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Figure 1. Six samples of the scenes in the dataset. The different agent’s LiDAR point clouds are colored as follows: electric vehicle-001

(EV-1) in purple, electric vehicle-002 (EV-2) in red, urban vehicle (Laser) in yellow, and the RSU DOME and TOP LiDARs in green

and blue, respectively. We also draw the annotated bounding boxes within the scene. Best viewed in color.

Abstract

Vehicle-to-everything (V2X) collaborative perception

has emerged as a promising solution to address the limita-

tions of single-vehicle perception systems. However, exist-

ing V2X datasets are limited in scope, diversity, and quality.

To address these gaps, we present Mixed Signals, a com-

prehensive V2X dataset featuring 45.1k point clouds and

240.6k bounding boxes collected from three connected au-

tonomous vehicles (CAVs) equipped with two different con-

figurations of LiDAR sensors, plus a roadside unit with dual

LiDARs. Our dataset provides point clouds and bounding

box annotations across 10 classes, ensuring reliable data

for perception training. We provide detailed statistical anal-

ysis on the quality of our dataset and extensively benchmark

existing V2X methods on it. Mixed Signals is ready-to-use,

with precise alignment and consistent annotations across

time and viewpoints. We hope our work advances research

in the emerging, impactful field of V2X perception. Dataset

*Denotes equal contribution.
‡This research is funded by the University of Sydney – Cornell Univer-

sity Ignition Grants/ Global Strategic Collaboration Awards.

details at https://mixedsignalsdataset.cs.

cornell.edu/.

1. Introduction

In recent years, driver assistance [19, 29] and autonomous

driving [1, 47] technologies have advanced significantly,

equipping vehicles with promising capabilities in percep-

tion [20, 44], planning [13, 15], and control [2, 8]. Most

of these developments focus on single autonomous vehicle

scenarios. Despite the advancements, such settings still face

challenges in complex or unpredictable situations [42]. For

instance, important traffic participants can be occluded from

view, or sensors can fail unexpectedly. As autonomous ve-

hicle deployment increases, new possibilities emerge to ad-

dress these issues: multiple vehicles can communicate with

each other and nearby infrastructure, enabling each vehi-

cle to reliably detect road users even when its own sensors

miss them by leveraging shared information. This approach

is commonly referred as vehicle-to-everything (V2X) col-

laborative perception.

While single-vehicle perception datasets are abundant
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Dataset
Hetero. Location Driving # Roadside # CAV # Point # 3D # Classes # Vulnerable Track

Fleet Side LiDARs Clouds (K) Boxes (K) Classes ID

V2X-Sim [23] :
CARLA
(Sim.)

Right 1 5 10.0 26.6 1 0 6

OPV2V [42] : Right 0 2-7 11.4 232.9 1 0 :

V2X-Set [41] : Right 2-7 2-7 33.0 230.0 1 0 :

DAIR-V2X-C‡ [45] : China Right 2 1 39.0 464.0 10 4 :

V2X-Seq (SPD)‡ [46] : China Right 2 1 15.0 10.4 10 4 6

RCooper‡ [12] : China Right 3 0 30.0 N/A 10 3 :

HoloVIC‡ [26] : China Right 2 1 100.0 1800 3 2 6

Open Mars [24] : USA Right 0 2-3 15.0 0 N/A N/A :

V2V4Real [43] Height USA Right 0 2 20.0 240.0 5 0 6

V2X-Real [38] Height USA Right 2 2 33.0 1200.0 10 2 6

TUMTrafV2X [48] : Germany Right 2 1 2.0 30.0 8 3 6

Mixed Signals Height, Tilt AUS Left 2 3 45.1 240.6 10 4 6

Table 1. Comparison of Mixed Signals and existing V2X datasets. To our best knowledge, Mixed Signals is the first dataset to include

heterogeneous CAV LiDAR configurations, and also the first one that is collected in a left-hand driving country. It captures complex,

real-world traffic scenarios and features a diverse range of traffic participants. Those marked with ‡ are valuable datasets, but are only

accessible from certain geographical regions.

across diverse driving conditions [4, 5, 9, 11, 16, 18, 27,

28, 30, 33, 39], real-world V2X datasets remain limited in

availability, diversity, and quality. Only a handful of pub-

licly available V2X datasets exist [24, 38, 43, 48], with

some of them accessible only within specific geographi-

cal regions [12, 26, 45, 46]. These data are collected ex-

clusively from three right-hand traffic locations, overlook-

ing the unique traffic dynamics in left-hand traffic countries

which make up about a third of the world [40]. Furthermore,

as collaborative perception becomes more widespread, it is

valuable for vehicles equipped with different sensor config-

urations to communicate. However, in prior datasets, the

connected autonomous vehicles (CAVs) share identical or

very similar LiDAR configurations. Finally, as the V2X

setting involves multiple agents and sensors, data collection

and alignment present additional challenges. Often times,

difficulty with pose estimation and faulty localization sys-

tems result in poor alignment (Figure 4). Such inaccura-

cies can lead to suboptimal performance for detector train-

ing [41].

To address these limitations, we introduce the Mixed

Signals dataset, designed to support diverse real-world V2X

research scenarios with clean, high-quality data. Notably,

Mixed Signals is the first V2X dataset that provides hetero-

geneous CAV LiDAR configurations in both position and

orientation, and features a left-handing traffic country, Aus-

tralia. The dataset includes 45.1k point clouds and 240.6k

bounding boxes, collected from three CAVs equipped with

two configurations of LiDAR sensors, along with a roadside

unit with two LiDARs. It captures a diverse range of traffic

participants across 10 different classes, including 4 vulner-

able road user categories. Furthermore, compared to exist-

ing datasets, Mixed Signals offers significantly more pre-

cise alignment and consistent annotations across time and

viewpoints. We emphasize that our dataset is ready-to-use;

a subset is provided in the supplementary materials, along

with the corresponding video visualization showcasing the

quality of our collected data and annotations. To summa-

rize, our contributions are:

• We introduce the Mixed Signals dataset, a high qual-

ity, large-scale, publicly available V2X dataset created

through careful processing and precise annotations.

