
Quamba2: A Robust and Scalable Post-training Quantization Framework for
Selective State Space Models

Hung-Yueh Chiang 1 Chi-Chih Chang 2 Natalia Frumkin 1

Kai-Chiang Wu 3 Mohamed S. Abdelfattah 2 Diana Marculescu 1

Abstract
Despite State Space Models (SSMs) are emerg-
ing as an efficient alternative to Transformers, de-
polying SSMs on both cloud and edge devices is
challenging due to the limited resources. Model
quantization reduces model size and leverages
hardware acceleration, and recent efforts on SSM
quantization have focused on optimizing a par-
ticular model or bit-width. However, distinct bit-
widths are essential for different scenarios, like
W4A8 for boosting large-batch decoding speed,
and W4A16 for enhancing generation speed in
short-prompt single-user applications. We present
Quamba2, compatible with W8A8, W4A8, and
W4A16 for both Mamba1 and Mamba2 back-
bones, addressing the growing demand for SSM
deployment. Based on channel order preserving
and activation persistence of SSMs, we propose
an offline approach to quantize inputs of the linear
recurrence in 8-bit by sorting and clustering for
input x, combined with a per-state-group quanti-
zation for input-dependent parameters B and C.
To ensure compute-invariance in the SSM output,
we rearrange weights offline according to the clus-
tering sequence. We show that Quamba2-8B out-
performs two state-of-the-art SSM quantization
methods and delivers 1.3× and 3× speed-ups in
the pre-filling and generation stages, respectively,
while offering 4× memory reduction with only
a 1.6% average accuracy drop. The evaluation
on MMLU shows the generalizability and robust-
ness of our framework. The code and quantized
models are released at the link.

1Chandra Family Department of Electrical and Computer
Engineering, The University of Texas at Austin 2Department
of Electrical and Computer Engineering, Cornell University
3Department of Computer Science, National Yang Ming Chiao
Tung University. Correspondence to: Hung-Yueh Chiang
<hungyueh.chiang@utexas.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
State Space Models (SSMs) (Gu et al., 2020; Smith et al.,
2023; Gu & Dao, 2024; Dao & Gu, 2024), offering constant
memory complexity, are emerging as efficient alternatives to
Transformers (Vaswani, 2017) in various areas such as lan-
guage modeling (Wang et al., 2024; Waleffe et al., 2024), vi-
sion (Zhu et al., 2024a; Liu et al., 2024a; Li et al., 2025), and
audio (Goel et al., 2022; Saon et al., 2023). Some studies
expand the model sizes and demonstrate their performances
on par with Transformers of the same scale (Lieber et al.,
2024; Team et al., 2024; Waleffe et al., 2024). However, the
increased size and computational demands of large SSMs
limit the hardware options and raise deployment costs.

Post-training quantization (PTQ) offers an attractive solu-
tion to efficient deployment by eliminating the need for fine-
tuning large models. PTQ methods reduce the bit-width
of pre-trained weights and activations to lower-bit formats
(such as 8-bit), cutting down memory use for weight storage
and leveraging advanced hardware units. Recent studies
(Xu et al., 2025; Chiang et al., 2025) reveal that quantiza-
tion techniques that are effective in Transformers struggle
with SSMs due to the sensitivity of linear recurrence to
quantization-induced errors. This prior work introduces
PTQ algorithms tailored for SSMs to bridge the perfor-
mance gap between low and half-precision models. How-
ever, they either do not explore diverse bit-widths (Chiang
et al., 2025) or fail to achieve satisfactory performance at
lower bit-widths (Xu et al., 2025), like W4A8.

Specific bit-width setups are crucial for certain scenarios.
For instance, W4A8 enhances cloud service throughput
with large-batch inputs (Lin et al., 2024b), whereas W4A16
improves the efficiency of short prompt applications (Lin
et al., 2024a). As a result, current SSM-based quantiza-
tion methods may underperform on edge devices or fail to
maximize throughput on cloud services. Moreover, a recent
study (Zhao et al., 2024a; Kumar et al., 2025; Gong et al.,
2024) reveals that heavy quantization of model weights and
activations (e.g., W4A4) impairs model generalization on
multi-step reasoning tasks.

To address these issues, we present Quamba2, a robust and

1

https://github.com/enyac-group/Quamba

Quamba2

Table 1: (Supported models.) Our framework supports
W8A8, W4A8, and W4A16 for both Mamba1 (Gu & Dao,
2024) and Mamba2 (Dao & Gu, 2024).

Methods Models Bitwidth
Mamba1 Mamba2 W8A8 W4A8 W4A16

MambaQuant (Xu et al.) ✓ - ✓ ✓ -

Quamba (Chiang et al.) ✓ - ✓ - -

Quamba2 (Ours) ✓ ✓ ✓ ✓ ✓

Table 2: (Supported bit-width.) Quamba2 supports head-
to-toe (H2T) 4/8-bit from the embedding layer, SSM blocks,
to the final output layer (i.e., lm head).

Methods Embed. SSM blocks lm head H2T

MambaQuant (Xu et al.) 16-bit 4/8-bit 16-bit ✗

Quamba (Chiang et al.) 16-bit 8-bit 16-bit ✗

Quamba2 (Ours) 4/8-bit 4/8-bit 4/8-bit ✓

scalable post-training quantization framework for selective
SSMs. As shown in Table 1 and 2, our framework supports
head-to-toe W8A8, W4A8, and W4A16 for both Mamba1
(Gu & Dao, 2024) and Mamba2 (Dao & Gu, 2024), meeting
the demands for SSM deployment on cloud and edge plat-
forms. Based on channel order preserving and activation
persistence of the SSM computation, as shown in Figure 2
and 3, we employ an offline cluster-aware weight reordering
approach to group SSM heads and channels with similar
value ranges, allowing them to share a quantization scaling
factor and boost quantization precision. For selective SSM
input-dependent parameters (B, C), we identify state persis-
tence in activations and apply quantization per state group.
Our sort-and-cluster and per-state-group quantization meth-
ods improve quantization accuracy, closing the accuracy
gap in half-precision models. In Figure 1 and the rest of our
experiments, we show that Quamba2-8B surpasses several
leading SSM quantization methods, achieving up to 1.3×
and 3× higher speeds in prefilling and generation, respec-
tively, and offering a 4× memory reduction, with only a
1.6% accuracy loss across six zero-shot tasks. Additionally,
we tested Quamba2 on MMLU (Hendrycks et al., 2020), a
large multitasking dataset, demonstrating the generalizabil-
ity and robustness of our framework.

2. Related Work
Model quantization. Representing model weights and
activations in low bit reduces the cost of storing and loading
parameters and benefits from advanced low bit-width com-
puting units (i.e., Tensor Cores). Quantization methods are
generally divided into two categories: Quantization-aware
training (QAT) (Liu et al., 2024b; Dettmers et al., 2024;
Yu et al., 2025; Tang et al., 2024) and post-training quanti-

Figure 1: (Quamba2-8B memory and throughput.) The
head-to-toe (H2T) quantization enables the deployment of
Mamba2-8B on the edge platform such as Nvidia Nano 8G.
Quamba2 delivers 3× throughput on Nvidia A5000 and 13
tokens-per-second (TPS) on Nvidia Nano 8G.

zation (PTQ) (Zhu et al., 2024b; Zhou et al., 2024). QAT
requires additional training efforts to adapt models to low
bit-width. PTQ is an attractive option for large language
models (LLMs) since it eliminates the need for training.
Our study falls under PTQ and provides W8A8, W4A8, and
W4A16 bit-width configurations, delivering memory and
latency reduction across platforms.

PTQ and weight reordering for Transformers. Post-
training quantization (PTQ) techniques are generally clas-
sified into two categories: weight-only quantization (e.g.,
W4A16) and weight-activation quantization (e.g., W8A8)
(Zhu et al., 2024b). Weight-only quantization (Frantar et al.,
2023; Lin et al., 2024a) minimizes weight storage, while
weight-activation quantization (Zhao et al., 2024b; Ashk-
boos et al., 2024b) optimizes throughput with low bit-width
operations. Reordering weights is frequently used to en-
hance quantization precision (Zhao et al., 2024b; Yuan et al.,
2024) or efficiency (Lin et al., 2024b) of Transformers, but
its use and its subsequent effectiveness in SSMs is unclear.
Our study shows that the selective State Space Duality (SSD)
computing (Dao & Gu, 2024) preserves channel order be-
tween input and output, with activated channels and states
consistent over time.

