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Abstract

Temporal graph neural networks (TGNN) have

achieved significant momentum in many real-

world dynamic graph tasks. While most existing

TGNN attack methods assume worst-case scenar-

ios where attackers have complete knowledge of

the input graph, the assumption may not always

hold in real-world situations, where attackers can,

at best, access information about existing nodes

and edges but not future ones after the attack.

However, studying adversarial attacks under these

constraints is crucial, as limited future knowledge

can reveal TGNN vulnerabilities overlooked in

idealized settings. Nevertheless, designing effec-

tive attacks in such scenarios is challenging: the

evolving graph can weaken their impact and make

it hard to affect unseen nodes. To address these

challenges, we introduce MemFreezing, a novel

adversarial attack framework that delivers long-

lasting and spreading disruptions in TGNNs with-

out requiring post-attack knowledge of the graph.

MemFreezing strategically injects fake nodes or

edges to push node memories into a stable “frozen

state,” reducing their responsiveness to subse-

quent graph changes and limiting their ability to

convey meaningful information. As the graph

evolves, these affected nodes maintain and prop-

agate their frozen state through their neighbors.

Experimental results show that MemFreezing per-

sistently degrades TGNN performance across var-

ious tasks, offering a more enduring adversarial

strategy under limited future knowledge.
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1. Introduction

Dynamic graphs are prevalent in real-world scenarios, span-

ning areas like social media (Kumar et al., 2018), knowl-

edge graphs (Leblay & Chekol, 2018), autonomous sys-

tems (Leskovec et al., 2005), and traffic graphs (Pareja et al.,

2020). Inspired by the success of GNNs (Kipf & Welling,

2016; Hamilton et al., 2017; Veličković et al., 2017; Xu et al.,

2018), Temporal Graph Neural Networks (TGNNs) have

become leading solutions for dynamic graph tasks (Trivedi

et al., 2019; Kumar et al., 2019; Rossi et al., 2020; Zhang

et al., 2023; You et al., 2022). As such, there is a pressing

need to study their robustness towards adversarial attacks,

especially since such attacks have shown significant effi-

cacy against traditional GNNs (Wang et al., 2018; Tao et al.,

2021; Zügner et al., 2018; Zou et al., 2021; Ma et al., 2020;

Zang et al., 2020; Bojchevski & Günnemann, 2019; Sun

et al., 2022; Li et al., 2022). By modifying the input graphs

with imperceptible and subtle perturbations, the adversarial

attacks can make the models yield incorrect or adversary-

expected results. For instance, a social media such as RED-

DIT (Kumar et al., 2018) may employ TGNN to decide

whether comments (as edges) from users to posts (as nodes)

should be banned based on his/her comment histories. With

subtle adversarial attacks, malicious messages can easily

bypass this checking functionality.

While several studies have explored the effectiveness of

adversarial attacks on dynamic graphs (Lee et al., 2024;

Sharma et al., 2022; 2023; Chen et al., 2021), they often

assume that attackers have complete knowledge of the input

graphs at the time of the attack, which may be challenging

to achieve in many real-world scenarios. In practice, as

dynamic graphs evolve, by the time attackers observe the

entire evolution (i.e., track all changing nodes and edges)

and identify the optimal timestamps to inject adversarial

perturbations (e.g., adding fake nodes or edges), those key

timestamps may have already passed, making it challenging

to inject noises timely. Hence, in real-world cases, despite

white-box (i.e., model parameters are known) or black-box

setups (i.e., model parameters are unknown), the adversary

may attack TGNN without knowing future changes on the

graph. Therefore, studying TGNN adversarial attacks under

these real-world constraints is essential since attacking un-
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der limited future knowledge may exhibit unique patterns

that reveal TGNN vulnerabilities overlooked in idealized,

full-knowledge analyses. However, attacking TGNNs with

limited knowledge up to the attack time faces significant

challenges due to the evolving nature of dynamic graphs.

First, the impact of adversarial noise can quickly decay as

the graph evolves and node information updates. Second, it

is difficult to influence unseen nodes or edges that appear

after the attack, as their information is unknown. Thus, an

effective strategy must endure the graph’s evolution and

affect both current and future nodes despite this uncertainty.

Interestingly, the node updating mechanism in Temporal

Graph Neural Networks (TGNNs) offers unique potentials

for persisting and propagating adversarial noises in dynamic

graphs. Generally, TGNNs maintain and update node status

vectors, often referred to as node memory by recent stud-

ies (Rossi et al., 2020; Zhou et al., 2022; Wang & Mendis,

2024; Zhou et al., 2023; Wang & Mendis, 2023), to capture

nodes’ temporal history, which is crucial for delivering accu-

rate predictions in dynamic graph tasks. Moreover, a node’s

memory vector can potentially affect its neighbors. When

graph changes occur—such as the addition and deletion of

nodes or edges—the memory vectors of related nodes are

updated based on their neighbors’ memories. This raises

intriguing questions: Can TGNN predictions be disrupted

by disabling their memories, and can this effect persist and

spread through their memory updates?

To address this inquiry, we thoroughly investigated the mem-

ory update patterns of nodes within TGNNs and made the

following observations: (1) Although it is not possible to

directly affect unseen predictions, we can degrade TGNN

prediction accuracy by pushing nodes—whether seen or un-

seen—into a relatively ‘frozen’ state, their memories remain

stable and exhibit limited responsiveness to surrounding

changes, reducing their ability to convey updated or mean-

ingful information. (2) While a noisy node’s memory vector

may struggle to maintain its noisy state over time on its

own, this state can persist for much longer if its neighboring

nodes have similar memory states.

To this end, we introduce MemFreezing, a novel adversar-

ial attack to expose TGNN vulnerabilities under limited

knowledge about input graphs. At a specific attack times-

tamp, MemFreezing strategically selects groups of victim

nodes that reinforce each other’s noisy states using a scheme

called cross-freezing. By injecting carefully crafted fake

messages, MemFreezing leads nodes into a stable “frozen

state”, reducing their responsiveness to graph changes and

thereby misleading predictions. Additionally, it simulates

victim nodes’ future neighbors to encourage the propaga-

tion of the frozen effect. We summarize our contributions

as follows:

• We identify a highly possible threat model where attack-

ers only see the graph up to the attack time, posing unique

challenges for adversarial attacks on TGNNs.

• We propose MemFreezing, which disrupts TGNN node

memories by pushing them into unnaturally stable states.

It adopts a cross-freezing mechanism to keep nodes’ mem-

ories stable despite future updates and encourages af-

fected nodes to propagate stable states by simulating their

future neighbors.

• We compare our method with prior GNN adversarial at-

tacks on various dynamic graphs. Experimental results

show that, MemFreezing effectively and persistently mis-

leads TGNN predictions across diverse datasets and mod-

els, outperforming state-of-the-art GNN attacks, even in

the presence of defenses.

2. Background and Related Work

Dynamic Graphs. Unlike a static graph, a dynamic graph

consists of nodes and edges evolving over time. Dynamic

graphs can be represented in two ways: Discrete-Time Dy-

namic Graphs (DTDGs) describe dynamic graphs as a series

of static snapshots taken periodically, while Continuous-

Time Dynamic Graphs (CTDGs) view the graph as a col-

lection of events—each event detailing updates like node

or edge changes. Recent TGNNs focus on CTDGs since

they can retain more information than DTDGs’ fixed inter-

vals and more complex (Kazemi et al., 2020). Within the

CTDG paradigm, the dynamic graphs are represented as

G = {x(t1), x(t2), ...}, in which x(ti) indicates an event

happened at timestamp ti. Generally, the prediction task for

CTDGs can be depicted in equation 1.

yi = fθ(Gi, ti) = fθ({x(t1), x(t2), ...x(ti−1)}, ti) (1)

At the prediction time ti, the model fθ(·) takes all previ-

ous events Gi = {x(t1), x(t2), ...x(ti−1)} as inputs and

predicts the testing nodes’ classes or future edges.

Temporal Graph Neural Networks. The memory-based

Temporal Graph Neural Networks (TGNN) are widely stud-

ied and achieve state-of-the-art accuracies in dynamic graph

tasks (Trivedi et al., 2019; Kumar et al., 2019; Rossi et al.,

2020; Kazemi et al., 2020; Zhang et al., 2023; You et al.,

2022; Ahmadi, 2020). Generally, these TGNNs maintain

a state vector for each node that tracks the node’s history,

and use it for predictions. Note that, despite their differ-

ent names (e.g., node memories (Rossi et al., 2020; Wang

et al., 2021), node representations (Trivedi et al., 2019),

node dynamic embeddings (Kumar et al., 2019)) across

various TGNNs, these node features are represented as vec-

tors on presented nodes and evolve over time to capture the

temporal information of these nodes. Following existing

general TGNN frameworks (Zhou et al., 2022; 2023; Wang

& Mendis, 2024; 2023; Rossi et al., 2020), we refer to these

evolving node feature vectors as node memories. As illus-
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Figure 1. The three steps of TGNN computing assuming a new event at timestamp t−0 adds an edge e23 to the dynamic graph: Firstly,

messages msg23 are generated for the nodes involved in this event nodes 2 and 3. Next, the nodes aggregate messages from their

neighbors and update their memories (e.g., s2 → s+2 ). At a future prediction time t0, nodes aggregate memories (e.g., s1 and s2) from

their neighbors and embed them into node vectors (e.g., h2) for the prediction.

trated in Figure 1, TGNNs produce node embedding for the

predictions in three steps. When an event x(ti) adds an edge

euv from node u to node v (i.e., x(ti) = euv), two messages

are generated as equation 2 (Step 1). For simplicity, we only

present the updating and following operations of node u,

which is the same for node v.

mvu = msg(sv, su,∆T, euv) (2)

The msg(·) is a learnable function such as Multi-Layer-

Perceptions (MLPs). The su and sv denote the memories

of node u and node v at their last updated times, and ∆T

represents the difference between the current timestamp and

the nodes’ last updated times. Next, nodes u and v aggregate

messages from their neighbors and update their memories

as equation 3 (Step 2).

s+u = UPDT (su, AGGR(mku|k ∈ N(u))), (3)

The N(u) denotes the neighbors of node u. The AGGR(·)
is usually implemented by a mean or most_recent func-

tion to aggregate messages from the node’s neighbors (Rossi

et al., 2020). The UPDT (·) uses the aggregated messages

to update the node’s memory and is usually implemented

by a Gated-Recurrent-Unit (GRU) (Chung et al., 2014).

When there is a prediction involving node u, TGNNs use

a graph embedding module, such as Graph Attention Net-

work (Veličković et al., 2017), to embed the node’s memory

into the final node embedding, as depicted in equation 4

(Step 3).

hu = GNN(su, sk|k ∈ N(u)), (4)

During prediction, TGNNs use nodes’ latest memories to

compute the node embedding hu. The resulting node em-

bedding hu is fed into an MLP for the final predictions.

Adversarial Attacks on Graph Neural Networks. The

considerable achievements of GNNs have catalyzed numer-

ous investigations into their resilience against adversarial

attacks (Chen et al., 2017; Bai et al., 2018; Wang et al.,

2018; Zügner et al., 2018; Bojchevski & Günnemann, 2019;

Ma et al., 2020; Zang et al., 2020; Tao et al., 2021; Zou

et al., 2021; Sun et al., 2022; Li et al., 2022; Zou et al.,

2023). These adversarial attacks generally seek to misguide

GNN predictions by modifying the nodes and edges of input

graphs. For example, (Wang et al., 2018) introduces fake

nodes with fake features that can minimize the loss between

prediction results in the original graphs and the targeted fake

results; (Zügner et al., 2020) adds and deletes edges that can

cause the most substantial increases in the training losses

on the original graphs. Recently, there have also been a few

studies that explored the effectiveness of adversarial attacks

on dynamic graphs and TGNNs (Lee et al., 2024; Sharma

et al., 2023; 2022; Chen et al., 2021).

