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Figure 1. Six samples of the scenes in the dataset. The different agent’s LiDAR point clouds are colored as follows: electric vehicle-001

(EV-1) in purple, electric vehicle-002 (EV-2) in red, urban vehicle (Laser) in

, and the RSU DOME and TOP LiDARs in green

and blue, respectively. We also draw the annotated bounding boxes within the scene. Best viewed in color.

Abstract

Vehicle-to-everything (V2X) collaborative perception
has emerged as a promising solution to address the limita-
tions of single-vehicle perception systems. However, exist-
ing V2X datasets are limited in scope, diversity, and quality.
To address these gaps, we present Mixed Signals, a com-
prehensive V2X dataset featuring 45.1k point clouds and
240.6k bounding boxes collected from three connected au-
tonomous vehicles (CAVs) equipped with two different con-
figurations of LIDAR sensors, plus a roadside unit with dual
LiDARs. Our dataset provides point clouds and bounding
box annotations across 10 classes, ensuring reliable data
for perception training. We provide detailed statistical anal-
ysis on the quality of our dataset and extensively benchmark
existing V2X methods on it. Mixed Signals is ready-to-use,
with precise alignment and consistent annotations across
time and viewpoints. We hope our work advances research
in the emerging, impactful field of V2X perception. Dataset
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details at https://mixedsignalsdataset .cs.
cornell.edu/.

1. Introduction

In recent years, driver assistance [19, 29] and autonomous
driving [1, 47] technologies have advanced significantly,
equipping vehicles with promising capabilities in percep-
tion [20, 44], planning [13, 15], and control [2, 8]. Most
of these developments focus on single autonomous vehicle
scenarios. Despite the advancements, such settings still face
challenges in complex or unpredictable situations [42]. For
instance, important traffic participants can be occluded from
view, or sensors can fail unexpectedly. As autonomous ve-
hicle deployment increases, new possibilities emerge to ad-
dress these issues: multiple vehicles can communicate with
each other and nearby infrastructure, enabling each vehi-
cle to reliably detect road users even when its own sensors
miss them by leveraging shared information. This approach
is commonly referred as vehicle-to-everything (V2X) col-
laborative perception.

While single-vehicle perception datasets are abundant



Dataset Hetero. Location Driving # Roadside # CAV # Point #3D # Classes  # Vulnerable Track
Fleet Side LiDARs Clouds (K) Boxes (K) Classes 1D
V2X-Sim [23] X CARLA Right 1 5 10.0 26.6 1 0 v
OPV2V [42] X (‘Sim“)' Right 0 2-7 11.4 232.9 1 0 X
V2X-Set [41] X ' Right 2-7 2-7 33.0 230.0 1 0 X
DAIR-V2X-Ct [45] X China Right 2 1 39.0 464.0 10 4 X
V2X-Seq (SPD)! [46] X China Right 2 1 15.0 104 10 4 v
RCooper® [12] X China Right 3 0 30.0 N/A 10 3 X
HoloVIC* [26] X China Right 2 1 100.0 1800 3 2 v
Open Mars [24] X USA Right 0 2-3 15.0 0 N/A N/A X
V2V4Real [43] Height USA Right 0 2 20.0 240.0 5 0 v
V2X-Real [38] Height USA Right 2 2 33.0 1200.0 10 2 v
TUMTrafV2X [48] X Germany Right 2 1 2.0 30.0 8 3 v
Mixed Signals Height, Tilt AUS Left 2 3 45.1 240.6 10 4 v

Table 1. Comparison of Mixed Signals and existing V2X datasets. To our best knowledge, Mixed Signals is the first dataset to include
heterogeneous CAV LiDAR configurations, and also the first one that is collected in a left-hand driving country. It captures complex,
real-world traffic scenarios and features a diverse range of traffic participants. Those marked with I are valuable datasets, but are only

accessible from certain geographical regions.

across diverse driving conditions [4, 5, 9, 11, 16, 18, 27,
28, 30, 33, 39], real-world V2X datasets remain limited in
availability, diversity, and quality. Only a handful of pub-
licly available V2X datasets exist [24, 38, 43, 48], with
some of them accessible only within specific geographi-
cal regions [12, 26, 45, 46]. These data are collected ex-
clusively from three right-hand traffic locations, overlook-
ing the unique traffic dynamics in left-hand traffic countries
which make up about a third of the world [40]. Furthermore,
as collaborative perception becomes more widespread, it is
valuable for vehicles equipped with different sensor config-
urations to communicate. However, in prior datasets, the
connected autonomous vehicles (CAVs) share identical or
very similar LiDAR configurations. Finally, as the V2X
setting involves multiple agents and sensors, data collection
and alignment present additional challenges. Often times,
difficulty with pose estimation and faulty localization sys-
tems result in poor alignment (Figure 4). Such inaccura-
cies can lead to suboptimal performance for detector train-
ing [41].

To address these limitations, we introduce the Mixed
Signals dataset, designed to support diverse real-world V2X
research scenarios with clean, high-quality data. Notably,
Mixed Signals is the first V2X dataset that provides hetero-
geneous CAV LiDAR configurations in both position and
orientation, and features a left-handing traffic country, Aus-
tralia. The dataset includes 45.1k point clouds and 240.6k
bounding boxes, collected from three CAVs equipped with
two configurations of LiDAR sensors, along with a roadside
unit with two LiDARs. It captures a diverse range of traffic
participants across 10 different classes, including 4 vulner-
able road user categories. Furthermore, compared to exist-
ing datasets, Mixed Signals offers significantly more pre-
cise alignment and consistent annotations across time and

viewpoints. We emphasize that our dataset is ready-to-use;

a subset is provided in the supplementary materials, along

with the corresponding video visualization showcasing the

quality of our collected data and annotations. To summa-
rize, our contributions are:

* We introduce the Mixed Signals dataset, a high qual-
ity, large-scale, publicly available V2X dataset created
through careful processing and precise annotations.

* To the best of our knowledge, we are the first real-world
V2X dataset that encompasses CAV LiDAR configura-
tions that differ in both position and orientation, as well
as left-hand traffic scenarios.

* We provide detailed analysis of the dataset’s statistics,
and conduct comprehensive benchmarking of existing
V2X methods across various settings.

2. Related Works

While existing collaborative perception datasets have the
same sensor setup for their CAVs, our dataset contains three
vehicles with two different sensor configurations, including
the height and tilt of LiDAR and the type of vehicle. This
difference introduces heterogeneity to our fleet of vehicles,
thus making our data more closely resemble the real-world
collaboration deployment. To the best of our knowledge, we
have the largest fleet of CAV's with the most diverse sensors
of any prior works.

Vehicle-to-Everything Communication. One of V2X’s
objectives is to enhance the perception capabilities of CAVs,
facilitating their deployment in urban environments. These
areas usually have a high presence of Vulnerable Road
Users (VRUs), which are defined as people not inside vehi-
cles [32]. Despite this, VRUs are under represented in prior
works. The three synthetic datasets made with CARLA
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(b) Urban vehicle with a OS1-128 beams LiDAR.

(c) Roadside Unit (RSU).

Figure 2. Vehicles used for data collection. (a) is a small electric vehicle outfitted with an OS1-128 beams LiDAR system. The LiDAR
is mounted at a 15° angle relative to the vehicle’s body and stands at a height of 1.63 meters. (b) is an urban vehicle equipped with an
0S1-128 beam LiDAR system located at a height of 1.9 meters. (c) is the RSU which consists of two LiDARs: an OS1-64 beam (TOP)
and an OSDome-128 (DOME) LiDAR mounted on a pole at the intersection at a height of 2.5 meters.