PTQ and mixed-precision for SSMs. Xu et al. (2025)
and Chiang et al. (2025) highlight that standard quantization
techniques for Transformers are not effective for SSMs and
propose PTQ algorithms tailored for SSMs. Despite this,
these strategies do not offer a variety of bit-width configura-
tions (Chiang et al., 2025) and struggle to perform well at re-
duced bit-widths such as W4A8 (Xu et al., 2025). Moreover,
Zhao et al. (2024a) show that 4-bit models lose generalizabil-
ity, and Kumar et al. (2025) indicate the best performance
under memory constraints for a bit-width of 6-8, with worse
results for a bit-width of 4. Also, previous mixed-precision
research focuses soly on Convolutional Neural Networks

2

Quamba2

Figure 2: (SSD flows with sorted heads and the activation persistence.) We sort the head channels prior to applying
quantization scaling factors. The orange blocks on the right indicate the activated channels with higher values in the
input and output SSD heads. The SSD performs channel-wise calculation thereby retaining the channel order between
input x and output y, which we call channel order preserving. The blue and green blocks represent the activated states of
input-dependent parameters B and C. Our study shows that activated channels and states remain consistent across time
steps and input samples, a property we denote as channel persistence and state persistence.

Figure 3: (Channel order preserving and activation persistence.) We show the activations in the last block of Mamba2-8B.
For an input with t tokens, we demonstrate that the x remains sorted by the maximum of the calibrated channel (a). The SSD
calculation is channel-wise, so the output channel order y matches the input order x (b). For B and C, the activated states
remain consistent over time steps t (c-d) and input samples (e-f). We leverage the observations and design our techniques,
sort-and-cluster and per-state-group quantization, to increase the quantization precisions for x (a), B, and C (c-f).

(CNNs) (Wang et al., 2019; Dong et al., 2019) and Trans-
formers (Zhao et al., 2021). We aim to fill the missing point
of low bit-width and mixed-precision SSMs. Our framework
provides W8A8, W4A8, and W4A16 for both Mamba1
(Gu & Dao, 2024) and Mamba2 (Dao & Gu, 2024) with
practical speed-up and memory reduction, addressing the
growing demand for the deployment of SSMs both in the
cloud and on the edge. We evaluate Quamba2 on a large
and challenging multitasking dataset, MMLU (Hendrycks
et al., 2020), to show the robustness of our framework.

3. Background
3.1. Model Quantization

Notations. We follow the notation in Chiang et al. (2025).
We use X to represent the floating-point matrices, and X to
represent their quantized matrices with their floating-point
scaling factors sx. For operators, we use f(·) to represent
the quantized version of the function f(·) (i.e., the weights
are quantized in the function f).

Quantization. We focus on symmetric uniform quantiza-
tion to approximate floating-point weights and activations
with discrete N -bit signed integers (i.e., INT8 or INT4)
due to its hardware compatibility. The general symmetric
uniform quantization function is defined as

X = Clamp
(⌊X

s

⌉
,−2N−1, 2N−1 − 1

)
, (1)

where s = Max
(
|X|

)
/(2N−1 − 1). X represents the quan-

tized weights or activations, X is the input matrix in floating
point, and s is the scaling factor (i.e., quantization step) that
is determined by the target bit-width N (N = {4, 8} in our
setting). The static scaling factor s is pre-calibrated and
fixed during inference.

3.2. Selective State Space Models

The selective SSM (Gu & Dao, 2024; Dao & Gu, 2024)
transforms the time-invariant SSM (Gu et al., 2020) to a

3

Quamba2

Figure 4: (Sort-and-cluster.) We leverage the channel-persistent property in SSMs to sort the channel with the calibrated
maximum (a-c). The sorted heads disentangle the embedding, as shown in (c-1) and (c-2), enabling the clustering on the
heads. We cluster the sorted heads into m groups (m = 8 in (d)), and reorder the weights offline to match the clustering
results. Then, we apply the clustering again in each head group to cluster the channels into n groups (n = 4 in (e)). For
each group, a scaling factor is calculated, resulting in m× n factors used to quantize xt to 8-bit.

time-varying system. The system dynamics is defined by

ht = Ȧtht−1 + Ḃtxt, yt = Ctht +Dxt (2)

where (Ȧt, Ḃt, Ct) are input-dependent. Ȧt and Ḃt are
discrete parameters of A and B. The discretization function
for Ȧt and Ḃt with a given input-dependent ∆t is defined
as Ȧt = exp(∆tA), Ḃt = (∆tA)

−1(exp(∆tA) − I) ·
∆tBt ≈ ∆tBt. (A,D) are trainable parameters, and D is
an optional residual parameter. An optional residual branch
zt is applied to the SSM output such that yt · SiLU(zt)
before the output projection. We follow Dao & Gu (2024)
and abstract the selective SSM computation at the time step
t with the function

yt = SSM(Ȧt, Ḃt, Ct)(xt). (3)

Optional zt and D are omitted in the function. We omit
the subscript t to represent the computation for the entire
sequence. The abstract SSM block is shown in Figure 5.

Mamba1. Gu & Dao (2024) presents selective SSMs in
which the parameters B, C, and ∆ vary with input (i.e.,
time-varying), allowing the model to selectively prioritize
or ignore inputs based on their content. The interaction
with the input xt is specified as Bt = FB(xt), Ct =
FC(xt), ∆t = softplus(F∆(xt)), where FB and FC are
linear transformations mapping xt to Bt and Ct. The func-
tion F∆ involves two sequential projection layers, formu-
lated as F∆ = Proj(Proj(xt)) + bias. The xt is calculated
from the input of the block ut with a projection layer at the
time step t.

Mamba2. Dao & Gu (2024) establish a theoretical link,
Structured State Space Duality (SSD), between selective
SSMs and self-attention. They also introduce an efficient
algorithm that utilizes matrix multiplication units on contem-
porary hardware to perform linear recurrence calculations.
Mamba2 simplifies block design by removing sequential lin-
ears where xt, Bt, Ct, and ∆t are produced in parallel with
a single projection layer such that (xt, Bt, Ct,∆t) = F(ut),
where ut is the block input at the time step t. The modified
block design is better suited to tensor parallelism (Shoeybi
et al., 2019) in the context of larger models.

3.3. Quantizing Selective SSMs

SSM input parameters. The SSM defined in Equation 3
receives an input in the form of (Ȧt, Ḃt, Ct;xt). Recent ef-
forts (Xu et al., 2025; Chiang et al., 2025) show that the SSM
block is extremely sensitive to quantization-induced errors
in xt due to the linear recurrence mechanism in Mamba1
(Gu & Dao, 2024). Our work indicates that the phenomenon
persists in Mamba2 (Dao & Gu, 2024). To address this issue,
we propose sort-and-cluster to quantize the input xt with
8-bit. Our method groups the channels across the heads with
the same value range to create a smoother landscape in the
group, and therefore increases the quantization precision.

SSM outliers. Prior studies on Transformers (Dettmers
et al., 2022; Xiao et al., 2023) have detected channel-
persistent outliers. A common method for outlier elimi-
nation is applying the Hadamard transform (Ashkboos et al.,
2024b; Liu et al., 2024c). In SSM quantization (Xu et al.,
2025; Chiang et al., 2025), online Hadamard matrices trans-

4

Quamba2

Figure 5: (Quamba2 precision.) The detailed precision
mapping of W4A8 and W8A8 Quamba2. We reorder the
weights offline to match the sorting and clustering indices of
x̄s
t , and apply per-state-group quantization on B̄g

t and C̄g
t .

form the input of output projection into a smoother space,
enhancing the quantization precision. Although the fast
Walsh–Hadamard transform (FWHT) can be executed in par-
allel with a nlogn complexity (Dao, 2024b; Sloane, 1999),
we adhere to Xu et al. (2025) and Chiang et al. (2025) to
quantize the output projection input, with the aim of mini-
mizing online Hadamard transform overheads.