3. Problem Analysis

Threat Model under Limited Future Knowledge. Prior

TGNN attacks (Lee et al., 2024; Sharma et al., 2023; 2022;

Chen et al., 2021) assume that attackers have full knowledge

of the target graphs and that these graphs remain static after

the attacks. However, this assumption may not hold in

many real-world settings, as attackers cannot return to the

optimal attack times after observing the entire evolution of a

dynamic graph. In particular, when an attacker observes the

evolution of a dynamic graph at tn and identifies optimal

attack timestamps ta1
, ta2

, ..., tak
f tn, they would need

to go back to these past timestamps to inject noise, which

is infeasible in practice. To this end, we assume that an

attacker’s knowledge is limited to events up to the attack

timestamp, and the graph continues to evolve afterward.

Specifically, we set up the attack model as follows.

• Attacker’s Goal: Given an evolving dynamic graph and

a TGNN model, the attacker’s goal is to misguide the

TGNN predictions by introducing a limited amount of

changes to the entire graph (e.g., affecting a small number

of total nodes limited by the attack budget.)

• Attacker’s Knowledge: Attackers have access only to in-

formation up to the attack’s timestamps—namely, model

parameters, presented graph inputs, and node memories

before the attack—but not future graph changes. Re-

garding acquiring presented graph information, platforms

like Wikipedia, Reddit, Meta, or X typically offer pub-

licly accessible dynamic graphs, allowing adversaries to

reconstruct them reasonably. Likewise, many TGNN ar-

chitectures and pre-trained models are open-sourced, and
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Figure 2. The resultant adversarial effects of the MemFreezing attack. (1) Victim nodes are kept frozen with support (i.e., similar messages)

from their frozen neighbors, such as node 3, which is kept frozen at t−1 and t−2 . (2) Victim nodes propagate frozen states to their future

neighbors by inducing them to be similar, such as node 3 propagates to node 5 at t−1 and 6 at t−2 .

even when they are not, techniques like insider threats or

model extraction (Yao et al., 2024; Oliynyk et al., 2023)

can be used to obtain model parameters. (We also discuss

black-box scenarios in Appendix B.15.)

• Attacker’s Capability: Attackers can add fake events as

adding nodes/edges at the attack time. For example, while

attacking TGNNs in social media, attackers can create

fake user accounts as fake nodes and make junk com-

ments to the blogs as fake edges.

Challenges in Limited Future Knowledge. Due to lim-

ited knowledge up to the attack time, adversarial attacks

on TGNNs must contend with unknown future changes in

dynamic graphs. However, the subsequent changes after the

attack may significantly limit the attack performances for

two reasons: First, for seen and attacked targets, the noise

that misleads their predictions becomes mixed with new

information from future changes (as described in equation 3

and equation 4), making it too weak to mislead future pre-

dictions. Second, unseen nodes and edges added after the

attack are difficult to affect, as the attackers have no knowl-

edge of these future elements and cannot generate effective

noise to mislead them. As details shown in Section 5 (e.g.,

Figure 5 and Table 1), while existing GNN attacks (Wang

et al., 2018; Zou et al., 2021; Li et al., 2022) effectively

reduce the model’s accuracy immediately after the attack,

they struggle to perturb predictions in the future timestamps.

4. The MemFreezing Attack

We propose MemFreezing, an adversarial attack specifically

tailored for TGNNs. It consists of two key features: i) To

create long-lasting adversarial effects, we induce nodes to

mutually lock their memories, keeping them stable during

future updates. Consequently, the victim nodes become less

responsive to surrounding changes, limiting their ability to

provide critical information for predictions. ii) To affect

unseen nodes and edges, we simulate future neighbors for

the victim nodes and encourage these victim nodes to update

the memories of their simulated future neighbors into simi-

lar, stable states. As a result, the adversarial effects remain

persistent through future changes and influence subsequent

predictions, as illustrated in Figure 2.

Memory Freezing Objective. Instead of focusing on maxi-

mizing prediction losses as prior adversarial attacks, which

are limited by unknown and diverse future events, we pro-

pose to transform victim nodes’ memories into similar and

stable states, which we refer to as Frozen State. In particular,

by keeping node memories similar and unchanged over time,

nodes in TGNNs can hardly carry or convey meaningful in-

formation, consequently disturbing predictions. To quantita-

tively investigate the potential effectiveness of freezing node

memories, we freeze the node memories in TGN (Rossi

et al., 2020) and JODIE (Kumar et al., 2019) by consistently

forcing their node memories to all zero, then evaluate their

performances on edge prediction tasks on Wikipedia (Ku-

mar et al., 2018) dataset. As shown in Figure 3(a), this leads

to significant accuracy drops over time, demonstrating the

impact of freezing node memories. Thus, we set our attack

objective as freezing node memories unchanged.

4.1. Freezing and Persisting Node Memory

Challenges in Persisting Frozen Memories. However,

keeping nodes’ memories in frozen states is challenging, as

unpredictable neighbor messages can significantly alter a

node’s memory during updates. An intuitive solution is to

minimize the impact of incoming messages during an update.

To explore the feasibility of this approach, we conducted a

case study using TGN on the Wikipedia dataset. Specifically,

we sampled 100 victim nodes, manipulated each node’s

memory to minimize the interference of messages during
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Figure 3. (a) The accumulated accuracy in vanilla TGNNs and their frozen counterpart. The ranges (colored bar) and averages (line) of

the cosine similarities between node’s evolving memories with (b) persisting frozen by node themselves and (c) by connected groups

(cross-freezing). (c) The distribution of cosine similarities among the ideal frozen states in different nodes.

updates, and assessed whether they remained unchanged

over subsequent timestamps. As shown in Figure 3(b), the

cosine similarities between nodes’ pre- and post-update

memories still dropped remarkably, indicating that future

messages cannot be fully blocked in RNN or attention-based

memory updating modules. We show further experimental

details and theoretical analysis in Appendix A.1.

Opportunities in Freezing. Although blocking messages

from a node’s neighbors is infeasible, we can inject noise

into those neighbors so that their updates help sustain the

node’s frozen memory. In particular, we assume that node

memories in TGNN can remain stable when surrounded by

neighbors with similar memories. We verify the assumption

using the same model and data as Figure 3(b). Specifically,

we first sample one-third of 100 victim nodes as root node,

then sample two neighbors for each root node (referred to

as support neighbors) and set their memories the same as

the root node, then observe their memory changes over time.

As depicted in Figure 3(c), if nodes have similar neighbors,

their memories quickly converge to a relatively stable state

and persist through future changes—we term this state as

the node’s ideal frozen state. Hence, if the victim nodes

have similar ideal frozen states, they can mutually lock

each other once they fall into these states. We give further

theoretical analysis on the phenomenon in Appendix A.2.

Fortunately, as shown in Figure 3(d), the ideal frozen states

from different nodes are similar; therefore, it is possible to

keep nodes frozen by driving their memories into similar

and stable states.

Cross-Freezing Loss. To this end, we propose to freeze

victim nodes in connected groups and make them persist

frozen with mutual support from each other. We termed this

approach as Cross-Freezing. Specifically, we first sample

one-third of the victim node as the root node, then sample

two of its neighbors as support nodes—note that these sup-

port neighbors also cost our attack budgets—then force their

memories to minimize the loss in equation 5.

Lfreeze
u =

∑

k∈Nsupp(u)

(

Lmse(s
∗
k, s

+
k ) + Lmse(s

+
u , s

+
k )

)

(5)

For any given node u with its memory denoted as su and

support neighbors as Nsupp(u), our objective relies on two

Mean-Squared-Error (MSE) losses. The first, Lmse(s
∗
k, s

+
k ),

aims to ensure that it updates its support neighbors’ memory

s+k close to their ideal frozen state s∗k so they cannot sense

future changes after the attack. We get node k’s ideal frozen

state s∗k by repeatedly updating its memory using itself and

its two support neighbors’ memory until it is stabilized (i.e.,

has more than 0.9 cosine similarity before/after updates) or

the maximum number of repeats is reached. The second

loss, represented by Lmse(s
+
u , s

+
k ), is designed to make sure

that it updates its support neighbors’ memory s+k close to

its own memory after updates (i.e., s+u ) so that the messages

generated between them can potentially help to lock each

other and keep their memory unchanged.

4.2. Propagating Frozen States

Future Simulating. To make a node’s memory influence

unknown future neighbors, we propose using its existing

neighbors to simulate potential future ones, which can then

be used to optimize the victim nodes’ ability to propagate

their frozen state. This approach is based on the principle of

homophily in real-world graphs, where neighboring nodes

often exhibit strong similarities (McPherson et al., 2001).

As an example, while applying TGN for the edge prediction

tasks on Wikipedia dataset, nodes’ neighbors have 0.87

cosine similarity on average, with over 60% neighboring

nodes having similarities over 0.9. Hence, for a given node

u, we simulate its future neighbors in two steps:

For a node u, we first augment its current neighbor set N(u)
by adding “presented fake future neighbors”, created by

sampling up to ten of the most recent neighbors and injecting

Gaussian noise (mean 0, standard deviation at 0.2 times the

neighbor’s memory std) into their memories. Next, we

simulate “newly presented fake future neighbors” to reflect

brand-new nodes in the graph, initializing their memories

to all zeros. The number of these new fake neighbors is

proportional to the fraction of newly appeared nodes among

the most recent ten neighbors of u. We also include more
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Figure 4. The two stages of the MemFreezing attack. In the victim node selecting stage, we greedily select victim nodes under the attack

budget. In the adversarial message solving stage, we solve the victim nodes’ targeted memory and corresponding adversarial messages.

The solved messages are added to the graphs as fake events and removed after the attack timestamp.

details about the future simulation in Appendix A.3 and

further discuss its effectiveness under extremely random

and irregular graphs, where nodes have drastically changing

neighbors, in Appendix B.16.

Propagating Loss. To make the frozen nodes contagious

to potential future neighbors, we then use the resulting aug-

mented neighbors Naug(u) to solve the problem described

in equation 6.

Lprop
u =

∑

k∈Naug(u)

Lmse(su, UPDT (sk,muk)) (6)

The objective of this loss is to minimize the Mean Squared

Errors (MSEs) between a node’s memory and the mem-

ories of its new neighbors after an update. By doing so,

we encourage the node’s memory to update its neighbors’

memories (i.e., sk) to become similar to itself (i.e., su).

4.3. Attack Framework

Combining the above-mentioned goals together, we intro-

duce the two-stage attack framework as illustrated in Fig-

ure 4 (Detailed algorithm is presented in Appendix A.4).

Stage 1: Victim Node Selecting. In this stage, we use a

simple greedy approach to select victim nodes in two steps:

First, we select the nodes with the highest degrees in the

current graph as root nodes. The intuition behind this is that

we want the injected noises to be propagated to as many

nodes as possible, and these high-degree nodes, such as

top-commented posts on social media, are usually popular

in existing and future graphs. Next, for each root node, we

select its two highest-degree neighbors as its support nodes.

The following procedure will treat all the root and support

nodes as victim nodes and transform them into frozen states.

