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ABSTRACT
Scientific discovery increasingly depends on middleware that
enables the execution of heterogeneous workflows on het-
erogeneous platforms. One of the main challenges is to de-
sign software components that integrate within the existing
ecosystem to enable scale and performance across cloud and
high-performance computing (HPC) platforms. Researchers
are met with a varied computing landscape, which includes
services available on commercial cloud platforms, data and
network capabilities specifically designed for scientific dis-
covery on government-sponsored cloud platforms, and scale
and performance on HPC platforms. We present Hydra, an
intra/cross cloud/HPC brokering system capable of concur-
rently acquiring resources from commercial/private cloud
and HPC platforms and managing the execution of heteroge-
neous workflow applications on those resources. This paper
o�ers four main contributions: (1) the design of brokering
capabilities in the presence of task, platform, resource, and
middleware heterogeneity; (2) a reference implementation of
that design with Hydra; (3) an experimental characterization
of Hydra’s overheads and strong/weak scaling with heteroge-
neous workloads and platforms; and (4) the implementation
of a workflow that models sea-rise with Hydra and its scaling
on cloud and HPC platforms.
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1 INTRODUCTION
Scientific discovery increasingly relies on workflow applica-
tions to perform experiments at unprecedented scale [5] and
across a growing number and types of computing platforms.
Those experiments execute workflows with heterogeneous
tasks on heterogeneous resources [3]. Tasks may process large
amounts of data and execute simulations, data analyses, and
machine learning methods using cores, GPU, and AI accel-
erators on cloud and high-performance computing (HPC)
platforms at di�erent scales [9]. Heterogeneity and scale pose
unprecedented challenges for the middleware that supports
the execution of workflow applications. While scientists can
count on hundreds of workflow systems , existing end-to-
end solutions tend to be bespoke, specific to a programming
model, type of workflow application, and platform and re-
source. Further, existing solutions are not specifically de-
signed for performance at scale and often do not o�er the
required robustness, resilience, and e�ciency [10].

Middleware designed to support modern scientific work-
flows should be building blocks, i.e., integrate with existing
software systems without requiring a new code base [24].
Middleware should not be yet another bespoke end-to-end
solution; instead, it should contribute to a composable ecosys-
tem that users can leverage to develop workflow solutions.
Within that ecosystem, general purpose and extensible broker-
ing capabilities have become critical. Workflow applications
need to acquire and manage heterogeneous resources across
various platforms and then manage the execution of hetero-
geneous tasks over those resources. That allows users to take
advantage of the capabilities o�ered by diverse platforms.
Specifically, scientific workflows require the data and network
capabilities of publicly funded cloud and HPC platforms, the
variety of services o�ered by commercial cloud platforms, and
the scale supported by leadership-class HPC platforms.

This paper introduces Hydra, a brokering system that
enables resource management and heterogeneous task execu-
tion across commercial and private cloud and HPC platforms.
Hydra is a middleware component implemented in Python
and designed to interface with existing workflow and runtime
systems. Hydra is agnostic towards the application program-
ming model used to implement the workflow application
and uses dedicated connectors to concurrently interface with
commercial and private service interfaces. When available,
connectors support di�erent types of services within each
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platform, enabling users to acquire resources at di�erent lev-
els of abstraction, e.g., via a batch system or a container. As a
broker, Hydra does not o�er an end-to-end solution for imple-
menting workflow applications. For example, Hydra does not
provide orchestration or workflow management capabilities.
Instead, Hydra o�ers brokering capabilities to integrate and
augment the existing scientific middleware ecosystem.

This paper o�ers four main contributions: (1) the design
of brokering capabilities with task, platform, resource, and
middleware heterogeneity; (2) Hydra, a reference implemen-
tation of that design; (3) an experimental characterization
of Hydra’s overheads and strong/weak scaling with hetero-
geneous workloads and platforms; and (4) Hydra’s imple-
mentation and scaling of a workflow that models sea-rise on
cloud and HPC platforms. Hydra enables executing work-
flows with diverse requirements: single/multi core/GPU/node
and MPI/OpenMP. User-specified brokering policies deter-
mine whether those tasks are implemented as executables or
containers and executed on cloud or HPC resources.