4. Proposed Method: Quamba2
4.1. Quantizing SSM Parameters

Our method is based on two findings in SSM activations:
channel persistence and state persistence, together with a
computational property of SSM: channel order preserving.
The notation follows the definition from Equation 3.

Sort-and-cluster. We observe the persistence of the chan-
nel magnitude and the preservation of channel order in the
SSM input x and output y, as shown in Figure 2. Although x
is sensitive to quantization-induced errors in Mamba2 (Dao
& Gu, 2024), with the findings of Chiang et al. (2025) still
applicable, Chiang et al. (2025) overlook the persistence
characteristic and order-preserving of the SSM channel. In
contrast, we leverage these two properties to first sort the
head channels and group both heads and channels. Specifi-
cally, we first obtain the channel maximum from a calibra-
tion dataset. In Figure 3 (a), we visualize the x sorted by
the offline calibrated channel maximum of the last block of
Mamba2-8B. x remains sorted input with an online t-token
sample. The sorted x disentangles the head embedding,
allowing head grouping. Figure 4 (c1-c2) shows that heads
with similar characteristics are closely grouped, leading to

the use of unsupervised clustering into m groups. For each
group of heads, we apply the clustering algorithm again to
group channels into n groups. The scaling factor is calcu-
lated for every group, leading to a total of m × n scaling
factors, which are then utilized to quantize xt to 8-bit pre-
cision. The detailed sort-and-cluster process is shown in
Figure 4. We find that m = 4 and n = 4 provide sufficiently
good results throughout all experiments. The x̄s

t in Figure 5
refers to the activation applied with sort-and-cluster.

Per-state-group quantization. Dao & Gu (2024) relax
the number of state group size and introduce a Multi-input
SSM where Bt, Ct matrices are shared across all channels
of the input xt, akin to grouped-query attention (Ainslie
et al., 2023) in Transformers. Our findings indicate that the
activated states (with larger numerical values) are the same
across time steps t and input samples. In Figure 3 (c-f), we
visualize the activation distribution of B and C in the last
block of Mamba2-8B. The number of groups in B and C is
set to 8, where each group has 128 channels. Figure 3 (c-d)
shows that only a few groups are activated with larger val-
ues. For example, in Figure 3 (e-f), group six in B is mostly
activated, while group seven in both B and C has minimal
variations. Thus, we apply per-state-group quantization to
B and C, where each group utilizes a single scaling factor.
The B̄g

t and C̄g
t in Figure 5 refer to the activations applied

with per-state-group quantization. The per-state-group quan-
tization largely increases the quantization precision in the
groups where the value range is small, e.g, group seven in
both B and C. We show that per-state-group quantization
is key to mitigating the performance gaps with the FP16
model for Mamba2-8B.

4.2. System and Framework Design

Cluster-aware weight reordering. We create a new chan-
nel and head sequence in sort-and-cluster, where the heads
within the same cluster are grouped and their channels are
arranged by the pre-calibrated maximum. To produce the
activations with the sorting and clustering orders, we use
clustering and sorting indices to reorder offline the input
projection, causal convolution, normalization, and output
projection in the block. The output column of input projec-
tion weights and the channel of causal convolution weights
are reordered. As SSD computing maintains channel order
(see Figure 2 right), we reorder normalization weights and
apply fused Hadamard quantization. Finally, input rows
of the output projection are rearranged using the same in-
dices to keep the output the same. The offline cluster-aware
weight reordering is depicted in Figure 5.

Offline Hadamard matrix fusion. Hadamard matrices
have the computational property HnH

⊤
n = nIn where n

denotes n-dimensional square matrices. We therefore fuse
offline the Hadamard matrices into the input and output lin-

5

Quamba2

Table 3: (SSD latency.) We profile SSD latency of Mamba2-
8B in milliseconds (ms) across sequence lengths with differ-
ent input bit-width. We set batch size to eight.

Inputs L = 256 512 1024 2048

FP16 0.82 1.61 3.51 7.22
Int8 (Ours) 0.76 1.47 2.97 6.07

Speedup 1.08× 1.10× 1.18× 1.19×

ear projections. For the output projection, the Hadamard
matrices are multiplied at both sides of the weight matrix,
such that WH

out = HnWoutH
⊤
n . We fuse a Hadamard ma-

trix at the input side of the input projection weight, such
that WH

in = WinH
⊤
n . Thus, pairing Hadamard matrices in

input/output projections with online Hadamard quantization
results in compute-invariance (Ashkboos et al., 2024a;b),
yielding an identical block output. The offline Hadamard
matrix fusion is shown in Figure 5. We apply the 4-bit/8-bit
quantization on the weights after matrix fusion.

Efficient 4-bit/8-bit Mamba blocks. Our framework ac-
commodates W8A8, W4A8, and W4A16 projection kernels,
a W8A8 causal convolution kernel, 4-bit and 8-bit embed-
ding kernels, and 8-bit selective scan and SSD kernels. For
projection layers, we reorder the weights and their per-group
scaling factors (Lin et al., 2024b; Frantar et al., 2024; Zhang
et al., 2024) to maximize the Tensor Core loading through-
put. The output scaling factors are fused to the input scaling
factors such that Ȳ = sW sfusedW̄ X̄ where sfused = sX/sY .
We implement W4A8 and W4A16 matmul-transpose fused
kernels for the Mamba1 block. For sequence transforma-
tions, we load the 8-bit activations and 8-bit cached states to
reduce memory pressure, thus improving latency, as shown
in Table 3. In the forward Hadamard transform, the scal-
ing factor sy is integrated, making yH = 1

sy
Hny, thereby

avoiding extra computational load during quantization. The
efficient kernels of our framework provide generic speed-up
and memory reduction, addressing the increasing demands
for the deployment of SSM on the cloud and on the edge.

Head-to-toe quantization. Quantizing from embedding
to the output head (i.e., Head-to-toe quantization) brings ad-
ditional memory and latency reduction, which is necessary
on edge computing platforms with limited memory capacity.
As shown in Figure 1, our head-to-toe (H2T) quantization
enables the deployment of Mamba2-8B on Nano 8G. Specif-
ically, we employ per-token quantization to the embedding
layer, and per-group quantization to the weight of the head.
As shown in Table 2, we implement the CUDA kernels and
support the 4-bit/8-bit embedding layer and 4-bit/8-bit out-
put head. Therefore, our framework achieves generic 4×
memory reduction.

Improving robustness via W4AX-mixed. Zhao et al.
(2024a) demonstrate that applying W4A4 to all blocks com-

Table 4: (Quamba2 model size in GB.) We profile the
model size in GB of different bit-width configurations for
Mamba1 and Mamba2 in our framework.

Models Size FP16 W8A8 W4A8 W4A16

Mamba1 2.8B 5.3 GB 2.8 GB 1.5 GB 1.5 GB

Mamba2 2.7B 5.2 GB 2.7 GB 1.4 GB 1.4 GB

8B 15.7 GB 7.9 GB 4.0 GB 4.0 GB

promises generalizability of Transformers. We extend such
analysis to verify SSM robustness and generalizability on
MMLU (Hendrycks et al., 2020) dataset. Our findings in-
dicate that while full W4A8 quantization maximizes pre-
filling speedup, it suffers from a notable generalization gap
(−5.8% on MMLU vs. −2.1% on LAMBADA). In con-
trast, full W4A16 quantization demonstrate robustness but
comes at the cost of increased prefilling latency. To address
this, we introduce mixed-precision support in our frame-
work. We automatically search salient blocks based on their
performance sensitivity and assign them a higher precision.
Our W4A{8/16}-mixed SSM achieves a 2.9% accuracy im-
provement on MMLU while incurring only a 10% increase
in prefilling latency.

5. Experiments
5.1. Experimental Setup

We provide framework design details in Appendix C.

