TRB Annual Meeting

A Conservative Car Following Model Based on Adverse Weather Conditions

Full Title:
Abstract:

Additional Information:

Question

The total word count limit is 7500 words
including tables. Each table equals 250
words and must be included in your count.
Papers exceeding the word limit may be
rejected. My word count is:

Manuscript Classifications:

Manuscript Number:
Article Type:
Order of Authors:

--Manuscript Draft--

A Conservative Car Following Model Based on Adverse Weather Conditions

This study investigates the integration of traditional car-following models with machine
learning techniques to analyze car-following behavior in the presence of lane-changing
interactions on multi-lane road segments. Traditional car-following models, such as the
Intelligent Driver Model (IDM), are effective with limited data and robust to noise but
often fail to capture complex driving behaviors. In contrast, data-driven models like
Gaussian Process Regression (GPR) can model intricate behaviors but require
extensive, high-quality datasets. To leverage the strengths of both approaches, we
propose a hybrid framework that combines IDM with GPR, using IDM as a prior to
enhance GPR predictions. The analysis demonstrates that the hybrid model
significantly improves the accuracy of acceleration predictions compared to IDM alone,
effectively capturing the nuances of real-world driving scenarios. This approach
mitigates the limitations of traditional models and reduces the dependency on large
datasets. The findings underscore the potential of combining traditional and data-
driven methods to improve traffic behavior simulations, offering promising applications
in traffic management and autonomous driving. Future research will focus on extending
this framework to other driving behaviors and integrating additional data sources for
further enhancement.

Response

6995

Operations; Traffic Simulation ACP80; Calibration/Validation; Car-following; Vehicle
Trajectory

TRBAM-25-04255
Presentation
Kaitai Yang
Yuan-Zheng Lei
Yi Zhang

Xianfeng Yang

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Manuscript

A CONSERVATIVE CAR FOLLOWING MODEL BASED ON ADVERSE WEATHER
CONDITIONS

Kaitai Yang

Ph.D. Candidate & Graduate Research Assistant
Department of Civil and Environmental Engineering
University of Maryland, College Park, MD, U.S., 20742
Email: kaitai74 @umd.edu

O 00 9 N Lt W

—_— = =
o = O

Yuan-Zheng Lei

Ph.D. Candidate & Graduate Research Assistant
Department of Civil and Environmental Engineering
University of Maryland, College Park, MD, U.S., 20742
Email: yzlei@umd.edu

I S e S S
0 NN L h~W

Yi Zhang

Ph.D. Candidate & Graduate Research Assistant
Department of Civil and Environmental Engineering
University of Maryland, College Park, MD, U.S., 20742
Email: zhangyi@umd.edu

[NO N \S R NI N T\ R
A W N = O O

Xianfeng Terry Yang, Ph.D., Corresponding Author
Associate Professor

Department of Civil and Environmental Engineering
University of Maryland, College Park, MD, U.S., 20742
Email: xtyang@umd.edu

W W NN NN
— O O 0 3 O\ W

Word Count: 6245 words + 3 table(s) x 250 = 6995 words

W W W W W W W
0O N N L AW N

Submission Date: August 1, 2024



O 00 9 N Lt W IN

e T e T e T e S S S G e Sy
0NN LN kW= O

Yang, Lei, Zhang and Yang 2

ABSTRACT

Car-following model is fundamental in transportation engineering and traffic flow theory, pro-
viding critical insights into vehicle-level dynamics and interactions. Traditional models typically
assume idealized weather conditions and often neglect the impacts of adverse weather on driv-
ing behaviors, leading to inaccurate modeling under varied environmental conditions. To address
these shortcomings, this study extends the classical Intelligent Driver Model (IDM) by integrat-
ing a novel term, namely the Conservative Intelligent Driver Model (CIDM), to further capture
drivers’ conservative behaviors on slippery roads during snowy and rainy days. This enhancement
adjusts the desired following distance, allowing the model to reflect real-world driver reactions to
reduced visibility and decreased road friction more accurately. Comprehensive stability analysis
and criteria derivation confirm the model’s robustness and the CIDM’s efficacy is evaluated using
real-world vehicle trajectory data under both rainy and snowy conditions. The results demonstrate
that the developed CIDM not only enhances the robustness of parameter estimates under critical
conditions but also maintains accuracy, significantly improving the reliability of the model in di-
verse environmental settings. This study highlights the CIDM’s potential as a superior alternative
to traditional car-following models, enhancing traffic safety and efficiency through more accurate
and reliable behavior prediction models, especially in adverse weather scenarios.

Keywords: Car-following model, Microscopic simulation
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INTRODUCTION

Car-following models, integral components in the domain of transportation engineering and traf-
fic flow theory, warrant a comprehensive understanding to address complex traffic dynamics (/).
Serving as microscopic representations of traffic interactions, these models illuminate the driver’s
responses when following a preceding vehicle within the same lane. Grounded in the fundamental
principles of motion, car-following models usually posit a correlation between a vehicle’s acceler-
ation and various attributes, including its current speed, the gap with the preceding vehicle, and the
relative speed difference. The key to car-following theory lies in the stimulus-response framework
((2); (3)), which suggests that a driver’s response (acceleration) is influenced by the immediate
driving environment (stimulus) and their personal sensitivity. Various models have adopted differ-
ent factors, both external and internal, to serve as stimuli in order to simulate the responses that
determine acceleration patterns. These models generally rely on a generic equation that connects
key factors of vehicle behavior, as illustrated below:

dvy(t) = f(vn,su(t),Avy(2),...)dt (1)

