 by slightly increasing the b parameter and introducing an R value of 3.12,17

which suggests a more nuanced adaptation to speed changes and improved stability. Vehicle 46218

shows modest improvements with CIDM, where an increased b value and an R of 8.20 helped19

lower RMSE(s) from 0.568 to 0.548, indicating better compensation for abrupt driving maneu-20

vers. In the case of vehicle 659, CIDM’s adjustments resulted in a decrease in RMSE(s) from21

0.131 to 0.125 by fine-tuning b and adding an R value of 1.70, which enhances the model’s respon-22

siveness to maintaining safer following distances. Most notably, vehicle 727 displayed significant23

improvement under CIDM, where RMSE(s) was substantially reduced from 0.147 to 0.121 through24

integrating an R of 8.18, thereby capturing the driver’s deceleration behavior more accurately and25

effectively handling complex traffic dynamics. These results demonstrate CIDM’s superior ca-26

pability in simulating realistic car-following behaviors, particularly in dynamic and challenging27

driving environments, and highlight its potential in traffic modeling applications where traditional28

methods might not suffice.29

These findings reinforce the CIDM’s overall superiority in various driving scenarios, at-30

tributing its success to the model’s capacity to integrate additional behavioral nuances through31

the R parameter. The performance disparities between the CIDM and IDM, particularly in cases32

where the CIDM demonstrates better fit and reduced error metrics, highlight the importance of33
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incorporating broader behavioral factors into car-following models. Furthermore, the calibration1

challenges encountered, such as those with vehicle 221, accentuate the limitations of relying solely2

on traditional modeling approaches. Consequently, these results advocate for the adoption of the3

CIDM in efforts to achieve a more comprehensive and accurate simulation of driver behavior under4

diverse conditions.

TABLE 3: Calibration Results of IDM and CIDM with RMSE(s) of snowy dataset

Vehicle v0 T s0 a b R RMSE(s)

123 (IDM) 14.91 m/s 0.86 s 4.85 m 2.17 m/s2 3.62 m/s2 NA 0.221

123 (CIDM) 14.92 m/s 0.87 s 4.84 m 2.14 m/s2 3.23 m/s2 0.02 0.222

221 (IDM) 19.31 m/s 2.36 s 2.91 m 0.35 m/s2 0.10 m/s2 NA 0.093

221 (CIDM) 21.56 m/s 2.28 s 4.56 m 3.79 m/s2 2.53 m/s2 7.69 0.043

269 (IDM) 13.29 m/s 1.64 s 1.17 m 2.35 m/s2 3.76 m/s2 NA 0.241

269 (CIDM) 13.15 m/s 1.56 s 1.07 m 2.04 m/s2 3.95 m/s2 3.12 0.167

462 (IDM) 32.49 m/s 0.44 s 4.98 m 3.92 m/s2 0.97 m/s2 NA 0.568

462 (CIDM) 30.94 m/s 0.47 s 4.99 m 2.71 m/s2 2.71 m/s2 8.20 0.548

659 (IDM) 12.56 m/s 2.03 s 2.14 m 3.14 m/s2 3.72 m/s2 NA 0.131

659 (CIDM) 13.37 m/s 2.07 s 2.49 m 3.98 m/s2 3.92 m/s2 1.70 0.125

727 (IDM) 31.50 m/s 1.62 s 3.49 m 0.96 m/s2 3.94 m/s2 NA 0.147

727 (CIDM) 26.41 m/s 1.47 s 3.24 m 0.94 m/s2 3.54 m/s2 8.18 0.121

5
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FIGURE 8: Results comparison of CIDM and IDM using snowy dataset

CONCLUSIONS1

Car-following models are pivotal in analyzing traffic dynamics at the vehicle level. However,2

traditional car-following models often assume ideal environmental conditions, a scenario seldom3

encountered in reality, and frequently overlook the influence of weather on car-following behav-4

ior. This paper addresses such shortcomings by incorporating the impact of reduced visibility and5

road-tire friction into the car-following model. The IDM is employed as the base model due to6

its accurate simulations and clear physical interpretation of each parameter. The study initially7

examines the differences in driving behaviors under normal and adverse weather conditions and8

investigates the IDM’s limitations in simulating such behaviors. Notably, to represent drivers’ cau-9

tious braking behavior, the IDM often yields a smaller value for the comfortable deceleration rate,10

causing drivers to become oversensitive to critical conditions, potentially generating unrealistic de-11

celeration rates. To mitigate this limitation, this study proposes the CIDM by introducing a single12

term to the IDM’s desired gap function. This newly added term does not directly take changes in13

visibility and friction into consideration; instead, it attempts to capture the driver’s cautious level14

in response to speed differences. Stability analysis has been conducted, and stability criteria have15

been derived. To further assess the proposed model’s performance, real-world vehicle trajectories16

under rainy and snowy conditions were used for calibration. Two combinations of GoF and MoP17

are adopted for comparing the calibration results. The calibration results are classified into three18

groups: CIDM outperforms IDM, CIDM performs similarly to IDM, and both models fail due to19

data limitations. The results suggest that when conservative behavior is detectable from the dataset,20

the CIDM generates a lower estimated RMSE(s); when such behavior is not observed, the newly21

added term takes a negligible value and shows similar performance to the IDM. Therefore, it can22

be concluded that it is safe to calibrate the proposed model to simulate driving behavior under23

adverse weather conditions.24
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