[10] and the real-world dataset V2V4Real [43] do not have
VRUs. DAIR-V2X-C [45] and its extension V2X-Seq
(SPD) [46] provide annotations for 4 VRU classes (pedes-
trian, bicyclist, tricyclist, and motorcyclist). However, the
absence of details on class distribution in their publications
make it hard to judge their VRU coverage. Additionally,
restricted access to these datasets outside China limits their
usability. TUMTrafV2X [48] annotates 3 VRU classes in-
cluding pedestrian, bicycle, and motorcycle, which together
account for only 24.6% of the total annotations. Such un-
derrepresentation causes VRU detection to be overlooked in
several collaborative perception studies [22, 36, 41, 42].

Real World Vehicle-to-Everything Datasets. The recent
V2X-Real [38] has a large number pedestrian annotations,
which is higher than annotations of the class car, and 3 other
VRU classes (scooter, motorcycle, and bicycle). A draw-
back of this dataset for VRU detection evaluation is that its
benchmark only accounts for pedestrians. Our dataset con-
tains the highest number of VRU classes, including pedes-
trian, bicycle, portable personal mobility, and motorcycle.
More importantly, these classes account for 50.3% of our
dataset’s total bounding boxes. Instead of selecting certain
VRU classes for benchmarking, we group 4 VRU classes
into 2 detection classes as in Section 3.4 to provide a better
understanding of how different collaboration methods per-
form in detecting VRUs. We provide a detailed comparison
of our dataset, Mixed Signals, with prior works in Table 1.

3. Mixed Signals Dataset

In this section, we describe the data collection process
of the Mixed Signals dataset. We provide a devkit and
our full dataset for download on our website: https:
//mixedsignalsdataset.cs.cornell.edu/.

3.1. Hardware

The data collection was carried out using three vehicles and
a roadside unit.

Vehicles. The three vehicles included two small electric

Figure 3. Geographical location of the roadside unit.

vehicles (EVs) and one urban vehicle, each equipped with
OS1 128-beam LiDARs, as shown in Figure 2. The LiDAR
on the urban vehicle is located horizontally with respect to
the ground, while for the EV, the LiDAR is tilted down-
wards 15 degrees. We transformed both EVs’ point clouds
to have a horizontal reference frame as shown in Figure 2a.
Although all the vehicles are equipped with the same type
of LiDAR sensor, their configurations differ in terms of sen-
sor position and orientation. This variation introduces addi-
tional complexity, creating a domain gap between the data
collected from different vehicles.

Roadside Unit. The roadside unit is equipped with two
different LiIDAR sensors: an OS-Dome 128-beam for long-
range detection and an OS1 64-beam LiDAR for detecting
nearby objects. It was located at a fixed geographical posi-
tion, 2.5 meters above the ground. The intersection where
the roadside unit was installed experiences moderate vehic-
ular traffic and features pedestrian crosswalks along with a
bike lane that crosses the intersection. This setup allows us
to capture diverse agents during data collection. The place-
ment of the roadside unit is illustrated in Figure 3.

3.2. Data Acquisition

The data collection took place at the intersection between
Abercrombie Street and Myrtle Street in Sydney, Austria,
where the roadside unit is located. The vehicles recorded



LiDAR data for two hours during peak rush hour. Through-
out this period, the three vehicles repeatedly passed through
the intersection. This allowed them to capture interactions
between the vehicles and other agents on the road, such as
pedestrians, cyclists, and other vehicles.

3.2.1. Synchronization and Localization

Synchronization and localization are crucial for cross-
sensor point cloud alignment. Our dataset employs proven
techniques from robotics to achieve precise sensor synchro-
nization and agent localization. The end result is superior
point cloud alignment compared to previous V2X datasets
(Figure 4). We describe the details below.

Synchronization refers to the temporal alignment of data
streams, ensuring that synchronized sensors capture the
same events simultaneously within their overlapping fields
of view (FOV). We use GPS time to timestamp point clouds
captured by our LiDARs at a frequency of 10 Hz. Even if
two vehicles are GPS-synchronized, cross-sensor synchro-
nization still needs to be considered. For example, since
the LiDAR scans the environment in a rotating fashion, the
data collected at different spatial locations are captured at
slightly different moments. We defined data samples by
setting a time window to match the closest available times-
tamps from each LiDARs. A maximum timestamp mis-
match of 50 milliseconds between point clouds was set to
achieve minimal spatial discrepancies. For additional de-
tails, refer to Appendix C.1.

Localization, i.e., estimating vehicle position relative to
a global reference frame, is one of the most critical tasks
for CAV. To overcome inherent problems of Global Nav-
igation Satellite System (GNSS) in urban environments,
we use dense and accurate point cloud maps [31] as refer-
ences for our localization algorithm. Both the vehicles and
the roadside units are localized within a common reference
frame, referred to as the map_frame, which serves as the
origin of our map. The localization algorithm employs a
scan-matching technique [3] to estimate the vehicles’ poses
within this map, achieving a maximum positioning error of
15 cm and a heading error of 0.4 degrees. This allows for
consistent spatial alignment between the vehicles and the
roadside infrastructure. The vehicles’ localization estimates
their positions within the map_frame, while the roadside
unit is static. We leave details about map construction and
usage in Appendix C.2.

3.2.2. Scene Selection

In total, 37 scenes —each consisting of a 30-second snippet—
were carefully selected for inclusion in the dataset due to
their rich diversity of vehicles, pedestrians, and cyclists.
The primary goal was to capture various vehicles and vul-
nerable road users. These scenes encompass a broad spec-
trum of interactions, including between different types of
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Figure 4. Localization and synchronization quality of Mixed
Signals and existing datasets. Different colors correspond to dif-
ferent sensors. In the lateral view, existing datasets visually exhibit
vertical inconsistencies, where one point cloud is tilted due to lo-
calization errors. In contrast, point clouds in Mixed Signals are all
accurately aligned.

vehicles and between vehicles and vulnerable road users.
The selected scenes feature intersections of the FOV of the
LiDARs of 3 vehicles and the RSU. Among 37 scenes of
our dataset, we select 33 scenes for training and 4 scenes of
testing. The size of the training set and test set are 9553 and
1164 data samples, respectively. Our selection ensures that
there is no temporal overlap between the training set and
test set and among scenes of the test set.

3.3. Dataset Annotation

The task of 3D object detection for autonomous vehicles
requires annotations in the form of 3D bounding boxes,
usually parameterized by the center location, three dimen-
sions (length, width, height), and rotation (represented as
a quaternion). To generate such annotations for each data
sample, we first aggregate the point clouds of every agent
in the coordinate of the roadside unit’s top (TOP) LiDAR
to focus the annotators’ attention to the intersection of in-
terest. Then, professional annotators from FlipSideAl [34]
employ the SegmentsAl [35] annotation tool to label ob-
jects and localize them with a 3D bounding box. Classes
labeled belong to 10 categories, consisting of: car, truck,
pedestrians, bus, electric vehicle, trailer, motorcycle/bike,
bicycle, portable personal mobility, and emergency vehi-
cle. Figure | depicts the annotations applied to the dataset,
where each object is enclosed within a cuboid.

Annotations. Our annotation process involved cycles of
monitoring, reviewing, and adjusting labels to meet defined
quality objectives. This allows Mixed Signals dataset to ex-
tend the quality of the pioneering datasets in the field, which
are generally labeled by lay annotators, as shown in Fig-
ure 5. Here, we reproject the bounding box of a vehicle, as
observed from other sensors, back onto its coordinate frame
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Figure 5. Label quality of Mixed Signals and existing datasets.
We aggregate labels of an object across a entire snippet. Labels in
Mixed Signals are consistent across time steps and viewpoints.

to visualize label consistency. Details of the class descrip-
tions and labeling instructions are presented in Appendix
Sec. B. While agents in our dataset are synchronized at 10
Hz, we sample keyframes at 1 Hz for manual annotation.
To obtain annotations in a non-key frame, we linearly inter-
polate the pose of annotations of its closest preceding and
succeeding keyframes based on their timestamp.