Evaluations. We use LM-EVAL (Gao et al., 2023) to
evaluate Quamba2 and baselines on six zero-shot down-
stream tasks: LAMBADA (Paperno et al., 2016), HellaSwag
(Zellers et al., 2019), PIQA (Bisk et al., 2020), ARC (Clark
et al., 2018) and WinoGrande (Sakaguchi et al., 2020), and
show the average accuracy over five runs in each table. To
compare with MambaQuant (Xu et al., 2025) 1, we aver-
age the accuracy across five datasets: ARC-easy, ARC-
challenge, PIQA, WinoGrande and HellaSwag. The full
evaluation is in Appendix Section A, where we follow the
evaluation protocol in Mamba1 (Gu & Dao, 2024), and re-
port the accuracy for LAMBADA, WinoGrande, PIQA, and
ARC-easy, and accuracy normalized by sequence length for
HellaSwag and ARC-challenge. To show the generalizabil-
ity and robustness, we evaluate the 8B models on MMLU
(Hendrycks et al., 2020), a large multitask test consisting of
multiple-choice questions from various domains.

Baselines. In our W8A8 setting, we compare our frame-
work with the latest quantization methods for SSM, Mam-
baQuant (Xu et al., 2025) (W8A8, W4A8) 1 and Quamba
(Chiang et al., 2025) (W8A8) on zero-shot downstream

1 As of this writing, MambaQuant authors have not released
their kernel implementations yet.

6

Quamba2

Table 5: (Mamba2-8B latency.) Time-per-output-token
(TPOT) and time-to-first-token (TTFT) on Nvidia A5000
GPU and Orin Nano 8G are measured in milliseconds (ms)
with one batch. TTFT is profiled with 1024 tokens. W4A8
and W4A16 dequantization overheads slow down TTFT
compared to W8A8 and FP16. (OOM: out-of-memory)

Methods Bitwidth A5000 Orin Nano 8G

TPOT TTFT TPOT TTFT

- FP16 22.73 197.80 OOM OOM

Quamba W8A8 14.12 124.01 OOM OOM

Quamba2
(Ours)

W8A8 12.61 122.33 OOM OOM
W4A8 7.43 140.78 79.91 2088.03

W4A16 7.58 209.19 78.77 2316.23

tasks. In the Quamba setting (Chiang et al., 2025), we
applied the Hadamard transform to the output projection in-
put and implemented percentile clipping on the input SSM,
establishing our W8A8 Mamba2 baseline for latency and ac-
curacy. We also provide the latency for W4A8 and W4A16.

5.2. Latency and Model Size

We test all methods on the A5000 for cloud applications and
on the Orin Nano 8G for edge applications. Time-per-output-
token (TPOT) and time-to-first-token (TTFT) are measured
for a batch size of one, recorded in milliseconds (ms). TTFT
is profiled with 1024 input tokens. The results are shown
in Table 5 and Figure 1. In the W8A8 setting, head-to-toe
quantization of our framework improves the TPOT latency
for Mamba2-8B by 1.80× (22.73 ms vs. 12.61 ms), outper-
forming Quamba 1.61× (Chiang et al., 2025) (22.73 ms vs.
14.12 ms). In the W4A8 configuration, Quamba2 achieves
3.89× less memory use, 1.39× prefilling, and 3.05× faster
generation speed for Mamba2-8B on A5000. W4A8 and
W4A16 dequantization overheads slow down TTFT com-
pared to W8A8 and FP16. However, the 4-bit weights bring
latency benefits in memory-bound generation stage. Our
approach allows Mamba2-8B deployment on Nano 8G with
a speed of generating 13 tokens per second, whereas FP16
and W8A8 fail, as illustrated in Figure 1 and Table 5. For
the SSD kernel, we load the 8-bit activations (x̄, Ā, B̄, C̄,
z̄) to reduce memory pressure and improve the latency by
1.18×, as shown in Table 3. The bit-width configurations
with their practical latency and memory reduction enable
the deployment on a wide range of devices and applications.

5.3. Zero-shot Evaluation on Downstream Tasks

We present the average accuracy for Quamba2 over five
datasets: ARC-easy, ARC-challenge, PIQA, WinoGrande,
and HellaSwag, allowing a fair comparison with Mam-
baQuant (Xu et al., 2025) 1. The full evaluation is in
the Appendix, where we follow the evaluation protocol in

Table 6: (Zero-shot evaluation.) We compare our fram-
work with Quamba (Chiang et al., 2025) and MambaQuant
(Xu et al., 2025) 1 on the average accuracy on ARC-E, ARC-
C, PIQA, WinoGrande and HellaSwag.

Bitwidth Methods Mamba1 Mamba2
1.4B 2.8B 2.7B 8B

FP16 - 58.6% 62.2% 62.4% 70.8%

W8A8
Quamba 57.3% 61.5% 57.3% 67.0%

MambaQuant 58.3% 62.1% - -

Quamba2 (Ours) 57.5% 61.8% 62.1% 69.9%

W4A8 MambaQuant 54.3% 58.5% - -

Quamba2 (Ours) 56.7% 61.0% 61.4% 69.4%

W4A16 Quamba2 (Ours) 57.5% 61.9% 62.3% 70.2%

Table 7: (Five-shot evaluation of Quamba2-8B on
MMLU.) We evaluate W4A8, W4A16, and W4A{X}-
mixed on MMLU, a large multitasking dataset. We set
the A8:A16 ratio to 3 : 1 for the model and search the best
precision configuration for each layer, which outperforms
the handcrafted (HC) counterparts.

Bitwidth Method LAMB MMLU W4A{X} TTFT(0-shot) (5-shot) (A8:A16)

FP16 - 70.9% 47.0% - 197.80

W4A8 - 68.8% 41.2% 56:0 140.78
W4A16 - 70.6% 45.3% 0:56 209.19

Mixed HC-last 68.3% 42.1% 42:14
158.36Mixed HC-first 68.9% 43.1% 42:14

Mixed Auto 69.1% 44.0% 42:14

Mamba1 (Gu & Dao, 2024). In contrast to Quamba (Chiang
et al., 2025), when applied to Mamba1, our approach uti-
lizes Hadamard transforms on input and output projections
to increase quantization precision, thus enhancing accu-
racy for Mamba1. As illustrated in Table 6, our techniques
sort-and-cluster and per-state-group quantization surpass
clipping in Mamba2 (Dao & Gu, 2024). Our framework
performs head-to-toe quantization, outperforming Quamba
in latency and memory usage (refer to Table 5) for both
W8A8 Mamba1 and Mamba2. Quamba2 also outperforms
MambaQuant 1 in W4A8 Mamba1 and delivers real speedup
on computing platforms. Moreover, our framework supports
W8A8, W4A8, and W4A16 precisions for both Mamba1
and Mamba2 with satisfactory accuracy and latency.

5.4. Evaluation on Large Multitasking Dataset

We evaluate W4A16 and W4A8 Quamba2-8B in the MMLU
dataset (Hendrycks et al., 2020), a large multitasking dataset,
covering 57 subject ranges at different difficulty levels. Our
study shows that previous quantization methods may over-
look the generalizability of low-bit-width models. W4A8

7

Quamba2

Table 8: (Ablation study on W4A8 Quamba2-8B.) The
accuracy on Lambada dataset is reported. (PerSG: per-state-
group quantization for B and C, SnC: sort-and-cluster for x,
PerG: per-group weight quantization, GPTQ: Frantar et al.
(2023), and Had: Hadamard transforms)

Size Bitwidth Weights Had. B/C x Acc.PerG GPTQ PerSG SnC

8B

FP16 - - - - - 71.2%

W4A8

✓ fail

✓ ✓ 53.8%

✓ ✓ ✓ 55.1%

✓ ✓ ✓ ✓ 60.7%

✓ ✓ ✓ ✓ ✓ 68.8%

strikes a balance between prefilling and generation speed but
falls short in MMLU generalization, whereas W4A16 main-
tains a better generalization despite an increased prefilling
latency, as shown in Table 7. We handcraft two mixed-
precision models that replace the last 14 layers and the first
14 layers with W4A16 denoted as HC-last and HC-first in
the table, respectively. However, they show marginal im-
provement on MMLU dataset. To this end, we employ an
evolutionary search approach to find the layer-wise preci-
sions. The resulting mixed-precision model mitigates the
loss of generalizability (+2.9%) on the MMLU dataset.