Stage 2: Adversarial Message Solving. In this stage, we

solve the adversarial event to be injected to each victim node

u in three steps: In the first step, we find the nodes’ ideal

frozen states (i.e., s∗u in equation 5) by updating its memory

using current neighbors until convergence. In the second

step, we simulate the future changes by augmenting victim

nodes’ neighbors with simulated futures (i.e., nodes/edges).

The resulting neighbors are used as N ′(u) in equation 6.

In the third step, we solve the adversarial memory ŝu of

the victim nodes by minimizing the total memory loss in

equation 7, which is calculated by summing its persisting

(i.e., equation 5) and propagating (i.e., equation 6) losses.

Lu = Lfreeze
u + Lprop

u (7)

Then, we solve the adversarial messages described in equa-

tion 8 so that these messages can update the nodes’ memo-

ries into their solved frozen states.

argmin
mAu

Lmse(UPDT (su, AGGR(mAu, m̃u), ŝu)) (8)

The m̃u represents the aggregated messages collected from

u’s other neighbors. In short, for node u, the solution aims

to find a fake message mAu that minimizes the MSE loss

between the expected noise memory ŝu and the memory

updated after inserting it to the graph. Lastly, for each

victim node, we add the solved noisy message as a fake

event from a fake node and remove it after the attack.

5. Evaluation

5.1. Experimental Setup

Models and Datasets: We use on four TGNN models for

evaluation: JODIE (Kumar et al., 2019), Dyrep (Trivedi

et al., 2019), TGN (Rossi et al., 2020) and Roland (You

et al., 2022). The experiments use four dynamic graph

6
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Table 1. Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different timestamps; lower matrices indicate

more effective attacks. Results on more datasets and node classification tasks are included in Appendix B.4

Dataset WIKI REDDIT REDDIT-BODY

Model TGN JODIE Dyrep Roland TGN JODIE Dyrep Roland TGN JODIE Dyrep Roland

Vanilla 0.93 0.87 0.86 0.94 0.97 0.98 0.96 0.95 0.90 0.87 0.90 0.88

t0

FN 0.81 0.74 0.74 0.82 0.84 0.83 0.84 0.83 0.76 0.82 0.77 0.79
Meta-h 0.90 0.83 0.81 0.85 0.93 0.95 0.90 0.92 0.86 0.83 0.88 0.85
TDGIA 0.77 0.72 0.71 0.80 0.74 0.80 0.81 0.74 0.72 0.81 0.74 0.76
Ours 0.89 0.78 0.83 0.87 0.75 0.84 0.94 0.82 0.84 0.85 0.81 0.78

t25

FN 0.92 0.87 0.85 0.94 0.97 0.97 0.96 0.93 0.90 0.86 0.89 0.88
Meta-h 0.93 0.87 0.84 0.93 0.96 0.98 0.94 0.96 0.89 0.86 0.90 0.87
TDGIA 0.93 0.81 0.84 0.92 0.94 0.95 0.95 0.90 0.89 0.85 0.89 0.88
Ours 0.80 0.75 0.77 0.85 0.81 0.84 0.91 0.80 0.81 0.84 0.76 0.80

t50

FN 0.94 0.87 0.86 0.94 0.97 0.97 0.96 0.95 0.90 0.86 0.90 0.88
Meta-h 0.93 0.87 0.85 0.93 0.97 0.98 0.94 0.95 0.90 0.86 0.90 0.88
TDGIA 0.93 0.87 0.85 0.93 0.96 0.97 0.95 0.92 0.89 0.86 0.90 0.87
Ours 0.75 0.76 0.75 0.84 0.80 0.84 0.91 0.80 0.77 0.82 0.76 0.77
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Figure 5. Accumulated accuracies of TGN under no defense(left), Adv_train(middle), and Lip_reg(right) with FakeNode and our

attack on WIKI dataset. More results in Appendix B.5

datasets: Wikipedia (WIKI), Reddit (REDDIT) (Kumar

et al., 2019), Reddit-body (REDDIT-BODY) and Reddit-

title (REDDIT-TITLE) (Kumar et al., 2018). More details

about the models and datasets are included in Appendix B.1.

We also present results on a million-node dataset, Wikipedia

Talk Network (Wiki-Talk-Temporal) (Leskovec et al.,

2010) in Appendix B.4.4.

Tasks & Metrics: We evaluate the models on two tasks:

node classification and edge prediction (Rossi et al., 2020).

For a timestamp, we measure the accuracy or area under the

ROC Curve (ROC-AUC) based on all presented predictions

from the beginning, which we termed as accumulated ac-

curacy and accumulated ROC-AUC. More details about the

tasks and matrices are in Appendix B.1

Attack Setup: We compare our work with three state-

of-the-art GNN attacks: FakeNode (FN) (Wang et al.,

2018), TDGIA(TDGIA) (Zou et al., 2021) and Meta-Attack-

Heuristic(Meta-h) (Li et al., 2022). The results from Table

1 evaluate all attacks with 5% attack budgets, where we

inject noises to 5% nodes of the input graph. In Appendix

B.4, we evaluate attacks with 1% attack budgets. For our

attack, we use a 1/3 budget for the root nodes and 2/3 for

support nodes. All methods attack at the beginning of the

test set (i.e., attack at t0). We also include more details

about the baseline attacks in Appendix B.2 and the results

of injecting attacks in multiple timestamps in Appendix B.6.

Defense Setup: We adopt following defenses: Adversar-

ial Training(Adv_train), Regularization under empirical

Lipschitz (Lip_reg), and GNNGuard from static GNNs.

More details about the defense setup are in Appendix B.3.

5.2. Experimental result

Overall Performance. We examine the accumulated accu-

racy at three timestamps: t0 = 0, t25 = 25, and t50 = 50.

The results of the edge prediction task are presented in

Table 1. As observed, all prior attacks cause significant ac-

curacy drops at t0, but their impact quickly diminishes over

time. By t25 and t50, the accumulated accuracy under these

attacks is nearly identical to the baseline. In contrast, Mem-

Freezing consistently disrupts model predictions. While it

does not cause the largest accuracy drop at t0 compared

to other attacks due to the freezing objective, its effects

are more persistent and even increase over time, achieving

greater drops as the timestamps shift to t25 and t50. We

also observe similar effects on MemFreezing when con-

ducting the attack at different timestamps as detailed in

Appendix B.7. The attacks on JODIE are less effective

because JODIE employs a memory decay mechanism that

uniformly decays previous memories. This introduces addi-

tional information outside the node memory, making JODIE

more resilient to memory-based attacks. We discuss this

phenomenon in more detail and explore potential defenses

7



MemFreezing: A Novel Adversarial Attack on Temporal Graph Neural Networks under Limited Future Knowledge
C

o
si

n
e 

S
im

il
a

ri
ty

 b
et

w
ee

n
 

N
o

d
e 

M
em

o
ry

C
o

si
n

e 
S

im
il

a
ri

ty
 b

et
w

ee
n

 

N
o

d
e 

M
em

o
ry

C
o

si
n

e 
S

im
il

a
ri

ty
 b

et
w

ee
n

 

N
o

d
e 

M
em

o
ry

C
o

si
n

e 
S

im
il

a
ri

ty
 b

et
w

ee
n

 

N
o
d

e 
M

em
o
ry

Timestamp Timestamp Timestamp Timestamp

Victim Node
Victim Node

Victim Node Victim Node

Figure 6. The similarities between victim nodes’ initial noisy memories (at the time of the attack) and themselves’/their subsequent

neighbors’ memories in MemFreezing(left), MemFreezing w/o (middle-left) frozen state, MemFreezing w/o cross-freezing loss (middle-

right), and regular nodes (right). All results above are from TGN and WIKI. More results are included in Appendix B.8.

A
ff

ec
te

d
 N

o
d

e 
C

o
u

n
t A

ccu
m

u
la

ted
 A

ccu
ra

cy

A
ff

ec
te

d
 N

o
d

e 
C

o
u

n
t

A
ccu

m
u

la
ted

 A
ccu

ra
cy

A
cc

u
m

u
la

te
d

 A
cc

u
ra

cy

Timestamp Timestamp Attack Budget

Figure 7. (left) Count of nodes affected by MemFreezing and accuracy for the affected nodes over time. (middle) Count of affected nodes

and overall accuracy over time with two strategies for selecting the injected node: 1% lowest degree versus 1% highest degree nodes.

(right) The accumulated accuracy at t0, t25, and t50 under different attack budgets (% of total nodes). All results above are from TGN and

WIKI. Results on more models and datasets are included in Appendix B.11.

against MemFreezing in Appendix C. We further illustrate

the accumulated accuracy of TGNs under different defenses

in Figure 5. Similar results are observed: the effects of

baseline attacks quickly diminish, resulting in only a 1.1%

accumulated accuracy drop by t50. In contrast, MemFreez-

ing causes progressively larger accuracy drops over time,

averaging over 10% drop by t50.

Ablation Studies. To analyze the propagating and persist-

ing capability of the noise solved by MemFreezing, we

capture 100 victim nodes in TGN in edge prediction on

WIKI and monitor the changes in their memory and their

neighbors’ memory. In Figure 6, we compare the cosine

similarity between the memories of the victim nodes at

t0 with those in themselves and their one-hop and two-hop

neighbors at each timestamp after the attack in four versions:

(1) MemFreezing, (2) MemFreezing w/o frozen state (i.e.,

w/o using Lmse(s
∗
k, s

+
k ) in equation 5), (3) MemFreezing

w/o cross-freezing loss (i.e., without using entire Lfreeze
u

in equation 5), and (4) original TGNN without attacks. The

result shows that, in MemFreezing, the noise in the victim

node can persist over ten timestamps, with over 0.92 co-

sine similarities. For the one-hop neighbors, at t = 1, they

achieve 0.51 average similarities after the first update by

the message from victim nodes, and at t = 15, the average

rises to 0.88. The two-hop neighbors, whose memories are

updated by the message from one-hop neighbor, have av-

erage similarities that grow from 0.24 to 0.84. In contrast,

the similarity between nodes’ initial attacked memory and

their future counterparts drops drastically in the original

TGNNs like (4). If the frozen states are not guaranteed

like (2), the similarities also suffer drops and fail to achieve

comparable similarities as (1). This is because, in such

cases, the memories will change before reaching their con-

verged states, making the final converged state different

from the original adversarial memory states. Therefore, the

converged state is essential for persisting noisy memories.

The similarities drop faster if we remove the cross-freezing

loss like (3) since the cross-freezing mechanism is entirely

disabled. Moreover, despite removing cross-freezing losses,

the neighbors are getting more similar to the target nodes,

indicating that the propagating loss works as expected. We

also analyzed the advances of freezing node memories com-

pared to maximizing prediction losses in Appendix B.9 and

the stealthiness of the injected noises in Appendix B.10.

Propagation in Dynamic Graphs. To better understand

how frozen effects spread in MemFreezing, we track all

topologically connected nodes to the victim node, labeling

them as affected nodes since noise can potentially propagate

to them. We then measure the prediction accuracy of these

affected nodes (represented by colored lines). As shown in

Figure 7 (left), MemFreezing progressively impacts more

nodes (shaded area) and significantly reduces prediction

accuracy, even though some nodes were unseen at the attack

timestamp. On the one hand, attacking high-degree nodes

8
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helps propagate the noises to more nodes, nearly doubling

the number of affected nodes compared to selecting low-

degree nodes, as shown in Figure 7 (middle). On the other

hand, once nodes enter a stable (frozen) state, they propagate

adversarial effects to future neighbors, ensuring the attack’s

persistence and adaptability despite dynamic graph changes.