2 RELATED WORK
Several cloud brokers o�er access to commercial cloud providers
like Amazon Web Services (AWS), Microsoft Azure , and
Google Cloud . However, few brokers also o�er access to pub-
licly funded cloud providers, such as the platforms sponsored
by the National Science Foundation (NSF), e.g., Jetstream2
and Chameleon , and even fewer o�er also concurrent access
to HPC platforms.

CloudBridge [12] is a Python Library that supports cross-
cloud access via a unified and extensible application pro-
gramming interface (API). CloudBridge supports access to
commercial and private cloud providers such as AWS and
NSF Chameleon. While CloudBridge unifies multiple Cloud
APIs under a single user interface, it lacks resource and
workload management capabilities.

CloudMesh [27] is a command line toolkit that enables
users to access hybrid multi-cloud environments. CloudMesh
enables access to AWS, Azure, Google Cloud, and NSF
Chameleon. CloudMesh wraps these providers’ APIs, en-
abling users to access them via a unified interface. However,
CloudMesh does not o�er additional capabilities, such as
brokering and execution management.

EasyCloud [2] supports AWS, Azure, Google Cloud, and
NSF Chameleon. EasyCloud manages and monitors multiple
Virtual Machines (VMs), enabling real-time decision-making
to prevent failure scenarios. However, EasyCloud does not pro-
vide workload-level monitoring and management capabilities,
requiring additional capabilities when executing workflows
across di�erent cloud providers.

CompatibleOne [32] enables using di�erent services man-
aged by an OpenStack infrastructure. CompatibleOne’s de-
sign is based on the Open Cloud Computing Interface (OCCI),
o�ering ease of portability and extensibility. CompatibleOne
implements a client/server architecture where the end-user
machines are the clients, and cloud providers act as servers

to deploy their agents and services. That architecture re-
quires additional resources for component deployment and
imposes communication and coordination overheads between
the clients and the server.

Cloud Brokering [22] supports cloud providers that use
OpenStack, Eucalyptus, and OpenNebula, and several com-
mercial providers. Like CompatibleOne, Cloud Brokering
uses OCCI and a client/server architecture. In addition to
the already mentioned limitations, the Cloud Brokering’s
DCI-Bridge introduces a single point of failure and, possibly,
a performance bottleneck.

BeeFlow [8] is a cloud-HPC workflow manager that sup-
ports orchestrating hybrid workflows on HPC and cloud
environments. BeeFlow supports commercial cloud providers
with Container As A Service (CaaS) interfaces. In addition,
BeeFlow supports HPC platforms with a build and execution
environment (BEE) based on a containerization environment.
However, BeeFlow does not support NSF-based platforms
and o�ers only container-based workflow execution.

Domain-specific cloud brokers o�er solutions to specific use
cases. For example, EVOp [11] is a cloud broker designed for
environmental use cases, HealthyBroker [19] serves patient-
client use cases, and NLUBroker[31] supports AI use cases
that require natural language processing. These brokers sup-
port specific application types, which makes extending their
design to general use cases di�cult.

More general-purpose cloud brokers adopt better infor-
mation flow and coordination to serve diverse applications.
Ref. [28] proposes a three-tier cloud broker architecture,
which allows for service recommendation and combination.
Schlouder [33] proposes a cloud broker, mainly compatible
with open source tools—e.g., OpenStack—which o�ers seam-
less communications across di�erent cloud providers. Nonethe-
less, both cloud brokers su�er from the limitations of a tightly
coupled design, such as di�cult integration with third-party
middleware and limited scalability.

Other Cloud brokers [1, 7, 14, 15, 30] present designs and
architectures that o�er new features and functionalities but
are either no longer available or maintained.

3 HYDRA CLOUD BROKERING SYSTEM
Hydra implements general-purpose brokering of heteroge-
neous services across commercial and private cloud and HPC
platforms, addressing the main shortcomings of the exist-
ing solutions introduced in §2. Specifically, Hydra can con-
currently provision and monitor multiple commercial and
NSF-sponsored cloud/HPC resources, and then broker, mon-
itor, and trace heterogeneous workloads on those resources.
Further, Hydra o�ers a simple and concise Python Applica-
tion Programming Interface (API) that can accommodate
multiple programming models, depending on whether the
user codes directly against Hydra’s API or integrates it with
third-party software systems. Finally, Hydra’s design uses
stand-alone components that promote reusability, facilitate
maintenance, and allow new services to be added without
rewriting its code base.
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Figure 1: Hydra Architecture.

