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ABSTRACT1

This study investigates the integration of traditional car-following models with machine learn-2

ing techniques to analyze car-following behavior in the presence of lane-changing interactions on3

multi-lane road segments. Traditional car-following models, such as the Intelligent Driver Model4

(IDM), are effective with limited data and robust to noise but often fail to capture complex driving5

behaviors. In contrast, data-driven models like Gaussian Process Regression (GPR) can model6

intricate behaviors but require extensive, high-quality datasets. To leverage the strengths of both7

approaches, we propose a hybrid framework that combines IDM with GPR, using IDM as a prior to8

enhance GPR predictions. The analysis demonstrates that the hybrid model significantly improves9

the accuracy of acceleration predictions compared to IDM alone, effectively capturing the nuances10

of real-world driving scenarios. This approach mitigates the limitations of traditional models and11

reduces the dependency on large datasets. The findings underscore the potential of combining12

traditional and data-driven methods to improve traffic behavior simulations, offering promising13

applications in traffic management and autonomous driving. Future research will focus on extend-14

ing this framework to other driving behaviors and integrating additional data sources for further15

enhancement.16

17

Keywords: Car-following model, Microscopic simulation18
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INTRODUCTION1

Car-following behavior refers to the dynamics of a driver maintaining a safe and efficient distance2

behind a leading vehicle while traveling on a roadway. This behavior is influenced by various3

factors such as the relative speed and distance between the vehicles, the driver’s reaction time, and4

their desire to maintain a comfortable and safe driving experience. Understanding car-following5

behavior is crucial for traffic flow analysis, safety assessments, and the development of advanced6

driver-assistance systems (ADAS). Researchers have developed numerous models over the years to7

simulate this behavior, incorporating different assumptions and approaches to capture the complex-8

ities of real-world driving. These models are essential for designing traffic management systems,9

improving road safety, and developing autonomous driving technologies.10

The first car-following concepts were proposed in the early 1950s (1). Since then, different11

classic car-following models have been developed based on various assumptions. For example,12

the Gazis-Herman-Rothery (GHR) model employs a linear form that considers reaction time, a13

sensitivity parameter, and the speed difference to simulate the following vehicle’s acceleration14

((2), (3)). The primary advantage of this model is its simplicity. However, it has several dis-15

advantages, such as assuming uniform driver behavior during both acceleration and deceleration16

phases, which overlooks potential variations in driver responses. Subsequently, (4) introduced a17

memory function into the linear GHR model to address the limitation of using a constant to re-18

act to speed differences. Moreover, (5) proposed an improved version of the model to simulate19

drivers’ reactions to multiple vehicles ahead, rather than solely the leading vehicle. Another cat-20

egory of car-following models primarily focuses on the following distance rather than the speed21

difference as the input, whereas the GHR model and its extensions mainly consider the speed dif-22

ference. The rationale behind this approach is the drivers’ intent to maintain a safe distance from23

the leading vehicle. The most popular model based on this concept is Gipps’ car-following model24

(6), which has been used by simulation models (7). According to this model, drivers will always25

opt for the lower speed between the free flow mode and the car-following mode, underpinning26

the assumption that drivers aim to ensure their vehicle can be safely stopped, even if the leading27

vehicle suddenly brakes. Bando’s Optimal Velocity Model (OVM) was proposed with the notion28

that each driver has an optimal velocity based on their space headway and will constantly adapt29

their speed to reach this optimal velocity (8). However, a significant disadvantage of the OVM is30

its potential to generate unrealistic acceleration rates under certain circumstances (9). To address31

this issue, the Full Velocity Difference Model (FVDM) was introduced by incorporating a term to32

represent the driver’s reaction to the speed difference with the leading vehicle (10). Recognizing33

that physical inputs alone do not fully capture driver behavior, another category of car-following34

models, named psycho-physical models, incorporates perceptions into their framework. A promi-35

nent example of this approach is Wiedemann’s car-following model, widely adopted by simulation36

software (11), segregates driving scenarios into different regimes (free driving, following, closing37

in, and emergency braking) and develops the acceleration equation individually for each regime38