• To the best of our knowledge, we are the first real-world

V2X dataset that encompasses CAV LiDAR configura-

tions that differ in both position and orientation, as well

as left-hand traffic scenarios.

• We provide detailed analysis of the dataset’s statistics,

and conduct comprehensive benchmarking of existing

V2X methods across various settings.

2. Related Works

While existing collaborative perception datasets have the

same sensor setup for their CAVs, our dataset contains three

vehicles with two different sensor configurations, including

the height and tilt of LiDAR and the type of vehicle. This

difference introduces heterogeneity to our fleet of vehicles,

thus making our data more closely resemble the real-world

collaboration deployment. To the best of our knowledge, we

have the largest fleet of CAVs with the most diverse sensors

of any prior works.

Vehicle-to-Everything Communication. One of V2X’s

objectives is to enhance the perception capabilities of CAVs,

facilitating their deployment in urban environments. These

areas usually have a high presence of Vulnerable Road

Users (VRUs), which are defined as people not inside vehi-

cles [32]. Despite this, VRUs are under represented in prior

works. The three synthetic datasets made with CARLA
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(a) Electric vehicle (EV). (b) Urban vehicle with a OS1-128 beams LiDAR. (c) Roadside Unit (RSU).

Figure 2. Vehicles used for data collection. (a) is a small electric vehicle outfitted with an OS1-128 beams LiDAR system. The LiDAR

is mounted at a 15° angle relative to the vehicle’s body and stands at a height of 1.63 meters. (b) is an urban vehicle equipped with an

OS1-128 beam LiDAR system located at a height of 1.9 meters. (c) is the RSU which consists of two LiDARs: an OS1-64 beam (TOP)

and an OSDome-128 (DOME) LiDAR mounted on a pole at the intersection at a height of 2.5 meters.

[10] and the real-world dataset V2V4Real [43] do not have

VRUs. DAIR-V2X-C [45] and its extension V2X-Seq

(SPD) [46] provide annotations for 4 VRU classes (pedes-

trian, bicyclist, tricyclist, and motorcyclist). However, the

absence of details on class distribution in their publications

make it hard to judge their VRU coverage. Additionally,

restricted access to these datasets outside China limits their

usability. TUMTrafV2X [48] annotates 3 VRU classes in-

cluding pedestrian, bicycle, and motorcycle, which together

account for only 24.6% of the total annotations. Such un-

derrepresentation causes VRU detection to be overlooked in

several collaborative perception studies [22, 36, 41, 42].

Real World Vehicle-to-Everything Datasets. The recent

V2X-Real [38] has a large number pedestrian annotations,

which is higher than annotations of the class car, and 3 other

VRU classes (scooter, motorcycle, and bicycle). A draw-

back of this dataset for VRU detection evaluation is that its

benchmark only accounts for pedestrians. Our dataset con-

tains the highest number of VRU classes, including pedes-

trian, bicycle, portable personal mobility, and motorcycle.

More importantly, these classes account for 50.3% of our

dataset’s total bounding boxes. Instead of selecting certain

VRU classes for benchmarking, we group 4 VRU classes

into 2 detection classes as in Section 3.4 to provide a better

understanding of how different collaboration methods per-

form in detecting VRUs. We provide a detailed comparison

of our dataset, Mixed Signals, with prior works in Table 1.

3. Mixed Signals Dataset

In this section, we describe the data collection process

of the Mixed Signals dataset. We provide a devkit and

our full dataset for download on our website: https:

//mixedsignalsdataset.cs.cornell.edu/.

3.1. Hardware

The data collection was carried out using three vehicles and

a roadside unit.

Vehicles. The three vehicles included two small electric

Figure 3. Geographical location of the roadside unit.

vehicles (EVs) and one urban vehicle, each equipped with

OS1 128-beam LiDARs, as shown in Figure 2. The LiDAR

on the urban vehicle is located horizontally with respect to

the ground, while for the EV, the LiDAR is tilted down-

wards 15 degrees. We transformed both EVs’ point clouds

to have a horizontal reference frame as shown in Figure 2a.

Although all the vehicles are equipped with the same type

of LiDAR sensor, their configurations differ in terms of sen-

sor position and orientation. This variation introduces addi-

tional complexity, creating a domain gap between the data

collected from different vehicles.

Roadside Unit. The roadside unit is equipped with two

different LiDAR sensors: an OS-Dome 128-beam for long-

range detection and an OS1 64-beam LiDAR for detecting

nearby objects. It was located at a fixed geographical posi-

tion, 2.5 meters above the ground. The intersection where

the roadside unit was installed experiences moderate vehic-

ular traffic and features pedestrian crosswalks along with a

bike lane that crosses the intersection. This setup allows us

to capture diverse agents during data collection. The place-

ment of the roadside unit is illustrated in Figure 3.

3.2. Data Acquisition

The data collection took place at the intersection between

Abercrombie Street and Myrtle Street in Sydney, Austria,

where the roadside unit is located. The vehicles recorded
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LiDAR data for two hours during peak rush hour. Through-

out this period, the three vehicles repeatedly passed through

the intersection. This allowed them to capture interactions

between the vehicles and other agents on the road, such as

pedestrians, cyclists, and other vehicles.

3.2.1. Synchronization and Localization

Synchronization and localization are crucial for cross-

sensor point cloud alignment. Our dataset employs proven

techniques from robotics to achieve precise sensor synchro-

nization and agent localization. The end result is superior

point cloud alignment compared to previous V2X datasets

(Figure 4). We describe the details below.

Synchronization refers to the temporal alignment of data

streams, ensuring that synchronized sensors capture the

same events simultaneously within their overlapping fields

of view (FOV). We use GPS time to timestamp point clouds

captured by our LiDARs at a frequency of 10 Hz. Even if

two vehicles are GPS-synchronized, cross-sensor synchro-

nization still needs to be considered. For example, since

the LiDAR scans the environment in a rotating fashion, the

data collected at different spatial locations are captured at

slightly different moments. We defined data samples by

setting a time window to match the closest available times-

tamps from each LiDARs. A maximum timestamp mis-

match of 50 milliseconds between point clouds was set to

achieve minimal spatial discrepancies. For additional de-

tails, refer to Appendix C.1.