Category Labels. The Mixed Signals dataset categories
consist of road agents in 10 categories of vehicle types
and pedestrians including: Car, Truck, Emergency Vehicle,
Bus, Motorcycle, Motorized Bike, Portable Personal Mobil-
ity Vehicle, (traditional) Bicycle, Electric Vehicle, Trailer,
and Pedestrian. Detailed definition of each category can be
found in the appendix.

3.4. Dataset Analysis

Statistics. In our benchmark, we group 10 categories into 3
detection classes according to Table 2. Figure 7 shows the
distribution of annotations of three classes with respect to
their polar coordinate in the coordinate system of TOP. Fig-
ure 8 shows the distribution of dimensions and yaw angle of
annotations of three classes. Figure 6 shows the number of
annotations of each class in the training set and test set. Fig-
ure 9 analyzes track lengths in the training and test set. For
both splits, most tracks are under 10 seconds. This is due
to the dynamic and typical speeds at the intersection envi-
ronment. A sharp peak at 30 seconds indicates the presence
of static objects detected primarily by the RSU for the en-
tire sequence duration. Figure 10 depicts the aggregation of
point clouds from 5 agents and ground truth annotations in
the coordinate system of TOP during a 4-second time span,
which amounts to 40 time steps. The consistent pose of
static objects and the smooth trajectory of dynamic objects
visually demonstrate the quality of our annotation.

4. Proposed Tasks and Benchmarks

Our dataset includes multiple agents and annotations in the
form of 3D bounding boxes with track IDs. This enables
the development of methods for various collaborative per-

Detection Class Annotation Classes

car, truck, emergency vehicle,

Vehicle bus, electric vehicle, trailer
Bike motorbike, bicycle, 3

portable personal mobility
Pedestrian pedestrian

Table 2. Definition of detection classes. The Mixed Signals
dataset includes 10 fine-grained annotation classes for traffic par-
ticipants, organized into 3 broader detection classes.
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Figure 6. Number of objects by class. The y-axis is in log scale.

ception tasks, such as object detection, tracking, and motion
forecasting. Given the importance of object detection in au-
tonomous driving, we focus on collaborative detection tasks
in the main text and report preliminary tracking benchmark
results in Appendix B.2.

4.1. Definition of Tasks

We define two tasks that are distinguished by the collabo-
ration setting: Collaborative Object Detection and Single-
Vehicle Object Detection enhanced by communication to
RSU, which we describe in the following sections.

Collaborative Object Detection. This is the classical col-
laborative object detection task [22, 36], where every con-
nected agent (i.e., vehicles and RSUs) uses a shared model
to (i) extract features from their point clouds, (ii) generate
messages to send to other agents, and (iii) fuse the features
of their point clouds with messages received from others.
The goal is to detect every visible object in a region of in-
terest. We define visibility by comparing the number of Li-
DAR points contained within an object’s bounding box to
a threshold. In this task, these LiDAR points are sourced
from any agents present within the region of interest.

Object Detection Enhanced by Communication to RSU.
This task assumes that the RSU model is designed and
trained by a different provider than the one responsible for
the CAVs’ models. In this task, the RSU model is pre-
trained in the single-vehicle detection setting to detect ob-
jects visible to its LiDARs. After the pre-training process,
the RSU model is fixed. CAVs in the proximity of the RSU
receive messages from the RSU to enhance their detection
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Figure 7. Distribution of annotated object locations. Locations are shown in polar coordinates relative to the RSU TOP sensor.
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Figure 8. Distribution of bounding box dimensions and yaw angles. Vehicles exhibit a wide range of sizes.
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Figure 9. Distribution of track lengths. The peak at 30 seconds
corresponds to static objects.

capabilities. The objective is to detect all objects in a region
of interest that are visible to either the CAV or the RSU.

The differences between this task and Collaborative Ob-
ject Detection are twofold. First, there is no communica-
tion among connected vehicles in this task, making it simi-
lar to Vehicle-to-Infrastructure (V2I) detection [38, 45, 48].
Second, instead of having a single model shared among
all connected agents like prior works on V2I collaboration,
we have one model for the CAVs and another independent
model for the RSU. This introduces a different challenge,
as the CAV’s model must adapt to messages from the RSU,
which may contain domain gaps due to differences in model
architecture, types of LIDAR, and viewpoints.

wh & i

N

Time Step

Figure 10. Visualization of object tracks in Mixed Signals.
Dynamic objects display smooth trajectories, while static objects
maintain consistent poses over time, highlighting the high quality
of our annotations.



Vehicle AP@ Bike AP@ Pedestrian AP@ Avg. Bandwidth

I0U05 I0U0.7 I0U0S5 I0U07  IOU03 IOUOS (MB)

No Fusion 0.42 0.42 0.19 0.19 0.47 0.41 0.00
43
Early Fusion 0.65 0.65 0.65 0.65 0.74 0.67 7.79
Attentive Fusion [42] 0.82 0.82 0.71 0.74 0.68 5.26
V2V-Net [36] 0.72 0.72 0.69 0.69 0.42 0.32 4.19
F-Cooper [6] 0.75 0.75 0.68 0.68 0.72 0.65 15.31
V2X-ViT [41] 0.84 0.84 0.71 0.70 0.77 0.70 19.36
V2V-AM [21] 0.83 0.83 0.79 0.79 0.69 0.60 16.78
where2comm [14] 0.77 0.77 0.74 0.74 0.31 0.18 16.78
Laly Fusion [7] 0.61 0.61 0.68 0.68 0.69 0.62 0.11
43

Late Fusion 0.43 043 0.56 0.56 0.57 0.48 0.11

Table 3. Benchmarking results for the Collaborative Object Detection task. All fusion methods outperform the No Fusion baseline,
highlighting the advantage of collaborative perception. Each fusion method involves trade-offs between detection performance and com-
munication bandwidth overhead. Models adapted from a premier R.H.S. V2V dataset [43] are shown in gray.

Vehicle AP@ Bike AP@ Pedestrian AP@
10U 0.5 1I0U0.7 10U 0.5 10U 0.7 I0U03 1I0UO0.5

No Fusion (EV-1 only) 0.33 0.33 0.28 0.28 0.37 0.30

No Fusion (RSU only) 0.22 0.22 0.20 0.19 0.26 0.22

EV-1 + RSU | Attentive Fusion 0.53 0.53 0.60 0.59 0.57 0.45
V2V-Net 0.46 0.46 0.47 0.47 0.32 0.21

Late Fusion 0.29 0.29 043 0.43 0.52 0.41

No Fusion (EV-2 only) 0.33 0.33 0.16 0.16 0.08 0.05

No Fusion (RSU only) 0.24 0.24 0.20 0.19 0.26 0.23

EV-2 + RSU | Attentive Fusion 0.56 0.56 0.56 0.56 0.40 0.27
V2V-Net 0.52 0.52 0.49 0.48 0.27 0.18

Late Fusion 0.41 0.41 0.49 0.49 0.43 0.31

No Fusion (Laser only) 0.30 0.30 0.32 0.32 0.46 0.44

No Fusion (RSU only) 0.17 0.17 0.18 0.18 0.25 0.22

Laser + RSU | Attentive Fusion 0.71 0.71 0.66 0.65 0.58 0.50
V2V-Net 0.63 0.63 0.55 0.54 0.37 0.27

Late Fusion 0.46 0.46 0.52 0.51 0.66 0.57

Table 4. Benchmarking results for the Object Detection Enhanced by Communication to RSU task. Communication between the agent
and RSU generally improves performance compared to single-agent perception. Performance varies across agents with different sensor
configurations, suggesting future research opportunities to develop methods that work effectively with diverse sensor types.