Scale with Attack Budget. We also evaluate MemFreez-

ing under broader attack budgets ranging from 1% to 15%.

As shown in Figure 7 (right), higher attack budgets lead

to greater accuracy drops, demonstrating MemFreezing’s

scalability with increased attack costs.

6. Conclusion

In this work, we propose MemFreezing, a novel adversarial

attack tailored for TGNNs, to overcome the challenges in

attacking TGNN under limited-knowledge scenarios. The

MemFreezing attack misleads model predictions by freezing

node memories in TGNNs into stable and dysfunctional

states. The experimental results show that our approach

can produce long-lasting and contagious noises in dynamic

graphs, leading to significant performance drops in TGNNs.
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Impact Statement

Temporal Graph Neural Networks (TGNNs) have emerged

as the state-of-the-art paradigm for modeling dynamic re-

lational data in domains ranging from social networks to

recommendation systems. As they become increasingly in-

tegral to real-world systems, understanding and enhancing

their robustness is essential. Our work introduces Mem-

Freezing, the first adversarial attack that assumes only lim-

ited future knowledge—a constraint inherent to live envi-

ronments—and shows how subtle memory-freezing pertur-

bations can persistently degrade TGNN performance. By

exposing this practical vulnerability, we underscore the ur-

gent need for defenses specifically designed for the dynamic,

streaming nature of real-world graph applications.
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A. Extended Design

A.1. Self-freezing experimental setup and theoretical analysis

We explored the viability of freezing a node by itself with a case study in TGN (Rossi et al., 2020), where the UPDT (·)
function is typically realized using a GRU (Chung et al., 2014). At a particular timestamp, we randomly sample 100 nodes

from the Wikipedia dataset and modify their memories. For each node, we use Adam optimizer (Kingma & Ba, 2014) to

find a memory vector to suppress GRU updates by minimizing its reset gates (Chung et al., 2014). We then assessed if this

memory state remains consistent over time.

The TGN used by the experiment uses GRU for memory updating (i.e., for implementing UPDT (·) function in equation 3),

as depicted in equation 9-12.

rt = Ã(Wirm̃t + bir +Whrst−1 + bhr) (9)

zt = Ã(Wizm̃t + biz +Whzst−1 + bhz) (10)

nt = tanh(Winm̃t + bin + rt » Ã(Winm̃t + bin) (11)

st = (1− zt)» nt + zt » st−1 (12)

where Ã(·) is the sigmoid function. Given the node memory st−1 ∈ R
M at the previous timestamp, and the aggregated

message m̃t ∈ R
D at time t, GRUs first compute reset gate rt ∈ R

M , update gate zt ∈ R
M , and new gate nt ∈ R

M .

In this experiment, we aim to minimize the interference of the message, m̃t, and maintain the updated memory, st, close to

the previous memory, st−1. To this scope, we can maximize all the features in the update gate, zt, until it approaches 1,

where the update gate will be directly used to control the portion of the previous memory, which is:

as zt → 1, st → 0» nt + 1» st−1 ≈ st−1 (13)

Additionally, according to Equation 10, the update gate zt is computed by the sum of two linear processes, and one is from

the message, m̃t and the other one is from memory st−1. As we maximize the linear output of the memory, Whz · st−1, the

update gate, zt, is then maximized.

Hence, to analyze the maximum output of the linear process, Whz · st−1, we formulate it into a linear program problem

with the equations:

max
∑

Whz · st−1

s.t. − 1 f st−1 f 1

Whz · st−1 > ¶

(14)

As the memory is the output of the tanh function rather than the unit-length vector, st is bounded by the limit of the tanh
function, [−1, 1]M . Further, we introduce an addition constraint Whz · st−1 > ¶ to guarantee all dimensions of the linear

output are bound by a constant, ¶.

The optimal result for the memory, s∗t−1, for the linear problem only depends on the model weights, where given a

TGN model, the solution of the self-freezing memory is unique, and we have conducted the experiment on three models

TGN+WIKI, TGN+REDDIT, and a randomly initialized model.

The result in Figure 8-10 (a) shows the maximum update gate, z∗t , computed by Ã(Whz · s∗t−1). In the TGN+wiki example,

z∗t is a 172-dimension vector, and it is distributed with a mean of 0.64 and a standard deviation of 0.12. As aforementioned,

to achieve the self-freezing memory, the update gate, zt, is required to approach 1, but it is infeasible to fine the solution

in the real world case under the constraints. In Figure 8-10 (b), we simulate the GRU updating starting with the optimal

memory, s∗t−1, and monitor the cosine similarity between the memory before updated and after updated. The results further

demonstrate even the optimal solution cannot accomplish the self-freezing goal.

To theoretically analyze the maximum of the in the general case, we divide them into their eigen-representations, and we use

the SVD decomposition:

Whz = U · Σ · V T =
∑

i

ei · Ui · V T
i , st−1 =

∑

i|Vi∈V

³i · Vi (15)
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In SVD decomposition, U and V are the unitary matrix, and we use the basis from V to decompose st−1. Moreover, the

linear process is written as:

Whz · st−1 =
∑

i

ei · ³i · Ui · V T
i · Vi =

∑

i

³i · ei · Ui (16)

This linear process is represented by the linear combination on the basis of U . We can easily acquire the theoretical

maximum of the output. As st−1 ∈ [−1, 1]M , if V¹ is a basis of {− 1√
M
, 1√

M
}M , st−1 = s¹ can achieve the maximum

projection to this basis, which is, ³¹ =
√
M and st−1 = V¹. Similarly, the linear output Whz · st−1 achieves the maximum

by there exist a basis U¹ = { 1√
M
}M , and the linear output,

W¹ · s¹ = e¹ ·
1√
M
·
√
M · 1 = e¹ · 1 (17)

As is shown, the maximum output of the linear process is equal to the eigenvalue. According to the experiment, the largest

eigenvalue of the weight matrix is usually around 2. Therefore, the update gate,zt, has the theoretical maximum value,

Ã(e¹) ≈ 0.88.

However, the weights, Whz , are trained through the model update, which makes it impossible to find the ideal maximum in

the practical case.
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Figure 8. (a) The distribution of the optimal update gate z∗t . (b) The cosine similarity between memory before the update and after the

update, starting with the optimal self-freezing memory s∗t . Experiments are conducted in the TGN model with WIKI datasets.
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Figure 9. (a) The distribution of the optimal update gate z∗t . (b) The cosine similarity between memory before the update and after the

update, starting with the optimal self-freezing memory s∗t . Experiments are conducted in the TGN model with REDDIT datasets.
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Figure 10. (a) The distribution of the optimal update gate z∗t . (b) The cosine similarity between memory before the update and after the

update, starting with the optimal self-freezing memory s∗t . Experiments are conducted in the randomly sampled GRU model.

A.2. Theoretical analysis for memory under cross-freezing

In Appendix A.1, we show that the self-freezing will be hard to achieve as the update gate zt is hard to achieve all ones,

1. The update gate is computed by, zt = Ã(Wizm̃t + biz +Whzst−1 + bhz), and in equation (14), we only consider the

self-freeze term, Whzst−1. For the cross-freezing case, we introduce two or more supporting nodes, and thus, we can jointly

maximize the first two terms for the update gate, Wizm̃t +Whzst−1, and the objective function can be written as:

max(Wiz1 +Wiz2)(ϵ» s) +Whzs

s.t. 1 f s f 1
(18)

The message has four variable concatenated: mt = [ssrc, sdst, e, t], and the matrix product, Mizm = Wiz1ssrc +Wiz2sdst +
Wiz3e+Wiz3t. In this object function, we assume in the cross-freeze state, the source and destination memory converge to

a certain optimal, s∗. Consider that there might be other non-supported nodes contributing to the message, m̃, so we model

this by a coefficient ϵ vector, where ϵ» s = s̃. As the support node become the majority among the connected nodes, the

coefficient vector ϵ→ 1.

To simplify this problem, we rewrite the equation as:

(Wiz1 +Wiz2)(E[ϵ] · s) +Whzs+O(1)
= (E[ϵ] ·Wiz1 + E[ϵ] ·Wiz2 +Whz)s+O(1)

(19)

The above equation will be similar to Equation (14), as considering (E[ϵ] ·Wiz1 + E[ϵ] ·Wiz2 +Whz) as a new matrix.

Let the weights in the GRU unit follows the Gassuian distribution, w ∈ N(0, 1√
M
), then the new matrix would follow,

w′ ∈ N(0,

√
2E[ϵ]2+1√

M
). Hence, the optimal basis will then be, {−

√
2E[ϵ]2+1√

M
,

√
2E[ϵ]2+1√

M
}M , where its egienvalue can achieve√

2E[ϵ]2 + 1 times larger than self-freeze one.

As a result, the output update gate, zt, will scale accroding to E[ϵ], and here is the list of the outcome:

E[ϵ] = 0.5, z∗t = 0.919

E[ϵ] = 0.75, z∗t = 0.94

E[ϵ] = 1, z∗t = 0.96

(20)

Hence, it will become easier to freeze the memory by introducing the support nodes

A.3. Details of simulating fake future neighbors

To simulate the potential future neighbors of the victim nodes and enhance their capability to contaminate those nodes,

we randomly sample existing neighbors from victim nodes’ and add Gaussian noise to their features. For the mean of the

Gaussian noise, we use 0 as the mean for all nodes. We use 0.2 times the standard variation of the original neighbor’s

memory for the standard variations of the Gaussian noise. In summary, for a node v, we follow Equation equation 21 to

simulate a victim node’s neighbors,

s′i = si +N (0, ¸ · Ã(s(v))), i ∈ N(v) (21)
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In which s′i stands for the fake future neighbors and si stands for the memories from a sampled existing neighbor, N(v)
indicates the current neighbor set of node v. For the Gaussian noise N (0, ¸ · Ã(s(v))), it has meant as 0, ¸ = 0.2, and

Ã(s(v)) as the standard variation of all features in existing neighbors.

We use the ∆T of the most recent clean message on the victim nodes for the timestamp of their appearances. For example,

if we attack node n, whose most recent message before our attack uses ∆Tk at its updating, then the timestamp of the fake

future neighbors will also be ∆Tk. It is also worth mentioning that, the ∆T has limited effects on the updating process. As

proposed in TGAT and used in TGN and other TGNN models, the ∆T is encoded into a time vector first as

E(∆T ) = W ∗ cos(∆T )

in which W is a weight vector with 172 dimensions with descending magnitudes (for example, [1.00, 0.88, 0.78, ...1.12e−
09, 9.99e− 10]). Then, W is used to update the memory. The value of W is very small except for the first few dimensions,

making them can hardly affect the updating process.
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A.4. Overall Algorithm

Algorithm 1 MemFrezzing Attack

Input :G = (V, s(V ))← Original graph with Node V , memories s(V )
Input :∀i,j|Vi,Vj∈V m(si, sj , eij ,∆t)←Messages before t0
Input :B ← Number of attacked nodes (attack budget)
Input :q ← Number of support neighbors for each root node.
Input :N(V ), Nsupp(V ), Naug(V )← the full neighbors sets, supported neighbors, and augmented neighbors set
Output :VA, eA: Perturbed nodes and message.