Localization, i.e., estimating vehicle position relative to

a global reference frame, is one of the most critical tasks

for CAV. To overcome inherent problems of Global Nav-

igation Satellite System (GNSS) in urban environments,

we use dense and accurate point cloud maps [31] as refer-

ences for our localization algorithm. Both the vehicles and

the roadside units are localized within a common reference

frame, referred to as the map frame, which serves as the

origin of our map. The localization algorithm employs a

scan-matching technique [3] to estimate the vehicles’ poses

within this map, achieving a maximum positioning error of

15 cm and a heading error of 0.4 degrees. This allows for

consistent spatial alignment between the vehicles and the

roadside infrastructure. The vehicles’ localization estimates

their positions within the map frame, while the roadside

unit is static. We leave details about map construction and

usage in Appendix C.2.

3.2.2. Scene Selection

In total, 37 scenes –each consisting of a 30-second snippet–

were carefully selected for inclusion in the dataset due to

their rich diversity of vehicles, pedestrians, and cyclists.

The primary goal was to capture various vehicles and vul-

nerable road users. These scenes encompass a broad spec-

trum of interactions, including between different types of

Figure 4. Localization and synchronization quality of Mixed

Signals and existing datasets. Different colors correspond to dif-

ferent sensors. In the lateral view, existing datasets visually exhibit

vertical inconsistencies, where one point cloud is tilted due to lo-

calization errors. In contrast, point clouds in Mixed Signals are all

accurately aligned.

vehicles and between vehicles and vulnerable road users.

The selected scenes feature intersections of the FOV of the

LiDARs of 3 vehicles and the RSU. Among 37 scenes of

our dataset, we select 33 scenes for training and 4 scenes of

testing. The size of the training set and test set are 9553 and

1164 data samples, respectively. Our selection ensures that

there is no temporal overlap between the training set and

test set and among scenes of the test set.

3.3. Dataset Annotation

The task of 3D object detection for autonomous vehicles

requires annotations in the form of 3D bounding boxes,

usually parameterized by the center location, three dimen-

sions (length, width, height), and rotation (represented as

a quaternion). To generate such annotations for each data

sample, we first aggregate the point clouds of every agent

in the coordinate of the roadside unit’s top (TOP) LiDAR

to focus the annotators’ attention to the intersection of in-

terest. Then, professional annotators from FlipSideAI [34]

employ the SegmentsAI [35] annotation tool to label ob-

jects and localize them with a 3D bounding box. Classes

labeled belong to 10 categories, consisting of: car, truck,

pedestrians, bus, electric vehicle, trailer, motorcycle/bike,

bicycle, portable personal mobility, and emergency vehi-

cle. Figure 1 depicts the annotations applied to the dataset,

where each object is enclosed within a cuboid.

Annotations. Our annotation process involved cycles of

monitoring, reviewing, and adjusting labels to meet defined

quality objectives. This allows Mixed Signals dataset to ex-

tend the quality of the pioneering datasets in the field, which

are generally labeled by lay annotators, as shown in Fig-

ure 5. Here, we reproject the bounding box of a vehicle, as

observed from other sensors, back onto its coordinate frame
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Figure 5. Label quality of Mixed Signals and existing datasets.

We aggregate labels of an object across a entire snippet. Labels in

Mixed Signals are consistent across time steps and viewpoints.

to visualize label consistency. Details of the class descrip-

tions and labeling instructions are presented in Appendix

Sec. B. While agents in our dataset are synchronized at 10

Hz, we sample keyframes at 1 Hz for manual annotation.

To obtain annotations in a non-key frame, we linearly inter-

polate the pose of annotations of its closest preceding and

succeeding keyframes based on their timestamp.

Category Labels. The Mixed Signals dataset categories

consist of road agents in 10 categories of vehicle types

and pedestrians including: Car, Truck, Emergency Vehicle,

Bus, Motorcycle, Motorized Bike, Portable Personal Mobil-

ity Vehicle, (traditional) Bicycle, Electric Vehicle, Trailer,

and Pedestrian. Detailed definition of each category can be

found in the appendix.

3.4. Dataset Analysis

Statistics. In our benchmark, we group 10 categories into 3

detection classes according to Table 2. Figure 7 shows the

distribution of annotations of three classes with respect to

their polar coordinate in the coordinate system of TOP. Fig-

ure 8 shows the distribution of dimensions and yaw angle of

annotations of three classes. Figure 6 shows the number of

annotations of each class in the training set and test set. Fig-

ure 9 analyzes track lengths in the training and test set. For

both splits, most tracks are under 10 seconds. This is due

to the dynamic and typical speeds at the intersection envi-

ronment. A sharp peak at 30 seconds indicates the presence

of static objects detected primarily by the RSU for the en-

tire sequence duration. Figure 10 depicts the aggregation of

point clouds from 5 agents and ground truth annotations in

the coordinate system of TOP during a 4-second time span,

which amounts to 40 time steps. The consistent pose of

static objects and the smooth trajectory of dynamic objects

visually demonstrate the quality of our annotation.

4. Proposed Tasks and Benchmarks

Our dataset includes multiple agents and annotations in the

form of 3D bounding boxes with track IDs. This enables

the development of methods for various collaborative per-

Detection Class Annotation Classes

Vehicle
car, truck, emergency vehicle,

bus, electric vehicle, trailer

Bike
motorbike, bicycle,

portable personal mobility

Pedestrian pedestrian

Table 2. Definition of detection classes. The Mixed Signals

dataset includes 10 fine-grained annotation classes for traffic par-

ticipants, organized into 3 broader detection classes.

Figure 6. Number of objects by class. The y-axis is in log scale.

ception tasks, such as object detection, tracking, and motion

forecasting. Given the importance of object detection in au-

tonomous driving, we focus on collaborative detection tasks

in the main text and report preliminary tracking benchmark

results in Appendix B.2.