(12). While Wiedemann’s model offers a nuanced understanding of driver behavior by considering39

psychological factors, it is not without drawbacks. One significant limitation is its reliance on pre-40

defined thresholds to transition between driving regimes, which can oversimplify or misrepresent41

the fluidity of human driving behavior. Also, the equations adopted for the different thresholds are42

undisclosed (13). The Intelligent Driver Model (IDM), proposed by (14), stands out among car-43

following models for its unique approach to simulating driver behavior. Unlike previous models,44

IDM incorporates both the driver’s desired speed and desired following distance to determine the45
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acceleration rate, factoring in the current speed, speed difference, minimum safe following dis-1

tance, and maximum acceleration. This model has proven its versatility across various following2

regimes, offering smooth transitions between them (15). Moreover, each parameter in the IDM can3

be related to a separate factor of the driver and has a clear physical meaning.4

With advancements in machine learning and the increasing availability of detailed vehicle5

trajectory data ((16), (17), (18), (19), (20)), attention has shifted towards data-driven car-following6

models, garnering interest from researchers worldwide ((21), (22), (23), (24), (25), (26)). A signif-7

icant branch in this domain employs Artificial Neural Networks (ANN) to analyze car-following8

behavior, providing a novel approach to understanding and predicting driver actions. Like clas-9

sical car-following models, these models use various inputs to predict the driver’s acceleration,10

speed, or following distance at the next time stamp (25). By categorizing drivers into different11

driving modes, (21) utilized the following distance and the speed of the leading vehicle as inputs12

for the ANN to predict the speed of the following vehicle. Their simulations demonstrated that this13

model outperforms the Gipps-based model. However, it’s noteworthy that their study was based14

on a dataset limited to only 300 seconds of real-world data for training, which might not suffice for15

comprehensive model training. (27) explored the use of speed, speed difference, and following dis-16

tance to predict the following vehicle’s acceleration rate, indicating that predictive accuracy highly17

depends on the training data utilized. Furthermore, (28) introduced the driver’s reaction delay as18

an additional input and evaluated the model’s predictive performance using the Next Generation19

Simulation (NGSIM) dataset (16), achieving satisfactory results. (25) proposed a recurrent neural20

network-based car-following model to examine its applicability in predicting oscillations, compar-21

ing its performance with the IDM and demonstrating improved efficacy. Compared to classical22

car-following models, given a sufficient supply of training data, data-driven car-following models23

possess merits such as higher prediction accuracy, the capability to learn complex behaviors, and24

the ability to continuously improve through ongoing data input. However, data-driven models are25

often criticized for their notable sensitivity to data quality, their lower ability to generalize, and26

their lack of transparency and interpretability, stemming from their nature as "black boxes" (29).27

By recognizing the strengths and weaknesses of traditional car-following models and data-28

driven car-following models, researchers have sought to combine both approaches to leverage their29

respective advantages (30). (31) developed a physics-informed deep learning car-following model30

to predict the acceleration of the following vehicle. The primary concept involves first using tra-31

ditional car-following models to generate collocation data, which is then combined with observed32

data. By incorporating the prediction errors from both the traditional car-following models and33

ANNs, the results demonstrate improved accuracy in performance. Later (32) proposed a physics-34

informed Transformer model for predicting vehicle’s longitudinal trajectories.35

The main idea of this type of physics-informed deep learning method involves changing36

the simulation problem into a prediction problem. The collocation data is first generated by the37

traditional car-following models, and then the collocation data and the observed data are split into38

training and testing sets. The model is trained by modifying the loss function of the deep learning39

model. However, the goal of analyzing car-following behavior should be focused on simulation40

rather than prediction. In simulation, only the initial state of the following vehicle should be taken41

as known, rather than taking the information of the following vehicle at any time stamp. Addition-42

ally, incorporating the car-following model into the loss function of the deep learning method does43

not always guarantee better performance, as the collocation data is purely generated without any44

observation. Moreover, the traditional car-following model often performs unsatisfactorily when45
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dealing with lane-changing scenarios. Acknowledging this, this study proposes a new method1

to combine the car-following model with Gaussian Process Regression to analyze car-following2

behavior interacting with lane-changing behaviors. Instead of integrating the car-following model3

into the loss function, it is treated as the prior belief of the estimated acceleration. The performance4

of the proposed model under different car-following scenarios is compared with the traditional car-5

following model and pure GPR, showing that the proposed method outperforms both.6