/* Stage 1. Victim Node Sampling */

n← B/(q + 1)
V root
1 , V root

2 , · · · , V root
n ← topk(degree(V ), n)

for i ∈ {1, 2, · · · , n} do

V
support ← V root

i ∪ {V1, V2, · · ·Vq ∈ N(V root
i )}

{ŝ0, ŝ1, · · · ŝq} ← ComputeConvergeState(Vsupport)

VA, eA ← ComputeAdversarialMessage({ŝ0, ŝ1, · · · ŝq},Vsupport)

/* Stage 2. Solving Frozen State */

Function ComputeConvergeState(Vsupport)

/* 2.1. Solving the Ideal Frozen State */

for i | Vi ∈ V
support do

si ← s(Vi)
m← m(si, si, eij ,∆t) , where j |Vj ∈ V

support

do

si ← s+i
m← m(si, si, eij ,∆t)
s+i ← UPDT (si,m)

while ||s+i − si||22 > ϵ;

s∗1, s
∗
2, · · · s∗q ← s+1 , s

+
2 , · · · s+q

/* 2.2. Solving the Cross-Frozen State */

s
(0)
1 , s

(0)
1 , · · · s(0)q ← s∗1, s

∗
2, · · · s∗q +N (0, ¸ · Ã(s(V )))

for t ∈ {0, 1, 2, · · · , T} do

∀i∈{1,2,···q} , s
(t)+
i ← UPDT (s

(t)
i , m̃i)

for i ∈ {0, 1, 2, · · · , q} do

Lfreeze
i ←∑

k∈Nsupp(i)

(
Lmse(s

(t)+
k , s∗k) + Lmse(s

(t)+
i , s

(t)+
k )

)

Lprop
i ←∑

k∈Naug(i)
Lmse(s

(t)
i , UPDT (s

(t)
i ,mik))

∀i∈{1,2,···q} , s
(t+1)
i ← s

(t)+
i − ³ · ∇si(Lfreeze

i + Lprop
i )

return {s(T )
0 , s

(T )
1 , s

(T )
2 , · · · s(T )

q }
/* Stage 3. Solving the Adversarial Message */

Function ComputeAdversarialMessage({ŝ0, ŝ1, · · · ŝq},Vsupport)

for Vi ∈ V
support do

Vi,A ← V | V ∈ N(Vi)
for t ∈ {0, 1, · · · , T} do

m
(t)
Ai ← m(si, s(VA), e

(t)
Ai,∆t)

LA ← Lmse(UPDT (si, AGGR(m
(t)
Ai, m̃i), ŝi)

e
(t+1)
Ai ← e

(t)
Ai − ³ · ∇

e
(t)
Ai

LA

return {V1,A, V2,A, · · · , Vq,A} , {eA1, eA2, · · · , eAq}
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B. Extended Evaluation

B.1. Experimental Details.

Model Details. All four TGNNs we included maintain a memory vector in each node and follow the memory updating

process as discussed in Section 2. And they are different in their node embedding procedure (i.e., equation 4). Specifically,

Dyrep directly uses the node memories for the predictions (i.e., ht
i = sti). JODIE applies a time-decay coefficient to the

scale memories before classification (i.e., ht
i = ¶(t) · sti). TGN, on the other hand, refines memories using a single-layer

graph attention module, as outlined in equation 4. Unlike prior models, ROLAND (You et al., 2022) is a recent model

designed for DTDG graphs, yet it also maintains a history node feature for each node as memory. Specifically, it adopts

a multi-layer memory mechanism by keeping memory for both memory and embedding stages. In other words, for the

graph embedding part, it also adopts a GRU to combine nodes’ previous embedding with the current embedding gathered

from updated node memories. All the models update and embed memory for one time at each prediction (i.e., one layer

aggregation in equation 3 and equation 4). The node memory dimension is set to 172, and the node embedding dimension is

set to 100. Following the training steps in (Rossi et al., 2020), we use Adam optimizer with learning rate ³ = 0.01 to train

the models 120 epochs.

Tasks Details. Models for node classification are trained to predict binary labels on each node. We use the commonly

used Area under the ROC Curve (ROC-AUC) to measure the model performances. The models for edge prediction are

self-supervise trained, using the edge information in future steps. During the testing, given a source node, they predict the

possibility of whether another node will be its next incoming destination node and then decide which node will be its next

neighbor. We use prediction accuracy for evaluating the edge prediction result.

Dataset Details. Reddit and Wikipedia are dynamic interaction graphs retrieved from online resources in (Rossi et al.,

2020). In Wikipedia datasets, the nodes represent users and wiki pages, and the edges indicate editing from users to pages.

In the Reddit dataset, the nodes represent users and subreddits, and an edge within it represents a poster from a user posted

on a subreddit. The edge features are represented by text features, and the node labels indicate whether a user is banned. All

the abovementioned information is accompanied by timestamps. Align with their original designs (Kumar et al., 2019), and

we set the newly input nodes’ features as zero feature vectors. Reddit-body and Reddit-title are two larger-scale datasets that

represent the directed connections between two subreddits (a subreddit is a community on Reddit). The dataset is collected

by SNAP using publicly available Reddit data of 2.5 years from Jan 2014 to April 2017 (Kumar et al., 2018). The statistics

of the dataset used are shown in Table 2.

Table 2. Dataset details
# of Nodes # of Edges # Edge Feature # of Node Feature

Wikipedia(WIKI) 9,227 157,474 172 172
Reddit(REDDIT) 11,000 672,447 172 172
Reddit-Body(REDDIT-BODY) 35,776 286,561 64 172
Reddit-Title(REDDIT-TITLE) 54,075 571,927 64 172

Platform details. We list then environment details in Table 3.

Table 3. Experimental Environment Setting

Environment Details

OS Windows 11
CPU Intel i9-13900K

Memory 64GB DDR5 RAM
GPU NVIDIA RTX 4090

Platform PyTorch 2.2.1
CUDA Version CUDA 12.1

B.2. Baseline attack and attack setup

We adopt the following attacks toward static GNNs. Specifically, we adopt the attack at the same time as our attack time by

attacking the existing dynamic graph as a static graph:

FakeNode (Wang et al., 2018) uses a greedy approach to generate edges of malicious nodes and their corresponding features
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to mislead the static GNN predictions. Note that this approach assumes that the added nodes/edges will be kept in the graph,

so we keep the fake nodes and edges still after the attack timestamp. Differently, the attacking nodes in MemFrezzing are

removed after the attack.

TDGIA (Zou et al., 2021) is a cutting-edge Graph Injection Attack tailored to compromise static GNNs. This method

exploits the inherent vulnerabilities of GNNs and the unique topological characteristics of graphs. In our implementation

for each target node, we adhere to the established methodology of TDGIA to identify the top 65% susceptible edges,

utilizing their specialized scheme for selecting topologically defective edges. These edges are then optimized using gradient

descent. Notably, the scale of modifications applied to each target node in the TDGIA method is substantially larger than our

approach, involving adjustments to 65% edges per node instead of just one edge per node. Furthermore, these modifications

will be kept after the attack instead of being removed as our attack.

Meta_Attack_Heuristic (Li et al., 2022) is a heuristic-based attack inspired by the meta attack (Zügner & Günnemann,

2019). This heuristic-based approach is an evolution of the original meta-attack, which relied on gradient-based edge

selection. The updated heuristic version demonstrates greater versatility across a variety of GNN models and large-scale

graphs, and it exhibits enhanced effectiveness compared to its predecessor. Notably, the meta-attack and its heuristic

counterpart operate under the assumption that edges lack attributes. Consequently, in our application, we assign an all-zero

feature to the fake edges inserted as part of the attack process.

For all attacks (including our attack), We select ranges of noisy messages (i.e., magnitudes of message features ) between -1

and 1 since -1 and 1 are the theoretical minimum and maximum values of the clean messages. The messages in TGNNs

are usually memories of the nodes updated from previous timestamps, which have activation functions such as tanh/cosine

functions right before the outputs. Therefore, all features of these messages (i.e., memories) should be within the range of

-1 and 1 as the minimum and maximum values of the activation functions (i.e., tanh). Therefore, using -1 and 1 produces

messages that are exactly similar to those of the other features in the graph.

All adversarial messages/nodes in the baselines and our attacks use the ∆T of the most recent clean message on the victim

nodes. For example, if we attack node n, whose most recent message before our attack uses ∆Tk at its updating, then the

timestamp of the fake messages added to this node will be ∆Tk as well. It is also worth mentioning that the delta T has

limited effects on the updating process, as we discussed in Appendix A.3.

For all attacks, we define the attack budget as the ratio of nodes that are affected. To ensure a fair comparison, all attacks

target the same set of victim nodes (the highest-degree ones). We would also like to mention that, although targeting these

high-degree nodes, all benchmarked attacks, including MemFreezing, either inject one-degree nodes or edges into the graph

and affect the same number of victim nodes at the time of the attack.

Specifically, MemFreezing targets high-degree nodes by introducing a temporary fake node for each target and creating an

event (i.e., an edge) between the fake node and the target. In this way, MemFreezing, like FakeNode, injects nodes with a

degree of one into the graph. However, unlike FakeNode, which retains the injected fake nodes and can potentially cause

stronger adversarial effects, MemFreezing removes these fake nodes after the attack, minimizing structural changes while

inducing long-lasting adversarial effects. Therefore, given a graph with V nodes and E edges and targeting N = 5%V
victim nodes (i.e., 5% budget), MemFreezing adds N fake edges. Since nodes typically have a degree greater than one,

K = 5%E > 5%V = N , the edge changes are less than 5% edges.

B.3. Baseline defenses setup

We adopt the following defensive strategies for the vanilla TGNN models:

Adversarial Training: In line with the approach detailed in (Madry et al., 2017), we introduce perturbations to the node

memories in TGNN models during the training. We then employ a minimax adversarial training scheme to enhance the

robustness of the TGNN model against these perturbations.

Regularization under empirical Lipschitz bound: Following the methodology in (Jia et al., 2023), we minimize the

empirical Lipschitz bound during the TGNN training process, where the empirical Lipschitz bound, L, is computed by:

L = sup∆

||f(x+∆)− f(x)||22
||∆||22

(22)

This regularization aims to bound the effectiveness of small perturbations, such as adversarial examples.
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GNNGurad: Following the insights that only the similar node may provide significant information for prediction, GNN-

Guard(Zhang & Zitnik, 2020) adopts a cosine-similarity-based approach to discount the messages passing between dissimilar

nodes.

Notably, most robust GCN models, such as RobustGCN, SGCN, GraphSAGE, and TAGCN mentioned in (Zou et al., 2021),

are primarily tailored for static graph benchmarks. Given their design constraints, these models are unsuited for TGNN

setup with dynamic graph benchmarks and do not offer a viable defense for the TGNN models targeted by our attack.
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B.4. Extra Main Results

Here we report edge prediction accuracies on REDDIT-TITLE in Table 4, and node classification AUCs on WIKI in

Table 5. The results indicate that: (1) The static attacks cannot last long and affect future nods. (2) Our approach can be

more and more effective after the attack time.

B.4.1. EDGE PREDICTION RESULTS (5% ATTACK BUDGET)

Here, we report edge prediction accuracies on REDDIT-TITLE in Table 4. The results indicate that: (1) The static attacks

cannot last long and affect future nods. (2) Our approach can be more and more effective after the attack time.

Table 4. Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different timestamps on REDDIT-TITLE; lower

matrices indicate more effective attacks.