4.1. Definition of Tasks

We define two tasks that are distinguished by the collabo-

ration setting: Collaborative Object Detection and Single-

Vehicle Object Detection enhanced by communication to

RSU, which we describe in the following sections.

Collaborative Object Detection. This is the classical col-

laborative object detection task [22, 36], where every con-

nected agent (i.e., vehicles and RSUs) uses a shared model

to (i) extract features from their point clouds, (ii) generate

messages to send to other agents, and (iii) fuse the features

of their point clouds with messages received from others.

The goal is to detect every visible object in a region of in-

terest. We define visibility by comparing the number of Li-

DAR points contained within an object’s bounding box to

a threshold. In this task, these LiDAR points are sourced

from any agents present within the region of interest.

Object Detection Enhanced by Communication to RSU.

This task assumes that the RSU model is designed and

trained by a different provider than the one responsible for

the CAVs’ models. In this task, the RSU model is pre-

trained in the single-vehicle detection setting to detect ob-

jects visible to its LiDARs. After the pre-training process,

the RSU model is fixed. CAVs in the proximity of the RSU

receive messages from the RSU to enhance their detection
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Figure 7. Distribution of annotated object locations. Locations are shown in polar coordinates relative to the RSU TOP sensor.
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Figure 8. Distribution of bounding box dimensions and yaw angles. Vehicles exhibit a wide range of sizes.

Figure 9. Distribution of track lengths. The peak at 30 seconds

corresponds to static objects.

capabilities. The objective is to detect all objects in a region

of interest that are visible to either the CAV or the RSU.

The differences between this task and Collaborative Ob-

ject Detection are twofold. First, there is no communica-

tion among connected vehicles in this task, making it simi-

lar to Vehicle-to-Infrastructure (V2I) detection [38, 45, 48].

Second, instead of having a single model shared among

all connected agents like prior works on V2I collaboration,

we have one model for the CAVs and another independent

model for the RSU. This introduces a different challenge,

as the CAV’s model must adapt to messages from the RSU,

which may contain domain gaps due to differences in model

architecture, types of LiDAR, and viewpoints.

0 5 10 15 20 25 30 35 40
Time Step

Figure 10. Visualization of object tracks in Mixed Signals.

Dynamic objects display smooth trajectories, while static objects

maintain consistent poses over time, highlighting the high quality

of our annotations.
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Vehicle AP@ Bike AP@ Pedestrian AP@ Avg. Bandwidth

(MB)
IOU 0.5 IOU 0.7 IOU 0.5 IOU 0.7 IOU 0.3 IOU 0.5

No Fusion 0.42 0.42 0.19 0.19 0.47 0.41 0.00

Early Fusion (Adapting [43]) 0.24 0.24 – – – – 7.79

Early Fusion 0.65 0.65 0.65 0.65 0.74 0.67 7.79

Attentive Fusion [42] 0.82 0.82 0.71 0.71 0.74 0.68 5.26

V2V-Net [36] 0.72 0.72 0.69 0.69 0.42 0.32 4.19

F-Cooper [6] 0.75 0.75 0.68 0.68 0.72 0.65 15.31

V2X-ViT [41] 0.84 0.84 0.71 0.70 0.77 0.70 19.36

V2V-AM [21] 0.83 0.83 0.79 0.79 0.69 0.60 16.78

where2comm [14] 0.77 0.77 0.74 0.74 0.31 0.18 16.78

Laly Fusion [7] 0.61 0.61 0.68 0.68 0.69 0.62 0.11

Late Fusion (Adapting [43]) 0.12 0.12 – – – – 0.11

Late Fusion 0.43 0.43 0.56 0.56 0.57 0.48 0.11

Table 3. Benchmarking results for the Collaborative Object Detection task. All fusion methods outperform the No Fusion baseline,

highlighting the advantage of collaborative perception. Each fusion method involves trade-offs between detection performance and com-

munication bandwidth overhead. Models adapted from a premier R.H.S. V2V dataset [43] are shown in gray.

Vehicle AP@ Bike AP@ Pedestrian AP@

IOU 0.5 IOU 0.7 IOU 0.5 IOU 0.7 IOU 0.3 IOU 0.5

EV-1 + RSU

No Fusion (EV-1 only) 0.33 0.33 0.28 0.28 0.37 0.30

No Fusion (RSU only) 0.22 0.22 0.20 0.19 0.26 0.22

Attentive Fusion 0.53 0.53 0.60 0.59 0.57 0.45

V2V-Net 0.46 0.46 0.47 0.47 0.32 0.21

Late Fusion 0.29 0.29 0.43 0.43 0.52 0.41

EV-2 + RSU

No Fusion (EV-2 only) 0.33 0.33 0.16 0.16 0.08 0.05

No Fusion (RSU only) 0.24 0.24 0.20 0.19 0.26 0.23

Attentive Fusion 0.56 0.56 0.56 0.56 0.40 0.27

V2V-Net 0.52 0.52 0.49 0.48 0.27 0.18

Late Fusion 0.41 0.41 0.49 0.49 0.43 0.31

Laser + RSU

No Fusion (Laser only) 0.30 0.30 0.32 0.32 0.46 0.44

No Fusion (RSU only) 0.17 0.17 0.18 0.18 0.25 0.22

Attentive Fusion 0.71 0.71 0.66 0.65 0.58 0.50

V2V-Net 0.63 0.63 0.55 0.54 0.37 0.27

Late Fusion 0.46 0.46 0.52 0.51 0.66 0.57

Table 4. Benchmarking results for the Object Detection Enhanced by Communication to RSU task. Communication between the agent

and RSU generally improves performance compared to single-agent perception. Performance varies across agents with different sensor

configurations, suggesting future research opportunities to develop methods that work effectively with diverse sensor types.