The remainder of the paper is organized as follows: Section 2 introduces the proposed7

methodology; Section 3 conducts the case study of the proposed model and demonstrates the8

performance using real-world data ; and finally, Section 4 concludes with a discussion on the9

proposed model and suggestions for future work.10

METHODOLOGY11

Deterministic model12

Traditional car-following models exhibit significant drawbacks when interacting with lane-changing13

maneuvers. As shown in Figure 1, when vehicle j − 1 cuts in, the gap between vehicle i and14

i− 1 changes abruptly, leading to a sudden drop in the predicted acceleration for vehicle i. This15

deficiency stems from the inherent accident-free assumption of traditional car-following models.16

These models assume that the following vehicle will anticipate the worst-case scenario, where the17

leading vehicle suddenly brakes to a complete standstill. Similarly, for vehicle j when the leading18

vehicle abruptly leaves the current lane, the sudden increase in the gap can result in an unrealisti-19

cally high predicted acceleration. For the proposed framework, the empirical deterministic model20

plays a crucial role in accurately predicting the longitudinal trajectory. In this study, the IDM is21

chosen to serve as the deterministic model for the following reasons:22

1). Comprehensive Consideration of Driver Behavior: IDM incorporates both the driver’s23

desired speed and desired following distance to determine the acceleration rate, taking into account24

factors such as current speed, speed difference, minimum safe following distance, and maximum25

acceleration. This model has demonstrated its versatility across various following regimes, offering26

smooth transitions between them.27

2). Parameter Interpretability and Flexibility: Each parameter in the IDM can be associated28

with a distinct aspect of driver behavior and has a clear physical meaning. One of the advantages of29

the IDM is its ability to represent a wide range of driving styles by adjusting its parameter values.30

3). Realistic Accelerating Behaviors: When simulating accelerating behavior, the IDM31

generates realistic acceleration rates than other car-following models, avoiding the unrealistic val-32

ues that can sometimes be produced by alternative models.33

FIGURE 1: Illustration of the lane changing behaviors
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The original IDM can be expressed as follows:1

dvn

dt
= an[1− (

vn

vn,0
)δ − (

s∗(vn,∆vn)

sn

)2] (1)2

3

s∗(vn,∆vn) = s0 +max(vnT +
vn∆vn

2
√

anbn

,0) (2)4

5

∆vn = vn − vn−1 (3)6

7

Sn = xn−1 − ln−1 − xn (4)8

The free accelerating term a[1− ( vn

v0
)δ ], governs the acceleration of the vehicle. Here, a represents9

the maximum acceleration, and v0 denotes the vehicle’s desired speed. Given an unobstructed path10

for a stationary vehicle, the vehicle would first accelerate at the rate of a, and the acceleration11

gradually decreases as the speed increases. Such reduction is controlled by the exponent term12

δ , and the vehicle would not exceed its desired speed. In accordance with the IDM author’s13

recommendation ((15)), this paper assigns the value of 4 to δ . On the other hand, the vehicle’s14

decelerating process is regulated by the braking term ( s∗(vn,∆vn)
sn

)2, where s∗(vn,∆vn) represents15

vehicle’s desired gap and sn is the actual gap as shown by Equations 1 - 4. The term s0 + vnT16

denotes the vehicle’s desired following distance at the steady state. Here, the minimum gap, s0,17

represents the space gap between the standstill vehicles, T is the time gap that the driver aims to18

maintain while in motion. The dynamic term vn∆vn

2
√

ab
, symbolizes the driver’s response to the speed19

difference ∆vn based on its own comfortable deceleration b.20

Stochastic modeling21

In this study, we employ Gaussian Process Regression (GPR) to model the underlying dynamics22

of car-following behavior. This section would introduce the GPR from function-space view (to23

understand the GPR from weight-space view, readers could refer to (33), A Gaussian Process (GP)24

is a collection of random variables, any finite number of which have a joint Gaussian distribution.25