Here, the nth vehicle’s acceleration at time step ¢ is related to its current state of speed v,
space gap s and speed difference Av with its leading vehicle, and so on. Utilizing car-following
models facilitates the analysis of traffic flow dynamics at the individual vehicle level, offering a
comprehensive overview of various influencing factors and conditions. Additionally, these models
act as a crucial bridge between individual behaviors and macroscopic analysis. By transforming
micro-level behaviors into macro-level outcomes, these models empower researchers and traffic
management authorities to comprehend better, anticipate, and manage traffic flow, thereby enhanc-
ing transportation systems.

A significant assumption within classical car-following models is the premise of ideal en-
vironmental conditions, specifically, consistently ideal weather. Such assumptions may lead to
undesirable performance when the ambient driving environment changes, given that car-following
behavior inherently involves the integration of the driver, vehicle, and environment ((4)). On the
other hand, employing data-driven methods to investigate car-following behavior under adverse
weather conditions (especially rain and snow) appears unfeasible. This is because, to the best
knowledge of the authors, currently available open-source vehicle trajectory data are mainly col-
lected under good weather conditions. Additionally, the presence of rain and snow may complicate
video recording (for example, snow may cover the camera) and trajectory extraction, making the
collection of a large dataset unfeasible. Recognizing the impact the adverse weather, numerous
studies have been conducted to investigate the impacts of weather changes. The most significant
influences are the reduction in visibility and the decrease in road adhesion. (5) assessed the impact
of fog on stable driving, acceleration, and deceleration stages, respectively. Through question-
naires, (6) found that drivers tend to adopt more conservative driving behaviors when visibility is
low. (7) developed a modified FVDM to describe drivers’ car-following behavior under varying
levels of visibility. In addition to reduced visibility, adverse weather conditions can also lead to
decreased road adhesion. (8) calibrated the Wiedemann car-following model using field data, sug-
gesting that drivers tend to maintain lower acceleration rates and velocities while keeping a larger
vehicle headway under snowy conditions. (9) calibrated the Van Aerde car-following model using
field data collected from icy roads in Hokkaido, highlighting significant statistical differences in
response time, desired velocity, velocity, road capacity, and congestion density.

To enhance the understanding of car-following behavior under inclement weather condi-
tions, simple calibration of classical car-following models may not suffice, as these models typi-



O 00 9 N Lt W

e e e e
AN Nk~ W= O

17
18
19

20

21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42

Yang, Lei, Zhang and Yang 4

cally overlook the influence of weather in their formulations. Furthermore, existing research has
predominantly explored the effects of reduced visibility and compromised tire-road adhesion in
isolation. Therefore, the development of a modified classical car-following model, informed by
real-world datasets gathered under adverse weather conditions, presents a promising avenue. The
objective of this study is to propose a model that is not only able to accurately simulate drivers’
behaviors but also provides insights into the adjustments necessitated by such conditions. In light
of the gaps identified and the goals of this research, this study leverages the Intelligent Drive
Model(IDM) as the base model due to its accurate simulation capabilities and clear explanation of
each parameter (/0). This paper first seeks to examine the limitations of the IDM under adverse
weather conditions, followed by proposing a modified version of the IDM to rectify the issue. Sub-
sequently, real-world data collected under both rainy and snowy weather conditions are adopted to
investigate the performance of the proposed model.

The remainder of the paper is organized as follows: Section 2 introduces the proposed
methodology; Section 3 demonstrates the performance of the proposed model using real-world
data collected under rainy and snowy weather conditions; and finally, Section 4 concludes with a
discussion on the proposed model and suggestions for future work.

METHODOLOGY

Review of the Intelligent Driver Model

The original IDM can be(express)ed as follows:

dvy, Vs S (v, Avy)

ar — =) = (= =) 2
The free accelerating term a[l — (:—3)5] governs the acceleration of the vehicle. Here, a represents
the maximum acceleration, and vy denotes the vehicle’s desired speed. Given an unobstructed path
for a stationary vehicle, the vehicle would first accelerate at the rate of a, and the acceleration
gradually decreases as the speed increases. Such reduction is controlled by the exponent term
0, and the vehicle would not exceed its desired speed. In accordance with the IDM author’s

recommendation (/17), this paper assigns the value of 4 to 6.

. VpAvy

s (v, Avy) = 59 + max(v, T + ——=,0 3
Avy, =v, — Vv “4)
Sn=Xp—1—li—1—xy )

On the other hand, the vehicle’s decelerating process is regulated by the braking term
(S*(Vz—’AV"))Z, where s*(v,,, Av, ) represents vehicle’s desired gap and s,, is the actual gap as shown by
Equa?ions 3 - 5. The term sg + v, T denotes the vehicle’s desired following distance at the steady
state. Here, the minimum gap, s, represents the space gap between the standstill vehicles, T is the
time gap that the driver aims to maintain while in motion. The dynamic term %, symbolizes
the driver’s response to the speed difference Av,, based on its own comfortable deceleration b. One
of the merits of IDM is its flexibility in representing various driving styles by altering parameter
values.