4.2. Benchmark

Evaluation Settings. Since the annotations are made in the

coordinate system of TOP, we define the region of inter-

est for the two detection tasks as the range [−51.2, 51.2]
meters along both the x and y axes of this coordinate sys-

tem. For evaluation, we transform objects detected by each

agent into this coordinate system. The visibility threshold is

set to 5 points. Since timestamp mismatches and localiza-

tion errors are inherent in real-world applications and con-

sequently present in our dataset, we do not artificially intro-

duce them into the messages exchanged among connected

agents (something that is often done in synthetic datasets

[41, 42]). We measure object detection performance using

Average Precision (AP). Detected objects are matched with

ground truth based on their Intersection over Union (IoU)
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in the bird’s-eye view plane. A detection and a ground truth

object are considered a match if their IoU exceeds thresh-

olds of 0.3, 0.5, or 0.7. In addition to AP, we measure

the bandwidth consumption of each collaborative method

to gauge their practicality. The total bandwidth consump-

tion is calculated by multiplying the number of agents in

the collaboration network by the size of the message each

agent sends. While the number of agents is not depen-

dent on the collaboration method of choice, the message

size is. We report the bandwidth consumption by averag-

ing the size of the messages that agents send, measured in

Megabytes (MB). While some intermediate collaboration

methods [22, 36, 41] employ specialized compressing algo-

rithms to reduce the message size, other methods [7, 25, 42]

do not. For fair comparison, we report uncompressed sizes.

Methods. Our benchmark covers three conventional col-

laboration frameworks, namely Early fusion, Intermediate

fusion [6, 14, 21, 36, 41, 42], and Late fusion, and the recent

Laly fusion [7]. We detail the benchmarking methodology

specifics in the appendix.

4.3. Results

4.3.1. Collaborative Object Detection

We show the benchmark of the Collaborative Object Detec-

tion task in Table 3. The results in this table clearly demon-

strate the advantage of collaboration perception over single-

agent perception, as all fusion methods largely outperform

No Fusion on every class. The comparison of three conven-

tional fusion methods, including Early, Intermediate, and

Late, shows that a higher precision is attained at the cost

of a larger bandwidth consumption. In contrast, Laly fu-

sion achieves comparable precision on Bike and Pedestrian

compared to Early Fusion and Intermediate Fusion while

consuming an order magnitude less bandwidth. The high

performance at less bandwidth of Laly fusion coupled with

its simplicity make this method a strong candidate for real-

world deployment. However, we note that there is still am-

ple room for improvement, particularly among the VRUs,

suggesting the need for future algorithm design.

Domain Gap from prior R.H.T. Datasets. To illustrate

the domain gap covered by Mixed Signals, we directly

adapt an early-fusion and a late-fusion model trained on the

right-hand traffic (R.H.T.) dataset, V2V4Real [43], onto our

dataset (grayed-out rows in Table 3). Performance degraded

significantly, with vehicle headings predicted incorrectly,

indicating a learned prior from traffic flow (Figure 11). This

highlights a substantial domain gap due to left-hand traffic

and sensor modality differences, underscoring Mixed Sig-

nals’ unique contribution to the V2X perception landscape.

4.3.2. Detection via Communication to RSU

Table 4 presents the performance of different fusion meth-

ods on Object Detection Enhanced by Communication to

Figure 11. Detection visualization from adapting models trained

on V2V4Real [43] into Mixed Signals. Ground truth bounding

boxes are shown in green and predicted detections in blue, with

heading indicated by the triangle. Observe that predicted heading

directions are often aligned to priors learned in R.H.T. driving.

RSU task. In this setting, detector training is more challeng-

ing, as each vehicle-centric detector must adapt to a frozen

RSU detector. Nevertheless, results show that communi-

cation with RSU is still advantageous, as evidenced by the

substantial performance improvement over the No Fusion

baselines. Furthermore, the performance of the Laser car is

better than the performance of the two EVs. This is because

the LiDAR of the Laser car has a 360-degree coverage of

its surroundings. On the other hand, the tilted angle of the

LiDAR on the two EVs makes the region behind them un-

observable. The LiDARs on the two EVs do not capture the

intensity information, resulting in a domain gap between

their features and those from the RSU. These observations

point to future research directions for developing methods

that could work well with diverse sensor configurations.

5. Discussion and Conclusion

Our work presents the Mixed Signals V2X dataset, created

through careful data selection, sensor synchronization and

localization, and a strong investment in high quality anno-

tations. To the best of our knowledge, our dataset is the

first to support heterogeneous sensor configurations with

varying positions and orientations, collected in an out-of-

domain left-hand traffic country, Australia, providing a di-

verse dataset addition to the field. We hope that the release

of our dataset will facilitate research into complex and re-

alistic settings for V2X perception. Future directions of re-

search include studying communication protocols that en-

sure both fast transmission and directed communication that

targets salient information.
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Mixed Signals: A Diverse Point Cloud Dataset for Heterogeneous LiDAR V2X

Collaboration

Appendix

In this appendix material, we include: 1) extra details about

the Mixed Signals dataset and the provided code devkit,

2) annotation details and instructions given to annotators,

and 3) additional sensor details. We include an additional

dataset teaser video in the dataset website* that we encour-

age readers to watch.

A. Data and Devkit

Please see https://mixedsignalsdataset.cs.

cornell.edu/ for the dataset download instructions and

the provided devkit. Below, we add a brief description of

the devkit and visualize a dataset sample.

A.1. Devkit Description

We provide a separate devkit and additionally integrate our

dataset into the framework OpenCOOD [42], which offers

the implementation of various state-of-the-art collaborative

perception methods. As OpenCOOD only provides single-

class models, we adapt its implementation of Early, Inter-

mediate, and Late Fusion models to detect three classes,

including vehicles, bikes, and pedestrians. We added de-

tection heads of 1-by-1 convolution layers to existing archi-

tectures to achieve this. In addition, we add the recent Laly

fusion [7] to this framework. Every model in our bench-

mark uses PointPillar [20] as the backbone. Interested read-

ers can refer to our devkit† and code release‡ and extended

OpenCOOD integration for further details on architectures

and training settings.