6. Ablation Studies
6.1. Ablation study on W4A8

We conduct an ablation study on the W4A8 Quamba2-8B
in Table 8. In the W4A8 setting, it is essential to apply the
Hadamard transform to the input of the output projection.
Due to the sensitivity of the SSM to quantization-induced
errors, even with per-group quantization and GPTQ (Frantar
et al., 2023) (second-order information) applied on top of
the Hadamard transform, the results remain unsatisfactory.
Our methods per-state-group quantization (PerSG) and sort-
and-cluster (SnC) address this issue in SSMs by quantizing
the x, B, and C in 8 bits with minimal accuracy drop.

6.2. Ablation study on weight-only quantization

We study the impact of each component in the case of
W4A16 Quamba2-8B in Table 9. Our analysis indicates
that the use of the Hadamard transform in the input of the
out projection is crucial to narrowing the performance gap
in W4A16. The table demonstrates that the Hadamard trans-
form combined with per-group weight quantization yields
greater accuracy than GPTQ (Frantar et al., 2023). Specif-
ically, the Hadamard transform eliminates outliers in half-
precision activations, thereby avoiding the amplification of
quantization errors from 4-bit weights by large outliers.

Table 9: (Ablation study on W4A16 Quamba2-8B.) The
accuracy on Lambada dataset is reported. The Hadamard
transform effectively reduce the quantization-induced error
from weights. (PerG: per-group quantization, GPTQ: Fran-
tar et al. (2023), and Had: Hadamard transforms)

Size Bitwidth Weights Had. Acc.PerG GPTQ

8B

FP16 - - - 71.2%

W4A16

✓ 64.7%

✓ ✓ 69.6%

✓ ✓ 69.2%

✓ ✓ ✓ 71.2%

Table 10: (Ablation study on W4A8 Quamba2.) We
experiment on quantizing the embedding and output head
in addition to W4A8 blocks. The accuracy on Lambada
dataset is reported.

size FP16 W4A8
blocks

+ 4-bit
lm head

+ 4-bit
embed. + both

130M 43.7% 37.6% 37.0% 33.4% 33.4%

370M 53.1% 50.5% 50.3% 46.2% 46.6%

2.7B 69.5% 65.8% 66.1% 66.0% 65.7%

8B 70.9% 68.5% 68.3% 69.0% 68.8%

6.3. Quantizing the embedding and output head

In Table 10, we perform an analysis of quantizing the embed-
ding and output head in addition to W4A8 blocks. Larger
models show more resilience to quantizing both the em-
bedding layer and the output head, as the accuracy on the
Lambada dataset remains nearly unchanged. This finding
is particularly useful for deploying large models to edge de-
vices with limited memory budgets, as they are more robust
to head-to-toe quantization.

7. Conclusion
We introduce Quamba2, a robust post-training quantization
framework tailored for selective State Space Models, com-
patible with W4A8, W4A16, and W8A8 on Mamba1 and
Mamba2. Using channel order preservation and activation
persistence observed in SSMs, we propose sort-and-cluster
and per-state-group quantization techniques for 8-bit activa-
tion quantization. Experiments demonstrate that Quamba2
surpasses previous methods, offering significant reductions
in latency and memory for both cloud and edge applications,
addressing deployment challenges for emerging SSM-based
applications on various platforms.

8

Quamba2

Impact Statement
This paper aims to enhance the efficiency of machine learn-
ing and expand the accessibility of large language models.
We find that the accuracy degradation is not negligible. De-
spite this, the performance trade-off is acceptable given the
significant improvements in latency and resource efficiency.
Our work enables large language models to be deployed on
resource-limited devices. As a positive feature, our method
may push the development of privacy-centric on-device ap-
plications, where sensitive data can be processed locally
without relying on cloud services. However, our work may
also present challenges such as increased device resource us-
age and potential security vulnerabilities if the local devices
are compromised.

Acknowledgments
This work was supported in part by the ONR Minerva pro-
gram, NSF CCF Grant No. 2107085, iMAGiNE - the Intel-
ligent Machine Engineering Consortium at UT Austin, UT
Cockrell School of Engineering Doctoral Fellowships, NSF
CAREER Grant No. 2339084, and Taiwan’s NSTC Grant
No. 111-2221-E-A49-148-MY3.

References
Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,

Lebrón, F., and Sanghai, S. Gqa: Training generalized
multi-query transformer models from multi-head check-
points. In Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2023.

Ashkboos, S., Croci, M. L., Nascimento, M. G. d., Hoefler,
T., and Hensman, J. Slicegpt: Compress large language
models by deleting rows and columns. In International
Conference on Learning Representations (ICLR), 2024a.

Ashkboos, S., Mohtashami, A., Croci, M. L., Li, B., Jaggi,
M., Alistarh, D., Hoefler, T., and Hensman, J. Quarot:
Outlier-free 4-bit inference in rotated llms. Advances
in Neural Information Processing Systems (NeurIPS),
2024b.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.
PIQA: reasoning about physical commonsense in natural
language. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence (AAAI), 2020.

Chiang, H.-Y., Chang, C.-C., Frumkin, N., Wu, K.-C., and
Marculescu, D. Quamba: A post-training quantization
recipe for selective state space models. In International
Conference on Learning Representations (ICLR), 2025.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved

question answering? try arc, the AI2 reasoning challenge.
CoRR, 2018.

Dao, T. Causal depthwise conv1d in cuda with a py-
torch interface, 2024a. URL https://github.com/
Dao-AILab/causal-conv1d.

Dao, T. Fast hadamard transform in cuda, with a py-
torch interface, 2024b. URL https://github.com/
Dao-AILab/fast-hadamard-transform.

Dao, T. and Gu, A. Transformers are ssms: Generalized
models and efficient algorithms through structured state
space duality. In International Conference on Machine
Learning (ICML), 2024.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Gpt3. int8 (): 8-bit matrix multiplication for transformers
at scale. Advances in Neural Information Processing
Systems (NeurIPS), 35:30318–30332, 2022.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L.
Qlora: Efficient finetuning of quantized llms. Advances in
Neural Information Processing Systems (NeurIPS), 2024.

Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W., and
Keutzer, K. Hawq: Hessian aware quantization of neural
networks with mixed-precision. In ICCV, 2019.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. International Conference on Learn-
ing Representations (ICLR), 2023.

Frantar, E., Castro, R. L., Chen, J., Hoefler, T., and Alis-
tarh, D. Marlin: Mixed-precision auto-regressive paral-
lel inference on large language models. arXiv preprint
arXiv:2408.11743, 2024.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima,
N., Presser, S., and Leahy, C. The pile: An 800gb
dataset of diverse text for language modeling. CoRR,
abs/2101.00027, 2021.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S.,
DiPofi, A., Foster, C., Golding, L., Hsu, J., Le Noac’h,
A., Li, H., McDonell, K., Muennighoff, N., Ociepa,
C., Phang, J., Reynolds, L., Schoelkopf, H., Skowron,
A., Sutawika, L., Tang, E., Thite, A., Wang, B., Wang,
K., and Zou, A. A framework for few-shot language
model evaluation, 2023. URL https://zenodo.
org/records/10256836.

Goel, K., Gu, A., Donahue, C., and Ré, C. It’s raw! au-
dio generation with state-space models. In International
Conference on Machine Learning (ICML), 2022.

9

https://github.com/Dao-AILab/causal-conv1d
https://github.com/Dao-AILab/causal-conv1d
https://github.com/Dao-AILab/fast-hadamard-transform
https://github.com/Dao-AILab/fast-hadamard-transform
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836

Quamba2

Gong, R., Yong, Y., Gu, S., Huang, Y., Lv, C., Zhang,
Y., Tao, D., and Liu, X. Llmc: Benchmarking large
language model quantization with a versatile compression
toolkit. In Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2024.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Gu, A. and Dao, T. Mamba: Linear-time sequence modeling
with selective state spaces. In Conference on Language
Modeling (COLM), 2024.

Gu, A., Dao, T., Ermon, S., Rudra, A., and Ré, C. Hippo:
Recurrent memory with optimal polynomial projections.
In Advances in neural information processing systems
(NeurIPS), 2020.

Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., and
Sun, J. Single path one-shot neural architecture search
with uniform sampling. In The European Conference on
Computer Vision (ECCV), 2020.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Kumar, T., Ankner, Z., Spector, B. F., Bordelon, B., Muen-
nighoff, N., Paul, M., Pehlevan, C., Ré, C., and Raghu-
nathan, A. Scaling laws for precision. In International
Conference on Learning Representations (ICLR), 2025.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Ef-
ficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM
SIGOPS 29th Symposium on Operating Systems Princi-
ples (SOSP), 2023.

Lee, K., Chang, M.-W., and Toutanova, K. Latent retrieval
for weakly supervised open domain question answering.
arXiv preprint arXiv:1906.00300, 2019.

Li, K., Li, X., Wang, Y., He, Y., Wang, Y., Wang, L., and
Qiao, Y. Videomamba: State space model for efficient
video understanding. In European Conference on Com-
puter Vision (ECCV), 2025.

Lieber, O., Lenz, B., Bata, H., Cohen, G., Osin, J., Dalmedi-
gos, I., Safahi, E., Meirom, S., Belinkov, Y., Shalev-
Shwartz, S., et al. Jamba: A hybrid transformer-mamba
language model. arXiv preprint arXiv:2403.19887, 2024.

Lin, J., Tang, J., Tang, H., Yang, S., Chen, W.-M., Wang,
W.-C., Xiao, G., Dang, X., Gan, C., and Han, S. Awq:

Activation-aware weight quantization for on-device llm
compression and acceleration. Proceedings of Machine
Learning and Systems (MLSYS), 2024a.

Lin, Y., Tang, H., Yang, S., Zhang, Z., Xiao, G., Gan, C.,
and Han, S. Qserve: W4a8kv4 quantization and sys-
tem co-design for efficient llm serving. arXiv preprint
arXiv:2405.04532, 2024b.

Liu, Y., Tian, Y., Zhao, Y., Yu, H., Xie, L., Wang, Y., Ye,
Q., and Liu, Y. Vmamba: Visual state space model.
In Advances in neural information processing systems
(NeurIPS), 2024a.

Liu, Z., Oguz, B., Zhao, C., Chang, E., Stock, P., Mehdad,
Y., Shi, Y., Krishnamoorthi, R., and Chandra, V. Llm-qat:
Data-free quantization aware training for large language
models. The 62nd Annual Meeting of the Association for
Computational Linguistics (ACL), 2024b.

Liu, Z., Zhao, C., Fedorov, I., Soran, B., Choudhary, D., Kr-
ishnamoorthi, R., Chandra, V., Tian, Y., and Blankevoort,
T. Spinquant–llm quantization with learned rotations.
arXiv preprint arXiv:2405.16406, 2024c.

LY, B. L. Cuda hgemm, 2024a. URL https://github.
com/Bruce-Lee-LY/cuda_hgemm.

LY, B. L. Cuda hgemv, 2024b. URL https://github.
com/Bruce-Lee-LY/cuda_hgemv.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q. N.,
Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., and
Fernández, R. The LAMBADA dataset: Word prediction
requiring a broad discourse context. In Proceedings of
the 54th Annual Meeting of the Association for Computa-
tional Linguistics, (ACL). The Association for Computer
Linguistics, 2016.

Rajpurkar, P., Jia, R., and Liang, P. Know what you don’t
know: Unanswerable questions for squad. arXiv preprint
arXiv:1806.03822, 2018.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. In The Thirty-Fourth AAAI Conference on Artifi-
cial Intelligence (AAAI), 2020.

Saon, G., Gupta, A., and Cui, X. Diagonal state space aug-
mented transformers for speech recognition. In ICASSP
2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2023.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

10

https://github.com/Bruce-Lee-LY/cuda_hgemm
https://github.com/Bruce-Lee-LY/cuda_hgemm
https://github.com/Bruce-Lee-LY/cuda_hgemv
https://github.com/Bruce-Lee-LY/cuda_hgemv

Quamba2

Sloane, N. J. A library of hadamard matrices,
1999. URL http://www.neilsloane.com/
hadamard/index.html.

Smith, J. T., Warrington, A., and Linderman, S. Simplified
state space layers for sequence modeling. In International
Conference on Learning Representations (ICLR), 2023.

Tang, S., Ma, L., Li, H., Sun, M., and Shen, Z. Bi-mamba:
Towards accurate 1-bit state space models. arXiv preprint
arXiv:2411.11843, 2024.

Team, J., Lenz, B., Arazi, A., Bergman, A., Manevich, A.,
Peleg, B., Aviram, B., Almagor, C., Fridman, C., Padnos,
D., et al. Jamba-1.5: Hybrid transformer-mamba models
at scale. arXiv preprint arXiv:2408.12570, 2024.

Thakkar, V., Ramani, P., Cecka, C., Shivam, A., Lu, H.,
Yan, E., Kosaian, J., Hoemmen, M., Wu, H., Kerr, A.,
Nicely, M., Merrill, D., Blasig, D., Qiao, F., Majcher, P.,
Springer, P., Hohnerbach, M., Wang, J., and Gupta, M.
CUTLASS, January 2023. URL https://github.
com/NVIDIA/cutlass.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems (NeurIPS), 2017.

Waleffe, R., Byeon, W., Riach, D., Norick, B., Kor-
thikanti, V., Dao, T., Gu, A., Hatamizadeh, A., Singh,
S., Narayanan, D., et al. An empirical study of mamba-
based language models. arXiv preprint arXiv:2406.07887,
2024.

Wang, J., Gangavarapu, T., Yan, J. N., and Rush, A. M.
Mambabyte: Token-free selective state space model. In
Conference on Language Modeling (COLM), 2024.

Wang, K., Liu, Z., Lin, Y., Lin, J., and Han, S. Haq:
Hardware-aware automated quantization with mixed pre-
cision. In CVPR, 2019.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning (ICML), 2023.

Xu, Z., Yue, Y., Hu, X., Yuan, Z., Jiang, Z., Chen, Z., Yu, J.,
Xu, C., Zhou, S., and Yang, D. Mambaquant: Quantizing
the mamba family with variance aligned rotation methods.
In International Conference on Learning Representations
(ICLR), 2025.

Yu, Z., Kojima, T., Matsuo, Y., and Iwasawa, Y. Slender-
mamba: Fully quantized mamba in 1.58 bits from head to
toe. In Proceedings of the 31st International Conference
on Computational Linguistics (COLING), 2025.

Yuan, Z., Niu, L., Liu, J., Liu, W., Wang, X., Shang, Y.,
Sun, G., Wu, Q., Wu, J., and Wu, B. Rptq: Reorder-
based post-training quantization for large language mod-
els. Advances in Neural Information Processing Systems
(NeurIPS), 2024.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
In Korhonen, A., Traum, D. R., and Màrquez, L. (eds.),
Proceedings of the 57th Conference of the Association
for Computational Linguistics (ACL), 2019.

Zhang, Y., Zhang, P., Huang, M., Xiang, J., Wang, Y., Wang,
C., Zhang, Y., Yu, L., Liu, C., and Lin, W. Qqq: Qual-
ity quattuor-bit quantization for large language models.
arXiv preprint arXiv:2406.09904, 2024.

Zhao, C., Hua, T., Shen, Y., Lou, Q., and Jin, H. Auto-
matic mixed-precision quantization search of bert. arXiv
preprint arXiv:2112.14938, 2021.

Zhao, J., Lu, W., Wang, S., Kong, L., and Wu, C. Qspec:
Speculative decoding with complementary quantization
schemes. arXiv preprint arXiv:2410.11305, 2024a.

Zhao, Y., Lin, C.-Y., Zhu, K., Ye, Z., Chen, L., Zheng, S.,
Ceze, L., Krishnamurthy, A., Chen, T., and Kasikci, B.
Atom: Low-bit quantization for efficient and accurate llm
serving. Proceedings of Machine Learning and Systems
(MLSYS), 2024b.

Zhou, Z., Ning, X., Hong, K., Fu, T., Xu, J., Li, S., Lou, Y.,
Wang, L., Yuan, Z., Li, X., et al. A survey on efficient
inference for large language models. Transactions on
Machine Learning Research (TMLR), 2024.

Zhu, L., Liao, B., Zhang, Q., Wang, X., Liu, W., and Wang,
X. Vision mamba: Efficient visual representation learning
with bidirectional state space model. In International
Conference on Machine Learning (ICML), 2024a.