Dataset REDDIT-TITLE

Model TGN JODIE Dyrep ROLAND

Vanilla 0.93 0.92 0.91 0.91

t0

FN 0.76 0.82 0.77 0.79

Meta_h 0.86 0.83 0.88 0.85

TDGIA 0.72 0.81 0.74 0.76

ours 0.84 0.85 0.81 0.78

t25

FN 0.9 0.86 0.89 0.88

Meta_h 0.89 0.86 0.9 0.87

TDGIA 0.89 0.85 0.89 0.88

ours 0.81 0.84 0.76 0.80

t50

FN 0.9 0.86 0.9 0.88

Meta_h 0.9 0.86 0.9 0.88

TDGIA 0.89 0.86 0.9 0.87

ours 0.77 0.82 0.76 0.77

B.4.2. NODE CLASSIFICATION RESULTS (5% ATTACK BUDGET)

Here, we report node classification AUCs on WIKI in Table 5. The results are similar to the edge predictions: Static attacks

are good at the first attack time but cannot last long and affect future nods. In contrast, MemFrezzing can be more and more

effective after the attack time.

Table 5. The AUC of vanilla/attacked TGNNs on the node classification task; lower matrices indicate more effective attacks.

Dataset WIKI

Model TGN JODIE Dyrep ROLAND

Vanilla 0.90 0.88 0.89 0.90

t0

FN 0.77 0.87 0.75 0.78

Meta 0.86 0.83 0.86 0.85

TDGIA 0.73 0.82 0.76 0.75

ours 0.82 0.88 0.84 0.80

t25

FN 0.90 0.88 0.88 0.88

Meta 0.89 0.87 0.88 0.89

TDGIA 0.88 0.87 0.88 0.89

ours 0.82 0.85 0.81 0.79

t50

FN 0.90 0.88 0.88 0.90

Meta 0.90 0.89 0.90 0.90

TDGIA 0.90 0.88 0.88 0.90

ours 0.80 0.85 0.77 0.77
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B.4.3. RESULTS WITH DIFFERENT BUDGET(1% ATTACK BUDGET)

To more comprehensively show the impact of the attack budget, we include detailed results of baselines’ and our attacks’

effectiveness under the attack budget as 1%. As shown in Table 6, Table 7, and Table 8, our approach can outperform

baselines as well, despite fewer nodes being attacked.

Table 6. Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different timestamps on WIKI and REDDIT; The

attack budget is 1% for all attacks; lower matrices indicate more effective attacks.

Dataset WIKI REDDIT

Model TGN JODIE Dyrep ROLAND TGN JODIE Dyrep ROLAND

Vanilla 0.93 0.87 0.86 0.94 0.97 0.98 0.96 0.95

t0

FN 0.89 0.83 0.82 0.85 0.93 0.93 0.92 0.85

Meta 0.92 0.85 0.83 0.89 0.95 0.96 0.94 0.93

TDGIA 0.83 0.81 0.77 0.83 0.89 0.88 0.88 0.8

ours 0.9 0.82 0.84 0.9 0.93 0.94 0.94 0.86

t25

FN 0.92 0.87 0.85 0.94 0.97 0.97 0.96 0.95

Meta 0.93 0.86 0.85 0.93 0.95 0.98 0.95 0.94

TDGIA 0.91 0.84 0.83 0.93 0.94 0.96 0.96 0.92

ours 0.8 0.82 0.82 0.88 0.81 0.84 0.91 0.84

t50

FN 0.94 0.87 0.86 0.94 0.97 0.97 0.96 0.95

Meta 0.94 0.87 0.86 0.93 0.96 0.98 0.95 0.95

TDGIA 0.94 0.87 0.85 0.93 0.96 0.97 0.95 0.93

ours 0.85 0.81 0.80 0.86 0.83 0.84 0.91 0.83

Table 7. Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different timestamps on REDDIT-BODY and

REDDIT-TITLE; The attack budget is 1% for all attacks; lower matrices indicate more effective attacks.

Dataset REDDIT-BODY REDDIT-TITLE

Model TGN JODIE Dyrep ROLAND TGN JODIE Dyrep ROLAND

Vanilla 0.9 0.87 0.9 0.88 0.93 0.92 0.91 0.91

t0

FN 0.85 0.85 0.81 0.83 0.88 0.88 0.85 0.83

Meta 0.87 0.85 0.87 0.86 0.92 0.89 0.89 0.9

TDGIA 0.81 0.83 0.79 0.78 0.85 0.87 0.85 0.83

ours 0.87 0.85 0.85 0.82 0.88 0.9 0.86 0.85

t25

FN 0.9 0.84 0.89 0.88 0.92 0.92 0.9 0.91

Meta 0.9 0.87 0.9 0.88 0.93 0.93 0.91 0.91

TDGIA 0.88 0.86 0.9 0.87 0.92 0.92 0.9 0.91

ours 0.84 0.86 0.8 0.82 0.85 0.88 0.81 0.86

t50

FN 0.9 0.87 0.9 0.88 0.93 0.92 0.9 0.91

Meta 0.9 0.88 0.9 0.88 0.93 0.93 0.9 0.91

TDGIA 0.89 0.87 0.9 0.87 0.93 0.91 0.9 0.9

ours 0.79 0.85 0.77 0.83 0.8 0.83 0.82 0.83
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Table 8. The AUC of vanilla/attacked TGNNs on the node classification task under 1% node attacked budget; lower matrices indicate

more effective attacks.

Dataset WIKI

Model TGN JODIE Dyrep ROLAND

Vanilla 0.9 0.88 0.89 0.9

t0

FN 0.83 0.88 0.83 0.83

Meta 0.87 0.85 0.88 0.88

TDGIA 0.81 0.85 0.83 0.8

ours 0.86 0.88 0.86 0.85

t25

FN 0.89 0.88 0.89 0.9

Meta 0.9 0.88 0.88 0.89

TDGIA 0.9 0.87 0.89 0.89

ours 0.82 0.85 0.81 0.81

t50

FN 0.9 0.87 0.89 0.9

Meta 0.9 0.88 0.89 0.9

TDGIA 0.9 0.87 0.89 0.89

ours 0.82 0.88 0.79 0.82

B.4.4. RESULTS WITH LARGE-SCALE DATASET

To measure our approach on a larger dataset, we select the largest temporal graph dataset on the SNAP dataset collec-

tion(Leskovec & Sosič, 2016)—Wiki-Talk-Temporal(Paranjape et al., 2017)—for further analysis. This dataset

represents Wikipedia users editing each other’s Talk page. A directed edge (u, v, t) means user u edited v’s talk page at time

t. The graph has 1,140,149 nodes and 7,833,140 collected over 2320 days.

The dataset has non-attributed edges, so we set them as all zero vectors. Note that we set the memory size to 64 instead of

172 to avoid the Out-Of-Memory issue. Due to the time limit, we train TGN and Roland for ten epochs instead of 20 in our

prior experimental settings. The results are shown in Table 9. As we can observe, even for a very large graph with a 1%

node budget, our attack shows a similar behavior as our prior results –Our attack is long-lasting and can affect more nodes’

predictions in the future.

Table 9. Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different timestamps on Wiki-Talk-Temporal.

Dataset Wiki-Talk-Temporal

Attack Budget 1% 5%

Model TGN ROLAND TGN ROLAND

Vanilla 0.97 0.98 0.97 0.98

t0
FN 0.89 0.90 0.83 0.88

ours 0.94 0.91 0.86 0.88

t25
FN 0.98 0.97 0.97 0.96

ours 0.92 0.90 0.82 0.89

t50
FN 0.97 0.98 0.97 0.97

ours 0.91 0.91 0.84 0.86
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B.5. Extra results on attacks under defenses

We include the results of two attacks, i.e., FakeNode and MemFrezzing, under the two defenses, i.e., adv_train and

Lip_reg, on two TGNN models, i.e., JODIE and Dyrep. The observations are similar to the prior analysis.
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Figure 11. Accumulated accuracies of DyRep under Adv_train(left), and Lip_reg(right) with FakeNode and our attack on WIKI.
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Figure 12. Accumulated accuracies of JODIE under Adv_train(left), and Lip_reg(right) with FakeNode and our attack on WIKI.

To give a more in-depth evaluation, we design a defending method by leveraging the data-filtering concept in GNN-

Guard(Zhang & Zitnik, 2020) for the evasion attack. Specifically, following the insights that only the similar node may

provide significant information for prediction, GNNGuard adopts a cosine-similarity-based approach to discount the mes-

sages passing between dissimilar nodes. So, we also use the cosine similarities to rank and filter the messages. Specifically,

similar to the GNNGuard, we compute the similarities between two nodes. For each node, we normalize the similarities

between it and its neighbors, then prune the lower 50% (same as GNNGuard). We show the experiment results in Table 10.

Table 10. Attack Performance under the GNNGurad.

Attack Budget 1% 5%

Dataset WIKI REDDIT WIKI REDDIT

Model TGN ROLAND TGN ROLAND TGN ROLAND TGN ROLAND

Vanilla 0.93 0.94 0.96 0.95 0.93 0.94 0.96 0.95

After defense Acc. 0.92 0.91 0.94 0.90 0.92 0.91 0.94 0.90

t0
FN 0.87 0.81 0.9 0.84 0.82 0.86 0.82 0.81

ours 0.87 0.88 0.91 0.88 0.85 0.83 0.8 0.82

t25
FN 0.9 0.91 0.93 0.9 0.91 0.91 0.92 0.9

ours 0.84 0.87 0.82 0.81 0.79 0.81 0.81 0.8

t50
FN 0.92 0.91 0.94 0.9 0.92 0.91 0.93 0.9

ours 0.83 0.85 0.81 0.81 0.76 0.82 0.8 0.83
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B.6. Extra results with gradually injected attacks

MemFreezing can be effective in both one-time and multiple-time attacks. We show the results of multiple-time attacks, in

which attacks are injected right before t0, t5, t10, t15 with 1% attack budget (i.e., 1% of all nodes) each time. The results are

shown in Table 13.

Figure 13. The accumulated accuracy under gradually injected attack to TGN on WIKI(left) and REDDIT(right). The attacks are injected

right before t0, t5, t10, t15 with 1% attack budget (i.e., 1% of all nodes) each time.

As one can observe, with multiple attack times, MemFreezing effectively decreases accuracies, while the FakeNode and

TDGIA attacks have shorter effective periods and fail to achieve similar accuracy drops. This is because the attack introduced

by these baseline attacks will be weakened once there are changes between the graph at the attack and the prediction

timestamp, and even multiple-time attacks cannot ensure that the attacks are just injected right before each prediction; in

contrast, the noises from our attack can last over graph changes and even be boosted by future attacks.

Figure 14. The similarities between victim nodes’ initial noisy memories (at the time of the attack) and themselves’/their subsequent

neighbors’ memories in MemFreezing under one-time attack setup and multiple-times attack setup.

To evaluate the effectiveness of cross-freezing under multiple-time attack cases, we investigate the similarities between

victim nodes’ initial noisy memories (at the time of the attack) and themselves’/their subsequent neighbors’ memories in

MemFreezing under one-time attack setup and multiple-times attack setup (following the setup in Figure 7 in our paper). As

shown in Figure 14, despite multiple times of injections, MemFreezing significantly raises the similarities between nodes’

memories. The results demonstrate that the cross-freezing mechanism works effectively under multiple time attacks.
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B.7. Extra results on injecting attacks at different time stamps

To examine if MemFreezing can be effective despite the time of injection. We test its effectiveness under different injection

timestamps instead of t0, then evaluate its performance in the subsequent 50 timestamps. For instance, we may inject it at

t10 and then evaluate the accumulated accuracies in the original TGNN models and those under attack at t50. The results

of TGN on WIKI and REDDIT are shown in Figure 15. As one can observe, the attack effects remain similar despite its

injecting time, demonstrating that MemFreezing can yield long-lasting and contagious attack at arbitrary attack time.