A.2. Sample Data

Figure A1 shows an example of the collected data, where

the points are colour-coded to represent the different Li-

DARs. The dataset aims to replicate realistic urban scenar-

ios that reflect the complexities of real-world implementa-

tions by using multiple vehicles with diverse sensor con-

figurations and a roadside unit. Real-world deployments

of autonomous vehicles on streets incorporate LiDARs,

which are becoming more affordable. Roadside infrastruc-

ture, such as roadside units, is also gaining popularity for

traffic monitoring and data analytics, now often equipped

with LiDAR, traffic light timing information, and commu-

nication systems to enhance robustness and applicability.

*https://sites.coecis.cornell.edu/mixedsignals/

#introvid
†https://github.com/quan- dao/mixed- signals-

devkit
‡https://github.com/acfr/Mixed-Signals-Dataset

Figure A1. Top-down view of the data collected at the location.

LiDAR point clouds are colored by the vehicle and RSU that col-

lected them, consisting of the 3 vehicle agents (red, yellow, and

purple) and the Top and Dome LiDAR sensors of the RSU (green,

blue). Best viewed in colour.

Our dataset consists of LiDAR point clouds, which offer

the advantage of not capturing identifiable information like

faces or license plates, thus preserving data privacy. This

contrasts with camera images, which often require post-

processing to anonymize sensitive details, potentially af-

fecting data quality. Our dataset includes tracking IDs for

each bounding box, and this information will be released

alongside this paper. Benchmarks will be made available at

a later date.

Intensity Distributions. Figure A2 shows LiDAR inten-

sity distributions from RSU TOP, DOME, and Laser car

sensors. DOME and TOP sensors record higher intensities

because there is a large number of static objects (e.g., build-

ings, traffic lights) near them. In contrast, the Laser car

sensor presents a smoother decline in intensity values be-

cause of its location on the vehicle, which allows the detec-

tion of objects at greater distances. EV-1 and EV-2 sensors

do not capture intensity readings. Therefore, a uniform ap-

proach to utilizing intensity values across all agent models

would be inadequate.

B. Annotation Instructions

We provide the instructions given to the Segments.ai§ an-

notators in the attached material, titled “Spec Document -

Multi-sensor labeling” at the bottom of the appendix. We

selected to invest in the quality of the annotations, applying

§https://segments.ai/
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Category Definition

Car
Includes passenger vehicles such as sedans, hatchbacks, SUVs, and coupes that are designed primar-

ily for the transportation of passengers.

Truck
Encompasses larger vehicles primarily used for transporting goods and materials. This category

includes pickup trucks, delivery trucks, and heavy-duty trucks.

Emergency Vehicle
Vehicles designated for emergency response, including ambulances, fire trucks, police cars, and other

vehicles equipped with sirens and emergency lights.

Bus
Large motor vehicles designed to carry numerous passengers. Buses include city transit buses, school

buses, and intercity coaches. They usually have designated routes and schedules.

Motorcycle

Motorized Bike

Two-wheeled motor vehicles, including motorcycles and motorized bikes. This category also

covers scooters and mopeds.

Portable Personal

Mobility Vehicle

Small, lightweight vehicles designed for personal mobility, including electric scooters, hoverboards,

and segways.

Bicycle
Human-powered, pedal-driven vehicles with two wheels. Bicycles include standard bikes, mountain

bikes, and road bikes. This category include motorized bicycles or electric bikes.

Electric Vehicle Refers to small, golf car-like vehicles used for data collection purposes.

Trailer Non-motorized vehicles designed to be towed by a motor vehicle.

Pedestrian Individuals traveling on foot. This category includes people walking or running.

Table A1. Definitions of the annotation classes.

Figure A2. Distribution of LiDAR intensities from RSU TOP,

DOME, and Laser car sensors. Each sensor shows different in-

tensity ranges and distributions. EV-1 and EV-2 LiDAR sensors

do not have intensity readings.

rigorous quality control measures to guarantee accurate and

consistent labeled data, minimizing errors, and maintaining

high standards.

B.1. Definitions of the Annotation Classes

The Mixed Signals dataset categories road agents in dif-

ferent vehicle types and pedestrians. Categories such as

“Car” and “Truck” encompass common passenger and large

transport vehicles, while “Emergency Vehicle” covers am-

bulances, fire trucks, and police cars, highlighting their im-

portance in urban scenarios. “Bus” labels are designated for

large passenger vehicles typically used in public transporta-

tion. The dataset also distinguishes between “Motorcycle”

and “Motorized Bike,” and “Portable Personal Mobility Ve-

hicle,” which includes modern personal transport devices

like electric scooters and hoverboards. Traditional “Bicy-

cle” labels account for both standard and electric bikes. La-

bels for “Electric Vehicle” and “Trailer” ensure that smaller,

often data-collection vehicles and towable units are accu-

rately represented. Finally, we labeled humans as “Pedestri-

ans”. In Table A1, we provide the definitions of the 10 fine-

grained annotation classes in the Mixed Signals dataset.

The breakdown of the fine-grain classes into the bench-

marked classes can be found in the main text.

B.2. Track Annotations and Multi­agent Tracking

We benchmark the performance of the planned tracking

task for our dataset. The Mixed Signals dataset has labels

for track ID’s, as seen in Figure 10 of the main text. We

hope to include and benchmark tracking methods as an ad-

ditional task which is supported by our dataset. We report

some initial benchmarking results on the AB3DMOT track-

ing method [37] in Table A2. For further details about track

labels, please explore the data itself; a distribution of the

tracks are in Figure 9 of the main text.

B.3. Annotation Details

The annotation process for this multi-sensor dataset in-

volves handling joint scenes and synchronization discrep-

2



Category sAMOTA AMOTA AMOTP

Vehicle 89.6 43.1 63.3

Pedestrian 76.6 32.6 42.8

Table A2. Tracking performance for AB3DMOT with V2X-ViT

detections on the Mixed Signals validation split.

ancies between sensors. Due to time synchronization, fast-

moving objects might appear slightly offset across the data

collected from different sensors. To address these discrep-

ancies, annotators were instructed to prioritize the roadside

unit point cloud for bounding box creation, following a

set hierarchy. When there is a mismatch, bounding boxes

should be aligned with the point cloud in the following or-

der: roadside unit, EVs, and the urban vehicle. For example,

if there is a difference between the roadside unit and the ve-

hicles’ point cloud, the bounding box should only be fitted

around the roadside unit points. This ensures consistency

in object localization across frames despite synchronization

lags.