When weather conditions shift from normal to adverse, the two most evident changes in-
volve the reduction in visibility and the decrease in road adhesion. The reduction in visibility

may increase the driver’s estimation error and reaction time, leading to changes in driving behav-
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iors. However, research has shown that such impacts could be compensated for by the driver’s
spatial and temporal anticipation. Additionally, classical car-following models have demonstrated
good performance even without accounting for these specific human errors (/2). Although adverse
weather conditions can constrain the maximum acceleration and deceleration capabilities, drivers
rarely utilize these full capacities in actual driving scenarios. Incorporating terms directly related
to such environmental changes can be challenging due to the difficulty in precisely measuring and
quantifying factors such as visibility and tire-road friction. Moreover, the IDM effectively cap-
tures driver characteristics, with each parameter representing a distinct driver trait rather than a
physical-world feature. Therefore, developing a modified IDM by introducing a parameter that
denotes changes in a driver’s level of caution in response to decreased visibility and road adhesion
during adverse weather conditions appears more reasonable.

The IDM employs distinct terms to represent acceleration and deceleration patterns, re-
flecting the different actions a driver may take during different following patterns. This study first
investigates the IDM’s capacity to represent acceleration and deceleration independently. During
adverse weather conditions, drivers typically adopt more cautious behavior, maintaining slower
speeds, reducing acceleration rates, and preferring to keep larger distances from the vehicle ahead
(13). As previously mentioned, the IDM portrays accelerating behavior as a smooth and con-
tinuously decreasing action as speed increases, well defined by the parameters vy and a. This
cautionary behavior during acceleration can be symbolized by reducing these parameters’ values.
Simultaneously, increasing the values of T and sg could depict the desire for a greater following
distance at a steady state. One instinctive method to illustrate an increase in caution as the follow-
ing vehicle approaches the leading one (i.e., when Av,, > 0) is to change the value of 5. However,
unlike a, merely changing the value of b does not necessarily lead to good performance in decel-
eration. As a result, such modification may not accurately reflect the cautious behavior and might
even negatively impact the model’s performance. The physical interpretation of the parameter b is
"comfortable deceleration", and the magnitude of b determines not only the deceleration rate but
also significantly influence the driver’s braking strategy. Generally, a driver with a lower b value
tends to accept a lower deceleration rate when feeling safe and might even engage in more abrupt
braking compared to a driver with a higher comfortable deceleration rate during critical scenarios
(14). To illustrate, consider a situation where a vehicle is in a driving condition with a following
distance s, = so + v, T, and the leading vehicle suddenly reduces its speed to zero.

The braking term calculates the deceleration rate is shown as follows:

2

vn
n 2 /7 4
S}’l+2 ﬁdb)z__vn ab_a vn

— — 6
a Sy bs, ans,% ©)

Vgith the kinematic deceleration rate:

v
bkin = ﬁ (7)
n
v

Sn+ Wab\a  2bripVab b,%in g
Al E e e, ®

As articulated in Equation 8, when Av, > 0, the driver’s deceleration behavior is directly
related to the relationship between by;, and b. If by;, > b, the driver interprets this as a critical
condition, thereby opting for a larger deceleration than deemed necessary. Conversely, if by, < b,
the driver would perceive the scenario as non-critical and thereby opt for a deceleration less than b
and will brake harder and harder as by;,, increases.
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To illustrate this behavior, a simulation was conducted, maintaining all the other parameters
at their recommended values. Drivers operating vehicles at a speed of 54km/h, but possessing dif-
ferent values of b, would exhibit significantly different maneuvers under the same circumstances.
As depicted in Figure 1, at the start of the simulation, a driver with b = 1m/ 52, perceives the sce-
nario as critical and thus applies a deceleration much greater than the comfortable deceleration rate.
Conversely, a driver with b = 2.5m/s> perceives the situation as safe and initially applies only a
minor deceleration, subsequently braking more intensively until the comfortable deceleration rate
is reached. While the driver with b = 1.5m/s? exhibits a braking behavior that falls between that of
the drivers with b = 1m/s® and b = 2.5m/s?, reaching the maximum deceleration rate at a similar
time to the driver with b = 1m/ s? and achieving a maximum deceleration rate comparable to that
of the driver with b = 2.5m/s?. Generally, the maximum value of b should not be greater than
the acceleration due to gravity. By keeping all other parameters constant, an extremely conserva-
tive driver with b = 0.6m/s> could generate a similar deceleration rate to an extremely aggressive
driver with b = 9.8m/s?. The primary difference is when they reach the maximum deceleration
rate. Neither an extremely small nor a large value of b is desirable for conducting simulation as
they may both generate an unreasonably large deceleration rate.