Hydra implements the requirements of resource brokering:
service management, integration, security, monitoring, and
reporting [26]. Hydra standardizes the access and manage-
ment of multiple resource providers (commercial and open
source) by aggregating their APIs into a unified interface.
That allows users to interact with multiple platforms while
hiding their specific API and configuration systems. Further,
Hydra o�ers intermediation capabilities by acting on behalf
of the user to request, instantiate, and monitor resources
while managing and monitoring the execution of user appli-
cations on di�erent providers. These capabilities allow for
the scalable execution of various scientific workloads.

3.1 Architecture
Hydra’s architecture has two main components (Fig. 1):
Provider Proxy and Service Proxy. Provider Proxy collects
information about the user and the provider interfaces, verify-
ing the user’s credentials to guarantee the successful startup
of Hydra’s engine and services. Service Proxy implements
Hydra’s brokering capabilities, exposing service managers to
concurrently interact with multiple cloud services and HPC
batch systems. Further, the Service Proxy maps workloads
to each service manager and monitors each manager and
workload at runtime.

Currently, the Service Proxy has three subcomponents—
CaaS Manager, HPC Manager, and Data Manager—but it
exposes a private interface to add new managers like, for
example, a function as a Service manager. The CaaS Man-
ager manages container services and partitioning, submitting,
monitoring, and tracing workloads. The CaaS Manager sup-
ports the container services of all the major commercial cloud
platforms and can deploy and manage multi-node Kubernetes
clusters on commercial and private cloud providers.

Hydra’s HPC Manager supports multiple connectors, each
designed to utilize the interface of an HPC middleware
component. Currently, Hydra implements a connector for
RADICAL-Pilot [20], a pilot-enabled runtime system that
allows the acquisition of HPC resources and the execution

of heterogeneous workloads on them. The Data Manager
enables inter- and cross-cloud/HPC data management ca-
pabilities to support user workloads and data requirements.
The manager implements data operations like copy, move,
link, delete, and list, both locally and remotely. As with
the HPC Manager, the Data Manager supports integration
with di�erent data management services as backends and
exposes their operations via a unified API. Users can embed
advanced data strategies in their applications, e.g., trigger-
ing data staging across sites or within a site with multiple
storage systems. In the future, Hydra will expose methods
to cache and prefetch data, hiding the complexity of the
communication and coordination protocols from the user.

3.2 Implementation
Hydra is implemented as a Python module, and its API has
four classes: Provider, Service, Resource, and Task. Provider
exposes the proxy method to instantiate a Provide Proxy com-
ponent, load the credentials and cloud provider configuration,
and perform the credential validations. Service Proxy exposes
methods to interface with cloud services and HPC batch sys-
tems. Resource exposes methods for each supported cloud and
HPC provider, allowing users to specify the type of service
they want to use, the amount of resources for each service,
and all the other resource properties required by each provider
and service. Task extends the class conccurent.Future, al-
lowing users to specify their workload properties and assign
them to specific providers. Hydra’s tasks map to regular exe-
cutables, cloud pods, or containers, enabling users to set, for
example, the task provider, container path, memory per task,
and CPU/GPU units per task. Each task object also holds
information about its current/final state and tracing events.

Hydra’s CaaS Manager can instantiate new clusters on
each cloud provider from the requirements specified via the
resource.VM object. Based on the available resources of each
cluster, the CaaS Manager partitions the given workload into
batches that fit the available resources. Once the requested
resources and services—including the data services available
on the target cloud platform—are ready, the CaaS Manager
submits the tasks to the service interface of each provider
in a single batch. That reduces the communication between
Hydra and the provider, reducing Hydra’s overheads and
increasing its throughput.