C. Sensor Details

C.1. Hardware and Synchronization Details

Sensor Agent Range∗ Channels Vertical FOV

Ouster OS1-128 Vehicles 170 m 128 45

Ouster OS1-64 RSU 100 m 64 45

Ouster OS Dome RSU 45 m 128 180
∗Based on 80% Lambertian reflectivity in the sensors’ official datasheets.

Table A3. Hardware specifications.

Synchronization is especially important in dynamic envi-

ronments, as any introduced time shifts can lead to posi-

tional inconsistencies, resulting in multiple detections of the

same object. The sensors in our multi-agent system were

timestamped using GPS time as a common reference, and

sensor details are provided in Table A3. Rotational LiDARs

continuously scan the environment in 360 degrees, thus, dif-

ferent portions of the surroundings are captured at slightly

different times during a full rotation. When vehicles are

in motion, their positions and orientations change dynam-

ically between LiDARs sweeps. The maximum time gap

for matching sensor readings between 10 Hz rotational sen-

sors is 50 ms. Since sensors rotate fully in 100 ms, angular

positions differ by at most 180 degrees. If the time dif-

ference between readings were larger than 50 ms, it would

be matched with the next or previous rotation instead. As

shown in the original manuscript, precise sensor synchro-

nization, robust multi-agent localization, and clearly de-

fined annotation protocols produced high-quality data as-

sociation across all sensors.

C.2. Localization

Localization is one of the most critical tasks for CAV, esti-

mating their position relative to a global reference frame.

One of the most commonly used sensors for localiza-

tion is the Global Navigation Satellite System (GNSS).

GNSS offers access to a satellite constellation that provides

global positioning via triangulation. However, despite its

widespread use, GNSS has several drawbacks, particularly

in urban environments. Its accuracy can be reduced in ur-

ban canyons, where tall buildings block or reflect signals,

leading to degraded positioning accuracy. To overcome this

problem, we use dense and accurate point cloud maps [31]

as references for our localization algorithm.

C.3. Definition of Heterogeneity in Sensor Suite

Heterogeneity in our context refers to the variability be-

tween LiDAR sensors and platform geometry within a sin-

gle dataset. Heterogeneity can appear in multiple forms

[17]; our dataset represents it in five LiDARs that span three

models, each mounted in four configurations. In line with

the feedback, Tab. 1 of the original manuscript has been up-

dated accordingly. Our dataset demonstrates a realistic set-

ting where collaborative agents have different LiDAR mod-

els and position them in different configurations.
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Spec Document - Multi-sensor labeling
Additional resources
Sensor information

3D sensors
Type of task

3D labeling
Labeling rules

General labeling rules
Specific rules for cuboid labeling of instance classes
Specific rules for 3D polygon/polyline labeling

Categories
Aributes

Frame-level aributes
Object-level aributes

Edge cases
Version history of labeling specification document
Additional Q&A

Additional resources

Getting Started
Begin by ensuring the point clouds are not visualized with the default gradient coloring (and to disable the color-by-gradient). The
data is colored by the sensors they are collected from, and should be colored green, blue, orange, yellow, and pink. To do so, follow
the instructions:
1. Click on the `Settings` tab of the control panel
2. Scroll to `Point cloud display` and un-check the `Gradient coloring` tab
Everything is correct if there are only 5 colors (green, blue, orange, yellow, and pink) displayed.



Discrepancy Resolution
Due to time synchronization issues, a single object may have di�erent scans (discrepancy between sensors). This may occur for
fast moving vehicles. When this happens, fit a bounding box onto a single sensor, prioritizing the point cloud colors in the order of:
green, yellow, orange, pink, and (lastly) blue. For example, if there is a discrepancy between the blue points and green points, ignore
the blue points and fit a bounding box only on the green points.

Special Vehicle Cases
We have 2 electric data-collection vehicles (EV). If they show up in other sensors, label them as Electric Vehicle (EV) category.
They look like small golf cars.

Link to external
labeling guidelines

N/A (see above)

Link to reference
labeled dataset

hps://mobility-lab.seas.ucla.edu/v2v4real/#dataannotation

Link to initial unlabeled
dataset

TBD



Sensor information

3D sensors

Type of 3D sensors

E.g. Velodyne, …

(Add lines where
needed)

How
many
sensors?

File format?

More info

Point clouds in local or
world reference system?

In case of local
reference
system, ego
poses available?

Number of frames
per sequence +
Sampling rate?

Typical file size /
point quantity per
frame?

Comments

One single point cloud
composed of multiple
Ouster Lidar point
clouds

3�6 PCD Word reference TBD 40 - 41 frames per
sequence �20
s/seq): sampling
rate 2 hz

TBD TBD

Type of task

3D labeling

Type of labeling Comments

3D cuboids 3D bounding box on point cloud data

3D segmentation

3D polylines

3D polygons

3D keypoints

Labeling rules

General labeling rules

Rule Answer Default assumption going
forwardwithout explicit
answer from customer

Comments

Maximumdistance to label objects? Everything Everything See ability to set a visual radius for taskers here

Other zones that do not require labeling? Label everything Label everything

including e.g. car parks

What to dowith unclear objects/areas? Do not label Do not label

What to dowith reüections? Do not label Do not label

How to copewith groups of individual Label each individual Label each individual



instances?

Are there any speciûc rules to adverse
weather conditions / nighime / etc.?

Same as day time Same as day time

Specific rules for cuboid labeling of instance classes

Type Rule Answer Default assumption going
forwardwithout explicit answer
from customer

Comments

Position Can there be some overlap between
cuboid & ground plane, or should cuboids
be leveledwith the ground planewhere
applicable?

Slight overlap is OK Slight overlap is OK

Rotation & Headi… Label only yaw, or yaw& pitch & roll? Yaw, roll & pitch Yaw, roll & pitch Please note that labeling also pitch & roll can
reduce throughput with up to a factor 2

Rotation & Headi… What should the yaw direction/heading
be of an object?