£ 21
g _ 2
) — b=0.6m/s
g 4 2
< b=1m/s
g —6 1 —— b=15m/s?
3 —— b=25m/s?
= g —— b=98m/s?
T T T T T T T
0 2 4 6 8 10 12
Time (s)

FIGURE 1: Illustration of the variations in braking behaviors among drivers with different b
values

Further elucidation is provided in Figure 2, which display the predicted acceleration rates
when following a vehicle traveling at a constant speed of 80km/h. These figures depict how drivers
with differing values of s, and Av,, would respond. Notably, the red and the dashed lines represent
the contour lines of predicted acceleration equal to Om/s*> and —7m/s?, respectively, the region
with predicted acceleration smaller than —7m/s? is regarded as unrealistic in reality considering
the reduction of the road tire adhesion due to the inclement weather conditions. It can be shown
that a driver with a smaller comfortable deceleration rate is more sensitive than those with a larger
comfortable deceleration rate. This phenomenon can be directly observed by examining the dy-
namic term (v,Av,)/(2v/ab). Under the same circumstances, a smaller b can lead to a larger
desired gap, thus causing harder braking.
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10 T T . =T 10 T T =T
=30 =20 —10 0 10 20 in =30 =20 —-10 0 10 20 30
Speed Difference (km'h) Speed Difference (km'h)
(a) feasible deceleration regions for b = 1m/ s2 (b) feasible deceleration regions for b = 2.5m/ 52

FIGURE 2: Illustration of the feasible deceleration regions for drivers with different b values

Conservative Intelligent Driver Model under adverse weather condition

As previously mentioned, the magnitude of b plays a crucial role in influencing driver behavior,
especially in response to the leading vehicle decelerating. This parameter not only dictates the
maximum deceleration rate achievable but also the timing at which this maximum rate is attained.
Drivers characterized by a lower b value exhibit more conservative driving patterns under perceived
safe conditions yet may tend to overreact in critical conditions. Conversely, individuals with a
higher b value display greater resilience in critical scenarios but tend to behave more aggressively.
Therefore, solely adjusting the magnitude of b cannot accurately capture such conservative behav-
ior under adverse weather conditions. Therefore, introducing a parameter representing the driver’s
conservative level due to the inclement weather conditions seems promising. In this study, "con-
servative" refers to the driver’s increased tolerance for a larger following distance to the leading
vehicle and heightened sensitivity to a decrease in this distance under adverse weather conditions,
as compared to normal weather. This approach assumes that, despite reduced visibility, drivers can
still detect deceleration in the leading vehicle through brake lights, and acknowledge that it will
take a larger distance to brake due to reduced tire-road friction in adverse conditions. Conversely,
the delayed recognition of the leading vehicle’s acceleration by the following vehicle may result
from reduced visibility, a more cautious driving approach, or diminished vehicular acceleration
performance on slippery roads. Regarding the sensitivity of a driver’s braking behavior as it re-
lates to the value of b, and to make the proposed model as parsimonious as possible, this study
introduces an additional term into the desired gap equation. This term directly accommodates the
driver’s response to the speed difference in adverse weather conditions, as expressed in Equation
9:

R? max(Avy, —k) VAV
*(Vny Avy) = T+ —log(1 L)+ =0 9
5* (v, Avy) = 50+ max(v, T + 5 og(1+( R ) )—1—2\/%, ) )

Preserving the original definitions of the parameters in accordance with the IDM, this study
introduces an additional parameter, denoted as R. R is a positive parameter representing the in-
crease in the desired gap under adverse weather conditions compared to normal conditions. Rather
than attributing such conservative behavior solely to changes in the parameter b during the ap-
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proach phase, this study considers such behavior as an increase in the desired following distance,

reflecting a heightened level of driver caution. The newly added %2 log(1+ (W)z) is en-
lightened by an adaptive robust kernel function (/5), which ensures that the driver will initiate a
more substantial deceleration when the product of v,Av, is relatively small (i.e., safe condition).
However, when this product is sufficiently large, % will dominate the desired gap, prompting
the driver to decelerate at a rate similar to that observed in the original IDM. It’s important to
note that the newly introduced term also assumes a positive value, offsetting the negative v,Av,,
to reflect the driver’s tolerance for an increased following distance or reduced friction resulting
in a slower acceleration rate. Additionally, the term max(Av,, —k) ensures that, when the leading
vehicle significantly outpaces the following one, the following vehicle will still adopt the maxi-
mum acceleration rate as the negative impact of v,Av, becoming greater than the compensatory
added term, in this study, k is set to -4 m/s. Such benefits are illustrated in Figure 3. Given the
same Av, = 3m/s, drivers exhibit distinct behaviors depending on the value of v,. The proposed
model, named the Conservative Intelligent Driver Model (CIDM) shows that drivers brake more
forcefully when v,Av,, is low and perform in a manner similar to the predicted behavior predicted

by the original IDM with a b value of 1.4 as v, Av,, increases.

_'\lo -
— IDM (b= 1.2m/s)
257 = IDM (b= 1.3m/s%}
E S — IDM (b= L4m/s?)
- —— CIDM (b= 1.5m/s, R=1)
5 35+
5
< 40
-
]
i)
= 4.5
3
=
__-’{0 -
20 40 60 80 100 120
Speed (km/h)

FIGURE 3: Comparison of predicted deceleration by IDM and CIDM

It should be noted that the newly introduced term affects the desired following distance only
in the presence of a speed difference, indicating that the vehicle’s free acceleration and behavior
at equilibrium would remain consistent with the original IDM. However, when there is a nonzero
speed difference, a limitation of the added term is that R cannot take a value of zero, ensuring
that this term remains positive whenever a speed difference is present. The purpose of introducing
this term is to enable the modeling of potential conservative driving behavior. If this behavior
can be accurately calibrated from field data, the modified model’s performance should be at least
equivalent to that of the original IDM. In other words, the addition of this term is not intended
to compromise the IDM’s performance, nor is it assumed that conservative behavior is always
present.