Figure 15. Accumulated accuracy under attack at various timestamps on TGN for WIKI (left) and REDDIT (right). Attacks are injected

at 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 80% of the total test set.

B.8. Extra ablation study

We include the results for the ablation studies under the TGN model and REDDIT dataset in Figure 16. The results show a

similar pattern as we observed in Section 5.
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Figure 16. The similarities between victim nodes’ initial noisy memories (at the time of the attack) and themselves’/their subsequent

neighbors’ memories in MemFreezing w/o (left) converge state, MemFreezing w/o freezing loss (middle), and regular nodes (right). All

results are from the TGN model and REDDIT dataset.
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B.9. Analysis on freezing objective

To demonstrate the challenge of maximizing prediction losses, we add an extra term, Ladv
u to maximize the loss of predictions.

Specifically, for each node u we change Equation 7 in our paper as follows,

Lu = Lfreeze
u + Lprop

u − µ · Ladv
u

We use a coefficient µ to control the ratio of adversarial losses. The adversarial loss Ladv
u is defined as follows,

Ladv
u =

∑

i

ℓ(yi, ti) | i ∈ N(u)

In which yi presents the prediction result for the node i, ti is the ground truth of the prediction, and ℓ(yi, ti) indicates the

binary-cross-entropy loss between them. Similar to baselines, for each node u, the objection function is to maximize the

prediction loss of all its neighbors. We present the prediction accuracies under different µ selections in Figure 17.
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Figure 17. The accumulated accuracy with maximizing prediction losses under different γ selections on TGN in WIKI(left) and

REDDIT(right).

As shown in the figure, maximizing the adversarial losses can harm the predictions in the first batch (if and only if the

predictions are made immediately after the attack). In the later batches, the effectiveness of the noise decreases drastically.

To further understand the reasons behind this, we investigate the similarities between victim nodes’ initial noisy memories

(at the time of the attack) and their memories in the future—termed as Persist Similarity—in Figure 18, the similarities

between victim nodes’ memories and their neighbors’ memories—called Propagate Similarity in Figure 19.
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Figure 18. The similarities between victim nodes’ initial noisy memories (at the time of the attack) and their memories in the future. The

results are collected from TGN on WIKI(left) and REDDIT(right).

As one can observe, while introducing the adversarial losses, both persist and propagate similarities drop significantly,

indicating that the nodes’ memories cannot maintain the noisy states and may recover soon.

26



MemFreezing: A Novel Adversarial Attack on Temporal Graph Neural Networks under Limited Future Knowledge

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
ro

p
a
g

a
te

 S
im

il
a
ri

ty

Timestamp

γ=0 γ=0.1 γ=0.25

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
ro

p
a
g

a
te

 S
im

il
a
ri

ty

Timestamp

γ=0 γ=0.1 γ=0.25

Figure 19. The similarities between victim nodes’ memories and their future neighbors’ memories. The results are collected from TGN on

WIKI(left) and REDDIT(right).

B.10. Stealthness analysis

As discussed in Appendix B.2, we select ranges of noisy messages between -1 and 1 since -1 and 1 are the theoretical

minimum and maximum values of the clean messages. To further investigate if the MemFreezing attack introduces enough

stealth fake events/nodes, we further investigate the range of message-wise means (i.e., means of all features over each

message) and message-wise standard deviation (i.e., the standard deviation of all features over each message) for clean and

noisy messages produced by different attacks in Table 11.

Table 11. Ranges of message-wise mean and standard deviation over all of the clean messages (Clean) and noisy messages produced by

MemFreezing in WIKI and REDDIT.

WIKI REDDIT

Mean[min,max] Std[min,max] Mean[min,max] Std[min,max]

Clean [-0.033, 0.106] [0.206, 0.866] [-0.093, 0.146] [0.202, 0.789]

MemFreezing [-0.014, 0.044] [0.426, 0.570] [-0.012, 0.038] [0.580, 0.695]

FakeNode [0.003 , 0.008 ] [0.628 , 0.702] [-0.030, 0.018] [0.525, 0.686]

The range of mean and std of our noisy messages are included within the range of those in the clean message and are similar

to the baseline attack, demonstrating that their distributions or magnitudes are similar to the other features in the graph.

Moreover, MemFreezing can effectively penetrate the defenses of GNNGuard, which uses similarity to filter susceptible

messages in which the nodes/events with apparently different information (i.e., having low similarities compared to other

nodes/events), as shown in Appendix B.5. In summary, the results indicate that MemFreezing can freeze node memories in

TGNN without introducing significant different nodes/events that can be detected by existing GNN adversarial defenses.

B.11. Extra sensitivity study

We include more results for different target node sampling strategies and attack budgets in Figure 20. The results show a

similar pattern as we observed in Section 5.
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Figure 20. (left) Comparison between two strategies for selecting the injected node: lowest degree and highest degree nodes. Count of

affected nodes and overall accuracy over time. (RIGHT) The accumulated accuracy at t0, t25, and t50 under different attack budgets (%

of total nodes). All results above are from TGN and REDDIT
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B.12. Accumulated Accuracies Over Time on Diverse Models

We report the accumulated accuracies over time collected from TGN, JODIE, and Dyrep on the WIKI and REDDIT

datasets. The results include model accuracies under the vanilla (i.e., un-attacked), baseline (i.e., FakeNode), and our (i.e.,

MemFrezzing) attacks in edge prediction tasks.
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Figure 21. Accumulated accuracies of TGN under different attacks in link prediction tasks over time in WIKI (left) and REDDIT (right)

datasets.
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Figure 22. Accumulated accuracies of JODIE under different attacks in link predictions over time with WIKI (left) and REDDIT (right)

datasets.
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Figure 23. Accumulated accuracies of Dyrep under different attacks in link predictions over time with WIKI (left) and REDDIT (right)

datasets.
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B.13. Affected Nodes

We report the number and accumulated accuracies over time of affected nodes over time in JODIE and Dyrep on the WIKI

and REDDIT datasets. The results include model accuracies under our (i.e., MemFrezzing) attack in edge prediction tasks.
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Figure 24. Count of affected nodes (presented as the colored areas) and their accumulated accuracies (presented as lines) in WIKI (left)

and REDDIT (right) over time. The data are collected in TGN.
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Figure 25. Count of affected nodes (presented as the colored areas) and their accumulated accuracies (presented as lines) in WIKI (left)

and REDDIT (right) over time. The data are collected in JODIE.
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Figure 26. Count of affected nodes (presented as the colored areas) and their accumulated accuracies (presented as lines) in WIKI (left)

and REDDIT (right) over time. The data are collected in Dyrep.
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B.14. Noise Propagating

We report the cosine similarities between the initial victim node and its neighbors over time in JODIE and Dyrep on the

WIKI and REDDIT datasets. The results include similarities under our (i.e., MemFrezzing) attack in edge prediction tasks.
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Figure 27. The similarities between victim nodes’ initial noisy memories (at the time of the attack) and themselves’/their subsequent

neighbors’ memories in WIKI (left) and REDDIT (right) over time. The data are collected in TGN.
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Figure 28. The cosine similarities between victim nodes’ initial memory (at the time of the attack) and themselves/their subsequent

neighbors’ memories in WIKI (left) and REDDIT (right) over time. The data are collected in JODIE.
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Figure 29. The cosine similarities between victim nodes’ initial memory (at the time of the attack) and themselves/their subsequent

neighbors’ memories in WIKI (left) and REDDIT (right) over time. The data are collected in Dyrep.
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B.15. Evaluation on Attacks in Black-Box Setting

In the black-box setting, attackers do not have access to the target model’s parameters. To this end, we evaluate black-box

adversarial attacks using two commonly used setups: (i) surrogate models and (ii) zero-shot attacks.

B.15.1. SURROGATE MODES

A common approach in the adversarial attack domain is to train a surrogate model locally and use it to generate adversarial

examples that can transfer to the target model. For temporal graph datasets, many popular benchmarks such as Wiki and

Reddit are open-source, providing well-labeled, diverse data annotated with detailed timestamp information. Hence, We first

evaluate Memfreezing under the following setup: (1) We first train surrogate models on randomly sampled subsets (60% or

80%) of the original training data. (2) Then, we use these models to generate adversarial examples. (3) Lastly, we inject the

generated adversarial examples into the dynamic graphs and evaluate the prediction accuracies in the target model trained on

the complete (100%) dataset.

Figure 30. Cosine similarity of model parameters between surrogate model (80% and 60% training dataset) vs. target model. (left) are

evaluated from TGN model using WIKI dataset; (right) are evaluated from TGN model using Reddit dataset.

Figure 31. The similarities between victim nodes’ initial noisy memories (at the time of the attack) and themselves’/their subsequent

neighbors’ memories. The noisy patterns are computed from the surrogate model. (Top-left) the surrogate model is trained with 80%

dataset in WIKI; (Top-right) the surrogate model is trained with 80% dataset in REDDIT; (Bottom-left) the surrogate model is trained

with 60% dataset in WIKI; (Bottom-right) the surrogate model is trained with 60% dataset in REDDIT.
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We first investigate if surrogate models, which are trained with partial training data, can effectively represent the target

models. In Figure 30, we analyze the similarity of parameters between the surrogate and target models. The analysis

includes weights and biases from both the GRU units and the attention-based classifier. We track this similarity across

training epochs 1 through 20. The results show a gradual decrease in similarity as training progresses. For the surrogate

model trained on 80% of the dataset, the similarity decay is minimal, maintaining values between 0.94 and 0.96 at epoch 20.

The surrogate model trained on 60% of the dataset shows a more pronounced decay, with similarity values ranging from

0.90 to 0.92 at epoch 20.

Next, we evaluate how effectively adversarial examples generated from surrogate models persist in target models. We

first apply the MemFreezing algorithm to the surrogate model to generate noisy patterns, which we then transfer to the

target model. We assess the attack’s persistence by measuring the cosine similarity between the victim nodes’ initial noisy

memories (at the time of attacks) and both their own and their neighbors’ memories over time. As shown in Figure 31,

although the freezing capability is somewhat weakened due to the surrogate model’s incomplete training data, our attack

remains effective: the noisy patterns maintain a similarity above 0.8 even after 15 updates, and one-hop neighbors show

significant influence with similarity values exceeding 0.6 relative to the noisy pattern.

Lastly, in Table 12, we compare MemFreezing against baseline attacks under the above-mentioned black-box setting by

measuring their impact on overall model accuracy. While all attacks show reduced effectiveness in the black-box setting,

MemFreezing maintains its superiority, achieving the largest accuracy drop compared to baseline attacks.

Table 12. Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different timestamps on REDDIT and WIKI; The

attack budget is 5% for all attacks; lower matrices indicate more effective attacks.