Specifically, a distribution over functions f (x) are described by a Gaussian process. It is fully26

specified by its mean function m(x)and covariance function k(x,x′) as shown below.27

m(x) = E[ f (x)] (5)28

29

k(x,x′) = E[( f (x)−m(x))( f (x′)−m(x′))] (6)30

Thus, the Gaussian process can be expressed as:31

f (x)∼ G P(m(x),k(x,x′)) (7)32

Generally, for a pure Gaussian Process Regression (GPR) problem, the mean function is set to33

zero, represents the prior belief of the value of f (x). On the other hand, the covariance function34

determines the relationship between variables. Consider the observed data (xi, fi|i = 1,2,3, ...,n)35

and the estimated mean function f, the goal is to predicted new data x∗ as f∗. The joint distribution36

of the f and f∗ is multivariate Gaussian distribution, which can be expressed as:37
[

f

f∗

]

∼ N

([

m(x)
m(x∗)

]

,

[

Knn Kn∗
K∗n K∗∗

])

(8)38

Knowing the joint probability of f and f∗, the conditional distribution of f∗ could be derived:39

f∗|f,x,x∗ ∼ N (K∗nK−1
nn f,K∗∗−K∗nK−1

nn K∗n) (9)40

It should be noticed the f (x) is a noise-free function. For a more realistic scenario, the noisy41

versions y= f (x)+ε , where ε is a independent identically distributed Gaussian noise with variance42
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σ2
n . The prior on the noisy observations now is:1

cov(y) = Knn +σ
2
ε I (10)2

and Equation 10 now becomes:3 [
y

f∗

]
∼ N

([
m(x)
m(x∗)

]
,

[
Knn +σ2

ε I Kn∗
K∗n K∗∗

])
(11)4

And the conditional probability of y over f∗ becomes:5

y∗|y,x,x∗ ∼ N (y∗|K∗n[Knn +σ
2
ε I]−1y,K∗∗−K∗n[Knn +σ

2
ε I]−1Kn∗)) (12)6

Although GPR is a promising and widely-used non-parametric method that performs well across7

various tasks, it faces criticism when dealing with large datasets due to its computational complex-8

ity. The time complexity of GPR is O(n3) and the storage requirement is O(n2), where n is the9

number of samples. These limitations make it challenging to scale GPR to larger datasets.10

Integration of deterministic and stochastic model11

Notice that the input data used for calibrating the IDM only requires the variables: the following12

distance Sn, the speed difference ∆vn, and the speed of the following vehicle vn. Consistent with13

the IDM, this study also adopts these three variables as inputs. Define the observed data set as x =14

{xi = (Si
n,v

i
n,∆vi

n) | i = 1,2, . . . ,N} and a set of scalars y = {ai | i = 1,2, . . . ,N}, representing the15

observed acceleration rates of the following vehicle. The data x is first calibrated using fIDM(x | λ )16

to obtain the optimal set of parameters λ . The mean function of the GPR is then set as m(x) =17

fIDM(x | λ ), indicating that the IDM-predicted acceleration of the following vehicle represents the18

prior belief of the acceleration value in the GPR. After training the GPR, the performance of the19

proposed model is evaluated. Unlike previous work (31), this study does not use the observed20

information of the following vehicle as input for prediction. This approach mitigates the risk of21

overfitting and ensures a fair comparison with traditional car-following behavior models. The22