4.2. Benchmark

Evaluation Settings. Since the annotations are made in the
coordinate system of TOP, we define the region of inter-
est for the two detection tasks as the range [—51.2,51.2]
meters along both the x and y axes of this coordinate sys-
tem. For evaluation, we transform objects detected by each
agent into this coordinate system. The visibility threshold is

set to 5 points. Since timestamp mismatches and localiza-
tion errors are inherent in real-world applications and con-
sequently present in our dataset, we do not artificially intro-
duce them into the messages exchanged among connected
agents (something that is often done in synthetic datasets
[41, 42]). We measure object detection performance using
Average Precision (AP). Detected objects are matched with
ground truth based on their Intersection over Union (IoU)



in the bird’s-eye view plane. A detection and a ground truth
object are considered a match if their IoU exceeds thresh-
olds of 0.3, 0.5, or 0.7. In addition to AP, we measure
the bandwidth consumption of each collaborative method
to gauge their practicality. The total bandwidth consump-
tion is calculated by multiplying the number of agents in
the collaboration network by the size of the message each
agent sends. While the number of agents is not depen-
dent on the collaboration method of choice, the message
size is. We report the bandwidth consumption by averag-
ing the size of the messages that agents send, measured in
Megabytes (MB). While some intermediate collaboration
methods [22, 36, 41] employ specialized compressing algo-
rithms to reduce the message size, other methods [7, 25, 42]
do not. For fair comparison, we report uncompressed sizes.

Methods. Our benchmark covers three conventional col-
laboration frameworks, namely Early fusion, Intermediate
fusion [6, 14, 21, 36, 41, 42], and Late fusion, and the recent
Laly fusion [7]. We detail the benchmarking methodology
specifics in the appendix.

4.3. Results

4.3.1. Collaborative Object Detection

We show the benchmark of the Collaborative Object Detec-
tion task in Table 3. The results in this table clearly demon-
strate the advantage of collaboration perception over single-
agent perception, as all fusion methods largely outperform
No Fusion on every class. The comparison of three conven-
tional fusion methods, including Early, Intermediate, and
Late, shows that a higher precision is attained at the cost
of a larger bandwidth consumption. In contrast, Laly fu-
sion achieves comparable precision on Bike and Pedestrian
compared to Early Fusion and Intermediate Fusion while
consuming an order magnitude less bandwidth. The high
performance at less bandwidth of Laly fusion coupled with
its simplicity make this method a strong candidate for real-
world deployment. However, we note that there is still am-
ple room for improvement, particularly among the VRUs,
suggesting the need for future algorithm design.

Domain Gap from prior R.H.T. Datasets. To illustrate
the domain gap covered by Mixed Signals, we directly
adapt an early-fusion and a late-fusion model trained on the
right-hand traffic (R.H.T.) dataset, V2V4Real [43], onto our
dataset (grayed-out rows in Table 3). Performance degraded
significantly, with vehicle headings predicted incorrectly,
indicating a learned prior from traffic flow (Figure 11). This
highlights a substantial domain gap due to left-hand traffic
and sensor modality differences, underscoring Mixed Sig-
nals’ unique contribution to the V2X perception landscape.

4.3.2. Detection via Communication to RSU

Table 4 presents the performance of different fusion meth-
ods on Object Detection Enhanced by Communication to

E' Adapted Early-Fusion :

Adapted Late-Fusion

e e e S e et it et s et e

Figure 11. Detection visualization from adapting models trained
on V2V4Real [43] into Mixed Signals. Ground truth bounding
boxes are shown in green and predicted detections in blue, with
heading indicated by the triangle. Observe that predicted heading
directions are often aligned to priors learned in R.H.T. driving.

RSU task. In this setting, detector training is more challeng-
ing, as each vehicle-centric detector must adapt to a frozen
RSU detector. Nevertheless, results show that communi-
cation with RSU is still advantageous, as evidenced by the
substantial performance improvement over the No Fusion
baselines. Furthermore, the performance of the Laser car is
better than the performance of the two EVs. This is because
the LiDAR of the Laser car has a 360-degree coverage of
its surroundings. On the other hand, the tilted angle of the
LiDAR on the two EVs makes the region behind them un-
observable. The LiDARs on the two EVs do not capture the
intensity information, resulting in a domain gap between
their features and those from the RSU. These observations
point to future research directions for developing methods
that could work well with diverse sensor configurations.

5. Discussion and Conclusion

Our work presents the Mixed Signals V2X dataset, created
through careful data selection, sensor synchronization and
localization, and a strong investment in high quality anno-
tations. To the best of our knowledge, our dataset is the
first to support heterogeneous sensor configurations with
varying positions and orientations, collected in an out-of-
domain left-hand traffic country, Australia, providing a di-
verse dataset addition to the field. We hope that the release
of our dataset will facilitate research into complex and re-
alistic settings for V2X perception. Future directions of re-
search include studying communication protocols that en-
sure both fast transmission and directed communication that
targets salient information.



Acknowledgement

We thank Runsheng Xu and Hao Xiang for their insight-
ful discussions and support throughout the early stage of
this project. This research is funded by University of Syd-

ney

— Cornell University Ignition Grants/Global Strategic

Collaboration Awards, National Science Foundation (IIS-
2107161), and the New York Presbyterian Hospital. Minh-
Quan Dao is funded by ANNAPOLIS project managed by
the French National Agency for Research (ANR-21-CE22-
0014), and Katie Luo by AAUW American Dissertation

Fellowship.

References

[1] National Highway Traffic Safety Administration. Re-
search on connected vehicle technology. In on-

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

line. https://www.nhtsa.gov/sites/nhtsa.
gov/ files/2024-02/research- connected -
vehicle-technology-report-to-Congress
021524 .pdf, accessed 29/09/2024. 1

Alexander Amini, Igor Gilitschenski, Jacob Phillips, Julia
Moseyko, Rohan Banerjee, Sertac Karaman, and Daniela
Rus.  Learning robust control policies for end-to-end
autonomous driving from data-driven simulation. [EEE
Robotics and Automation Letters, 5(2):1143-1150, 2020. 1
P. Biber and W. Strasser. The normal distributions trans-
form: a new approach to laser scan matching. In Proceed-
ings 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2003) (Cat. No.O3CH37453),
pages 2743-2748 vol.3, 2003. 4

Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In CVPR, 2020. 2
Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jag-
jeet Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter
Carr, Simon Lucey, Deva Ramanan, et al. Argoverse: 3d
tracking and forecasting with rich maps. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8748-8757, 2019. 2

Qi Chen, Xu Ma, Sihai Tang, Jingda Guo, Qing Yang, and
Song Fu. F-cooper: Feature based cooperative perception for
autonomous vehicle edge computing system using 3d point
clouds. In Proceedings of the 4th ACM/IEEE Symposium on
Edge Computing, pages 88-100, 2019. 7, 8

Minh-Quan Dao, Julie Stephany Berrio, Vincent Frémont,
Mao Shan, Elwan Héry, and Stewart Worrall. Practical col-
laborative perception: A framework for asynchronous and
multi-agent 3d object detection. /IEEE Transactions on Intel-
ligent Transportation Systems, 2024. 7, 8, 1

Xuan Di and Rongye Shi. A survey on autonomous vehicle
control in the era of mixed-autonomy: From physics-based
to ai-guided driving policy learning. Transportation research
part C: emerging technologies, 125:103008, 2021. 1