To evaluate whether the added term might detrimentally affect model performance, a sim-
ulation was conducted, the results of which are displayed in Figure 4. When R is set to 0.1, even if
the speed difference reaches 120km/h, the impact of the newly added term to the desired following
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distance is negligible. Therefore, it is suggested that during calibration, if the value of R is cali-
brated to be 0.1 or less, the modified model can be considered equivalent to the original IDM in
terms of performance. This conclusion is further supported by experimental findings.

0.10

0.08

0.06

0.04

0.02

Desired following distance (m)

0.00

T
0 20 40 60 80 100 120
Speed difference (km/h)

FIGURE 4: Illustration of the impact of speed difference to the desired following distance when
R=0.1

EXPERIMENTAL STUDY

Case setup and data collection

Several key questions require resolution: (1) What constitutes an effective calibration method for
the proposed model? (2) Will the CIDM yield parameters akin to those of the IDM? (3) Under
what circumstances does CIDM become the same as the IDM? To evaluate the proposed model’s
efficacy and address these questions, this study used two real-world vehicle trajectory datasets
collected separately under rainy and snowy weather conditions. The rainy dataset is provided by
the CitySim dataset (/6). CitySim is a cutting-edge vehicle trajectory dataset that extracts vehicle
trajectory data from high-resolution videos recorded by drones at various locations. As shown in
Figure 5, this study uses the Expressway-A dataset collected from a weaving segment located in
Asia. The snowy dataset was collected by the author at the I-695 highway segment in Baltimore,
Maryland, United States on 01/15/2024 using a drone, in total 50 minutes video was collected and
transformed into the vehicle’s trajectory. The car-following pairs were identified based on each
vehicle’s coordinates at the same time step.

(a) Stretch of rainy weather dataset segment (b) Stretch of snowy weathér dataset segment ‘
FIGURE §: Illustration of target road segments
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To address the influence of lane-changing behavior on car-following behavior, and consid-
ering the variation in individual driving styles, this study aims to evaluate the performance of the
CIDM and IDM using individual vehicle trajectories. The calibration objective is to identify an op-
timal parameter set that minimizes the discrepancy between the car-following behaviors predicted
by the model and those observed in reality. Calibration of a car-following model involves choosing
an appropriate optimization algorithm, a goodness-of-fit (GoF) function, and a measure of perfor-
mance (MoP). In this study, the Genetic Algorithm (GA) is chosen for parameter calibration due
to the complexity of the models. GA, a heuristic nonlinear optimization algorithm inspired by
biological evolution, has proven to be an effective and reasonable method for calibrating various
car-following models ((/7), (14), (18), (19)). Furthermore, the combination of MoP and GoF can
significantly influence the effectiveness of the calibration process. As shown by Equations 10— 11,
this study investigates the two most commonly used combinations for calibration: the root mean
square error (RMSE) of speed ((20), (21), (22)), and RMSE of spacing ((23), (24), (25)). A lower
GoF value indicates a more precise simulation.

T
RMSE(v) = [ = Y [n(e) (1) (10)
t=1
T
RMSE(s) = \/% Y [si(t) = 5i(1))2 (11)
=1
vt + A1) = vy, +ay(t) - At (12)
St 4 At) = () STV (13)

where v;(7) and s;(r) represent the observed speed and spacing of the ith vehicle at time 7, respec-
tively, and v;(¢) and s;(¢) correspond to the simulated speed and spacing.

To ensure that the calibrated parameters of the CIDM and IDM remain within a realistic
range, their boundaries are defined as follows: The time gap T is set between [0.1, 3] seconds
and the minimum spacing s¢ is limited to [1, 5] meters. The maximum acceleration is restricted
to [0.1, 4] m/s?, which correlates with a maximum acceleration rate of 4 m/s? (equivalent to O-
100km/h in 6 seconds), while the comfortable deceleration boundary is set at [0.1, 9] m/s2. The
parameter R is bounded within [0.01, 15]. The upper limit of the desired velocity vq is set to
33.6 m/s (120km/h). Regarding the lower limit, it should be noted that this limit must exceed the
highest velocity value observed in the dataset, a detail often overlooked in other studies. This is a
critical consideration because if the actual velocity exceeds vg, the power of 4 applied in the (%)4
can induce an excessively large deceleration. It is important to remember that vg in the IDM is
primarily designed for modeling acceleration and is not intended to handle deceleration scenarios
(11). In this study, the parameters for executing the GA for calibration are as follows: the GA will
run for a maximum of 500 generations, with each generation consisting of a population of 200.
The mutation rate is set to 0.05. Additionally, this study employs a ballistic integration scheme, as
detailed in Equations 12 and 13. This scheme utilizes an integration time step, Af, of 0.2 seconds,
which is used for the periodic updating of vehicle speed and position. For the sake of computing
intensity, the sampling rate employed in this study is 0.2s for both datasets, which has been deemed
sufficient for calibrating the car-following model (26).