Surrogate

Model

Dataset WIKI REDDIT

Model TGN JODIE Dyrep ROLAND TGN JODIE Dyrep ROLAND

Vanilla 0.93 0.87 0.86 0.94 0.97 0.98 0.96 0.95

80%

t0

FN 0.87 0.85 0.82 0.86 0.93 0.94 0.92 0.93

Meta-h 0.90 0.83 0.81 0.85 0.93 0.95 0.90 0.92

TDGIA 0.87 0.84 0.82 0.85 0.91 0.88 0.86 0.88

ours 0.90 0.85 0.86 0.88 0.92 0.91 0.95 0.91

t25

FN 0.93 0.87 0.85 0.94 0.97 0.97 0.96 0.95

Meta-h 0.93 0.87 0.84 0.93 0.96 0.98 0.94 0.96

TDGIA 0.93 0.87 0.85 0.94 0.97 0.98 0.96 0.95

ours 0.83 0.83 0.83 0.84 0.89 0.90 0.92 0.88

t50

FN 0.94 0.87 0.86 0.94 0.97 0.97 0.96 0.95

Meta-h 0.93 0.87 0.85 0.93 0.97 0.98 0.94 0.95

TDGIA 0.93 0.87 0.85 0.93 0.96 0.97 0.95 0.92

ours 0.84 0.85 0.82 0.85 0.90 0.91 0.93 0.90

60%

t0

FN 0.91 0.86 0.86 0.92 0.96 0.96 0.93 0.94

Meta-h 0.90 0.83 0.81 0.85 0.93 0.95 0.90 0.92

TDGIA 0.90 0.84 0.82 0.89 0.92 0.90 0.90 0.92

ours 0.92 0.87 0.85 0.90 0.93 0.93 0.92 0.93

t25

FN 0.93 0.87 0.85 0.94 0.97 0.97 0.96 0.95

Meta-h 0.93 0.87 0.84 0.93 0.96 0.98 0.94 0.96

TDGIA 0.93 0.87 0.84 0.94 0.97 0.98 0.96 0.95

ours 0.87 0.84 0.84 0.87 0.90 0.91 0.93 0.91

t50

FN 0.94 0.87 0.86 0.94 0.97 0.97 0.96 0.95

Meta-h 0.93 0.87 0.85 0.93 0.97 0.98 0.94 0.95

TDGIA 0.93 0.87 0.86 0.93 0.96 0.97 0.95 0.95

ours 0.87 0.86 0.85 0.90 0.92 0.92 0.94 0.90

B.15.2. ZERO-SHOT ATTACKS

It is also possible that, in real-world cases, the attackers have no idea about the model architecture or training datasets. To

this end, we evaluate Memfreezing under the zero-shot transfer attack setup following the ensemble-based approach first
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proposed in (Liu et al., 2016). Specifically, on the Wikipedia dataset, we generate the fake message by jointly optimizing the

adversarial message for three models and then evaluating the effectiveness of this unified adversarial message on diverse

models. As shown in 32, although it performs worse than the white-box attack, Memfreezing can still effectively perturb

model predictions. We also acknowledge that memfreezing is less harmful than cases with more accurate model information.

Figure 32. The comparisons between performances of Memfreezing under zero-shot attack setup and white-box counterparts.
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B.16. Analysis on Future Simulation

To further understand if using nodes’ current neighbor can be effective in extremely irregular and random graphs, we conduct

the following experiments.

First, we further analyze the similarity among nodes’ neighbors in diverse datasets using the same setup (e.g., model) as

Figure 3(d). As shown in Figure 33, generally, nodes tend to have similar neighbors across diverse datasets. Hence, using

current neighbors reasonably approximates future graph changes in practice.

Figure 33. The distribution of cosine similarities among the ideal frozen states in different nodes in REDDIT and REDDIT-BODY datasets.

To investigate if our future neighbor simulation scheme is sufficient to freeze neighbors under irregular or highly random

dynamic graphs, we simulate an irregular and random graph on top of the Wikipedia dataset. Specifically, we have victim

nodes in the graph connected to nodes with random memories in the future timestamps. We also explored an alternative

scheme to investigate whether the heuristic could be further enhanced. Specifically, in this alternative, we simulate nodes’

future neighbors using nodes with random memories.

(a) (b) (c) (d)

Figure 34. The similarities between victim nodes’ initial noisy memories (at the time of the attack) and themselves’/their subsequent

neighbors’ memories in WIKI dataset and its randomized version under vanilla cases including (a) Using current neighbor for simulation

under a noisy future, (b) Using current neighbor for simulation under a normal future, (c) Using random memory neighbor for simulation

under a noisy future, (d) Using random memory neighbor for simulation under a normal future.

As shown in Figure 34(a), although resulting in lower similarities, MemFreezing effectively freezes these random neighbors

(as shown in (a)). This demonstrates that our future simulation schemes are effective under even (i.e., Current Simulation)

in irregular setups. The reason behind this is that, in addition to using current neighbors, we also simulate "new future

neighbors" with all-zero memories, which further enhance the noise’s capability to freeze unseen nodes.

Although the alternative scheme (i.e., Random Simulation) performs better under random neighbor cases (i.e., Noise Future),

as shown in Figure 34(c); it shows worse performances in the real cases (i.e., Normal Future), as shown in Figure 34(d)

compared to as shown in Figure 34(b). These findings collectively suggest that using current neighbors as surrogates is both

practical and effective, even in challenging dynamic graph scenarios.
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B.17. Effective in LSTM-based TGNNs

While existing TGNN uses RNN and GRU for node memory updating (Rossi et al., 2020; Trivedi et al., 2019; Kumar et al.,

2019; You et al., 2022), it is valuable to understand how nodes’ memory is frozen under a memory updater with different

RNN-variant.

To evaluate the effectiveness of MemFreezing when using LSTM as the memory updater, we replaced the GRU and RNN

components in TGN (Rossi et al., 2020) with LSTM. We then assessed the performance of MemFreezing and baseline

attacks under this new configuration. It is worth mentioning that since LSTM has two memories (i.e., long and short terms),

they are different from GRU and RNN used in existing TGNNs. To adapt these two memories into one node memory under

existing TGNN frameworks, we concatenate the two memories of a node together as its memory and freeze them altogether.

Figure 35. The accumulated accuracy of LSTM-based TGN under no-attack, TDGIA, and MemFreezing on WIKI (left) and REDDIT

(right) datasets.

We first investigate the resulting accumulated accuracies in TGN. As shown in Figure 35, the LSTM-based TGN shows

better robustness against MemFreezing. However, MemFreezing still effectively compromises predictions of LSTM-based

TGN, leading to an average of 8% accuracy drops at t100. In contrast, the baseline (i.e., TDGIA) still fails to disturb the

predictions under limited-knowledge setups.

Figure 36. The similarities between victim nodes’ initial noisy memories (at the time of the attack) and themselves’/their subsequent

neighbors’ memories in LSTM-based TGN on the WIKI dataset.

The LSTM-based TGN makes it more challenging since the attack has to freeze both long-term and short-term memories.
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To understand the phenomenon, we further investigate the similarities between the victim nodes’ initial memory and its

subsequent and 1-hop neighbors’ memories. As shown in Figure 36., the similarities between the victim nodes and their

1-hop neighbors are as low as around 0.6, which is not as high as the cases with GRU/RNNs (e.g., over 0.8).
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C. Discussion And Future Work

C.1. Limits under different models and graphs.

While the experiment results in Appendix B.4 and Appendix B.11 demonstrated that MemFrezzing can be well-generalized

on various inputs, several limitations can be observed according to the performance variance between different models.

While our approach can effectively mislead TGN, ROLAND, and DyRep, its effectiveness is less significant on JODIE,

which uses differences between a node’s current and its last update time to decay the memory. From these observations, we

deduce that our attack may encounter limitations in two specific scenarios:

• Limited Influence of Node Memory on Predictions: Our attack’s effectiveness may be mitigated in situations where

the node memory has a relatively minor role in influencing the model’s predictions.

• Usage of Additional Information in TGNN Models: The effectiveness may also be constrained when the targeted

TGNN model incorporates additional information beyond the node memory for its predictive processes.

While our attack strategy outperforms the baselines, these insights highlight potential limitations under certain model-specific

conditions.

Nevertheless, Detecting a MemFreezing attack by observing node memory is challenging because nodes can naturally exhibit

stable updates. For example, using TGN on the Wikipedia dataset, over 70% of node updates show high similarity (although

they may not be consistently stable), which can also occur in real-world cases (e.g., an Amazon user with consistent shopping

preferences). Thus, it is hard to differentiate an attacked node from naturally stable ones.

For instance, one could devise a “memory reset” module that resets the victim nodes’ memories. To explore the potential

of randomly and periodically resetting node memories, we conduct experiments in which we (a) randomly reset node

memories upon each update or (b) reset memories after each 25 timestamps. As the results shown in Figure 37, doing so

may jeopardize the models’ clean accuracy with limited effectiveness in defending against Memfreezing.

Figure 37. The performances of Memfreezing upon randomly resetting node memories.

C.2. Potential Defenses.

While we demonstrate that many existing defense schemes, such as adversarial training or regularization, are less effective

on our attacks, we expect a potential attack-oriented defense scheme for our attack using memory filtering. Specifically, a

potential defensive approach for our attack is to pay less attention to the nodes’ memory and rely more on their current input

adaptively.

This scheme stems from the observation that our attacks are less effective on JODIE in node classification tasks. One key

difference in JODIE is that it decays the node memory based on the time differences between the prediction time and the

node’s last update time. This mechanism introduces more hints (i.e., time differences) in addition to the memory itself,

which cannot be effectively distorted by the attacks and yields some crucial information. For example, a Wikipedia user is

less likely to be banned if he/she makes a new post after being inactive for a long while.

Therefore, using this non-memory information or current information that does not interact with node memory could
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effectively hinder adversarial noises. To this end, an intelligent defense mechanism can judiciously filter out the memory

and adaptively focus more on non-memory information if the memory is suspicious or potentially noisy.
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D. Complexity and Overheads of The Memfreezing Attack

We further approximate the time complexity of the MemFreezing, as it is crucial to understand its practicality. The time

complexity of MemFreezing is approximately O(V + V D), where V is the number of victim nodes being attacked and D

is their average degree.

The computation of MemFreezing can be divided into three main parts:

1. Finding the Stable State: For each victim node in V , we iteratively update its state using its two support neighbors until

reaching the ideal stable state. Assuming a constant number of iterations for convergence, this step incurs a time complexity

of O(V ).

2. Solving the Target Memory Using SGD: For each victim node, we optimize the target memory state using stochastic

gradient descent (SGD), considering (a) The node itself, (b) Its two support neighbors and (c)Its augmented neighbors. The

total set has a size of at most D+20 (current neighbors plus simulated neighbors), where D approximates the number of the

node’s current neighbors. This optimization incurs a cost of O(D) per node, leading to a total time complexity of O(V D)
across V victim nodes with D average degree.

3. Introducing Fake Neighbors: For each victim node, we compute and inject a fake neighbor to introduce noise. This step

has a cost of O(1) per node, resulting in O(V ) overall.

In summary, the overall time complexity of MemFreezing is dominated by the SGD optimization step for getting noisy

memory, resulting in O(V + V D) time complexity. Under the worst cases, in which D = V (e.g., fully connected graph),

the complexity is O(V 2) We further show the comparisons of each attack’s average latency per node in Table 13. The results

show that the Memfreezing attack freezes nodes within seconds, indicating its potential in an online attack setup.

Table 13. Average latency per node of four attack methods on WIKI and REDDIT datasets.

Dataset Model MemFreeze (s) Meta-h (µs) TDGIA (s) FakeNode (s)

WIKI

TGN 0.48 546.88 1.91 0.87

Jodie 0.49 957.51 1.63 0.81

Dyrep 0.45 352.00 2.10 0.91

Roland 0.53 816.78 3.28 1.27

REDDIT

TGN 0.66 262.63 1.46 0.81

Jodie 0.46 158.91 1.49 0.76

Dyrep 0.45 155.96 1.20 0.89

Roland 0.53 392.90 2.14 1.47
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