Carlos A Diaz-Ruiz, Youya Xia, Yurong You, Jose Nino, Ju-
nan Chen, Josephine Monica, Xiangyu Chen, Katie Luo, Yan

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

Wang, Marc Emond, et al. Ithaca365: Dataset and driving
perception under repeated and challenging weather condi-
tions. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 21383-21392,
2022. 2

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Anto-
nio Lopez, and Vladlen Koltun. Carla: An open urban driv-
ing simulator. In Conference on robot learning, pages 1-16.
PMLR, 2017. 3

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231-1237,
2013. 2

Ruiyang Hao, Siqi Fan, Yingru Dai, Zhenlin Zhang, Chenxi
Li, Yuntian Wang, Haibao Yu, Wenxian Yang, Yuan Jirui,
and Zaiqing Nie. Rcooper: A real-world large-scale dataset
for roadside cooperative perception. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 22347-22357, 2024. 2
Shengchao Hu, Li Chen, Penghao Wu, Hongyang Li, Junchi
Yan, and Dacheng Tao. St-p3: End-to-end vision-based au-
tonomous driving via spatial-temporal feature learning. In
European Conference on Computer Vision, pages 533-549.
Springer, 2022. 1

Yue Hu, Shaoheng Fang, Zixing Lei, Yiqi Zhong, and Si-
heng Chen. Where2comm: Communication-efficient collab-
orative perception via spatial confidence maps. Advances
in neural information processing systems, 35:4874-4886,
2022. 7,8

Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima,
Xizhou Zhu, Siqi Chai, Senyao Du, Tianwei Lin, Wenhai
Wang, et al. Planning-oriented autonomous driving. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 17853-17862, 2023. 1
Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao,
Dingfu Zhou, Peng Wang, Yuanqing Lin, and Ruigang Yang.
The apolloscape dataset for autonomous driving. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition workshops, pages 954-960, 2018. 2

Minwoo Jung, Wooseong Yang, Dongjae Lee, Hyeonjae Gil,
Giseop Kim, and Ayoung Kim. Helipr: Heterogeneous li-
dar dataset for inter-lidar place recognition under spatial and
temporal variations, 2023. 3

R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni,
A. Ferreira, M. Yuan, B. Low, A. Jain, P. Ondruska, S.
Omari, S. Shah, A. Kulkarni, A. Kazakova, C. Tao, L. Platin-
sky, W. Jiang, and V. Shet. Lyft level 5 av dataset 2019. url-
https://levelS.lyft.com/dataset/, 2019. 2

Muhammad Qasim Khan and Sukhan Lee. A comprehensive
survey of driving monitoring and assistance systems. Sen-
sors, 19(11):2574, 2019. 1

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 12697-12705, 2019. 1

Jinlong Li, Runsheng Xu, Xinyu Liu, Jin Ma, Zicheng Chi,
Jiaqi Ma, and Hongkai Yu. Learning for vehicle-to-vehicle



(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

cooperative perception under lossy communication. IEEE
Transactions on Intelligent Vehicles, 8(4):2650-2660, 2023.
7,8

Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen
Feng, and Wenjun Zhang. Learning distilled collaboration
graph for multi-agent perception. Advances in Neural Infor-
mation Processing Systems, 34:29541-29552, 2021. 3,5, 8
Yiming Li, Dekun Ma, Ziyan An, Zixun Wang, Yiqi Zhong,
Siheng Chen, and Chen Feng. V2x-sim: Multi-agent col-
laborative perception dataset and benchmark for autonomous
driving. IEEE Robotics and Automation Letters, 7(4):10914—
10921, 2022. 2

Yiming Li, Zhiheng Li, Nuo Chen, Moonjun Gong, Zonglin
Lyu, Zehong Wang, Peili Jiang, and Chen Feng. Mul-
tiagent multitraversal multimodal self-driving: Open mars
dataset. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
22041-22051, 2024. 2

Yifan Lu, Quanhao Li, Baoan Liu, Mehrdad Dianati, Chen
Feng, Siheng Chen, and Yanfeng Wang. Robust collabora-
tive 3d object detection in presence of pose errors. In 2023
IEEE International Conference on Robotics and Automation
(ICRA), pages 4812-4818. IEEE, 2023. 8

Cong Ma, Lei Qiao, Chengkai Zhu, Kai Liu, Zelong
Kong, Qing Li, Xueqi Zhou, Yuheng Kan, and Wei Wu.
Holovic:large-scale dataset and benchmark for multi-sensor
holographic intersection and vehicle-infrastructure coopera-
tive. In 2024 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), page 22129-22138. IEEE,
2024. 2

Will Maddern, Geoffrey Pascoe, Chris Linegar, and Paul
Newman. 1 year, 1000 km: The oxford robotcar dataset.
The International Journal of Robotics Research, 36(1):3-15,
2017. 2

Jiageng Mao, Minzhe Niu, Chenhan Jiang, Xiaodan Liang,
Yamin Li, Chaoqiang Ye, Wei Zhang, Zhenguo Li, Jie Yu,
Chunjing Xu, et al. One million scenes for autonomous driv-
ing: Once dataset. 2021. 2

Jaswanth Nidamanuri, Chinmayi Nibhanupudi, Rolf Ass-
falg, and Hrishikesh Venkataraman. A progressive review:
Emerging technologies for adas driven solutions. [EEE
Transactions on Intelligent Vehicles, 7(2):326-341, 2021. 1
Matthew Pitropov, Danson Evan Garcia, Jason Rebello,
Michael Smart, Carlos Wang, Krzysztof Czarnecki, and
Steven Waslander. Canadian adverse driving conditions
dataset. The International Journal of Robotics Research, 40
(4-5):681-690, 2021. 2

Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang,
Carlo Ratti, and Rus Daniela. Lio-sam: Tightly-coupled lidar
inertial odometry via smoothing and mapping. In IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 5135-5142. IEEE, 2020. 4, 3

National Road Safety Strategy. Who are vulnerable road
users? https://www.roadsafety.gov.au/nrss/
fact-sheets/vulnerable-road-users, 2024. 2
Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,

10

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 24462454, 2020. 2

Flipside.ai Development Team. Flipside.ai: data labeling for
computer vision. https://flipside.ai/, 2024. 4
Segments.ai Development Team. Segments.ai: Multi-sensor
data labeling platform for robotics and autonomous vehicles.
https://segments.ai/, 2024. 4

Tsun-Hsuan Wang, Sivabalan Manivasagam, Ming Liang,
Bin Yang, Wenyuan Zeng, and Raquel Urtasun. V2vnet:
Vehicle-to-vehicle communication for joint perception and
prediction. In Computer Vision—-ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23-28, 2020, Pro-
ceedings, Part Il 16, pages 605-621. Springer, 2020. 3, 5,7,
8

Xinshuo Weng, Jianren Wang, David Held, and Kiris Kitani.
3D Multi-Object Tracking: A Baseline and New Evaluation
Metrics. IROS, 2020. 2

Hao Xiang, Zhaoliang Zheng, Xin Xia, Runsheng Xu,
Letian Gao, Zewei Zhou, Xu Han, Xinkai Ji, Mingxi Li,
Zonglin Meng, et al. V2x-real: a largs-scale dataset for
vehicle-to-everything cooperative perception. arXiv preprint
arXiv:2403.16034,2024. 2,3, 6

Pengchuan Xiao, Zhenlei Shao, Steven Hao, Zishuo Zhang,
Xiaolin Chai, Judy Jiao, Zesong Li, Jian Wu, Kai Sun,
Kun Jiang, et al. Pandaset: Advanced sensor suite dataset
for autonomous driving. In 2021 IEEE International In-
telligent Transportation Systems Conference (ITSC), pages
3095-3101. IEEE, 2021. 2