In addition, it should be noted that aside from calibration settings, the quality of data can
significantly impact the calibration results when a single trajectory is used to emulate driving be-
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1 haviors. The effectiveness of a training dataset depends more on its quality than on its sheer
2 volume (26). A trajectory that includes only a stop-and-go scenario is insufficient for calibrat-
3 ing the desired speed, as it lacks the corresponding condition. Therefore, verifying the dataset’s
4 completeness is a crucial step before calibration. Considering that the proposed model primarily
5 focuses on investigating driver’s behavior to the speed difference under rainy and snowy weather
6 conditions, trajectories from seven vehicles, all containing deceleration regimes, are selected for
7 calibration. These are calibrated using RMSE(s) and RMSE(v) as separate objective functions.
8 Results discussions
9 Case study 1: rainy weather conditions
TABLE 1: Calibration Results of IDM and CIDM with RMSE(s) of rainy dataset
Vehicle Vo T 50 a b R RMSE(s) RMSE(v)
358§ ADM) 11.02m/s 1.54s 3.27m 3.98m/s> 1.28m/s> NA 0.733 0.332
358 (CIDM) 11.72m/s 1.53s 3.25m 3.93m/s> 2.50m/s> 1.16 0.726 0.331
730 (IDM) 27.16m/s 0.95s 225m 0.87m/s> 0.18m/s> NA  0.507 0.400
730 (CIDM) 1524 m/s 1.54s 2.03m 247 m/s> 6.13m/s?> 10.87  0.417 0.409
1340 IDM) 750 m/s 1.15s 241m 255m/s’> 8.82m/s> NA 0.858 0.437
1340 (CIDM) 7.50m/s 1.13s 242m 2.58m/s> 8.84m/s> 0.08 0.854 0.440
1814 IDM) 993 m/s 0.50s 2.63m 3.97m/s> 0.10m/s> NA 0.482 0.306
1814 (CIDM) 9.93m/s 0.50s 2.56m 3.93m/s> 0.10m/s> 3.39 0.477 0.300
4231 (IDM) 1326m/s 1.17s 2.73m 243m/s*> 0.73m/s> NA  0.625 0.483
4231 (CIDM) 14.18m/s 1.18s 2.71m 253 m/s*> 0.87m/s> 0.04  0.625 0.479
5283 IDM) 19.76m/s 1.29s 3.95m 0.68 m/s> 0.59 m/s> NA 0.431 0.475
5283 (CIDM) 1833 m/s 1.06s 3.92m 0.72m/s> 1.0l m/s> 2091 0.421 0.474
TABLE 2: Calibration Results of IDM and CIDM with RMSE(v) of rainy dataset
Vehicle Vo T 50 a b R RMSE(s) RMSE(v)
358 (IDM) 3295m/s 1.97s 1.66m 0.66m/s> 194m/s> NA  1.578 0.226
358 (CIDM) 29.10m/s 1.95s 1.68m 0.65m/s> 1.92m/s> 0.07 1.582 0.226
730 IDM) 30.34m/s 1.28s 2.70m 0.83m/s> 0.24m/s> NA 1.117 0.377
730 (CIDM) 3141m/s 1.87s 1.88m 2.00m/s> 243m/s> 830  0.764 0.363
1340 ADM) 31.61m/s 1.19s 1.89m 129m/s> 9.00m/s> NA 1.212 0.319
1340 (CIDM) 31.04m/s 1.17s 1.75m 135m/s> 899 m/s> 0.56 1.277 0.316
1814 IDM) 3296m/s 0.81s 3.30m 331m/s?> 8.99m/s> NA  1.366 0.229
1814 (CIDM) 30.36m/s 0.78s 3.43m 3.58m/s> 8.97 m/s> 0.75 1.422 0.221
4231 (IDM) 11.78m/s 1.34s 331m 1.96m/s*> 7.19m/s> NA  1.854 0.323
4231 (CIDM) 1201 m/s 1.34s 3.30m 2.00m/s> 7.91 m/s> 0.02 1.848 0.323
5283 IDM) 19.36m/s 2.06s 1.05m 048 m/s> 8.96m/s> NA 2.648 0.355
5283 (CIDM) 25.51m/s 1.71s 1.76m 0.41 m/s> 4.64m/s*> 0.85 1.988 0.341
10 The calibration results employing RMSE(s) and RMSE(v) as objective functions are sys-

11 tematically presented in Table 1 and Table 2, respectively. These tables detail the calibrated pa-
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rameters for each vehicle trajectory, along with the accompanying RMSE(s) and RMSE(v) values.
Additionally, Figures 6 and 7 graphically compare the predicted speeds and gaps, respectively.
A clear pattern emerges from both the tabular and graphical data: the performance in terms of
RMSE(s) is lower when gap is used as the MoP, as opposed to when speed is used as MoP, and
vice versa for RMSE(v). Notably, the magnitude of this discrepancy is significantly more pro-
nounced when speed is employed as the MoP for calibration.

This observed discrepancy can be attributed to the following factors: When speed is the
primary MoP, discrepancies in the model’s predictions tend to accumulate over time and are further
amplified. This is particularly evident in scenarios where the model’s focus on minimizing velocity
error (RMSE(v)) leads to an oversight in the accuracy of vehicle positioning. In this context, the
model exhibits a 'memoryless’ behavior with regard to spacing errors, suggesting a potential lack
of adjustment in its parameters in response to spacing discrepancies over time. Conversely, when
the calibration centers around minimizing RMSE(s), the model demonstrates increased sensitivity
to vehicle positioning and spacing accuracy. This results in consistent adjustments of the model’s
parameters to ensure that the predicted spacing closely aligns with the observed data. The trade-off
here is a marginal increase in velocity error, but this contributes to a more accurate prediction of
spacing over time. On the other hand, the braking term (s*(vt'v—m”))2 is derived based on the current
gap and the desired gap, which is insensitive to speed. Thus, lrising the gap as the MoP is preferable
when calibrating. The subsequent analysis will be based on the results shown in Table 1.