The CaaS Manager traces the concurrent execution of all
tasks until they are in a final state, i.e., done, canceled, or
failed. Due to the cost associated with moving data from the
cloud service to the user machine, task traces and outputs are
not stored in the task object unless specified by the user. The
HPC Manager uses the RADICAL-Pilot connector to bulk-
submit resource requirements and task descriptions. Like the
CaaS Manager, the HPC Manager monitors the submitted
tasks via RADICAL-Pilot and, if requested by the users,
retrieves the traces of the task executions. Hydra managers
ensure graceful terminations of all the instantiated resources
upon completion of the whole workload or, when configured
by the user, upon failure of one or more tasks.
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4 EXEMPLAR USE CASE
We introduce FACTS (Framework for Assessing Changes To
Sea-level) as an exemplar use case, showing how Hydra’s
capabilities allow concurrently running a real-life workflow
on multi-node Kubernetes clusters and HPC resources. In
§5, we present Hydra’s performance characterization when
implementing and executing one of FACTS’ workflow.

FACTS is a Python tool for projecting sea-level rise [18],
which o�ers a modular platform for characterizing parametric
and structural uncertainty in future global, relative, and
extreme sea-level changes. FACTS consists of modules to
simulate the di�erent processes that contribute to sea-level
changes [17]. Each module is an independent workflow that
can currently be executed on a container or scaled up only on
HPC platforms via RADICAL-EnsembleToolkit (EnTK) [4].

Modules under development use various AI/ML meth-
ods [25] that will require cloud environments to scale. Cur-
rently, FACTS requires ≥21 GB of data, but that will grow
10/100-fold, requiring cloud platforms that allow for long-
term storage of various datasets. Finally, with the planned
contribution of third-party modules to FACTS from diverse
domain scientists, executing FACTS on a cloud platform
could o�er a stable, predictable, and testable development
and production environment.

Supporting the execution of FACTS on commercial/private
cloud and HPC platforms poses three main requirements: (1)
FACTS modules must be containerized, separating data and
compute capabilities while o�ering execution environments
with the capabilities required by ML/AI, simulation and
analysis tasks; (2) scaling the concurrent execution of modules
requires an elastic runtime environment, alongside suitable
workflow management capabilities; and (4) data capabilities
must be available to access datasets, possibly via dedicated
service interfaces. Hydra addresses all FACTS requirements
to run on the cloud e�ciently while continuing to run the
current FACTS implementation on HPC platforms.

Note that FACTS is an exemplary use case and that we
did not explicitly design Hydra to support it. As seen in
§3.1, Hydra is a general-purpose cloud and HPC broker
specifically designed to support diverse programming models
and interfaces. Hydra is agnostic towards the type of science
performed by the workload/workflows it brokers.

5 PERFORMANCE CHARACTERIZATION
Table 1 shows the setup of our experiments on diverse cloud
and HPC platforms. We use the NSF Chameleon [16] and Jet-
stream2 [13] cloud providers, and the ACCESS Bridges2 [6]
HPC platform. Chameleon is an experimental cloud plat-
form with 550 nodes and 5 PB of storage, Jetstream2 is a
production-grade cloud platform with 448 compute nodes
and 17.2 PB of storage, and Bridges2 is an HPC + AI +
Data cluster with 603 compute nodes and 10 PB of storage.
We use Amazon Web Services (AWS) and Microsoft Azure
as commercial cloud providers.

Our experiments measure four metrics: Hydra’s overheads
(OVH), Hydra’s throughput (TH), task total processing time

(TPT), and task total execution time (TTX). OVH measures
the time spent by Hydra to prepare the workload for exe-
cution and to communicate with the platform middleware
to initiate the workload execution. TH measures Hydra’s
throughput as tasks processed per second and not the num-
ber of tasks a provider executes per second, as the latter is
independent of Hydra’s design. TPT measures the time taken
to execute the workload tasks and to prepare and shut down
the task execution environments. As such, TPT measures
the performance of a target platform and its runtime services
when driven by Hydra. TTX measures the total time the tar-
get platform/service takes to execute all the tasks submitted
by Hydra.

Table 1 details the four experiments we designed to study
Hydra’s performance and compare the individual and aggre-
gated performance of clouds and HPC platforms. Experiments
1, 2, and 3 compare Hydra’s strong and weak scaling when
executing tasks on single cloud platforms (Experiment 1),
multiple concurrent cloud platforms (Experiment 2), and
multiple concurrent cloud and HPC platforms (Experiments
3 and 4).