Main face of object Main face of object

Rotation & Headi… What should the yaw direction/heading
be of a faceless object, e.g. a cone?

TBD
Do Not Label Faceless
Categories

TBD Do not label "cones" or other faceless object
categories

Dimensions Is there aminimum size of cuboid? No No

Dimensions Should cuboids be labeledwith default
dimensions depending on their category?

No No

Dimensions Can the dimensions of a cuboid change
throughout a sequence?

Yes

No for: vehicles and rigid objects

Yes

when needed

Dimensions What should the dimension of a cuboid be
based on?

Realistic size, namely ...

[copied over] In order of
importance: default dimensions /
on the available 3D points
elsewhere / on the reference
images

Realistic size, namely ...

In order of importance: default
dimensions / on the available 3D
points elsewhere / on the
reference images

Visible 3D points: only using the visible 3D
points in the current frame, disregarding the
realistic size

Realistic size: e.g. based on the available 3D
points elsewhere in the sequence, on the
available reference images or on the provided
default dimensions

Dimensions How tight should a cuboid be? Loose

As tight as possible, but can be a
bit larger than the object itself.
Ensure all parts are within the
cuboid, see "Extremities"
sections

Loose Very tight: in each frame, there should not be
any space between the outer points and the
cuboid

Loose: the cuboid can be a bit larger than the
object itself

Occlusion Should an object be labeled if it is only
visible on 3D sensors and not on 2D
sensors?

Yes Yes



Occlusion Should an object be labeled if it is only
visible on 2D sensors and not on 3D
sensors?

Minimum of 10 points Minimum of 10 points

Occlusion Should an object be labeledwith the same
track ID if it re-enters a scene or becomes
unoccluded again?

Yes Yes

Extremities Should ûxed extremities / protruding
parts be included in the cuboid?

Custom ...

Include: side mirrors, larger
protruding parts such as bonnet

Exclude: small protruding parts
such as antenna

Custom ...

Include: side mirrors, larger
protruding parts such as bonnet

Exclude: small protruding parts
such as antenna

Extremities Should variable/articulating extremities
be included in the current cuboid, or be
annotatedwith separate cuboids?

Custom ...

Include: rider, people in/on
vehicles, non-vehicle objects on
trucks

Exclude: vehicles on trucks

Custom ...

Include: rider, cars on trailers,
people in/on vehicles

Exclude (only when a relevant
category is available): person
trolley, car trailer, …

Extremities Include relational tracker for variable
extremities?

No No If yes: if a car has object ID 10, and a trailer is
attached to this car, the trailer will be annotated
separately and receive a relational attribute with
value 10

Issues/exceptions Can cuboids overlap? Only in reasonable cases Only in reasonable cases Reasonable cases: articulating objects (turning
truck with trailer aached, …), bicycles standing
very close to each other, …

Issues/exceptions What to dowith unclear objects? Use 'unsure' category Use 'unsure' category

Issues/exceptions In case of bad calibration, how should the
cuboid be ûed? should the cuboid be
ûed to the 3D point cloud or rather to
themost conûdent reference images?

Fit to 3D Fit to 3D

Issues/exceptions In case of bad ego poses and data drift,
what should happen?

Fit on each frame Fit on each frame

Specific rules for 3D polygon/polyline labeling

Type Rule Answer Default assumption going
forwardwithout explicit answer
from customer

Comments



Temporality Can nodes be added/removed from
polygons/polylines after initialization?

No No Note: currently not yet compatible with
interpolation (below); on short-term roadmap

Temporality Should interpolation be enabled? Yes Yes Note: currently not yet compatible with
adding/removing nodes (above); on short-term
roadmap

Categories

Category Label instances? To be labeled across all sensors
& tasks?

What does it include? What does it exclude? Comments

Car Yes No, only 3D ● Sedan
● SUV
● Minivan
● All personal/recreational
vehicles

● Speed bumps
● Raised crosswalks

Truck Yes No, only 3D

Emergency Vehicle Yes No, only 3D ● Police Cars
● Ambulance

Bus Yes No, only 3D

Motorcycle/Motorized
Bike

Yes No, only 3D ● Motorcycles
● Electric/Motorized Bike
● Scooters

Portable Personal
Mobility Vehicle

Yes No, only 3D ● Segway
● Moped

Bicycle Yes No, only 3D

Pedestrian Yes No, only 3D ● Pedestrians crossing
● Pedestrians with strollers
(label a single box for both)

Electric Vehicle �EV� Yes No, only 3D ● Data collection golf car
vehicle

Trailer Yes No, only 3D ● Trailer aached to vehicle
● Wagon
● Other vehicles aached to a
pickup-truck/utility vehicles

Attributes

Frame-level attributes
N/A

Aribute Type Options Description Comments



TBD

Object-level attributes
N/A

Aribute Type Applicable categories Options Description Comments

Motion State Select box All categories (Car, Truck,
Emergency Vehicle, Bus,
Motorcycle, Bike, Pedestrian,
Portable Vehicle…)

In-Motion / Static Select if the object is in motion
during the frame. Either select that
it is in-motion (currently moving) or
static (waiting, parked, stopped,
etc)

Edge cases

EdgeCase How to handle it Example

Extreme

Version history of labeling specification document
N/A

Date Version Changes

Additional Q&A

Date Question status Question & assumptions Reference Image/ Link Answer

03/02/2024 Assumption I do not see only 4 colors, and
instead see the default gradient
point color scheme. How do I
toggle o the gradient coloring?

Click on the "Seings" tab, and
make sure "Gradient coloring" is
not selected. See Additional
Resources: Geing Started
instructions.



03/02/2024 Assumption There are time synchronization
issues, where fast moving
objects are captured dierently
by dierent colored point clouds.
How do I label these?

Fit a tight bounding box around
the point cloud of a single color,
prioritizing in the order of:

1. Green
2. Yellow
3. Orange
4. Pink
5. Blue

In this example, only draw a
bounding box around the green
points. See Additional
Resources: Discrepancy
Resolution.
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