In this study, the calibrated value of v is not discussed because, the dataset does not contain
the free flow scenario, and vy is calibrated from the free flow regime. On the other hand, the
magnitude of the vy does not show a significant influence on predicting performance (26). Drawing
a conclusion from the categorized analysis of the calibration results, it is reasonable to assert that
the CIDM is generally a preferable choice over the IDM in various scenarios. This assertion is
based on the following observations from the three categories:

CIDM Outperforms IDM: In several instances (vehicles 358, 730, and 5283), CIDM demon-
strated superior performance compared to IDM, as indicated by lower RMSE(s) values, indicating
a more precise simulation of car-following dynamics. For vehicle 358, Both models estimated
similar parameters for a, T, and so. However, in the CIDM, a higher b value (2.50 m/s? compared
to 1.28 m/s? in the IDM) and the incorporation of R = 1.16 correlated with a lower RMSE(s), sug-
gesting that adjusting b alongside R potentially offers a more accurate reflection of driver behavior
under certain conditions. This implies that the CIDM’s framework, which accounts for driver sen-
sitivity variations through R, can more accurately capture the dynamics of car-following behavior.
For vehicle 730, all the estimated parameters in CIDM differ from those in IDM, with b increas-
ing substantially to 6.13 m/s”> from 0.18 m/s?>. The introduction of a high R value significantly
reduces RMSE(s).For vehicle 5283, the CIDM’s moderate adjustments in b and the introduction
of R =2.91 also resulted in a better model performance. These instances illustrate that the CIDM,
with its additional parameter R, provides a valuable extension to the traditional IDM framework,
enabling a more nuanced and flexible adaptation to varying driver sensitivities and behaviors.
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FIGURE 6: Comparison of estimated speed of IDM and CIDM using RMSE(s) and RMSE(v)

Similar Performance Between CIDM and IDM: In the case of vehicle 4231, CIDM and
IDM exhibit nearly identical performance. In the CIDM, the estimated value of R is less than 0.1,
suggesting that the conservative behavior typically enhanced by this parameter is not pronounced.
Consequently, the other parameters estimated under the CIDM closely align with those derived
from the IDM. This similarity implies that in scenarios where conservative driving behavior is
minimally detected from the dataset, the CIDM adapts by mirroring the original IDM’s parameters
and performance. The fact that the CIDM neither underperformed nor significantly outperformed
the IDM in this instance further validates its reliability and applicability in conditions similar to
those modeled by traditional methods. This scenario underscores the CIDM’s capability to operate
equivalently to the IDM when the additional complexity introduced by R does not influence the
driving behavior captured in the dataset.

Limitations Arising from Data Constraints: The calibration challenges encountered with
vehicles 1340 and 1814, where both models hit the predefined limits of the b parameter, high-
light significant data constraints rather than deficiencies within the models themselves. For vehicle
1814, although the CIDM estimates an R value of 3.39, resulting in a lower RMSE(s), the b values
hit the lower threshold. Such calibration outcomes are deemed unsuccessful because a b value of
0.1 m/s” suggests extreme driver sensitivity, resulting in an unrealistic deceleration rate that is im-
practical for reliable simulations. Similarly, for vehicle 1340, the estimated b values in both models
approach the upper limit of comfortable deceleration. As previously mentioned, neither exceed-
ingly high nor low b values are appropriate for realistic simulations. Consequently, these instances
of calibration are regarded as failures within this study, underscoring the challenges posed by in-
sufficient data in accurately determining the comfortable deceleration term. This analysis suggests
that the observed calibration failures stem not from inherent model flaws but from the limitations
imposed by the available data.

In light of these findings, it can be concluded that CIDM is a viable and often superior
alternative to IDM in various driving scenarios. Its ability to either outperform or match the per-
formance of IDM, combined with the fact that the observed limitations are primarily due to data
constraints, suggests that CIDM can be confidently utilized in diverse circumstances where ac-
curate car-following behavior modeling is required. However, it is crucial to acknowledge that
the effectiveness of CIDM, like any model, is contingent upon the availability and quality of the
calibration data.
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FIGURE 7: Comparison of estimated gap of IDM and CIDM using RMSE(s) and RMSE(v)

Case study 2: snowy weather conditions

The efficacy of the proposed model was further evaluated using a dataset collected under snowy
weather conditions. Leveraging the approach established in the previous section, the combined
MoP and GoF is determined using RMSE(s). The parameters for the GA execution remain con-
sistent with the previous calibration process. Moreover, the boundary for the parameter b in both
car-following models was the only adjustment made to accommodate the snowy weather condi-
tions. Considering the increased severity of these conditions, it’s unrealistic to expect drivers to
adopt an aggressive braking strategy. Therefore, the boundary for b was specifically set at [0.1, 4]
m/s2, while the boundaries for all other parameters remained unchanged from the calibration for
rainy weather conditions. The results of this calibration adjustment are documented in Table 3, and
Figure 8 illustrates the simulation outcomes with these newly calibrated parameters.