As experiments 1, 2, and 3A focus on Hydra’s performance,
we use noop tasks, i.e., tasks with zero execution time. That
allows us to isolate and measure only Hydra’s overheads and
the time taken by each platform to set up and shut down the
task execution environment (i.e., TPT). TPT allows us to
compare the magnitude of Hydra’s overheads to those of the
target platforms. Further, it also provides users—like those
of FACTS—with a baseline performance on which to base
brokerage choices.

With experiments 1, 2, and 3A we study Hydra’s perfor-
mance with two task partitioning models: Single-Container-
Per-Pod (SCPP), where each container has its own resources,
and Multiple-Containers-Per-Pod (MCPP), where each con-
tainer shares the resources with other containers from within
the same pod. SCPP supports applications where a subset of
tasks can run independently. In contrast, MCPP supports ap-
plications in which tasks have runtime dependencies, allowing
them to execute within the same pod concurrently.

Experiments 3B and 4 measure Hydra’s performance with
heterogeneous tasks, i.e., tasks requiring di�erent amounts
of resources and/or execution time, including the FACTS
workflow. That helps to understand whether heterogeneity
introduces appreciable di�erences in Hydra’s overheads or
throughput. In these experiments, we measure the workloads
TTX instead of TPT as the latter would not change com-
pared to what experiments 1–3 already measure. TTX o�ers
comparative insight into the actual performance of di�erent
platforms and a baseline for future orchestration policies.

We used uniform VMs across cloud providers with the
same number of vCPUs and a comparable amount of memory.
Importantly, Chameleon and AWS o�ered Intel Haswell and
Xeon virtual cores, respectively, while Jetstream2 o�ered
AMD EPYC-Milan physical cores. On Bridges2, each node
provided 128 AMD EPYC physical cores. As middleware,
we used a Kubernetes cluster with between 1 and 16 nodes,
deployed via Elastic Kubernetes Service (EKS) on AWS,
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Table 1: Setup of Experiment 1, 2, 3, and 4. P-PR = Per Provider; C-PR = Cross Providers; C-PL = Cross Platform; HOM =
homogeneous; HET = heterogeneous. Task executables: 1–3A = noop; 3B = sleep; 4 = pre-processing, fitting, projecting
and post-processing.

ID Exp. Type Workload Type Plat. Type No. Tasks Task Type Nodes Per Run Total CPUs
1 P-PR HOM Cloud [4,8,16]K container 1 [4–16]
2 C-PR HOM Cloud [16,32,64]K container 1 16
3-A C-PL HOM Cloud-HPC [20,40,80]K container 1 16
3-B C-PL HET Cloud-HPC 10,240 container, executable [2,4,6] [4–128]
4 FACTS HET Cloud-HPC 200-3200 containers, executable [1,2,4,8,16] [16–256]

Figure 2: Weak and strong scaling of Hydra’s OVH (top) and TH (middle) and cloud provider TPT (bottom). Measured on
Jetstream2, Chameleon, Azure, and AWS with MCPP (a, b, c) and SCPP (d, e, f). Weak scaling: 4K/4, 8K/8, 16K/16 tasks/vCPUs;
strong scaling: 4K/[4,8,16] 8K/[4,8,16], 16K/[4,8,16] tasks/vCPUs.

Azure Kubernetes Services (AKS) on Azure, and a custom
image on the NSF machines. On the HPC platform, we used
RADICAL-Pilot.

5.1 Experiment 1: Per Provider Scalability
For each cloud provider—Jetstream2, Chameleon, Azure, and
AWS—we execute 4000, 8000, and 16,000 tasks on 4, 8, and
16 vCPUs. We partition those tasks between 267 and 16,000
pods, measuring strong and weak scaling for both MCCP
and SCPP application scenarios.

Fig. 2 (top) shows strong and weak scaling of Hydra’s
overheads (OVH) for MCPP (a, b, c) and SCPP (d, e, f).
Weak scaling is slightly sublinear, while strong scaling is
mostly linear across the providers. The number of tasks and
pods dominates OVH, which is invariant across providers,
and the number of vCPUs. That validates the separation
of concerns in Hydra’s design between broker and platform
capabilities, i.e., the performance of the former is independent
of the latter. SCPP OVH is, on average, ≥46% larger than
the MCPP one due to the increased number of I/O operations
needed to partition, prepare, and serialize each pod.