Jiawei Xu, Kun Guo, Xiaoqgin Zhang, and Poly ZH Sun. Left
gaze bias between lht and rht: a recommendation strategy to
mitigate human errors in left-and right-hand driving. /EEE
Transactions on Intelligent Vehicles, 2023. 2

Runsheng Xu, Hao Xiang, Zhengzhong Tu, Xin Xia, Ming-
Hsuan Yang, and Jiaqi Ma. V2x-vit: Vehicle-to-everything
cooperative perception with vision transformer. In European
conference on computer vision, pages 107—124. Springer,
2022.2,3,7,8

Runsheng Xu, Hao Xiang, Xin Xia, Xu Han, Jinlong Li, and
Jiagi Ma. Opv2v: An open benchmark dataset and fusion
pipeline for perception with vehicle-to-vehicle communica-
tion. In 2022 International Conference on Robotics and Au-
tomation (ICRA), pages 2583-2589. IEEE, 2022. 1,2, 3, 7,
8

Runsheng Xu, Xin Xia, Jinlong Li, Hanzhao Li, Shuo Zhang,
Zhengzhong Tu, Zonglin Meng, Hao Xiang, Xiaoyu Dong,
Rui Song, et al. V2v4real: A real-world large-scale dataset
for vehicle-to-vehicle cooperative perception. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Fattern Recognition, pages 13712-13722,2023. 2,3,7, 8
Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-
based 3d object detection and tracking. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11784-11793, 2021. 1

Haibao Yu, Yizhen Luo, Mao Shu, Yiyi Huo, Zebang Yang,
Yifeng Shi, Zhenglong Guo, Hanyu Li, Xing Hu, Jirui



[46]

[47]

(48]

Yuan, et al. Dair-v2x: A large-scale dataset for vehicle-
infrastructure cooperative 3d object detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 21361-21370, 2022. 2, 3, 6
Haibao Yu, Wenxian Yang, Hongzhi Ruan, Zhenwei Yang,
Yingjuan Tang, Xu Gao, Xin Hao, Yifeng Shi, Yifeng Pan,
Ning Sun, et al. V2x-seq: A large-scale sequential dataset for
vehicle-infrastructure cooperative perception and forecast-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 5486-5495,
2023. 2,3

Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and
Kazuya Takeda. A survey of autonomous driving: Common
practices and emerging technologies. IEEE access, 8:58443—
58469, 2020. 1

Walter Zimmer, Gerhard Arya Wardana, Suren Sritharan,
Xingcheng Zhou, Rui Song, and Alois C Knoll. Tum-
traf v2x cooperative perception dataset. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 22668-22677, 2024. 2, 3,6

11



Mixed Signals: A Diverse Point Cloud Dataset for Heterogeneous LiDAR V2X
Collaboration

Appendix

In this appendix material, we include: 1) extra details about
the Mixed Signals dataset and the provided code devkit,
2) annotation details and instructions given to annotators,
and 3) additional sensor details. We include an additional
dataset teaser video in the dataset website” that we encour-
age readers to watch.

A. Data and DevKkit

Please see https://mixedsignalsdataset.cs.
cornell.edu/ for the dataset download instructions and
the provided devkit. Below, we add a brief description of
the devkit and visualize a dataset sample.

A.1. Devkit Description

We provide a separate devkit and additionally integrate our
dataset into the framework OpenCOOD [42], which offers
the implementation of various state-of-the-art collaborative
perception methods. As OpenCOOQOD only provides single-
class models, we adapt its implementation of Early, Inter-
mediate, and Late Fusion models to detect three classes,
including vehicles, bikes, and pedestrians. We added de-
tection heads of 1-by-1 convolution layers to existing archi-
tectures to achieve this. In addition, we add the recent Laly
fusion [7] to this framework. Every model in our bench-
mark uses PointPillar [20] as the backbone. Interested read-
ers can refer to our devkit’ and code release” and extended
OpenCOOQOD integration for further details on architectures
and training settings.

A.2. Sample Data

Figure Al shows an example of the collected data, where
the points are colour-coded to represent the different Li-
DARs. The dataset aims to replicate realistic urban scenar-
ios that reflect the complexities of real-world implementa-
tions by using multiple vehicles with diverse sensor con-
figurations and a roadside unit. Real-world deployments
of autonomous vehicles on streets incorporate LiDARs,
which are becoming more affordable. Roadside infrastruc-
ture, such as roadside units, is also gaining popularity for
traffic monitoring and data analytics, now often equipped
with LiDAR, traffic light timing information, and commu-
nication systems to enhance robustness and applicability.

*https://sites.coecis.cornell.edu/mixedsignals/
#introvid

fhttps://github . com/ quan—-dao /mixed- signals -
devkit

*https://github.com/acfr/Mixed-Signals-Dataset

Figure Al. Top-down view of the data collected at the location.
LiDAR point clouds are colored by the vehicle and RSU that col-
lected them, consisting of the 3 vehicle agents (red, , and
purple) and the Top and Dome LiDAR sensors of the RSU (green,
blue). Best viewed in colour.

Our dataset consists of LiDAR point clouds, which offer
the advantage of not capturing identifiable information like
faces or license plates, thus preserving data privacy. This
contrasts with camera images, which often require post-
processing to anonymize sensitive details, potentially af-
fecting data quality. Our dataset includes tracking IDs for
each bounding box, and this information will be released
alongside this paper. Benchmarks will be made available at
a later date.

Intensity Distributions. Figure A2 shows LiDAR inten-
sity distributions from RSU TOP, DOME, and Laser car
sensors. DOME and TOP sensors record higher intensities
because there is a large number of static objects (e.g., build-
ings, traffic lights) near them. In contrast, the Laser car
sensor presents a smoother decline in intensity values be-
cause of its location on the vehicle, which allows the detec-
tion of objects at greater distances. EV-1 and EV-2 sensors
do not capture intensity readings. Therefore, a uniform ap-
proach to utilizing intensity values across all agent models
would be inadequate.

B. Annotation Instructions

We provide the instructions given to the Segments.ai® an-
notators in the attached material, titled “Spec Document -
Multi-sensor labeling” at the bottom of the appendix. We
selected to invest in the quality of the annotations, applying

Shttps://segments.ai/



Category Definition
Car Includes passenger vehicles such as sedans, hatchbacks, SUVs, and coupes that are designed primar-

ily for the transportation of passengers.

Encompasses larger vehicles primarily used for transporting goods and materials. This category
Truck . . .

includes pickup trucks, delivery trucks, and heavy-duty trucks.

. Vehicles designated for emergency response, including ambulances, fire trucks, police cars, and other

Emergency Vehicle . . o .

vehicles equipped with sirens and emergency lights.

Large motor vehicles designed to carry numerous passengers. Buses include city transit buses, school
Bus . . .

buses, and intercity coaches. They usually have designated routes and schedules.
Motorcycle Two-wheeled motor vehicles, including motorcycles and motorized bikes. This category also
Motorized Bike covers scooters and mopeds.

Portable Personal
Mobility Vehicle

Small, lightweight vehicles designed for personal mobility, including electric scooters, hoverboards,
and segways.

Bicycle

Human-powered, pedal-driven vehicles with two wheels. Bicycles include standard bikes, mountain
bikes, and road bikes. This category include motorized bicycles or electric bikes.

Electric Vehicle

Refers to small, golf car-like vehicles used for data collection purposes.

Trailer

Non-motorized vehicles designed to be towed by a motor vehicle.

Pedestrian

Individuals traveling on foot. This category includes people walking or running.