The calibration results for various vehicles reveal insights into the performance of the
CIDM compared to the traditional IDM. These findings can be categorized into three distinct
groups, similar to patterns observed with datasets under rainy conditions. In the analysis of vehi-
cles 269, 462, 659, and 727, the CIDM consistently outperformed the IDM, as indicated by lower
RMSE(s) values across these cases. Specifically, for vehicle 269, the CIDM reduced RMSE(s)
from 0.241 to 0.167 by slightly increasing the b parameter and introducing an R value of 3.12,
which suggests a more nuanced adaptation to speed changes and improved stability. Vehicle 462
shows modest improvements with CIDM, where an increased b value and an R of 8.20 helped
lower RMSE(s) from 0.568 to 0.548, indicating better compensation for abrupt driving maneu-
vers. In the case of vehicle 659, CIDM’s adjustments resulted in a decrease in RMSE(s) from
0.131 to 0.125 by fine-tuning » and adding an R value of 1.70, which enhances the model’s respon-
siveness to maintaining safer following distances. Most notably, vehicle 727 displayed significant
improvement under CIDM, where RMSE(s) was substantially reduced from 0.147 to 0.121 through
integrating an R of 8.18, thereby capturing the driver’s deceleration behavior more accurately and
effectively handling complex traffic dynamics. These results demonstrate CIDM’s superior ca-
pability in simulating realistic car-following behaviors, particularly in dynamic and challenging
driving environments, and highlight its potential in traffic modeling applications where traditional
methods might not suffice.

These findings reinforce the CIDM’s overall superiority in various driving scenarios, at-
tributing its success to the model’s capacity to integrate additional behavioral nuances through
the R parameter. The performance disparities between the CIDM and IDM, particularly in cases
where the CIDM demonstrates better fit and reduced error metrics, highlight the importance of
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incorporating broader behavioral factors into car-following models. Furthermore, the calibration
challenges encountered, such as those with vehicle 221, accentuate the limitations of relying solely
on traditional modeling approaches. Consequently, these results advocate for the adoption of the
CIDM in efforts to achieve a more comprehensive and accurate simulation of driver behavior under
diverse conditions.

TABLE 3: Calibration Results of IDM and CIDM with RMSE(s) of snowy dataset

Vehicle Vo T S0 a b R RMSE(s)
123 (IDM) 1491 m/s 0.86s 4.85m 2.17m/s>2 3.62m/sZ2 NA 0221
123 (CIDM) 14.92m/s 0.87s 4.84m 2.14m/s* 323m/s> 0.02 0.222
221 IDM) 1931 m/s 2.36s 291m 035m/s> 0.10m/s> NA  0.093
221 (CIDM) 21.56m/s 2.28s 4.56m 3.79m/s®> 2.53m/s> 7.69  0.043
269 (IDM) 1329m/s 1.64s 1.17m 235m/s? 3.76m/s2 NA  0.241
269 (CIDM) 13.15m/s 1.56s 1.07m 2.04m/s> 3.95m/s? 3.12  0.167
462 IDM) 3249m/s 044s 498m 3.92m/s2 0.97m/s>2 NA  0.568
462 (CIDM) 3094 m/s 047s 499m 271 m/s? 271 m/s>2 820  0.548
659 IDM) 1256 m/s 2.03s 2.14m 3.14m/s> 3.72m/s> NA  0.131
659 (CIDM) 13.37m/s 2.07s 249m 398m/s? 3.92m/s> 1.70  0.125
727 IDM) 31.50m/s 1.62s 349m 096m/s> 3.94m/s> NA  0.147
727 (CIDM) 2641 m/s 1.47s 324m 094m/s> 3.54m/s? 8.18  0.121
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FIGURE 8: Results comparison of CIDM and IDM using snowy dataset
CONCLUSIONS

Car-following models are pivotal in analyzing traffic dynamics at the vehicle level. However,
traditional car-following models often assume ideal environmental conditions, a scenario seldom
encountered in reality, and frequently overlook the influence of weather on car-following behav-
ior. This paper addresses such shortcomings by incorporating the impact of reduced visibility and
road-tire friction into the car-following model. The IDM is employed as the base model due to
its accurate simulations and clear physical interpretation of each parameter. The study initially
examines the differences in driving behaviors under normal and adverse weather conditions and
investigates the IDM’s limitations in simulating such behaviors. Notably, to represent drivers’ cau-
tious braking behavior, the IDM often yields a smaller value for the comfortable deceleration rate,
causing drivers to become oversensitive to critical conditions, potentially generating unrealistic de-
celeration rates. To mitigate this limitation, this study proposes the CIDM by introducing a single
term to the IDM’s desired gap function. This newly added term does not directly take changes in
visibility and friction into consideration; instead, it attempts to capture the driver’s cautious level
in response to speed differences. Stability analysis has been conducted, and stability criteria have
been derived. To further assess the proposed model’s performance, real-world vehicle trajectories
under rainy and snowy conditions were used for calibration. Two combinations of GoF and MoP
are adopted for comparing the calibration results. The calibration results are classified into three
groups: CIDM outperforms IDM, CIDM performs similarly to IDM, and both models fail due to
data limitations. The results suggest that when conservative behavior is detectable from the dataset,
the CIDM generates a lower estimated RMSE(s); when such behavior is not observed, the newly
added term takes a negligible value and shows similar performance to the IDM. Therefore, it can
be concluded that it is safe to calibrate the proposed model to simulate driving behavior under
adverse weather conditions.
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