Fig. 2 (middle) shows two di�erences in Hydra’s TH with
MCPP and SCPP: (1) MCPP is, on average, ≥44% higher

than SCPP across providers and scale; and (2) while TH with
SCPP is invariant across providers and the number of tasks
and pods, TH with MCPP increases with the ratio of pods
and tasks. The lower TH with SCPP compared to MCPP is
due to the increase of OVH shown in Fig. 2 (middle). Hydra
takes more time with SCPP to process pods (i.e., more I/O
operations), hindering its throughput. Similarly, TH with
MCPP improves by reducing the number of pods.

Fig. 2 (bottom) shows that TPT consistently scales across
all runs with small error bars. Jetstream2 performs better
than Chameleon and AWS, but Azure scales better, consis-
tently outperforming Jetstream2 with 16 vCPUs. Jetstream2
performance is due to the pinning of vCPUs to physical
cores, compared to the pinning to threads on all the other
platforms. Hypervisor optimizations explain Azure’s better
scaling, while Chameleon shows the worst scaling, likely due
to a less optimized hypervisor than AWS and Azure. SCPP
shows a ≥9% increase compared to MCPP across all providers.
That is due to the larger overheads of per-pod initialization,
scheduling, and termination. Finally, note that Hydra OVH
is marginal compared to the TPT, confirming that platform
overheads are dominant over Hydra’s.
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Figure 3: Aggregated TPT, OVH and TH on CHI, JET2, AWS,
and Azure with MCPP (top) and SCPP (bottom).

5.2 Experiment 2: Cross Provider Scalability
We measure Hydra’s scaling behavior when concurrently
preparing and managing the execution of 16,000, 32,000, and
64,000 tasks on four VMs, one for each cloud provider. We use
the largest VMs with 16 vCPUs available on all four providers
and divide the workload tasks across each VM equally (with
our allocation the largest VM on Jetstream2 and Chameleon
have 16 vCPUs). Furthermore, we measure the aggregated
time for OVH, TH, and TPT with MCPP and SCPP and
compare them to the results of Experiment 1. The goal is to
assess the consistency between the two experiments to verify
whether Hydra concurrency introduces additional overheads.
We sample a relevant subset of runs of Experiment 1 to avoid
unnecessary experimental duplications.

Fig. 3 shows that Hydra’s aggregated OVH (orange) is
consistent with the OVH measured on each provider in Ex-
periment 1. Concurrently executing 16,000 tasks produces,
on average, the same OVH measured running 4000 tasks on
any of the four providers in Experiment 1. Experiment 2 data
are consistent across the measured task and pod scales, repli-
cating the already observed behavior with MCPP and SCPP.
Hydra’s aggregated TH (purple) is almost 4 times higher than
the one measured in Experiment 1, confirming that Hydra
can e�ectively and e�ciently scale task throughput across
diverse cloud providers. TH behavior is consistent with the
one measured in Experiment 1, confirming that SCPP TH
is lower than MCPP TH due to the increased cost of pod
serialization and I/O. As expected, TPT (teal) is consistent
with the provider performance measured in Experiment 1.

5.3 Experiment 3: Cross Platform Scalability
We introduce three types of heterogeneity: platform-, node-
and task-level. Hydra’s core capabilities are to enable broker-
age and execution management/monitoring across private/-
commercial cloud providers and HPC platforms. Experiment
3A measures Hydra’s scalability with platform heterogeneity,
while Experiment 3B also introduces node and task hetero-
geneity. We use only SCPP as it best fits a scenario where
tasks execute outside a pod on HPC resources.

Experiment 3A setup is consistent with Experiments 1
and 2 to enable comparison (see Table 1). Considering the
error bars and the slight increase in the number of tasks of
Experiment 3A, Fig. 4 (top) shows that Hydra’s OVH and
TH are similar to those measured in Experiment 2 with SCPP.
Thus, HPC-specific capabilities implemented in Hydra do
not introduce overheads that are more significant than those
required for cloud providers. TPT is also comparable to those
of Experiment 2. However, it is important to note that we
experienced short and consistent queuing time across all the
experiment runs on the HPC platform. With a higher and less
uniform queuing time, the aggregated TPT of Experiment
3A would increase compared to using only cloud platforms.