Zhu, X., Li, J., Liu, Y., Ma, C., and Wang, W. A survey
on model compression for large language models. Trans-
actions of the Association for Computational Linguistics
(TACL), 2024b.

11

http://www.neilsloane.com/hadamard/index.html
http://www.neilsloane.com/hadamard/index.html
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass

Quamba2

A. Full Results for Six Zero-shot Downstream Tasks
In Table 11, we follow the evaluation protocol in Mamba (Gu & Dao, 2024), and report the accuracy for LAMBADA
(Paperno et al., 2016), WinoGrande (Sakaguchi et al., 2020), PIQA (Bisk et al., 2020) and ARC-easy (Clark et al., 2018),
and the accuracy normalized by the sequence length for HellaSwag (Zellers et al., 2019) and ARC-challenge (Clark et al.,
2018). Given the slight variation in accuracy across runs, we present the average accuracy over five runs in each table. Our
frame work outperforms Quamba (Chiang et al., 2025) in the Mamba1 backbone, providing with more quantization flavors
such as W8A8, W4A8 and W4A16 for different use cases. Our method also outperforms Quamba in the Mamba2 backbone,
where we apply the clipping technique to Mamba2, by a large gap in the average accuracy.

Table 11: (Zero-shot accuracy.) We evaluate our framework on six common sense tasks and report the average of five
runs. Our framework surpass previous baseline, Quamba (Chiang et al., 2025), in average accuracy on both Mamba1 and
Mamba2 backbones, with supporting more quantization flavors.

Model Size Methods Bitwidth LA HS PIQA Arc-E Arc-C WG Avg.

Mamba

1.4B

- FP16 64.9% 59.1% 74.2% 65.5% 32.8% 61.5% 59.7%

Quamba W8A8 61.4% 58.3% 72.7% 64.0% 32.3% 58.8% 57.9%

Quamba2
(Ours)

W8A8 62.3% 58.6% 73.1% 64.0% 32.2% 58.5% 58.1%
W4A8 61.5% 57.6% 72.0% 63.0% 32.2% 58.7% 57.5%

W4A16 63.6% 58.1% 72.6% 64.3% 32.4% 60.5% 58.5%

2.8B

- FP16 69.1% 65.9% 75.6% 69.2% 35.8% 63.0% 63.1%

Quamba W8A8 65.4% 65.1% 74.2% 68.9% 35.9% 62.6% 62.0%

Quamba2
(Ours)

W8A8 65.7% 65.4% 74.5% 68.9% 36.7% 61.8% 62.2%
W4A8 63.5% 64.9% 74.2% 68.2% 35.3% 62.2% 61.4%

W4A16 66.0% 65.3% 74.6% 69.2% 36.6% 63.6% 62.6%

Mamba2

1.3B

- FP16 65.6% 59.9% 73.3% 64.1% 33.3% 60.8% 59.5%

Quamba W8A8 49.8% 58.5% 71.2% 61.9% 32.1% 58.1% 55.2%

Quamba2
(Ours)

W8A8 62.0% 59.2% 72.5% 63.4% 32.7% 60.0% 58.3%
W4A8 61.0% 58.8% 72.4% 62.7% 32.6% 59.1% 57.7%

W4A16 64.3% 59.2% 72.6% 63.8% 33.1% 60.3% 58.9%

2.7B

- FP16 69.5% 66.6% 76.4% 69.5% 36.4% 64.2% 63.8%

Quamba W8A8 52.4% 60.4% 71.6% 62.9% 33.7% 58.0% 56.5%

Quamba2
(Ours)

W8A8 66.1% 65.5% 74.4% 68.4% 37.1% 63.7% 62.5%
W4A8 65.6% 65.1% 74.7% 68.1% 36.1% 62.8% 62.1%

W4A16 68.8% 65.6% 75.5% 68.6% 36.6% 64.9% 63.3%

8B

- FP16 70.9% 77.7% 79.7% 76.0% 48.0% 72.0% 70.7%

Quamba W8A8 54.0% 74.6% 77.1% 73.5% 44.2% 65.5% 64.8%

Quamba2
(Ours)

W8A8 69.8% 77.8% 79.1% 75.9% 46.9% 69.0% 69.8%
W4A8 68.8% 77.1% 79.1% 75.0% 46.0% 68.7% 69.1%

W4A16 71.2% 76.8% 79.1% 75.2% 45.9% 70.8% 69.8%

12

Quamba2

B. Evaluation Results on Generation Tasks

Table 12: (Generation tasks.) We evaluate
Mamba2-8B with different precisions on the
generation tasks.

Bit-width NQ SquadV2

FP16 17.2 51.9
W8A8 15.0 43.6
W4A8 14.2 45.9
W4A16 16.6 50.7
W4AX 14.9 47.4

We evaluate Mamba2-8B with all bit-widths on the generation-based
tasks Natural Questions (NQ) (exact match) (Lee et al., 2019) and
SquadV2 (F1) (Rajpurkar et al., 2018) on the open-source LM-EVAL
(Gao et al., 2023). We show the results in Table 12. The W4A16 model
closely matches the FP16 model, whereas the W4A8 and W8A8 mod-
els, with 8-bit SSM states, preserve the meaningful generation outputs.
We show that the searched W4AX also improves the generation scores
and outperforms the W4A8 model. This result reveals an interesting
observation that cached SSM states are redundant, which can be care-
fully quantized to 8 bits. Our framework supports 8-bit SSM states for
W4A8 and W8A8 models and improves their generation speeds with
large batch-size inputs, as the cached states are the major memory and
latency bottlenecks. Please refer to Section E for more details.

C. Implementation and Evaluation Details of Quamba2 Framework
Quantization setup. The calibration set is constructed by randomly sampling 512 sentences from the Pile dataset (Gao
et al., 2021), where we fixed the random seed in the sampling process. We collect the static scaling factors for each operator
based on the absolute maximum value observed from the calibration set to quantize the activations and cached SSM states in
both W4A8 and W8A8 settings. The same scaling factors are applied in all our experiments.

Implementation. We implement our framework based on CUTLASS (Thakkar et al., 2023), vLLM (Kwon et al., 2023).
Our 4-bit and 8-bit matrix multiplication (matmul) kernels are adapted from (Xiao et al., 2023; Frantar et al., 2024; Zhang
et al., 2024; LY, 2024b;a). We implement W4A8 and W4A16 fused matmul-transpose kernels for the Mamba1 architecture.
We apply GPTQ (Frantar et al., 2023) to the projection layers in the 4-bit weight settings. Quantization is integrated and
adapted to the CUDA kernels of both the fast Hadamard transform (Dao, 2024b) and causal convolution (Dao, 2024a).
Furthermore, the selective scan and SSD kernels (Gu & Dao, 2024; Dao & Gu, 2024) are modified to accommodate inputs
with quantized weights, activations, and their scaling factors.

Latency and model size profiling. We evaluate all methods on the A5000, a widely used GPU for AI workloads with
24GB of memory, emulating the setting for cloud applications. For edge applications, we profile all methods on the Nvidia
Orin Nano 8G. We perform a few warm-up iterations and then report the average latency of the next 100 iterations. We
report the size of the model that includes all quantized parameters and buffers for calculation.

D. Details for Mixed Precision Quamba2
In Table 7, we outline the generalizability issue when utilizing the precision of W4A8 only. We show that our W4AX
mixed-precision models mitigate accuracy degradation while incurring only a marginal latency overhead. Figure 6 visualizes
the detailed layer-wise bit-width configuration of Quamba2-8B-W4AX .

The handcrafted mixed-precision models. We explored two types of handcrafted (HC) configurations, referred to as
HC first and HC last, where we apply W4A16 blocks at the beginning and end of the network, respectively. Handcrafted
configurations only deliver marginal improvements in the average accuracy (approximately 1% on MMLU), and still fall
behind in the upper bound scenario, where all blocks utilize the precision of W4A16, as shown in Table 7.