initial state x0 = (S0
n,v

0
n,∆v0

n) is set to the known condition, and the predicted acceleration â0 is23

used to update the new state x̂1 = (Ŝ1
n, v̂

1
n, ∆̂v1

n) for the next timestamp as shown by Equation 13 and24

14 where ∆t is set to 0.1 seconds in this study. In other words, for the prediction at time step k+1,25

the input is the simulated x̂k = (Ŝk
n, v̂

k
n, ∆̂vk

n).26

vn(t +∆t) = vn +an(t) ·∆t (13)27

28

xn(t +∆t) = xn(t)+ vn(t +∆t) ·∆t (14)29

CASE STUDY30

Experiment setup31

To validate the performance of the proposed framework, real-world vehicle trajectory data col-32

lected by the NGSIM was utilized. The detailed vehicle trajectory data was gathered on the east-33

bound I-80 in Emeryville, CA, on April 13, 2005. The study segment featured five freeway lanes34

and a high-occupancy vehicle (HOV) lane, spanning approximately 1,640 feet. Given the pres-35

ence of errors in the original dataset, this study adopted the reconstructed version proposed by36

(34). This study aims to investigate car-following behavior in the context of lane-changing in-37

teractions. To this end, five vehicle trajectories were selected, encompassing various scenarios:38

car-following without lane-changing (vehicle 1593 and vehicle 1700), car-following with cutting-39

in (vehicle 797), car-following with the leading vehicle leaving the current lane (vehicle 1649),40

and car-following with both cutting in and leading vehicle leaving the current lane (vehicle 3222).41

The following gap of each target vehicle is shown in Figure 2.42
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(c) Following gap of vehicle 1649
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FIGURE 2: Illustration of the following gap of each target vehicle

Before testing the performance of the proposed model, each individual trajectory was first1

calibrated using the IDM. Various methods can be used to calibrate the IDM, such as maximum2

likelihood estimation (35) and least square estimation (36). Given the complexity of the IDM, this3

study adopts the Genetic Algorithm (GA) for calibration due to its heuristic nature and gradient-4

free approach (37). The parameters for executing the GA in this study are as follows: the GA5

runs for a maximum of 200 generations, with each generation consisting of a population of 1006

individuals. The mutation rate is set to 0.05. On the other hand, it is essential to ensure that the7

calibrated parameters of the IDM remain within realistic bounds to maintain interpretability and8

prevent overfitting. The boundaries for these parameters are defined as follows: the time gap T s set9

between 0.1 and 3 seconds, and the minimum spacing s0 is limited to 1 to 5 meters. The maximum10

acceleration a restricted to 0.1 to 4 m/s2, which corresponds to a maximum acceleration rate of11
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equivalent to 0-100km/h in 6 seconds, while the comfortable deceleration boundary is set at 0.1 to1

9 m/s2. The upper limit for the desired velocity v0 is set to 33.6 m/s (120km/h). The lower limit2

must exceed the highest velocity observed in the dataset to avoid excessive deceleration due to the3

power of 4 applied in the term ( vn

v0
)4 This consideration is crucial because v0 in the IDM is primarily4

designed for modeling acceleration rather than deceleration scenarios (15). By minimizing the5

error of following gaps, The calibrate parameters of each following vehicle is shown by Table6

1. As mentioned before, the calibrated IDM model for each single trajectory is taken as the mean7

function of the GPR, and for the selection of the kernel function, after evaluating multiple available8

kernel functions, the study adopts the radial basis function (RBF) kernel as shown by Equation 15,9

where σ and θ are hyper-parameters. The goodness-of-fit (GoF) function and the measure of10

performance (MoP) in this study is the root mean square error (RMSE) of acceleration as shown11