Experiment 3B represents scientific workloads in which
di�erent task types must execute with di�erent degrees of con-
currency. Supporting those workloads is particularly relevant
for AI/ML-enabled workflows in which learning, inference,
and simulation tasks often coexist within a single applica-
tion [21, 29]. Experiment 3B executes tasks with di�erent
durations and sizes on multi-node Kubernetes clusters and
multiple HPC compute nodes. Tasks execute for 1–10 seconds
on 1–4 CPUs and 0–8 GPUs. Short durations and relatively
small sizes stress Hydra’s performance, o�ering a ‘worse case’
scenario for Hydra’s performance characterization.

Fig. 4 (bottom) shows that Hydra’s OVH increases ≥5%
above two nodes but remains very similar between 4 and
6, confirming that adding nodes introduces only marginal
overheads and that the number of tasks and pods remain
dominant. Accounting for error bars, TH remains essentially
invariant across the number of nodes. At the same time,
TPT scales linearly between 2 and 4 nodes and sublinearly
between 4 and 6 nodes, primarily due to increased Kubernetes
overheads.

5.4 Experiment 4: Use Case Scalability
We study the scalability of Hydra when managing the con-
current execution of the FACTS workflow (See §4) on Jet-
stream2, AWS, and Bridges2. We characterize strong and
weak scaling, measuring FACTS TTX (blue, orange, green)
and Hydra OVH (red). Unlike the other experiments, Hydra
has to deploy a stack on both cloud and HPC platforms
that enables the execution of workflows, not just workloads
(i.e., a set of independent tasks). Hydra deploys a multi-node
Kubernetes cluster on the cloud platforms with the Argo
workflow manager. In contrast, Hydra uses RADICAL-EnTK
and RADICAL-Pilot on the HPC platform to execute the
FACTS workflow [17]. Note that Hydra still has to manage
the life-cycle of the deployed resources and the workflows on
HPC and cloud concurrently.

We use Hydra’s Python API to implement the FACTS
workflow, which contains four main steps: pre-processing,
fitting, projecting, and post-processing. Each step requires 1
core, 2GB of RAM, and the pre-processing and the fitting
steps require input data files pre-staged on each target plat-
form. FACTS workflow can be run multiple times to explore
a vast problem space, and Hydra enables those workflow
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Figure 4: Aggregated TPT, OVH, and TH on four cloud
providers (CHI, JET2, AWS, Azure) and ACCESS Bridges2
HPC platform with homogeneous (top) and heterogeneous
(bottom) workloads and resources.

instances to be run on diverse platforms concurrently. Ex-
periment 4 serves to validate the end-to-end capabilities of
Hydra and to provide FACTS users with insight into which
platform(s) o�er better performance.

We run between 50 and 800 FACTS workflows on 16–256
AWS and Bridges2 cores and between 50 and 400 workflows
on 16–128 cores on Jetstream2, as Jetstream2 has fewer cores
compared to AWS and Bridges2. We maintain similar setup
and resource properties of cores per node, RAM, and storage
on cloud platforms. On HPC, we use 128 cores per node
(compared to 16 cores on the clouds) as Bridges2 does not
o�er smaller compute nodes (see Table 1).

Fig. 5 shows that for both strong (left) and weak (right)
Hydra’s OVH (red) scaling is consistent with what was ob-
served in the previous experiments and, thus, invariant across
workload and resource types. Further, OVH is negligible com-
pared to the FACTS workflow makespan. With strong scaling,
TTX on AWS (green) and Jetstream2 (blue) scale sublinearly
due to the increasing platform overheads. Bridges2 (orange)
has a linear behavior on 128 cores and scales with 256 cores.
That is expected because Bridges2 does not allow acquiring
less than 128 cores; thus, the first 4 runs of the experiment
have the same concurrency. With weak scaling, TTX is close
to the ideal scaling behavior on all the platforms.

Jetstream2 performs ≥2.5 times better than AWS due to
the already mentioned di�erent vCPUs mapping. Bridges2
performs ≥5 times better than Jetstream2 and ≥10 times
better than AWS. That is because Bridges2 (1) has a higher
number of cores per node, which allows for a greater level of
concurrency, (2) does not su�er from virtualization overheads,
and (3) has better CPU capabilities compared to AWS and
Jetstream.