Table Al. Definitions of the annotation classes.
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Figure A2. Distribution of LiDAR intensities from RSU TOP,

DOME, and Laser car sensors. Each sensor shows different in-

tensity ranges and distributions. EV—-1 and EV-2 LiDAR sensors

do not have intensity readings.

0.00%

rigorous quality control measures to guarantee accurate and
consistent labeled data, minimizing errors, and maintaining
high standards.

B.1. Definitions of the Annotation Classes

The Mixed Signals dataset categories road agents in dif-
ferent vehicle types and pedestrians. Categories such as
“Car” and “Truck” encompass common passenger and large
transport vehicles, while “Emergency Vehicle” covers am-
bulances, fire trucks, and police cars, highlighting their im-
portance in urban scenarios. “Bus” labels are designated for
large passenger vehicles typically used in public transporta-

tion. The dataset also distinguishes between “Motorcycle”
and “Motorized Bike,” and “Portable Personal Mobility Ve-
hicle,” which includes modern personal transport devices
like electric scooters and hoverboards. Traditional “Bicy-
cle” labels account for both standard and electric bikes. La-
bels for “Electric Vehicle” and “Trailer” ensure that smaller,
often data-collection vehicles and towable units are accu-
rately represented. Finally, we labeled humans as “Pedestri-
ans”. In Table A1, we provide the definitions of the 10 fine-
grained annotation classes in the Mixed Signals dataset.
The breakdown of the fine-grain classes into the bench-
marked classes can be found in the main text.

B.2. Track Annotations and Multi-agent Tracking

We benchmark the performance of the planned tracking
task for our dataset. The Mixed Signals dataset has labels
for track ID’s, as seen in Figure 10 of the main text. We
hope to include and benchmark tracking methods as an ad-
ditional task which is supported by our dataset. We report
some initial benchmarking results on the AB3DMOT track-
ing method [37] in Table A2. For further details about track
labels, please explore the data itself; a distribution of the
tracks are in Figure 9 of the main text.

B.3. Annotation Details

The annotation process for this multi-sensor dataset in-
volves handling joint scenes and synchronization discrep-



Category sAMOTA AMOTA AMOTP
Vehicle 89.6 43.1 63.3
Pedestrian 76.6 32.6 42.8

Table A2. Tracking performance for AB3DMOT with V2X-ViT
detections on the Mixed Signals validation split.

ancies between sensors. Due to time synchronization, fast-
moving objects might appear slightly offset across the data
collected from different sensors. To address these discrep-
ancies, annotators were instructed to prioritize the roadside
unit point cloud for bounding box creation, following a
set hierarchy. When there is a mismatch, bounding boxes
should be aligned with the point cloud in the following or-
der: roadside unit, EVs, and the urban vehicle. For example,
if there is a difference between the roadside unit and the ve-
hicles’ point cloud, the bounding box should only be fitted
around the roadside unit points. This ensures consistency
in object localization across frames despite synchronization
lags.

C. Sensor Details

C.1. Hardware and Synchronization Details

Sensor Agent Range* Channels Vertical FOV
Ouster OS1-128  Vehicles 170 m 128 45
Ouster OS1-64 RSU 100 m 64 45
Ouster OS Dome RSU 45 m 128 180

*Based on 80% Lambertian reflectivity in the sensors’ official datasheets.

Table A3. Hardware specifications.

Synchronization is especially important in dynamic envi-
ronments, as any introduced time shifts can lead to posi-
tional inconsistencies, resulting in multiple detections of the
same object. The sensors in our multi-agent system were
timestamped using GPS time as a common reference, and
sensor details are provided in Table A3. Rotational LiDARs
continuously scan the environment in 360 degrees, thus, dif-
ferent portions of the surroundings are captured at slightly
different times during a full rotation. When vehicles are
in motion, their positions and orientations change dynam-
ically between LiDARs sweeps. The maximum time gap
for matching sensor readings between 10 Hz rotational sen-
sors is 50 ms. Since sensors rotate fully in 100 ms, angular
positions differ by at most 180 degrees. If the time dif-
ference between readings were larger than 50 ms, it would
be matched with the next or previous rotation instead. As
shown in the original manuscript, precise sensor synchro-
nization, robust multi-agent localization, and clearly de-
fined annotation protocols produced high-quality data as-
sociation across all sensors.

C.2. Localization

Localization is one of the most critical tasks for CAV, esti-
mating their position relative to a global reference frame.
One of the most commonly used sensors for localiza-
tion is the Global Navigation Satellite System (GNSS).
GNSS offers access to a satellite constellation that provides
global positioning via triangulation. However, despite its
widespread use, GNSS has several drawbacks, particularly
in urban environments. Its accuracy can be reduced in ur-
ban canyons, where tall buildings block or reflect signals,
leading to degraded positioning accuracy. To overcome this
problem, we use dense and accurate point cloud maps [31]
as references for our localization algorithm.

C.3. Definition of Heterogeneity in Sensor Suite

Heterogeneity in our context refers to the variability be-
tween LiDAR sensors and platform geometry within a sin-
gle dataset. Heterogeneity can appear in multiple forms
[17]; our dataset represents it in five LIDARs that span three
models, each mounted in four configurations. In line with
the feedback, Tab. 1 of the original manuscript has been up-
dated accordingly. Our dataset demonstrates a realistic set-
ting where collaborative agents have different LIDAR mod-
els and position them in different configurations.



Segments.ai

Spec Document - Multi-sensor labeling

Additional resources

nsor information
3D sensors

Type of task
3D labeling
Labeling rules
General labeling rules
. : . . f
Specific rules for 3D polygon/polyline labeling
Categories
Attributes
Frame-level attributes
Object-level attributes
Edge cases

Version history of labeling specification document
Additional QA

Additional resources

Getting Started

Begin by ensuring the point clouds are not visualized with the default gradient coloring (and to disable the color-by-gradient). The
data is colored by the sensors they are collected from, and should be colored green, blue, orange, yellow, and pink. To do so, follow
the instructions:

1. Click on the “Settings™ tab of the control panel

2. Scroll to "Point cloud display™ and un-check the “Gradient coloring™ tab

Everything is correct if there are only 5 colors (green, blue, orange, yellow, and pink) displayed.

1beling  Settings
Hotkeys
Interface
Layout Layout 1 ~
Object display
Object coloring By category v

Point cloud display
Paint size [ ]

Show point cloud
overlay on images

Gradient coloring *



Discrepancy Resolution

Due to time synchronization issues, a single object may have different scans (discrepancy between sensors). This may occur for
fast moving vehicles. When this happens, fit a bounding box onto a single sensor, prioritizing the point cloud colors in the order of:
green, yellow, orange, pink, and (lastly) blue. For example, if there is a discrepancy between the blue points and green points, ignore
the blue points and fit a bounding box only on the green points.

Special Vehicle Cases
We have 2 electric data-collection vehicles (EV). If they show up in other sensors, label them as Electric Vehicle (EV) category.
They look like small golf cars.

Link to external N/A (see above)
labeling guidelines

Link to reference https://mobility-lab.seas.ucla.edu/v2v4real/#dataannotation
labeled dataset

Link to initial unlabeled | TBD -
dataset



LY )

Sensor information
3D sensors
Type of 3D sensors How File format? Point clouds in local or In case of local Number of frames | Typical file size / Comments
many world reference system? | reference per sequence + point quantity per
E.g. Velodyne, ... sensors? = Moreinfo system, ego Sampling rate? frame?
poses available?
(Add lines where
needed)
One single point cloud 3-6 PCD Word reference TBD -~ 40 - 41 frames per
composed of multiple sequence (20
Ouster Lidar point s/seq): sampling
clouds rate 2hz
TBD - TBD -~
Type of task
3D labeling
Type of labeling Comments
3D cuboids 3D bounding box on point cloud data
[J | 3Dsegmentation
[J @ 3Dpolylines
[J | 3Dpolygons
[J | 3Dkeypoints

Labeling rules

General labeling rules

Rule Answer Default assumption going = Comments

forward without explicit

answer from customer
Maximum distance to label objects? Everything - Everything - See ability to set a visual radius for taskers here
Other zones that do not require labeling? Label everything - Label everything ~

including e.g. car parks

What to do with unclear objects/areas? Do not label - Do not label ~

What to do with refiections? Do not label - Do not label -

How to cope with groups of individual Label each individual - Label each individual ~
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instances?