by Equation 16.12

k(x,x′) = σ
2e

−
∥x−x′∥2

2θ2 (15)13

14

RMSE(a) =

√
1

T

T

∑
t=1

[ai(t)− âi(t)]2 (16)15

TABLE 1: Illustration of calibration result of IDM

Vehicle v0 T s0 a b

797 31.79 m/s 1.08 s 4.96 m 0.77 m/s2 2.09 m/s2

1593 32.71 m/s 0.79 s 3.40 m 3.97 m/s2 1.28 m/s2

1649 29.51 m/s 1.10 s 5.00 m 0.40 m/s2 1.25 m/s2

1700 21.3 m/s 0.96 s 5.00 m 0.97 m/s2 1.47 m/s2

3222 31.14 m/s 0.99 s 1.25 m 4.00 m/s2 8.99 m/s2

16

Results discussions17

To compare the performance of the IDM, pure GPR with no empirical prior, and GPR with IDM18

prior, three groups of experiments were conducted. The corresponding RMSE values and the19

estimated accelerations and the hyperparameters of the proposed model are presented in Figure20

3 and Table 2. In the plots, the red lines represent the real acceleration rate of each following21

vehicle, the green dashed lines depict the simulated acceleration by the IDM model, and the blue22

lines show the predicted acceleration simulated by the GPR with the IDM prior, while the light blue23

areas represent the 95% confidence intervals of the simulated accelerations. Across all trajectories,24

the observed acceleration fluctuates over time, capturing the dynamic nature of real-world vehicle25

behavior.26

The analysis of the five trajectory plots comparing observed accelerations, IDM predicted27

accelerations, and GPR predicted accelerations, along with the GP confidence intervals, reveals28

several key insights. The trajectory of vehicle 797 depicts a cutting-in scenario where a vehicle29

from the adjacent lane cuts in and the leading vehicle switches lanes around 2 seconds. The target30

vehicle continues to follow the new vehicle until the end of the data. The plot shows that the31

IDM model predicts a drastic deceleration when the new vehicle cuts in. In contrast, the GPR with32

IDM prior provides a more accurate estimation, maintaining accuracy throughout the car-following33
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(b) Acceleration comparison for vehicle 1593
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(c) Acceleration comparison for vehicle 1649
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(d) Acceleration comparison for vehicle 1700
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FIGURE 3: Comparison of estimated acceleration results

behavior simulation, whereas the IDM model fails to capture the fluctuations in acceleration. The1

RMSE values reflect this performance, with the IDM having an RMSE of 0.95, while the pure2

GPR and GPR with IDM prior have much lower RMSE values of 0.11 and 0.09, respectively. For3

vehicle 1593, although there are no lane-changing behaviors, the IDM model predicts a significant4

deceleration rate near -10 m/s2 at the beginning, while the actual deceleration rate is around -35

m/s2. The GPR with IDM prior performs better in this scenario, accurately reflecting the observed6

behavior. This is supported by the RMSE values, where the IDM has an RMSE of 1.02, and the7

pure GPR and GPR with IDM prior have RMSE values of 0.51 and 0.27, respectively. For vehicle8

1649, where the leading vehicle leaves the current lane around 8 seconds, the IDM model does9

not show an increase in acceleration as the following gap increases, likely due to the estimated10

maximum acceleration being 0.40 m/s2. Conversely, the GPR with IDM prior shows a better11
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performance, accurately capturing the increase in acceleration. The RMSE values indicate this1

as well, with the IDM having an RMSE of 1.18, while the pure GPR shows a wore performance2

that IDM with RMSE of 2.68 ,while GPR with IDM prior have RMSE values 0.22, shows a better3

performance.For vehicle 1700, during the first 10 seconds of the simulation, both the IDM and GPR4

models fail to simulate the drastic fluctuations in acceleration. However, the GPR still outperforms5

the IDM by providing a closer match to the observed data. This is reflected in the RMSE values,6

where the IDM has an RMSE of 0.95, and the pure GPR and GPR with IDM prior have RMSE7

values of 0.51 and 0.15, respectively. Vehicle 3222 presents a more complex scenario where the8

leading vehicle leaves the current lane around 20 seconds, followed by another vehicle from the9

adjacent lane cutting in. The IDM model generates a sudden change from deceleration to maximum10

acceleration and then another drastic change back to deceleration. In contrast, the GPR with IDM11

prior avoids such abrupt transitions, offering a more realistic result. The RMSE values show this12

clearly, with the IDM having an RMSE of 1.29, while the pure GPR and GPR with IDM prior have13