6 CONCLUSIONS AND FUTURE WORK
We introduced Hydra, a brokering system that manages, mon-
itors, and provisions inter- and cross-cloud/HPC resources
and manages, monitors, and traces the execution of het-
erogeneous workloads on those resources. Hydra’s design is
modular, and its interfaces allow integration with existing

Figure 5: FACTS strong (right) and weak (left) scaling on
Jetstream2 (blue), AWS (green) and Bridges2 (orange).

workflow middleware and runtime systems. That facilitates
supporting new cloud providers and HPC platforms with a
connector-based design.

Hydra addresses some critical challenges posed by resource
management and workflow execution with resource, platform,
task, and middleware heterogeneity. Specifically, Hydra en-
ables concurrent use of NSF and commercial clouds alongside
NSF and DOE HPC platforms. That satisfies the growing
need of scientific communities to e�ciently and e�ectively
utilize a variety of clouds and HPC platforms in government-
funded and commercial spaces. Finally, Hydra is designed
from the ground up for performance, including tracing and
monitoring capabilities.

Our experiments characterized Hydra’s performance, show-
ing minimal overheads compared to the overheads of private
and commercial clouds and HPC platforms. Given its design
(§3.1), Hydra’s overheads are dominated by the number of
tasks and pods processed but remain essentially invariant
across cloud providers (Experiment 1, §5.1), HPC platforms
(Experiment 2, §5.2) and type of tasks (Experiment 3A,
§5.3). Hydra’s throughput scales strongly and weakly and is
independent of platforms (Experiments 1 and 2) and task
heterogeneity (Experiment 3B).

Currently, Hydra generates pods and partitions tasks over
those pods by relying on the file system. As seen in Experi-
ment 1, that is ine�cient and reduces Hydra’s throughput,
especially with SCPP. Early prototyping confirms that gener-
ating the pods and partitioning the tasks in memory reduces
Hydra’s overheads and increases its task throughput.

Experiments 1–3 show Hydra’s capability to concurrently
acquire cloud and HPC resources across diverse platforms
via either single/multi-node Kubernetes clusters or a pilot
system. Experiment 4 shows how that capability supports
executing a scientific workflow at scale, with unprecedented
concurrency, and with minimal overheads. In Experiment 4,
Hydra concurrently managed the execution of 800 instances
of the FACTS workflow on 4–16 nodes of Kubernetes clusters
and 1 pilot job on an HPC platform. Note that Hydra’s scal-
ing is limited mainly by the capabilities of the middleware it
uses on cloud and HPC platforms. For example, we could use
a larger number of more dense VMs on AWS/Azure or use
RADICAL-Pilot on a much larger HPC platform like Fron-
tier [23] without modifying Hydra’s current code or hindering
either AWS/Azure or RADICAL-Pilot performance.

32



HPDC, FlexScience 2024, ,

Alsaadi et al.

Experiment 4 also highlighted the flexibility of Hydra’s
design in integrating within the existing ecosystem. While
experiments 1–3 only required Kubernetes capabilities, ex-
ecuting FACTS required a workflow manager. Integrating
Argo needed minimal development e�ort, and Hydra used
its standard API without additional overhead. As seen in
§4, FACTS will soon require heterogeneous resources to run
AI/ML-enabled workflows, and Hydra can already drive Ku-
bernetes stacks to execute CPU/GPU and MPI task One
of Hydra’s research lines is exploring the scheduling trade-
o�s across di�erent stacks. For example, further research is
needed to understand how to couple Hydra-level task parti-
tioning and Argo- and Kubernetes-level task scheduling for
metrics like workflow makespan and resource utilization.

Finally, our experiments o�ered valuable insights into the
performance of the target cloud and HPC platforms. We
could compare the overheads of commercial and NSF cloud
resources and, as with FACTS, understand the performance
trade-o�s between cloud and HPC resources. Currently, that
information enables Hydra’s users to make binding decisions
about tasks and resources before starting the execution of
the workflow. Nonetheless, as part of the ongoing Hydra
development, we use this experimental insight to develop,
evaluate, and compare orchestration capabilities that will
enable dynamic and adaptive binding of tasks to resources
at runtime.
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