Are there any specific rules to adverse
weather conditions / nighttime / etc.?

Same as day time -

Same as day time -

Specific rules for cuboid labeling of instance classes

Type Rule Answer Default assumption going Comments
forward without explicit answer
from customer
Position - Can there be some overlap between Slight overlapis OK ~ Slight overlapis OK -
cuboid & ground plane, or should cuboids
be leveled with the ground plane where
applicable?
Rotation & Headi...~ Label only yaw, or yaw & pitch & roll? Yaw, roll & pitch - Yaw, roll & pitch - Please note that labeling also pitch & roll can

reduce throughput with up to a factor 2

Rotation & Headi...

What should the yaw direction/heading
be of an object?

Main face of object ~

Main face of object -

Rotation & Headi..- | What should the yaw direction/heading TBD - TBD - Do not label "cones” or other faceless object
be of a faceless object, e.g. acone? Do Not Label Faceless categories
Categories
Dimensions - Is there a minimum size of cuboid? No - No -
Dimensions - Should cuboids be labeled with default No - No -
dimensions depending on their category?
Dimensions - Can the dimensions of a cuboid change Yes - Yes -
throughout a sequence?
No for: vehicles and rigid objects | when needed
Dimensions - What should the dimension of a cuboid be | 'Realistic size, namely ... ~ Realistic size, namely ... ~ Visible 3D points: only using the visible 3D
based on? points in the current frame, disregarding the
[ ‘copied over] In order Qf } /n. order.of importance: qefau/t realistic size
importance: default dimensions/ | dimensions / on the available 3D
on the available 3D points points elsewhere / on the L )
elsewhere / on the reference reference images Realistic size: e.g. based on the available 3D
images points elsewhere in the sequence, on the
available reference images or on the provided
default dimensions
Dimensions - How tight should a cuboid be? Loose - Loose - Very tight: in each frame, there should not be
any space between the outer points and the
As tight as possible, but canbe a cuboid
bit larger than the object itself.
Ensure all parts are within the . .
cuboid, see “Extremities” Loose: the cuboid can be a bit larger than the
sections object itself
Occlusion - Should an object be labeled if it is only Yes - Yes -

visible on 3D sensors and not on 2D
sensors?
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Occlusion - Should an object be labeled if it is only Minimum of 10 points - Minimum of 10 points -
visible on 2D sensors and not on 3D
sensors?
Occlusion - Should an object be labeled with the same | Yes - Yes -~
track ID if it re-enters a scene or becomes
unoccluded again?
Extremities - Should fixed extremities / protruding Custom ... - Custom... -
parts be included in the cuboid?
Include: side mirrors, larger Include: side mirrors, larger
protruding parts such as bonnet | protruding parts such as bonnet
Exclude: small protruding parts Exclude: small protruding parts
such as antenna such as antenna
Extremities - Should variable/articulating extremities Custom... ~ Custom... ~

be included in the current cuboid, or be
annotated with separate cuboids?

Include: rider, people in/on
vehicles, non-vehicle objects on
trucks

Exclude: vehicles on trucks

Include: rider, cars on trailers,
people in/on vehicles

Exclude (only when a relevant
category is available): person
trolley, car trailer, ...

Extremities -

Include relational tracker for variable
extremities?

No -

No -

If yes: if a car has object ID 10, and a trailer is
attached to this car, the trailer will be annotated
separately and receive a relational attribute with
value 10

Issues/exceptions -

Can cuboids overlap?

Only inreasonable cases -~

Only inreasonable cases -~

Reasonable cases: articulating objects (turning
truck with trailer attached, ...), bicycles standing

very close to each other, ...

Issues/exceptions- | What to do with unclear objects? Use 'unsure' category - Use 'unsure’ category -
Issues/exceptions- | Incase of bad calibration, how shouldthe | Fitto3D - Fitto3D -

cuboid be fitted? should the cuboid be

fitted to the 3D point cloud or rather to

the most confident reference images?
Issues/exceptions- | Incase of bad ego poses and data drift, Fit on each frame - Fiton each frame -

what should happen?

Specific rules for 3D polygon/polyline labeling
Type Rule Answer Default assumption going Comments

forward without explicit answer
from customer
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Temporality - Can nodes be added/removed from No - No - Note: currently not yet compatible with
polygons/polylines after initialization? interpolation (below); on short-term roadmap
Temporality - Should interpolation be enabled? Yes - Yes - Note: currently not yet compatible with

adding/removing nodes (above); on short-term
roadmap

Categories
Category Label instances? To be labeled across all sensors | What does it include? What does it exclude? Comments
& tasks?
Car Yes - No, only 3D - e Sedan e Speed bumps
e SUV ® Raised crosswalks
e Minivan
e All personal/recreational
vehicles
Truck Yes -~ No, only 3D ~
Emergency Vehicle Yes - No, only 3D -  Police Cars
e Ambulance
Bus Yes - No, only 3D -~
Motorcycle/Motorized | Yes - No, only 3D -~ e Motorcycles
Bike o Electric/Motorized Bike
® Scooters
Portable Personal Yes - No, only 3D - ® Segway
Mobility Vehicle o Moped
Bicycle Yes ~ No, only 3D -~
Pedestrian Yes - No, only 3D - ® Pedestrians crossing
e Pedestrians with strollers
(label a single box for both)
Electric Vehicle (EV) Yes - No, only 3D - o Data collection golf car
vehicle
Trailer Yes - No, only 3D ~ e Trailer attached to vehicle
e Wagon
e Other vehicles attached to a
pickup-truck/utility vehicles
Attributes
Frame-level attributes
N/A
Attribute Type Options Description Comments
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TBD -~

Object-level attributes

N/A
Attribute Type Applicable categories Options Description Comments
Motion State Select box - All categories (Car, Truck, In-Motion / Static Select if the object is in motion
Emergency Vehicle, Bus, during the frame. Either select that
Motorcycle, Bike, Pedestrian, itis in-motion (currently moving) or
Portable Vehicle...) static (waiting, parked, stopped,
etc)
Edge cases
Edge Case How to handle it Example
Extreme
Version history of labeling specification document
N/A
Date Version Changes
Additional Q&A
Date Question status Question & assumptions Reference Image/ Link Answer
03/02/2024 Assumption - I do not see only 4 colors, and Click on the "Settings” tab, and

instead see the default gradient
point color scheme. How do |
toggle off the gradient coloring?

Labeling  Settings

Hotkeys

Interface

Layout Layout 1

Object display

Object coloring

Point cloud display

Point size ]

Show point cloud
overlay onimages

Gradient coloring

Bycategory v

p

make sure “Gradient coloring” is
not selected. See Additional
Resources: Getting Started
instructions.
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Assumption -

There are time synchronization
issues, where fast moving
objects are captured differently

by different colored point clouds.

How do | label these?

Fit a tight bounding box around
the point cloud of a single color,
prioritizing in the order of:

1. Green
2. Yellow
3. Orange
4. Pink

5. Blue

In this example, only draw a
bounding box around the green
points. See Additional
Resources: Discrepancy
Resolution.
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