RMSE values of 1.01 and 0.40, respectively.14

TABLE 2: Results comparison

Vehicle θ σ
2 RMSE(a) (IDM) RMSE(a) (pure GPR) RMSE(a) (GPR with IDM prior)

797 3.06 1.03 0.95 0.11 0.09

1593 1.16 0.726 1.02 0.51 0.27

1649 2.99 1.81 1.18 2.68 0.22

1700 3.64 6.43 0.95 0.51 0.15

3222 3.41 2.64 1.29 1.01 0.40

The IDM predicted acceleration generally follows the observed trends but exhibits devia-15

tions at various points, indicating that while IDM captures overall behavior, it lacks the precision16

to accurately model complex interactions and abrupt changes in real driving scenarios. The tra-17

ditional car-following model tends to show drastic switches in acceleration when dealing with18

lane-changing behavior. On the other hand, pure GPR can sometimes produce worse estimation19

results than IDM. In contrast, the predicted acceleration by GPR with IDM prior closely aligns20

with the observed acceleration across all trajectories, demonstrating the higher accuracy of the21

proposed method. The confidence intervals typically encompass the observed acceleration, sug-22

gesting reliable predictions and realistic uncertainty estimation. This consistency is evident in all23

five trajectories, where the proposed model consistently outperforms both the IDM model and pure24

GPR in terms of accuracy and robustness. Specifically, the proposed model’s flexibility and ca-25

pacity to incorporate both observed data and a physics-informed prior from IDM allow it to better26

adapt to variations in acceleration, capturing more intricate driving behaviors. This integration of27

data-driven approaches with traditional models proves beneficial, as it mitigates the risk of over-28

fitting and ensures a fair comparison with traditional car-following models. Consequently, the29

GPR with IDM prior’s superior performance highlights its potential advantages for applications30

in traffic management and autonomous driving, offering more precise and reliable predictions for31

vehicle accelerations. Overall, the comparative analysis of these trajectories underscores the ef-32

fectiveness of the proposed model in modeling car-following behavior, demonstrating significant33

improvements over traditional IDM estimations.34
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CONCLUSION1

This study investigates car-following behavior in conjunction with lane-changing interactions on a2

multi-lane road segment by combining a traditional car-following model with a machine learning3

method, specifically Gaussian Process Regression (GPR). Traditional car-following models, while4

robust to varying sampling rates and noise, often struggle to accurately replicate complex empir-5

ical driving behaviors. On the other hand, data-driven car-following models can capture these6

intricate behaviors but demand high-quality, large-scale datasets. To leverage the strengths of both7

approaches, this study proposes a new framework that integrates traditional car-following models8

with GPR. The proposed method utilizes the IDM as a prior in the GPR framework to enhance9

the accuracy of acceleration predictions. The analysis demonstrates that GPR, when informed by10

IDM, provides superior performance in predicting vehicle accelerations compared to using IDM11

and pure GPR alone. The results indicate that the GPR with IDM prior is more effective at mod-12

eling the complex interactions between car-following and lane-changing behaviors, capturing the13

nuances of real-world driving scenarios more accurately. This hybrid approach not only mitigates14

the limitations of traditional models but also reduces the dependency on large-scale, high-quality15

datasets typically required by purely data-driven methods.16

Overall, the findings highlight the potential of combining traditional car-following mod-17

els with advanced machine learning techniques to improve the accuracy and reliability of traffic18

behavior simulations. This integrated approach offers significant advantages for applications in19

traffic management and autonomous driving, providing more precise and robust predictions of ve-20

hicle dynamics. Future research could extend this framework to other aspects of driving behavior21

and explore the integration of additional data sources to further enhance model accuracy and appli-22

cability. The continued development of such hybrid models holds promise for advancing the field23

of traffic flow analysis and contributing to safer and more efficient transportation systems.24
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