The automated W4AX models. We implement evolutionary search to identify the best mix of precision levels (Guo et al.,
2020). We set the population size to 40 and the number of generations to 5. In each generation, the top performing half of the
candidates are retained, with 10 mutation and crossover operations applied, respectively, to generate new candidate precision
configurations. The search algorithm identifies the sensitive blocks and assigns W4A16 to these blocks. This automated
approach searches the best mix-precision configurations and balances between the precision and performance. Our W4AX
models addresses the performance gaps in the MMLU dataset, as shown in Table 7, compared to naive mixed-precision and
pure W4A8 models.

13

Quamba2

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54
Layer Index

W4A8

W4A16

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54
Layer Index

W4A8

W4A16

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54
Layer Index

W4A8

W4A16

HC_first HC_last Auto

Figure 6: (The layer-wise bit-width for Quamba2-8B-W4AX .) We search the bit-width for Quamba2-8B-W4AX (the
last row in red), which outperforms the handcraft counterparts shown in the first (HC first) and the second (HC last) rows.

Figure 7: (Pareto front analysis for mixed-precision mod-
els.) Our W4AX models by searched (Auto) outperform naive
handcrafted (HC) models in MMLU accuracy and prefilling
latency trade-off.

Analysis on W4AX latency and accuracy trade-off.
In Figure 7, we show our W4AX models outperform
naive handcrafted models in MMLU (Hendrycks et al.,
2020) five-shot accuracy, and place at the Pareto-frontier
of prefilling latency (time-to-first-token, TTFT) trade-off.
In this experiment, we adjusted the ratios of W4A16 and
W4A8 (e.g., 1:2) in Quamba2-8B and used evolution-
ary search to find the mixed precision configuration. As
shown in the figure, the searched W4AX models in differ-
ent ratios improve the accuracy of the 5-shot evaluation
on MMLU compared to W4A8, introducing marginal
pre-filling latency overheads (i.e., 140.7 vs. 158.3 ms).
Moreover, the automatic designed W4AX models by
our search algorithm are above naive handcrafted W4AX
models in accuracy. This finding highlights the challenges
of designing mixed-precision models for SSMs, as well
as the limits of generalization (Zhao et al., 2024a; Kumar
et al., 2025) of low-bit SSMs on large-scale datasets. We
expect more advanced search algorithms to address the
generalization issue in the future.

E. Investigating Memory and Latency with Large Batch Sizes

The cached state sizes. Although the constant state nature of SSMs, the cached states grow linearly with respect to the
input batch size. We show theoretical memory breakdowns versus batch size in Figure 8 (a). As the batch size increased,
cached states occupied most of the total memory, making state loading and updating the bottleneck during generation. Our
framework (W4A8) compresses and updates the states with 8-bit, thus decreasing overall memory usage and generation
latency for cloud applications with large batch sizes.

14

Quamba2

(b) State update latency vs. batch size

FP16
States

8-bit
States

FP16
States

(a) Memory breakdown vs. batch size in the generation stage

Figure 8: (Large batch inputs.) The cached states grow linearly with respect to the input batch size. For a batch size of 128,
half-precision cached states use most of the memory (a), making state loading and updating the bottleneck during generation.
Our framework (W4A8) compresses the states to 8-bit, thereby reducing the total memory and generation latency (b) with
large batch size inputs for cloud-based applications.

Quantizing cached SSM states. We reduce generation latency by quantizing the cached SSM states to 8-bit for W4A8
and W8A8 models. Since the cached SSM states follow the head reordering and channel grouping indices from the SSM
input x (ref. Figure 4), we apply the same m head and n channel groups to quantize each SSM state before caching them in
memory. This finding eliminates the need for additional online reordering of SSM states and only requires calibrating the
SSM quantization scales. Our approach introduces dstate×m× n floating-point scales with minimal latency overhead,
while significantly reducing the state update latency, as shown in Figure 8 (b).

(c) Apply grouping to SSM states(b) SSM states after weight re-reordering(a) SSM states

Figure 9: (SSM states.) The states are quantized before cached in memory. We apply the same m head and n channel
groups from the SSM input x to SSM states (b-c).

15

Quamba2

The roofline model. We show the roofline model of A5000 GPU in Figure 10 (w-bit×a-bit in the figure), and profile
the generation latency (i.e., time-per-output-token, TPOT) of Mamba2-8B on a A5000 with different batch sizes in Table 13.
When the input batch size is small (e.g., b=1 in the table), the generation is memory-bound and therefore loading 4-bit
weights (e.g., W4A8 and W4A16) improves the roofline model. As the batch size increased (e.g., b=64 in the table), the
W4A16 models are bounded by hardware performance in terms of trillions of operations per second (TOPS). In contrast,
the W4A8 and W8A8 models leverage 8-bit computation and deliver better TOPS. The ultimate TOPS of W4A8 is lower
than W8A8 due to the extra steps for dequantizing weights from 4-bit to 8-bit (e.g., b=256 in the table). Our framework
supports W8A8, W4A8, and W4A16 that are at the frontier of the roofline model to satisfy the deployment needs of most
applications for both Mamba1 and Mamba2.

Table 13: (Mamba2-8B time-per-output-token latency
on A5000 24GB.) We compress the cached SSM states
with 8-bit, enabling larger batch size inputs under the
same memory constraints. We report latency in millisec-
onds (ms). OOM denotes out-of-memory.

Bitwidth b=1 b=32 b=64 b=128 b=256

FP16 22.73 35.74 49.63 OOM OOM
W8A8 12.61 23.83 30.82 44.85 79.65
W4A8 7.43 15.05 24.65 44.54 85.26

W4A16 7.58 20.58 38.48 74.25 OOM
Figure 10: (Roofline model of the generation.)

Figure 11: (Batch size vs. time-to-last-token.) W4A8
is suited for most applications serving with general batch
sizes among all supported bit-widths.

Batch size vs. time-to-last-token latency across bit-widths.
Figure 11 shows the time-to-last-token (TTLT) of Mamba2-8B
quantized with different bit-widths (e.g., W8A8, W4A8, and
W4A16) supported by our framework on a A5000. We vary the
batch size of the input from 1 to 64, and profile the end-to-end
latency of pre-filling 2024 tokens and generating 2048 tokens
(i.e., TTLT). The latency is estimated for the batch sizes that
empirically do not fit A5000 and is represented with dashed
lines with unfilled markers. We show that the W4A8 Mamba-8B
model is suited for most latency-sensitive applications, serving
with general batch sizes (i.e., range from 1 to 64) on both cloud
and edge devices. In contrast, W4A16 serves as a better option
for personal applications (i.e., batch size equal to one) on mobile
platforms as it features higher average accuracy (ref. Table 11
and 7). For large batch size (i.e., greater than 128), the W8A8
model delivers the highest performance in terms of latency. Our
framework supports all options on the frontier of the roofline
model, as shown in Figure 10.

F. Accuracy-latency Trade-off
Accuracy vs. latency across backbone models. Figure 12 illustrates the average accuracy across six zero-shot tasks
(y-axis) versus latency (x-axis, in log-scale) on a cloud-based A5000 GPU (a) and an Orin Nano 8G (b). We profile TTLT
(time-to-last-token) in seconds (sec.), with 2K input tokens and 2K generated tokens on the A5000 GPU. For the Orin Nano
8G, we profile the TTLT with prefilling of 512 input tokens and 512 generated tokens. For QuaRot (Ashkboos et al., 2024b),
we use the official implementation and profile latency for Llama2 (Touvron et al., 2023). We profile Llama3 (Grattafiori
et al., 2024) and use the official implementation from (Lin et al., 2024b) to quantize it to W4A8KV4. We note that the
latencies and memory denoted with dashed lines and circles are merely estimated. For example, FP16 Llama2 13B is too
large for the A5000’s 24GB GPU memory, and W4A4 Llama2 13B also exceeds the capacity of Orina Nano. Quamba2

16

Quamba2

models are on the Pareto frontier and offer the best trade-off between average accuracy and latency, as well as smallest
memory footprints, outperforming other low bit-width SSM and Transformer baselines.

(a) A5000 (2k+2k) (b) Orin Nano 8G (512+512)

Figure 12: (Pareto front analysis for accuracy vs. latency.) Quamba2 models (green) are on the Pareto front over other
low bit-width SSM (red) and Transformer (purple) baselines, while also featuring lower memory footprints as evidenced in
the size of the circle.

17

